
Theoretical Computer Science 407 (2008) 192–202

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Universal automata and NFA learningI

Pedro García a, Manuel Vázquez de Parga a, Gloria I. Álvarez b, José Ruiz a,∗
a Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia, Valencia, Spain
b Pontificia Universidad Javeriana - Seccional Cali, Calle 18 118-250 Cali, Colombia

a r t i c l e i n f o

Article history:
Received 27 November 2006
Received in revised form 6 May 2008
Accepted 16 May 2008
Communicated by D. Perrin

Keywords:
Grammatical inference
Finite automata
Universal automaton

a b s t r a c t

The aim of this paper is to develop a new algorithm that, with a complete sample as input,
identifies the family of regular languages by means of nondeterministic finite automata.
It is a state-merging algorithm. One of its main features is that the convergence (which is
proved) is achieved independently from the order in which the states are merged, that is,
the merging of states may be done ‘‘randomly’’.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Grammatical inference is the discipline that deals with learning finite models that represent a formal language L either
from positive data (a sequence of the words of L) or from a complete presentation (a sequence of words that are labeled
according to their membership in L).
We restrict the learning task to the family of regular languages. As stated by Gold [11,12], there are two problems: this

family cannot be learned using positive samples only, and finding the minimal deterministic finite automaton (DFA) that is
consistent with a complete presentation is a NP-complete problem.
Gold [11] made the first attempt to deal with the task of learning regular languages. His algorithm used a table to

determine distinguishable states and to establish the transitions between them. The first inference algorithm that used the
merging of states as a way of generalizing the input sample is the RPNI [17]. The possible merges are done in lexicographical
order of the states of the prefix tree acceptor (PTA) of the sample. The PTA is a tree-shaped automaton that only recognizes
the exact sample. Under certain conditions of the training sample, RPNI converges to the minimum DFA that is consistent
with that sample. More recently, using the concept of inclusion between the residuals of states, an extension of RPNI that
enlarges the training set while learning has been proposed in [9].
Since then, several state-merging algorithms have been proposed, in which the merging order can be established by the

training data. The first of these was developed in [13] in which the candidate states to bemerged are ordered by the number
of training samples crossing each state of the PTA. This idea was improved by the EDSM [15], which uses a control strategy
called blue-fringe in which one of the candidate states to be merged is in the root of a tree. Another attempt to improve
the efficiency of this method was made in [5], where the set of candidates to be merged was limited by a given distance.
Since the output of this algorithm was very sensitive to the first merges done, a new measure called shared evidence was
proposed in [1] to overcome this difficulty.

I Work partially supported by Spanish Ministry of Education and Science research project TIN2007-60769.
∗ Corresponding author.
E-mail addresses: pgarcia@dsic.upv.es (P. García), mvazquez@dsic.upv.es (M. Vázquez de Parga), galvarez@dsic.upv.es (G.I. Álvarez), jruiz@dsic.upv.es

(J. Ruiz).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.05.017

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:pgarcia@dsic.upv.es
mailto:mvazquez@dsic.upv.es
mailto:galvarez@dsic.upv.es
mailto:jruiz@dsic.upv.es
http://dx.doi.org/10.1016/j.tcs.2008.05.017

P. García et al. / Theoretical Computer Science 407 (2008) 192–202 193

All the above-mentioned algorithms have in common that the output hypotheses are DFAs. More recently, starting
with the idea that nondeterministic finite automata are generally smaller descriptions for a language than their equivalent
deterministic ones, algorithms that output nondeterministic finite automata have beenproposed. One of them is theDeLeTe2
algorithm [8]. It outputs a special type of automaton called RFSA (Residual finite-state automaton). A finite automaton
A = (Q ,Σ, δ, I, F) is a RFSA if for every q ∈ Q the language {x|δ(q, x) ∩ F 6= ∅} is a residual language of L(A). We recall
that the residual of a language L with regard to a word u, denoted by u−1L, is u−1L = {v ∈ Σ∗ : uv ∈ L}. In [7], a subclass
of the class of NFAs called unambiguous finite automata (UFA) is defined. One of the properties of UFA is that the same
target language will be achieved independently of the order of themerging of the states. Some algorithms that use the same
strategy as RPNI but that output NFAs have also been proposed [2].
While most of the inference algorithms start from the prefix tree acceptor of the sample, an algorithm has recently been

proposed in [19] that begins constructing the subautomaton associated with every word of the positive sample.
In this workwe propose a state-merging algorithm that, with a universal sample as input, converges to a nondeterministic

finite automaton that recognizes the target language, independently of the order inwhich the states aremerged. The concept
of universal sample is defined and its finiteness is proved. This algorithm, as is described here is theoretical and is not
intended to be used in practice as it is stated. However the concept of universal automaton for a language and some other
concepts that have been used to prove its convergence will clarify and simplify ideas about the convergence of previous
inference algorithms, as well as of those that may be proposed in the future. Note that even though different orders of
merging states may lead to different hypotheses (automata), on convergence, the language accepted by those automata will
be the target language.
The article is structured as follows: Section 2 presents some preliminary definitions and the notations used throughout

the paper; Section 3 presents the definition of universal sample and some propositions to prove its finiteness. Section 4
presents the algorithm, a proof of its convergence, an example of a run and an experiment that shows the different
hypotheses that can be obtained when the algorithm has converged, depending on the order of merging states. Finally,
Section 5 presents the conclusions.

2. Definitions and notations

In this section, we will describe some facts about formal languages in order to make the notation understandable to the
reader. For further details about the definitions, the reader is referred to [14].

2.1. Languages and automata

Let A be a finite alphabet and A∗ the free monoid generated by A with concatenation as the binary operation and λ as
neutral element. A language L is any subset of A∗, the elements x ∈ A∗ are called words.
A (non deterministic) finite automaton (NFA) is a 5-tuple A = (Q , A, δ, I, F), where Q is a finite set of states, A is an

alphabet, I, F ⊆ Q are respectively the set of initial and final states and δ : Q × A → 2Q is the transition function, which
will also be denoted as δ ⊆ Q × A× Q .
Given P ⊆ Q and a ∈ A, δ(P, a) = ∪q∈Pδ(q, a). The function δ is extended to words writing δ(P, λ) = P and

δ(P, xa) = δ(δ(P, x), a), for every a ∈ A, x ∈ A∗. The language accepted by A will be denoted as L(A), that is,
L(A) = {x ∈ A∗ : δ(I, x) ∩ F 6= ∅}. Two automata are equivalent if they accept the same language. The left language of
a state qwith respect toA is Lq = {x ∈ A∗ : q ∈ δ(I, x)}.
A finite automatonA is deterministic if Card(I) = 1 and for every state q and every symbol a, Card(δ(q, a)) ≤ 1.
A subautomaton of a non deterministic finite automatonA = (Q , A, δ, I, F) is any finite automatonA′ = (Q ′, A, δ′, I ′, F ′)

where Q ′ ⊆ Q , I ′ ⊆ I ∩ Q ′, F ′ ⊆ F ∩ Q ′ and δ′ ⊆ δ ∩ Q ′ × A× Q ′.
It is easily seen that ifA′ is a subautomaton ofA, then L(A′) ⊆ L(A).
Given A = (Q , A, δ, I, F) and B = (Q ′, A, δ′, I ′, F ′), the function ϕ : Q → Q ′ is a homomorphism from A to B if

ϕ(I) ⊆ I ′, ϕ(F) ⊆ F ′ and ϕ(δ(q, a)) ⊆ δ′(ϕ(q), a) for any q in Q and a in A. The subautomaton of B induced by ϕ(Q) is
denoted as ϕ(A). It follows that L(A) ⊆ L(ϕ(A)) ⊆ L(B).
Let D ⊂ A∗ finite. The maximal automaton for D is the NFA MA(D) = (Q , A, δ, I, F) where Q = ∪x∈D{(u, v) ∈ A∗ × A∗ :

uv = x}, I = {(λ, x) : x ∈ D}, F = {(x, λ) : x ∈ D} and for (u, av) ∈ Q , δ((u, av), a) = (ua, v). So defined L(MA(D)) = D.
The merge of states p and q in a finite automaton A = (Q , A, δ, I, F) is defined as follows: merge(A, p, q) =

(ϕ(Q), A, δ′, I ′, F ′) where ϕ(q) = p and ∀r 6= q, ϕ(r) = r , also I ′ = ϕ(I), F ′ = ϕ(F) and (r, a, s) ∈ δ if and only if
(ϕ(r), a, ϕ(s)) ∈ δ′. It follows that L(A) ⊆ L(merge(A, p, q)). Two states p and q aremergible if L(merge(A, p, q)) = L(A).
Let A = (Q , A, δ, I, F) be an automaton and let π be a partition of Q . Let B(q, π) be the class of π that contains q. The

quotient automaton is A/π = (Q ′, A, δ′, I ′, F ′), where Q ′ = Q/π = {B(q, π) : q ∈ Q }, I ′ = {B ∈ Q ′ : B ∩ I 6= ∅},
F ′ = {B ∈ Q ′ : B ∩ F 6= ∅} and the transition function is B′ ∈ δ′(B, a) if and only if ∃q ∈ B, ∃q′ ∈ B′ with q′ ∈ δ(q, a).
An automatonA is irreducible if there is no non-trivial partition π of its set of states such that L(A/π) = L(A), that is, if

the merging of any pair of states leads to an automaton that recognizes a different language.
Given a language L, let U be the set of all the possible intersections of residuals of L with respect to the words over a

certain alphabet A, that is, U = {u−11 L ∩ · · · ∩ u
−1
k L : k ≥ 0, u1, . . . , uk ∈ A

∗
}. If L is a regular language, U is finite. The

universal automaton (UA) [3,4,6,16,18] for L is defined asU = (U, A, δ, I, F)with:

194 P. García et al. / Theoretical Computer Science 407 (2008) 192–202

• I = {q ∈ U : q ⊆ L}.
• F = {q ∈ U : λ ∈ q}.
• The transition function is such that q ∈ δ(p, a) iff q ⊆ a−1p.

If the number of states of the minimal DFA recognizing L is n, the number of states of the UA for L lies between n and 2n.
Finally, we recall that the UA for a language L does not have any mergible states [10].
With regard to the universal automaton, we have the following theorem that states that every automaton that recognizes

a subset of a language L can be projected into the UA for L.

Theorem 1 ([4,6]). LetU = (U, A, δ, I, F) be the universal automaton for L ⊆ A∗. Then:

(1) L(U) = L.
(2) For any automatonA = (Q , A, δA, IA, FA) such that L(A) ⊆ L, the function ϕ : Q → U defined as ϕ(q) =

⋂
u∈Lq u

−1L is
an automata homomorphism.

2.2. Grammatical inference

Regular language learning is an important issue of grammatical inference, which is defined as the process of learning an
unknown formal language from a finite set of labeled examples.
A positive (resp. negative) sample of L is any finite set D+ ⊆ L (resp. D− ⊆ L). In the case that it contains positive and

negative words, it will be denoted as (D+,D−) and called a complete sample. A complete presentation of L ⊆ Σ∗ is a sequence
of all the words ofΣ∗ labeled according to their membership to L.
An inference algorithm is an algorithm that, on input of any sample, outputs a representation of a language. The algorithm

is consistent if the output contains D+ and is disjoint with D−.
The type of convergence that we will use in our algorithms was defined by Gold [11,12] and is called identification in the

limit. It is amathematical framework thatwas proposed to analyze the behavior of different learning tasks in a computational
way.
Given a familyL of languages,H is a set of hypotheses forL if, for every L ∈ L, there is h ∈ H that describes L. For the

family of regular languages,H can be the set of NFAs.
An algorithm IA identifies a class of languages L by means of hypotheses in H in the limit if and only if, for any

L ∈ L, and any presentation of L (i.e., a sequence of words ofΣ∗ classified according to their membership to L), the infinite
sequence of hypotheses output by IA converges to h ∈ H such that L(h) = L. In other words, there exists t0 such that
(t ≥ t0 ⇒ ht = ht0 ∧ L(ht0) = L), where ht denotes the hypothesis output by IA after processing t examples.
Equivalently,A identifies a class of languagesL bymeans of hypotheses inH in the limit if there exists, for every L ∈ L,

a pair (D+,D−) such that when A is supplied with any pair (D′
+
,D′
−
) with the condition that D+ ⊆ D′+ and D− ⊆ D

′
−
, it

outputs the same hypothesis h ∈ H for L.
The learning algorithm that we propose in this paper is an algorithm in which the generalizing process is based on

merging states from a starting automaton. The starting point is the maximal automaton for the positive samples, and the
merges are performed under the control of the negative samples.

3. Universal sample

The aim of this section is to define and prove the existence of a finite set of words D+ ⊆ L, for every regular language L.
This set of words will be called universal sample for L. This set has the property that any partition π that makesMA(D+)/π
irreducible in L defines a subautomaton ofU that accepts exactly L (see Theorem 15).

Definition 2. An automaton A is irreducible in a regular language L if and only if L(A) ⊆ L and L(A/π) − L 6= ∅, for any
non trivial partition π of the states ofA.

Therefore, an automaton A is irreducible if and only if it is irreducible in L(A). In fact, A is irreducible if and only if there
exists a language L such thatA is irreducible in L.

Proposition 3 ([10]). LetA be an automaton accepting L, and letU be the universal automaton of L. Let ϕ be the morphism of
Theorem 1 that mapsA inU. If there exist k states ofA, q1, . . . , qk, such that ϕ(q1) = · · · = ϕ(qk), then the states q1, . . . , qk
are mergible.

Proposition 4. Let D+ ⊆ L be finite and let π be a partition of the states of MA(D+) such that MA(D+)/π is irreducible in L.
Then, MA(D+)/π is isomorphic to a subautomaton ofU (the universal automaton of L).

Proof. AsMA(D+)/π is irreducible in L, then L(MA(D+)/π) ⊆ L, and this quotient automaton does not havemergible states.
Then, by Proposition 3, the morphism ϕ of Theorem 1 is injective. �

Definition 5. LetA = (Q , A, δ, I, F) be a nondeterministic finite automaton and let x = a1a2 . . . an ∈ L(A). An acceptance
path for x inA is a sequence of arcs 〈(q1, a1, q2), (q2, a2, q3), . . . , (qn, an, qn+1)〉with q1 ∈ I , qn+1 ∈ F .

P. García et al. / Theoretical Computer Science 407 (2008) 192–202 195

Fig. 1. (A) Minimal deterministic automaton for language L = a2a∗ . (B) Universal automaton for L.

Fig. 2. Subautomaton induced by one of the accepting paths for a5 (A) and for a6 inU. Juxtaposition of the paths (C).

Definition 6. Given a path C = 〈(q1, a1, q2), (q2, a2, q3), . . . , (qn, an, qn+1)〉, the subautomaton of A induced by C is
AC = (Q ′, A, δ′, {q1}, {qn+1}), where Q ′ is the set of distinct states of q1, q2, . . . , qn+1 and δ′ is the set of transitions in C.

Definition 7. Given a NFA A = (Q , A, δ, I, F) and the collection of subautomata {Ai}ni=1, where Ai = (Qi, A, δi, Ii, Fi) the
juxtaposition of the subautomata is the subautomatonA′ = (Q ′, A, δ′, I ′, F ′) with Q ′ =

⋃n
i=1 Qi, I

′
=

⋃n
i=1 Ii, F

′
=

⋃n
i=1 Fi

and δ′(q, a) =
⋃n
i=1 δi(q, a), for every q ∈ Q

′ and every a ∈ A′.

From this definition, it is clear that
⋃n
i=1 L(Ai) ⊆ L(A

′) ⊆ L(A).
LetA be an automaton, let x ∈ L(A), and letCx be the set of acceptance paths for x inA. Given {x1, x2, . . . , xn} ⊆ L(A), we

can associate a subautomatonA{ci,...,cn} to every set {c1, c2, . . . , cn}, with ci ∈ Cxi . This subautomatonA{ci,...,cn} is obtained
as juxtaposition of the subautomataAci (each of which is associated to one of the paths).
The following example will clarify the previous concepts.

Example 8. Let L = a2a∗. A deterministic automaton for L is depicted in Fig. 1(A), and the universal automaton for L is
depicted in Fig. 1(B).
For example, given the words a5 and a6 of L, possible accepting paths in the UA of L are: 〈(1, a, 2), (2, a, 3), (3, a, 1),

(1, a, 2), (2, a, 3)〉 for a5, and 〈(1, a, 2) , (2, a, 3), (3, a, 2), (2, a, 1), (1, a, 2), (2, a, 3)〉 for a6. The subautomata of U
induced by those paths and their juxtaposition are shown in Fig. 2.

Definition 9. Let D+ = {x1, . . . , xn} ⊆ L. For every i, 1 ≤ i ≤ n, let {c
(i)
1 , . . . , c

(i)
ni } be the set of all accepting paths for

xi, and let {A
(i)
1 , . . . ,A

(i)
ni } be the set of their induced subautomata. D+ is a universal sample for L if for every choice ji =

1, . . . , ni with i = 1, . . . , n the subautomaton ofU obtained by the juxtaposition of the subautomataA
(1)
j1
,A

(2)
j2
, . . . ,A

(n)
jn

recognizes L.

Proposition 10. Let U be the universal automaton for L. Let A be a subautomaton of U such that L(A) = L, let x ∈ L, let
C = {c(x)1 , . . . , c

(x)
nx } be the set of all accepting paths for x inU, and let {A(x)

1 , . . . ,A
(x)
nx } be the set of subautomata ofU induced

by C. The juxtaposition ofA andA
(x)
i for every i, 1 ≤ i ≤ nx accepts L.

Proof. The juxtaposition ofA and anyA
(x)
i is a subautomaton ofU, and thus it accepts a subset of L. SinceA accepts L, the

juxtaposition ofA andA
(x)
i also accepts L. �

Proposition 11. For every regular language L, there exists a finite universal sample.

Proof. To give a constructive proof, we build a tree whose nodes are subautomata of the UA of L as follows:

• The root of the tree is the empty subautomaton.
• If a node accepts L, it has no successors.
• To obtain the successors of a node A with L(A) 6= L, we choose a word x of L that is not accepted by A. Let C =

{c(x)1 , . . . , c
(x)
nx } be the set of accepting paths for x inU, and let {A(x)

1 , . . . ,A
(x)
nx } be the set of subautomata ofU induced

by C. Every automaton obtained as the juxtaposition ofA andA
(x)
i , 1 ≤ i ≤ nx is a successor of the nodeA.

The successors ofA in the tree are ‘‘bigger" thanA, as theymay havemore arcs andmore initial or final states. AsU is finite
and the nodes are subautomata of the UA of L, it follows that the depth of the tree is finite, and therefore, the number of
words necessary to build the tree is a finite set that we call D+.
Every leaf-node of the tree that we have built represents a subautomaton ofU that accepts L, and every node is obtained

using a subset of D+. By Proposition 10, D+ is a universal sample for L. �

Proposition 12. Let D+ be a universal sample for a language L and let x ∈ L−D+. Then D+ ∪{x} is also a universal sample for L.

Proof. As D+ is a universal sample, any subautomaton induced by the words of D+ recognizes L. By Proposition 10, if we
add any word of L the induced subautomata also recognize L. Thus, D+ ∪ {x} is also a universal sample for L. �

196 P. García et al. / Theoretical Computer Science 407 (2008) 192–202

Fig. 3. Trellis of all accepting paths inU: (A) For the word a4 , (B) For a3 .

Fig. 4. Subautomata induced by the paths 12123 and 12323, which do not accept L.

Fig. 5. Subautomata ofU induced by the different accepting paths for a3: (a) 1123 (b) 1223 and (c) 1233.

Fig. 6.MA(a3).

Corollary 13. If D′
+
⊆ L includes a universal sample for a language L then D′

+
is also a universal sample for L.

To better understand of the above definitions and propositions, we present the following example:

Example 14. Let L be the language a2a∗ used in the previous example (Example 8). The set {a4} uses every transition inA.
The trellis of all accepting paths of {a4} inU is shown in Fig. 3(A). As the alphabet contains one symbol, we will describe the
paths using only the visited states, then the set of accepting paths is Ca4 = {11123, 11223, 11233, 12123, 12223, 12233,
12323, 12333}.
All the subautomata of U induced by Ca4 (except those induced by 12123 and by 12323) accept L. The subautomata

induced by those paths are shown in Fig. 4. Note that these automata do not accept, for example, a3.
The accepting paths for the word a3 are shown in Fig. 3; they areCa3 = {1123, 1223, 1233}. The subautomata associated

to these paths recognize L (see Fig. 5) and their juxtaposition with those subautomata depicted in Fig. 4 also recognize L.
Therefore, the sample {a3, a4} is universal for L.
In fact, {a3} is universal for L. The automaton MA(a3) is shown in Fig. 6. It is easily seen that the only partitions of its

set of states that make the quotient automata irreducible and consistent with L are {{q0, q1}, q2, q3}, {{q1, q2}, q0, q3}, and
{{q2, q3}, q0, q1}.
Note that (q0, q2), (q0, q3) and (q1, q3) cannot be in the same block of a partition ofMA(a3) if the quotient automaton by

that partition is irreducible in L. This comes from the fact that the accepting paths of a3 inU and the pairs (λ, a2), (λ, a3),
(a, a3) do not reach the same state inU. Thus, the only irreducible automata for the sample {a3, a4} are shown in Fig. 5, and
all of them accept the target language a2a∗.

Theorem 15. Let L be a regular language and let D+ be a universal sample for L. Let MA(D+) be the maximal automaton for D+,
and let π be any partition of the states of MA(D+) such that MA(D+)/π is irreducible in L. Then L(MA(D+)/π) = L.

Proof. As MA(D+)/π is irreducible in L, by Proposition 4, MA(D+)/π is isomorphic to a subautomaton of U. As D+ is
universal for L, then L(MA(D+)/π) = L. �

Given a regular language L and a finite positive sample D+ ⊆ L, determining whether or not a partition π of the states
of MA(D+) makes the quotient automaton MA(D+)/π be an irreducible automaton in L requires prior knowledge of L.
This language might be infinite. In the following, we will show that a finite subset of L will be enough to determine the
irreducibility ofMA(D+)/π .

Proposition 16. Given a finite set D+ ⊆ L, there exists a finite set D− ⊆ L such that, if π is a partition of the set of states of
MA(D+) so that MA(D+)/π is irreducible in D−, then MA(D+)/π is irreducible in L.

Proof. Merging two states p and q of any automaton means establishing a partition in its set of states where one of the
blocks contains exactly p and q and the rest of the blocks are singletons. Let p and q be any two states of MA(D+) with
the condition that L(merge(MA(D+), p, q)) − L 6= ∅. To avoid this merge, it is sufficient to add any word belonging to

P. García et al. / Theoretical Computer Science 407 (2008) 192–202 197

Fig. 7.Maximal automata for D+ = {a, aba}.

Fig. 8. (a)MA(D+)/π1 and (b)MA(D+)/π2 .

L(merge(MA(D+), p, q))− L to D−. The finiteness of D− follows from the fact that the number of states whose merging has
to be avoided is finite. �

Corollary 17. Let D+ a universal sample for L. There exists a finite set D− such that any partition π of the set of states of MA(D+)
that is irreducible in D− verifies that L(MA(D+)/π) = L.

The following example will help to understand the previous statement:

Example 18. Let L be the language denoted by the regular expression a(bb∗a)∗ and let D+ = {a, aba}. The maximal
automatonMA(D+) is shown in Fig. 7.
States 1 and 2 cannot be merged since the resulting automaton would recognize words in L. For example, the word

λ added to D− would prevent that merge. Proceeding this way with all the pairs of states, the (non unique) set D− =
{λ, aa, ab, ba} can be built.
With this set, λ avoids the merging of (1, 2), (1, 6), (2, 3) and (3, 6); aa avoids the merging of (1, 4) and (2, 5); ab avoids

the merging of (5, 6) and ba avoids the merging of (3, 4). Any partition π that contains both states in one of these pairs in
the same block would makeMA(D+)/π not to be irreducible in L.
Partitions π1 = {{1, 3, 5}, {2, 4, 6} and π2 = {{1, 3}, {2, 6}{4, 5}} are examples of partitions that are irreducible in D−

and therefore in L. Fig. 8 shows the quotient automata obtained for π1 and π2. Note that they do not recognize the target
language. This is due to the fact that D+ is not a universal sample (which is easily seen from the universal automaton for
the language, see Fig. 17(b)). Therefore, the merging of states in MA(D+) only guarantees obtaining a subset of the target
language and not the target language itself.

Let D+ be a universal sample for L, and let D− be a finite set that guarantees that any partition in the states ofMA(D+) gives
an automaton that recognizes L. If we add new words of L to the set D+, the new set continues to be a universal sample
for L, but D− may not guarantee that any partition in the maximal automaton of the new D+ still accepts L. This fact will
be reflected in the OIL Algorithm that is presented in Section 4. To better understand this fact, we present the following
example:

Example 19. Let L = a∗ + b∗. The set D+ = {λ, a, b, aa, bb, aaa, bbb} is universal for L and D− = {ab, ba, abb, bba, abbb,
bbba} is such that for any partition inMA(D+) that is irreducible inD−, the quotient automatonwith respect to that partition
accepts L. Let us suppose that the chosen partition gives the automaton shown in Fig. 9(a).
If we add the word bbbb to D+, keeping D− as it was, there should be an irreducible partition in D− that could give the

automaton shown in Fig. 9(b).
To avoid this possibility, a word, let us say abbbb, must be added to D−. Note that for any bn added to D+, we need to add

at least abn to the set of negative samples.

4. A family of order-independent merging-state NFA learning algorithms

Based on the above definitions and theorems we propose the OIL (Order Independent Learning) family of algorithms,
that is described in Algorithm 1. We will prove that this algorithm identifies the family of regular languages in the limit.
When a set of blocks of positive and negative samples for the target language L is input to the algorithm, an automaton

that recognizes L in the limit is obtained. Note that a block may contain just a single word, so the algorithm is presented
here in a very general way.

198 P. García et al. / Theoretical Computer Science 407 (2008) 192–202

Fig. 9.

Algorithm 1 OIL

Require: A sequence of blocks〈(D(1)+ ,D
(1)
−), (D

(2)
+ ,D

(2)
−), . . . , (D

(n)
+ ,D

(n)
−)〉.

Ensure: An irreducible automaton consistent with the sample (recognizes the target language in the limit).
1: STEP 1:
2: BuildMA(D(1)+);
3: D− = D

(1)
− ;

4: Find a partition π of the states ofMA(D(1)+) such thatMA(D
(1)
+)/π is irreducible in D−.

5: STEP i+ 1:
6: LetA = (Q , A, δ, I, F) be the output of the algorithm after processing the first i blocks, for i ≥ 1.
7: D− = D− ∪ D

(i+1)
− .

8: if A is consistent with (D(i+1)+ ,D(i+1)−) then
9: Go to Step i+ 2.
10: end if
11: if A is consistent with D(i+1)− then
12: D(i+1)

′

+ = D(i+1)+ − L(A);
13: BuildMA(D(i+1)

′

+); //MA(D(i+1)
′

+) = (Q ′, A, δ′, I ′, F ′)//
14: A′ = (Q ∪ Q ′, A, δ ∪ δ′, I ∪ I ′, F ∪ F ′);
15: Find a partition π of Q ∪ Q ′ such thatA′/π is irreducible in D−.
16: A = A′/π ; Go to Step i+ 2.
17: end if
18: if A is not consistent with D(i+1)− then
19: Run OILwith input 〈(D(1)+ ,D−), (D

(2)
+ ,D−), . . . , (D

(i+1)
+ ,D−)〉

20: Go to Step i+ 2.
21: end if
22: ReturnA

The method starts building the maximal automaton for D(1)+ and merges the states in a random order until the algorithm

obtains an irreducible automaton in D(1)− .
The algorithm performs the following steps for every new block:

(1) If the existing automaton is consistent with the new block, nothing has to be done.
(2) If it is consistent with the new set of negative samples, the algorithm deletes the superfluous positive words (i.e., those
that are accepted by the previous hypothesis). Then it builds the maximal automaton for the new set of positive words,
adds the new negative words to D− and finds a partition of the states of the automaton until an irreducible automaton
in D− is obtained.

(3) Otherwise the algorithm runs itself taking into account the whole set of negative samples at every step. This part of the
algorithm (lines 18–21) overcomes the fact that, even thoughwemay have a universal sample, the negative samplesmay
not lead to consistency.

4.1. Example of a run

The algorithm has been presented in a very general way, as there are many possible ways of obtaining a partition of a
set of states (lines 4 and 15 of the algorithm). One implementation of this algorithm can be done by ordering the states in
MA(D(1)+) randomly (from 1 to N1, with N1 being the number of states of MA(D

(1)
+)) and merging the states in that order so

P. García et al. / Theoretical Computer Science 407 (2008) 192–202 199

Fig. 10.MA(D(1)+)with randomly numbered states.

Fig. 11. Irreducible (in D(1)−) automaton after merging states in D
(1)
+ .

Fig. 12.MA(D(2)+)with randomly numbered states.

Fig. 13. Automaton after joining the current hypothesisM with the maximal automaton of the samples from the second block that are not accepted byM .

that an irreducible automaton in D− is obtained. At every step of the algorithm, it has to erase the words of the new block
that are already accepted by the current hypothesis andmerge the states of the maximal automaton of the rest of the words
according to a random ordering. If the current hypothesis is not consistent with the new block of positive samples, it has
to be run again taking into account the whole set of negative samples seen so far. The following example illustrates this
implementation.
Let L = a∗ + b∗ and let the input sample be divided into the following blocks: D(1)+ = {a, b2, a2}, D

(1)
− = {ab, b2a},

D(2)+ = {b, a3}, D
(2)
− = {a3b, a2b}, D

(3)
+ = {ε, b3, a4} and D

(3)
− = {ab2, ba}.

The OIL algorithm starts considering the first block (D(1)+ ,D
(1)
−). The maximal automatonMA(D

(1)
+) for this block is shown

in Fig. 10, in which we have randomly sorted the states.
Next, OIL makes all the possible merges following the established order under the control of D(1)− . It merges 1 with 2, 1

with 3, 1 with 4, 1 with 6 and 1with 7. Note that 1 cannot bemergedwith 5 (it would accept b2a ∈ D(1)−) and neither 1 and 8,
nor 5 and 8 can be merged for a similar reason. The algorithm obtains the automaton shown in Fig. 11, which is irreducible
with respect to D(1)+ and D

(1)
− .

Once the first hypothesis has been obtained, the algorithm starts processing the second block. The maximal automaton
for D(2)+ with the randomly numbered states (starting with N1 + 1, where N1 is the number of states ofMA(D

(1)
+)) is shown

in Fig. 12.
Once the newmaximal automaton has been constructed, it has to be checked for consistencywith the current hypothesis.

At this point, the automaton shown in Fig. 11 is consistent with the negative samples D(2)− = {a3b, a2b} and since this
automaton accepts a3, this portion of the maximal automaton must be eliminated and the rest is incorporated to the
hypothesis, which is D(2)

′

+ = {b}. The resulting automaton is shown in Fig. 13.
Now, the algorithm will try to merge the states in this order, controlled by the set of negative samples D− = D

(1)
− ∪ D

(2)
− ,

that isD− = {ab, b2, a2b, a3b}. Therefore themergesmade at this point are 1with 12 and 5with 10. Note thatmerging 1with
10would cause the negative sample ab to be accepted. Thesemerges give the second hypothesis, which is depicted in Fig. 14.

200 P. García et al. / Theoretical Computer Science 407 (2008) 192–202

Fig. 14. The second hypothesis given by OIL, after considering the first two blocks.

Fig. 15.MA(D(3)+)with randomly numbered states.

Fig. 16. Final hypothesis output by OIL.

Now, to start processing the third block of samples, OIL builds the maximal automaton and randomly extends the
enumeration of the states. The automaton is shown in Fig. 15. It then checks the third block of the sample for consistency
with the current hypothesis (Fig. 14).
As there are now negative samples (for example ab2) accepted by the hypothesis, the algorithm must process the

positive samples D(1)+ ∪ D
(2)
+ ∪ D

(3)
+ again. This process is controlled by the whole set of negative samples, that is, D− =

{ab, ab2, a2b, a3b, ab2, ba}. At this point, the algorithmuses the former enumeration of the states in themaximal automaton.
Now, states 1 and 2 cannot be merged since the resulting automaton would accept ab2, 1 and 5 cannot be merged either

since b2a would be accepted. States 1 and 3, 1 and 4, 1 and 7, 2 and 5, and finally 2 with 8 are merged, outputting the
automaton shown in Fig. 16, which recognizes the target language.

4.2. Convergence and complexity of the OIL algorithm

Proposition 20. The OIL algorithm identifies the family of regular languages in the limit.

Proof. Let L be a language. Let (D(1)+ ,D
(1)
−), (D

(2)
+ ,D

(2)
−), . . . be a complete presentation of L in blocks. There exists n ≥ 0 such

that D+ =
⋃n
i=1 D

(i)
+ . As D+ is a universal sample, there exists (Proposition 16) a finite subset of negative samples of L that

avoids any undesired merging of states ofMA(D+).
As the sequence of blocks is, in fact, a complete presentation of L, the set of negative samples that is needed to prevent

undesired mergings will appear after processing the m blocks, for some m ≥ n. Let D− be the set
⋃m
i=1 D

(i)
− . Note that, after

processing the first n blocks, the algorithm will output an automaton that recognizes L if it has been supplied with enough
negative samples.
If convergence has not been reached before processing the block (D(m)+ ,D(m)−), the current automaton will accept words

that are not in L and thus, it is not consistent with D−. The algorithm then processes all the blocks up to them-th block, but
using D− instead of D

(i)
− . In this case, the algorithm will converge after processing the n-th block. �

If n is the number of blocks that the input is divided into and |D+| (resp. |D−|) is the sum of the lengths of the positive (resp.
negative) samples, the algorithm runs in O(|D+|2|D−|n2).
The following example shows that different orderings of the states in the maximal automaton of the sample may lead to

different final hypotheses.

P. García et al. / Theoretical Computer Science 407 (2008) 192–202 201

Fig. 17.Minimal deterministic finite automaton (a) and universal automaton (b) for L = a(bb∗a)∗ .

Fig. 18. Three different outputs of the algorithm with different random orderings of the states to be merged.

4.3. Example

Let L = a(bb∗a)∗, that is, the set of words over {a, b} that begin and end with a and do not contain the segment aa. The
minimal deterministic finite automaton that recognizes L is shown in Fig. 17(a), whereas the universal automaton for L is
shown in Fig. 17(b).
When running the algorithmwith different random orderings of the states to bemerged, we have obtained the automata

shown in Fig. 18. Note that all the outputs are subautomata of the universal automaton for the target language. The
experiments were done with enough words (of a maximum length of 18) with increments of 1000 words in each step.
The experiment was run 5 times.

5. Conclusions

We have developed an algorithm that, on input of a complete sample, infers the class of regular languages in the limit.
The generalization is obtained by merging states in the maximal automata of the sample. One of the main features of the
algorithm is that the convergence takes place independently from the order in which the states are merged.
This fact permits the use of additional information to establish a particular order for the merges. It also permits several

parallel runs of the algorithm to be done, so that external criteria (like the size of the automaton, or prior knowledge of the
task) can be used to determine the output of the algorithm.
To prove the convergence of the algorithm we have used the concept of universal automaton of a language, which may

become a useful tool in this area.
Wehope that the generalway inwhich this algorithmhas been describedwill allow researchers to prove the convergence

of future heuristics and similar algorithms to be developed for specific tasks. We are working to extend our results to prove
the convergence of algorithms of this type independently of the method used to generalize the sample and output the
hypotheses.

Acknowledgements

The authors wish to thank the anonymous referees, whose useful comments have help us to make the final version of
this paper more clear and understandable.

References

[1] J. Abela, F. Coste, S. Spina, Mutually Compatible and Incompatible Merges for the Search of the Smallest Consistent DFA, in: LNAI, vol. 3264, Springer-
Verlag, 2004, pp. 28–39.

[2] G.I. Alvarez, J. Ruiz, A. Cano, P. García, Nondeterministic Regular Positive Negative Inference NRPNI, in: J.F. Díaz, C. Rueda, A. Buss (Eds.), XXXI CLEI 05,
2005, pp. 239–249.

202 P. García et al. / Theoretical Computer Science 407 (2008) 192–202

[3] A. Arnold, A. Dicky, M. Nivat, A note about minimal non-deterministic automata, Bulletin of the EATCS 47 (1970) 166–169.
[4] C. Carrez, On the minimalization of non-deterministic automata, Laboratoire de Calcul de la Faculté des Sciences de L’Université de Lille, 1970.
[5] O. Cicehello, S. Kremer, Beyond EDSM, in: LNAI, vol. 2484, Springer-Verlag, 2002, pp. 37–48.
[6] J.H. Conway, Regular Algebra and Finite Machines, Chapman and Hall, 1971.
[7] F. Coste, D. Fredouille, Unambiguous automata inference by means of state merging methods, in: LNAI, vol. 2837, Springer-Verlag, 2003, pp. 60–71.
[8] F. Denis, A. Lemay, A. Terlutte, Learning regular languages using RFSAs, Theoretical Computer Science 313 (2) (2004) 267–294.
[9] P. García, J. Ruiz, A. Cano, G. Alvarez, Inference Improvement by Enlarging the Training Set while Learning DFAs, in: LNAI, vol. 3773, Springer-Verlag,
2005, pp. 59–70.

[10] P. García, M. Vazquez de Parga, A note about mergible states in large NFA, Bulletin of the EATCS 87 (2005) 181–184.
[11] E.M. Gold, Language identification in the limit, Information and Control 10 (1967) 447–474.
[12] M. Gold, Complexity of automaton identification from given data, Information and Control 37 (1978) 302–320.
[13] C. de la Higuera, J. Oncina, E. Vidal, Data dependent vs data independent algorithms, in: L. Miclet, C. de la Higuera (Eds.), Grammatical Inference:

Learning Syntax from Sentences, in: LNAI, vol. 1147, Springer-Verlag, 1996, pp. 313–325.
[14] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 1979.
[15] K. Lang, B. Perarlmutter, R. Price, Results of the abbadingo one DFA learning competition and a new evidence-driven statemerging algorithm, in: LNAI,

vol. 1433, Springer-Verlag, 1998, pp. 1–12.
[16] S. Lombardy, Approche structurelle de quelques problémes de la théorie des automates, Ph.D. Thesis, Ecole N.S. des Télécomunications, 2001.
[17] J. Oncina, P. García, Inferring regular languages in polynomial updated time, in: Pérez de la Blanca, Sanfeliú, Vidal (Eds.), Pattern Recognition and

Image Analysis, World Scientific, 1992.
[18] L. Polák, Minimalizations of NFA using the universal automaton, in: LNCS, vol. 3317, 2005, pp. 325–326.
[19] M. Vázquez de Parga, P. García, J. Ruiz, A family of algorithms for non deterministic regular languages inference, in: LNCS, vol. 4049, 2006, pp. 265–275.

	Universal automata and NFA learning
	Introduction
	Definitions and notations
	Languages and automata
	Grammatical inference

	Universal sample
	A family of order-independent merging-state NFA learning algorithms
	Example of a run
	Convergence and complexity of the OIL algorithm
	Example

	Conclusions
	Acknowledgements
	References

