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a b s t r a c t

This paper presents both the theoretical and practical aspects of secure group
communication schemes. We pointed out that multiple revocation is a fundamentally
time-consuming task in secure group communication, by establishing lower bounds for
broadcast encryption and group key distribution schemes. We showed that they are O(n)
for BE and O(n/m) for GKD respectively, where m is storage requirement and n is the
number of users. Thus, they are clearly far more costly than the ideal log bound. In practice,
we designed a new broadcast encryption scheme RBE that actually achieves these lower
bounds. RBE is shown to outperform most efficient BE schemes in mass revocation. We
discuss the influence of join as well as the feasibility of adding it in BE schemes by means
of performing full updating or overprovisioning.

© 2008 Published by Elsevier B.V.

1. Introduction

Secure group communication, one of themajor problems in wireless network security, is gaining popularity over the last
decade. Due to wireless communication’s emerging applications and its nature of insecurity, the need for confidentiality,
authenticity, aswell as other security featureswas increased farmore than ever before. In all of those needs or requirements,
the fundamental problem: ‘‘How to distribute keys securely’’ has to be dealt with immediately, since nearly all types of
security-related functionalities are involved in sharing cryptographic keys. How to distribute those keys over insecure
wireless channels is quite a challenging problem.
There are several fundamentally different approaches to deal with key management. Key pre-distribution schemes refer

to methods whereby a trusted authority (TA) distributes secret information to users, such that only privileged users can
get the group key (by performing computation or decryption). Contributory group key agreement schemes require that
each member contribute an equal share of the group key and multi-party Diffie–Hellman Key Exchange is an example of
this. Group key management schemes use a trusted third party (TTP) to perform all bookkeeping tasks. In this category,
there are flat schemes, in which only one group key is maintained and used by everybody, and hierarchical ones, in which
all communications are passed through agents. From a different point of view, there are centralized schemes, as well as
decentralized ones. In regard to their functionalities, we can further divide flat schemes into two types: broadcast encryption
(BE), in which join is not provided , and group key distribution (GKD), in which both join and leave are provided.
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In this paper, we focus on flat group key management schemes. We found that, in such schemes, multiple join/leave is
intrinsically a time-consuming operation. We found the lower bounds on multiple join/leave in both type of schemes in
terms of re-keying cost, and proved that in group key distribution schemes it is at least Ω(n) (linear to the number of
nodes), and in any broadcast encryption schemes it is at leastΩ(n/m) (wherem is the size of memory). We then designed
RBE, theRandomized Broadcast Encryption scheme that actually achieves this bound.We showed that RBE outperforms nearly
all other BE schemes in the case of mass revocation, while preserving the advantage of redundancy, a property crucial to
wireless communications but most efficient BE schemes lack. At the end of this paper, we analyzed the nuance of join, a
decisive factor that greatly influences the overall performance of all secure group communication schemes.
The rest of this paper is organized as follows. We introduce broadcast encryption and group key distribution schemes in

Section 2 and present the lower bounds of group key distribution and broadcast encryption in Sections 3 and 4, respectively.
Section 5 is about our randomized broadcast encryption scheme that meets the lower bounds. We also discuss in detail the
influence of join in Section 6. Finally we present the related works of this paper in Section 7, and conclude this discussion in
Section 8.

2. Broadcast encryption and group key distribution

2.1. Overview

Broadcast encryption and group key distribution schemes play a central role in Secure group communication protocols.
Without facilitating the join operation, broadcast encryption schemes find themselves less restricted to key updating, thus
achieving better performance in doingmultiple revocation. Group key distribution schemes, on the other hand, provide both
join and revocation, thus guaranteeing both forward and backward secrecy.

2.1.1. Broadcast encryption schemes
The term broadcast encryption schemes, first coined by Fiat and Naor [12] in 1993, can be actually viewed as revocation

schemes. In such schemes, a trusted authority called the Group Controller (GC) is in charge of bookkeeping for a pre-defined
set of users. In each session, GC will select a Traffic Encryption key (TEK), distribute it to a subset of users called the privileged
users, and then encrypt all communications with it. The distribution of TEK will certainly be secure against eavesdropping.
In other words, the broadcast of TEK will be encrypted, and only those privileged users who hold some secret information
will be able to decrypt it. In such settings, only those in the pre-defined set are eligible to be a privileged user. No other users
are allowed to join the group later. There thus exists a set of prospective privileged users, which cannot be changed. This
strong assumption makes it possible to facilitate a rather hard operation, namelymultiple revocation, which was previously
thought unfeasible in group key distribution schemes.

2.1.2. Group key distribution schemes
Group key distribution Schemes provide both join and revocation operations. There does not exist a set of pre-defined

prospective users, and any user can join the group at any time. Such a nice feature makes them more flexible and therefore
best suit most applications. Like broadcast encryption schemes, group key distribution schemes have a Group Controller,
and each user carries some secret information.Whenmembership changes, GCwill choose a new TEK, encrypt it using users’
secret information, and then broadcast it. Only those who remain in the group can use their secret information to decrypt
the message and get the TEK update. However, unlike broadcast encryption schemes, when a user gets revoked, their secret
informationwill not be used again, andwhoever holds samepiece of the informationwill get updated. It is just because of this
extra updating are groupkeydistribution schemes capable of joiningnewmembers. And it is just because of this, aswell, they
are not efficient for revokingmultiplemembers, since the extra updating ofmultiple users is usually too slow to be practical.

2.1.3. Multiple revocation
Asmentioned earlier, group keydistribution schemes cannot handlemultiple revocation efficiently. Broadcast encryption

schemes, on the other hand, can manage it better because there is no overhead in providing join. Multiple Revocation, a
fundamentally difficult problem, may be intrinsically incompatible with join, and the goal of this paper as well as our main
motivation is therefore centered around this problem.

3. Re-keying cost of group key distribution schemes

The goal of this section is to establish a lower bound for re-keying cost of GKD schemes. The result shows that this bound
is actually quite large, as we proved that it is at least linear to the number of users.

3.1. System model

Let there be a group of users and a group controller (GC). All users and GC share a TEK.When someonewants to broadcast
a message to the entire group, they will use TEK to encrypt the message to ensure confidentiality. When there is a user that
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Fig. 1. k ∈ Ameaning k is shared by a, b, c.

leaves the group (or many users leaving the group), TEK must be updated to ensure confidentiality. Updating TEK in case of
membership change is called revocation. To facilitate revocation, we can use key encryption keys (KEKs), shared by certain
users and GC, to encrypt TEK update messages. In addition to updating TEK, leaving users also hold certain KEKs that need
to be updated as well. A re-keying message contains updated TEK and KEKs and is itself encrypted with an appropriate KEK,
such that only legitimate (remaining) users can decrypt it and get the updates. A key assignment is the way KEKs are shared,
which can be modeled using set-theoretic notations in the next paragraph.

3.2. Problem description

Let U = {u1, u2, . . . , un} be a group of n users. We use a collection of subsets of U to represent the key-sharing
relationship among users. If v1, v2, . . . , vj shares a common KEK, we add the subset {v1, v2, . . . , vj} in the collection. We
can thus use this way to completely formulate the key-sharing relationship of any users in U .

The key-sharing relationship among users in U can be modeled by a collectionA of subsets in U , defined as follows.
X ∈ A⇐⇒ all users in X share a common KEK.

Fig. 1 shows that we can use subsets to represent KEKs. In this example, k is shared by a, b, c, represented by k ∈ A.
TEK must be updated if there is membership change. Let R ⊂ U be the set of leaving users, then GCmust update TEK and

broadcast it to all users in U − R. A key assignment must be able to support revocation for all possible R. In particular, we
observe the following.

• If |R| = n− 1 then U − R is a one-element subset. Therefore,Amust contain all one-element subsets
• If R = ∅ then U − R = U . Therefore,Amust contain U itself. This particular set can be regarded as the TEK.

Based on this observation, we can define the idea of key assignment as follows.

Definition 3.1 (Key Assignment). A key assignment is a collectionA of subsets inU that containsU itself and all one-element
subsets.

When R is removed from U , GC must update (or re-key) TEK and invalid KEKs by using appropriate KEKs. Namely, GC needs
to generate new keys and encrypt it with certain KEKs. The re-keying cost is presented as follows (the formal definition will
be introduced in the next section):

• Re-keying cost of TEK: This is actually the smallest number of valid KEKs that covers the remaining nodes (i.e. U − R). If
all valid KEKs are one-element subsets, this cost is obviously the size of remaining nodes (i.e. |U − R|). We will use this
to derive a lower bound at the end of this section.
• Re-keying cost of KEKs: Namely the number of KEKs used to encrypt invalid KEKs. This cost is hard to estimate, but
obviously it is at least as large as the number of invalid KEKs. We will use this property to derive a lower bound at
the end of this section as well.

In this section, we focus on the re-keying cost of group key distribution schemes, which includes both cases. In the next
section, namely the broadcast encryption schemes, KEKs are assumed not to be updated at all, so its re-keying cost only
involves TEK. Now, we actually have not formally defined the re-keying cost, yet. Instead, we only use the two properties as
described earlier. These two properties alone are enough for us to derive useful results. The formal definition of re-keying
cost will be introduced in the next section. The goal for this section is to prove the following theorem.

Theorem 3.1. Suppose A is a key assignment of a group key distribution scheme over U. Let |U| = n, then its re-keying cost is
at leastΩ(n).

To prove this theorem, we construct a set of users R for any key assignmentA, whose removal will require a linear updating
cost.



514 S.C.-H. Huang et al. / Theoretical Computer Science 407 (2008) 511–523

Definition 3.2. Let A be a key assignment. A subset of users H ⊂ U is called a hitting set for A if we have the following
property

Uj ∩ H 6= ∅ ∀Uj ∈ Awith |Uj| > 1.

The hitting number h ofA is the size of a minimum hitting set forA.

Following this definition, a hitting set H has the property that, if we delete all users in H and any keys containing a user in
H , then the remaining users will not share any key. To prove this theorem, we use a marking process to select a set of users
R for removal, and show that its associated updating cost will be at least linear to the number of total users.

Marking Algorithm (MA)
Input: key assignmentA
Output: a subfamily S ⊂ Awith S = J , and subsets RED, BLUE ⊂ U
1. Let S = ∅ and J = 0.
Repeat 2–4:
2. Pick a Uj with |Uj| > 1 inA− S whose elements
are all unmarked. Stop if no such Uj exists.
3. Pick two elements from Uj, mark one element
red and the other blue.
4. Add Uj to S and let J ← J + 1.

Let RED and BLUE respectively denote the subsets of U that are marked red and blue when MA stops. Let h be the hitting
number forA.

Lemma 3.1. MA satisfies the following properties:
(i) Each execution of step 3marks two previously unmarked elements.
(ii) When MA stops, every Uj ∈ S contains at least one red and one blue element.
(iii) |RED ∪ BLUE| forms a hitting set forA.

Proof. (i) and (ii) are obvious from the algorithm description. (iii) is true because of the stopping condition in step 2 of
MA. �

Lemma 3.2. When MA stops, we have
(i) h ≤ |RED ∪ BLUE| = 2J
(ii) When RED is removed from U, each Uj ∈ S becomes strictly smaller but remains nonempty.

Proof. (i) follows from properties (i) and (iii) of Lemma 3.1, while (ii) is a consequence of property (ii) of Lemma 3.1. �

Proof of Theorem 3.1. We specify a set R ⊂ U to be removed, such that its re-keying cost will beΩ(n). Let h be the hitting
number forA.
Case 1: h ≤ 2n/3. We claim that the cost for updating TEK is at least n/3. To prove this, let H be a minimum hitting set and
let R = H . Since H is a hitting set, when R is removed from U the remaining users will not have any shared key (i.e. the valid
KEKs are all one-point subsets). Therefore, the cost for updating TEK is at least |U − R|, and |U − R| = n− h ≥ n/3.
Case 2: h > 2n/3. We claim that the cost for updating KEKs is at least n/3. To prove this, we execute MA and let R = RED.
When R is removed, each KEK corresponding to a subset Uj ∈ S needs to be updated because of property (ii) of Lemma 3.2.
The total number of such KEKs is J ≥ h/2 > n/3 by Lemma 3.2. Thus the re-keying cost is at least n/3 in both cases. �

4. Re-keying cost of broadcast encryption schemes

The goal of this section is to establish a lower bound for re-keying cost of BE schemes. Different from GKD schemes, in
deriving the lower bound the idea of storage requirement needs to be taken into consideration. The result we got is quite
similar to that of GKD, but the methods used are totally different.

4.1. System model

The system model of broadcast encryption schemes is very similar to that of group key distribution schemes, discussed
in Section 3. The only difference is that in case of a revocation, only the TEK are updated. Therefore the re-keying cost will
be smaller since it only involves updating TEK.

4.2. Problem description

U,A are defined the same way as in Section 3. When R is removed from U , GC must update (or re-key) TEK by using
other KEKs. Namely, GC needs to generate a new TEK and encrypt it with certain KEKs. The re-keying cost is defined as the
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Fig. 2. Key assignment example: only k1 and k2 can be used to update TEK. k3, k4, k5 are all invalid.

smallest number of KEKs used to encrypt the message. Note that only the KEKs that completely lie in U − R can be used to
do the update, as shown in Fig. 2. The formal definition of re-keying cost is as follows.

Definition 4.1 (Re-keying Cost). Suppose A is a key assignment, and R ⊂ U is the set of leaving users. Let AR be {X |X ∈
A, X ⊂ U−R}. Then re-keying cost ofA is defined asmin |CR|, whereCR ⊂ AR is a covering of U−R (i.e.

⋃
X∈CR

X ⊃ U−R)
and the minimum is taken over all possible CR’s.

In Section 3, we proved Theorem 3.1, which says the re-keying cost of any group key distribution schemes is at least of
linear bound (with respect to the number of users). Note that, in that theorem, no storage requirement is involved. However,
in broadcast encryption schemes, taking storage into consideration is a must. If storage is unlimited, then the re-keying cost
can be constant and the linear bound is no longer a lower bound. Consider the following example.

LetA be 2U , the power set of U . Then the re-keying cost for any R leaving U is O(1).

This example tells us that we need to formalize the notion of storage requirement in order to derive a lower bound for
broadcast encryption schemes. It is as follows.

Definition 4.2 (Storage Requirement). Suppose A is a key assignment. At any point x ∈ U we define the notion of overlap
as follows.

Overlap(A, x) =
∣∣{S|S ∈ A, S 3 x}

∣∣
where

∣∣ · · · ∣∣ represents the size of the set in between. The storage (memory) requirement is defined as themaximal overlap
of all points as follows.

Storage(A) = max
x∈U
Overlap(A, x).

4.3. Lower bound

Theorem 4.1. SupposeA is a key assignment for U with storage requirement m. Suppose |U| = n and m < n/2, then, if multiple
revocation is allowed,A’s re-keying cost is at leastΘ(n/m).

Proof. First we construct a subset R of U , such that |R| ≤ 1
2 |U| and any set inA of size 2m or above must intersect R. Since

m < n/2, 2m < n and there indeed exist sets of size 2m. To do this we simply arbitrarily pick one point out of each set of
size 2m or above. We claim that there cannot be more than dn/2e sets of size at least 2m. To prove this claim, we assume
the contrary. Since each set covers at least 2m users and |U| = n, on average, each node is covered more than dn/2e · 2m/n
times. Since dn/2e · 2m/n ≥ (n/2) · 2m/n = m, each node is covered more than m time (on average). By the (extended)
Pigeonhole Principle, there must be a user u that is covered more than m times, meaning that Overlap(A, u) > m. This
contradicts to the assumption Storage(A) = m.
Now we let R be the set of leaving users. Since there cannot be more than dn/2e sets, and we pick up one point out of

each set, |R| ≤ (1/2) · |U|. To revoke R, GC cannot use any KEK that is shared by more than 2m users, because any set inA
of size at least 2m must intersect R and therefore must contain at least one leaving node. In other words, GC can only use
KEKs shared by at most 2m− 1 users. Since |R| ≤ (1/2) · |U|, the number of remaining users that need to be re-keyed (i.e.
|U − R|) is at least (1/2) · |U|. Finally, since there are at least (1/2) · |U| users that need to be re-keyed and each KEK can
cover at most 2m− 1 users, there must be at least (1/2) · U/(2m− 1) re-keying messages, which is of orderΘ(U/m). �
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4.4. Remarks

In the literature, most BE schemes as well as GKD schemes have storage requirement logα n (e.g. [20,13,35,34,24]). This
means BE’s re-keying cost is almost as large asΘ(n)when n is large (Corollary 4.1). In fact, we derived a negative result, as
both the lower bounds of GKD and BE show that multiple revocation is a fundamentally time-consuming task. Both of them
are far larger than the anticipated log bound O(log n). In contrast to the log bound of single revocation (such as [35,34,33,
24]), multiple revocation is nearly impractical in light-weight applications (e.g. wireless sensor networks).

Corollary 4.1. In particular, since most practical broadcast encryption schemes have storage requirement logα n for some α > 0,
their re-keying cost is at leastΘ(n/ logα n), which is almost linear.

5. RBE: Randomized broadcast encryption scheme

Having derived the lower bounds in Sections 3 and 4, we turn our interests to the design of efficient BE schemes. In this
section we wil present RBE, our new broadcast encryption Scheme. RBE, a Randomized Scheme ofMonte Carlo4 fashion, was
designed to support efficient mass revocation operations. Its brief descriptions are as follows. GC has l independent KEK key
pools, and before the system starts each user draws a KEK from each key pool. To revoke a set of users, GC simply uses the
KEKs not held by these users and encrypts the session key update with other KEKs. With a certain probability, a remaining
user will have a KEK matching what GC has used to encrypt the session key with. In what follows, we use the language of
random functions, which can be thought of as a user drawing a key from the KEK key pool.

5.1. The RBE scheme

5.1.1. Scheme setup
Let N,M be the source and target set of all of our random functions respectively. Let n be the number of nodes in the

network. Assume |N| = n, |M| = m, and |S| = l. We construct a family of random functions {fs
∣∣fs : N → M, s ∈ S}, where S

is some index set. (We sometimes denote it by (fs)s∈S or even (fs)when the source, target, and index sets are clear from the
context.) The set of KEKs, namelyK , is defined as follows:

K = {ks,t |s ∈ S, t ∈ M}.

Each pair of (s, t) corresponds to a KEK and will be generated by GC independently in the initialization stage, so the number
of all KEKs are lm. Our scheme works as follows.

5.1.2. The scheme
1. Initialization: Let (fs)s∈S be a random function family from N to M with index set S. GC generates K . For each node ui
where 1 ≤ i ≤ n, GC secretly gives ui the set of his auxiliary keysK(ui) = {ks,fs(i)|s ∈ S} along with the TEK .

2. Re-keying: If a set of nodesR are compromised by the enemy,GCmust re-key TEK . To removeR fromU where |R| = r ≤ m,
GC randomly chooses a key TEKnew , encrypts it with every key not belonging to R, separately, and then broadcasts these
encrypted messages to all nodes. In short, GC broadcasts

{Ek(TEKnew)|k ∈ K, k /∈ K(R)}.

3. Decryption: Each node ui /∈ R uses one of the KEKs k ∈ K(ui) to decrypt Ek(TEKnew) and obtain TEKnew .

The crucial step in our scheme is step 2, since it is not obvious whether we can find such k’s (i.e. k ∈ K, k /∈ K(R)). The
following theorem shows that we can find such k’s with a really high probability, even if l is small.

Theorem 5.1. For each user ui, the probability of successfully re-keying this user is close to 1−
(
1− e−

r
m
)l
, i.e.

P
(
K(ui)\K(R) 6= ∅

)
≈ 1−

(
1− e−

r
m
)l
, ∀ui.

Proof. Let us fix ui. ui can be re-keyed if and only ifK(ui) * K(R). Now we fix s and consider

P
(
ks,fs(i) /∈ {ks,fs(j)|j ∈ R}

)
,

from which we obtain

P
(
ks,fs(i) /∈ {ks,fs(j)|j ∈ R}

)
= P

(
ks,fs(i) 6= ks,fs(j)∀j ∈ R

)
=

(m− 1
m

)r
=

[(
1−

1
m

)−m ]− rm
≈ e−

r
m .

4 The term Monte Carlo is originally used in randomized algorithms, as opposed to the Las Vegas type. Monte Carlo algorithms will always guarantee a
correct solution, while Las Vegas will not. With the abuse of language, we use it on our randomized scheme, as they share similar ideas.
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Therefore,

P
(
ks,fs(i) ∈ {ks,fs(j)|j ∈ R}

)
≈ 1− e−

r
m .

Since there are l such s’s, we have

P
(
ui cannot be re-keyed

)
≈

(
1− e−

r
m

)l
.

Finally, we get

P
(
ui can be re-keyed

)
≈ 1−

(
1− e−

r
m

)l
. �

Theorem 5.2. The expected number of keys GC needs to update is approximately lm · e−
r
m .

Proof. This theorem can be proved directly from the linearity of expected values. Let us first define what the Expected
Number of Keys GC needs to update means. Let Ω be the sample space of the keys held by R = {u1, . . . , ur}, and for any
ω ∈ Ω we define the characteristic function χi,s(ω) as follows:

χi,s(ω) =

{
1, if i /∈ ωs, where ωs = {fs(u)|u ∈ R}
0, otherwise.

Define the Number of Messages with respect to s ∈ S as the random variable Xs(ω) =
∑
i χi,s(ω) and the Number of Total

Messages as X =
∑
s∈S Xs. The Expected Number of Total Messages is thus the expected value, EX , of X . By the linearity of

expected values, we have

EX = E
(∑
s∈S

Xs

)
=

∑
s∈S

EXs =
∑
s∈S

∑
ω∈Ω

P(ω)Xs(ω)

=

∑
s∈S

∑
ω∈Ω

P(ω)
(∑

i

χi,s(ω)

)
=

∑
s∈S

∑
ω∈Ω

m∑
i=1

P(ω)χi,s(ω).

Since χi,s(ω) depends solely on fs, a completely random function independent of s, it follows that χi,s(ω) does not depend
on s. We henceforth use χi(ω) to represent χi,s(ω), and the outmost summation can be simplified as follows∑

s∈S

∑
ω∈Ω

m∑
i=1

P(ω)χi,s(ω) =
∑
s∈S

∑
ω∈Ω

m∑
i=1

P(ω)χi(ω)

= l ·
∑
ω∈Ω

m∑
i=1

P(ω)χi(ω) = l ·
m∑
i=1

∑
ω∈Ω

P(ω)χi(ω)

= l ·
m∑
i=1

[ ∑
ω,i∈ωs

P(ω)χi(ω)+
∑
ω,i/∈ωs

P(ω)χi(ω)
]

= l ·
m∑
i=1

[ ∑
ω,i∈ωs

P(ω) · 0+
∑
ω,i/∈ωs

P(ω) · 1
]

= l ·
m∑
i=1

[
0+

∑
ω,i/∈ωs

P(ω)
]
= l ·

m∑
i=1

( ∑
ω,i/∈ωs

P(ω)
)

= l ·
m∑
i=1

(
P
(
i /∈ ωs)

)
.

Here we view ‘‘i /∈ ωs’’ as an event and use P
(
i /∈ ωs

)
to denote its probability. The event i /∈ ωs holds if and only if ui can be

re-keyed by the keys on line s. Therefore, P
(
i /∈ ωs

)
= 1−

(
1− e−

r
m

)1
= e−

r
m , obtained by substitute 1 for l. Plugging it in,

we finally get

l ·
m∑
i=1

(
P
(
i /∈ ω

))
= lm · e−

r
m .

This theorem is thus proved. �

5.1.3. Storage requirement
In RBE, each user has to save l KEKs, and GC has to save lm KEKs.
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Table 1
Storage requirements

Number of keys In our example
RBE l 60
SD (1/2) log2 n+ (1/2) log n+ 1 147
LSD log3/2 n+ log n 85

5.1.4. Security analysis
We analyze the security of our scheme in the aspects of Group Key Secrecy, Forward Secrecy, and Backward Secrecy:

- Group Key Secrecy: In our scheme, GC generates TEKs at random and all communications within the group is encrypted
with the current TEK. The adversary cannot use any feasible means to discover or compute any TEKs. As a result, the
group key secrecy can be guaranteed.
- Forward Secrecy: Forward Secrecy can be achieved by revoking the KEKs belonging to the revoked nodes. Once a node
gets revoked, all KEKs belonging to himwill never be used again. In other words he cannot use his information to decrypt
future key updates.
- Backward Secrecy: Since this is a broadcast encryption scheme, no join event will happen. Backward secrecy is not in the
scope of our discussion.

5.2. Ensuring perfect re-keying

5.2.1. Monte-Carlo-ized RBE
The robustness and performance of the RBE scheme is best described by Theorems 5.1 and 5.2. However, we cannot

ensure that the probability of successful re-keying is always 1. In other words, we cannot guarantee that every legal
remaining user will get the session key. To remedy this problem, we can let each user share an individual key with GC. Also,
just in case that none of the keys can be used to encrypt with , GC can always encrypt the session key with that individual
key. Making users sharing individual keys with GCmakes our scheme theMonte Carlo type, as every legal user is guaranteed
to get the session key update and remain in the group.

5.2.2. Improving the performance
We can use the same idea to further reduce the expectedmessage length (expected number of keys GC needs to update).

We can start to use individual keys when most users have already been re-keyed. According to Theorem 5.2, the expected
number of keys is lm · e−

r
m . If, instead of l ‘lines’, only x lines (x < l) are used, then the expected number of keys is xm · e−

r
m .

Furthermore, the expected number of remaining users not yet re-keyed will be[
1− P(successful re-keying)

]
· (# of total remaining users) =

[
1−

(
1−

(
1− e−

r
m
)x)]
· (n− r).

Since these users will be re-keyed by using individual keys, the expected number of keys GC needs to update will be

xm · e−
r
m +

(
1− e−

r
m

)x
· (n− r).

Now we view the above expression as a function of x and treat r,m, n as constants. Namely,

f (x) = xm · e−
r
m +

(
1− e−

r
m

)x
· (n− r), 0 ≤ x ≤ l.

Then we can always differentiate f (x) to find its minimum. On the other hand, the value l can be decided based on the
minimum of f (x)within x ∈ [0,∞).

5.2.3. Simulation results
Fig. 3 shows the performance of a typical example where n = 105 and m = 104. The performance is measured as the

length of re-keyingmessage according to [35] and [20]. In these figures, l ranges from0 to 100 and r ranges from0 to 80000, in
which the r-axis is scaled to 1/10000 (so ‘8’ represents ‘80 000’). Note that the length of re-keyingmessage is proportional to
the number of keys GC needs to update. Fig. 4(a), (b) show slices of Fig. 3 in the cases of r = 40 000 and l = 60 respectively.
We can use elementary calculus to find the minimum in both cases, as described earlier. Fig. 4(c) shows the performance
comparison with SD and basic LSD. We do not compare with the generalized LSD, as it is not practical and of theoretical
interest only. In Fig. 4(a), the horizontal axis represents l, while in (b), (c) it represents 10 000r . The vertical axis represents
the length of re-keying messages in all of them

(
Fig. 4(a)–(c)

)
. Table 1 shows the storage requirements of RBE, SD, and basic

LSD. We also plugged in the values of our example to show the numerical comparison. These values stand for the number of
keys a node has to store (on the receiver’s end), and they are calculated by plugging inm = 104, n = 105, r = 4∗104, l = 60.
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Fig. 3.m = 104, n = 105 viewed from 3 different angles.

Fig. 4. (a) r = 40 000 (b) l = 60 (c) l = 60,m = 10 000, n = 100 000.

6. Feasibility of adding join

The lack of join often greatly restricts the applicability of broadcast encryption schemes. We want to discuss about the
feasibility of doing that in RBE as well as SD, the currently state-of-the-art BE scheme [20]. The twin sister of SD, namely the
Layered Subset Difference scheme [13], is omitted due to its similar behavior to SD, in this case.

6.0.4. To reuse, or not to reuse?
The fundamental problem about adding join to broadcast encryption schemes is this question. When nodes are revoked,

GC never updates anything other than the session key shared by the remaining nodes and the revoked ones in broadcast
encryption schemes, as described in Section 2. If these pieces of secret information are not updated, then we cannot reuse
these ‘slots’ once occupied by the revoked users. By simply keeping listening after leaving the group, the revoked users can
decrypt some later session key as soon as the secret information is ever used again. Conversely, if these pieces of secret
information are updated, then the broadcast encryption Scheme will be turned into a new group key distribution scheme,
in which backward secrecy will be ensured by updating the secret information. The goal of this section is to compute how
much the updating cost is for the SD and RBE schemes.

6.1. Adding join to SD

We consider the case where one user gets revoked.

Theorem 6.1. SD scheme’s updating cost for a single user’s revocation is O(n log n), where n is the number of users in the group.

The proof of this theorem is given in the Appendix. According to the theorem, the updating cost for single-user revocation
turned out to be prohibitively high, let alone multiple-user revocation. It is simply not practical to do updating in large
groups. In the case of LSD, we have similar results as follows.

Theorem 6.2. LSD scheme’s updating cost for a single user’s revocation is O(
√
n log n), where n is the number of users in the

group.

The proof is omitted, since the computation is almost the same as the case of SD. We list the theorem here for
completeness.

6.2. Adding join to RBE

We begin with the following theorem.

Theorem 6.3. If r users are revoked, the expected number of messages GC has to send to update the secret information of the
remaining users is approximately nl(1− e−

r
m ) .
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Proof. Fix a remaining user ui and an index (a ‘line’) s. Consider the probability that GC needs to send ui a replacement key,
i.e.

P
(
GC needs to re-key ui

)
= P

(
K s(ui) ∈ K s(R)

)
= 1− P

(
K s(ui) /∈ K s(R)

)
= 1− P

(
ks,fs(i) /∈ {ks,fs(j)|j ∈ R}

)
= 1− P

(
ks,fs(i) 6= ks,fs(j) ∀j ∈ R

)
= 1−

(m− 1
m

)r
= 1−

[(
1−

1
m

)−m]− rm
≈ 1− e−

r
m

by applying the same techniques as the proof of Theorem 5.2, we can get the expected number of messages GC has to send
is approximately nl(1− e−

r
m ). �

Theorem 6.3 tells us that the asymptotic updating cost is O(n) in RBE. Though better than SD, it is still too costly to be
practical in large-scale applications. Actually, almost all broadcast encryption schemes have high key-updating cost. The
reason is that the key update needs to satisfy the Key Independence Condition, otherwise it will suffer from Reuse Key Attack.
The condition is described as follows:

Definition 6.1 (Key Independence Condition). For any user, it is computationally infeasible to derive any key update from
others.

The above condition puts a rather strict limitation on GC’s key updating methods. Because of this condition, the key
updates of the same user cannot be defined as the function of previous keys and the group key. Detailed discussion will be
presented later.

6.2.1. Reuse key attack
Suppose the previous key and group key can be used to derive the new update in a broadcast encryption scheme, then

the security will be seriously undermined if the invalid keys are used again. Consider the following scenario in a broadcast
encryption scheme:

Let R be the set of revoked users. If a remaining user u shares a key (i.e.K(u) ∩ R 6= ∅), u just locally replaces each
k ∈ K(u) ∩ R by h(k, TEK), where h is a pre-defined hash function.

The above method is very efficient, as the updating can be done locally by each remaining user. However, it violates the Key
Independence Condition, and an attacker can launch Reuse Key Attack as follows:

Suppose u, v are two colliding users not having exactly the same keys (i.e. there is at least one key different). u leaves
the group first while v remains in the group. v then sends u the new group key TEK as it still has membership. u can
use TEK to update all of his revoked keys by computing {h(k, TEK)|k ∈ K(u)}. Since u has at least one key, say k0
different from all keys inK(v), u will possess a freshly updated key k′0 and use it henceforth, even after v quits the
group.

Reuse Key Attack imposed a strong limitation on updating methods in most broadcast encryption schemes. In most cases,
the updating cost will be rather costly, and a second-best way to provide join, namely Overprovisioning , is more applicable
in most cases.

6.3. Overprovisioning

6.3.1. In SD
If the number of users is not an exact power of 2, then the binary tree is not full and there will be some free ‘slots’ there.

In this case, to join a new user, all GC has to do is secretly give that user all necessary information corresponding to one free
slot. If the number of users is an exact power of 2, then things will be much more complicated. In this case, GC must ‘‘make
room’’ for joining users, and the tree must be expanded. When expansion happens, the size of the tree will be doubled. Let
r be the new root, then the old root 0 will become a child of r . Similar to the analysis of Theorem 6.1, GC needs to send the
new keys {Lr,t |t ∈ T0} to all remaining users. The following theorem tells us how much the cost is:

Theorem 6.4. To expand the tree, GC has to send exactly n messages, where n is the number of existing users.
Proof. We use La,b to represent the key shared by Sa,b. GC has to send to any subtree Tx rooted at node x a new key Lr,sib(x),
where sib(x) is the sibling of x. Since there are n nodes in T0 and each of which corresponds to a key, GC needs to send n keys
in total. �
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Theorem 6.4 tells us that, in order to join a new user, GC needs to send O(n)messages if the tree is full. This rather high
cost does not come with surprise: when the binary tree is full and a new node needs to be joined, the cost of join is high due
to the cost of restructuring the tree. Fortunately, this will not happen too often, and the amortized cost is not too high. In
real applications, we normally overprovision the keys in order to prevent such tree expansion. The cost of overprovisioning
is discussed in the following theorem:

Theorem 6.5. If n is the number of current users. To overprovision n more users, each user has to store blog nc + 1more keys.

Proof. To make room for nmore users, the tree must be expanded and the depths of all nodes will be increased by 1. Let r
be the new root and 0 be the old one. Each node u ∈ T0 must store the following new keys:

{
Lr,sib(x)

∣∣x ∈ path(u, r)}, where
path(u, r) is the path from u to r . Since |path(u, r)| = blog nc + 1, the theorem is proved. �

6.3.2. In RBE
Quite unlike SD, RBE has no fixed overhead for overprovisioning. Completely devoid of the idea of ‘slots’, RBE has much

freedom of fine-tuning the performance. Since its performance totally depends on the parameters l,m, n, r , we can set up
their values depending on how much trade-off is needed, thus providing tremendous flexibility for practical applications.
Generally speaking, the bigger l is, the more ‘room’ there is for new users joining. l also represents the storage requirement
at nodes. If the nodes can store more keys, RBE will have better performance, therefore capable of accommodating more
new users.

7. Related work

Broadcast encryption schemes: Fiat and Naor [12], creators of broadcast encryption schemes, introduced this idea to handle
dynamicmembership changes in secure communication groups. Naor et al. [20] later designed an efficient statelessbroadcast
encryption scheme SD, by far the most efficient broadcast encryption schemes in terms of GC’s re-keying message size. SD’s
unsatisfactory users’ storage requirement O(log2 n)was reduced by Halevy et al. [13], making the schememore practical to
large-scale networks. Halevy et al. also proposed a generalized scheme in [13], allowing more trade-offs. Aside from them,
Perfect Hash Families were also used to construct different broadcast encryption schemes, such as the work of Safavi-Naini
et al. [23] and Fiat-Naor [12].
Group key distribution schemes: Group key distribution protocols are mainly built on top of logical trees. This idea was

first proposed by Wong et al. [35] and many other protocols followed later, such as [34,33,24]. Although asymptotically
they all have the same message overhead O(log n), McGrew and Sherman’s scheme [24], with the smallest constant factor,
outperforms others. As a whole, all of these schemes achieve good performance when membership change is relatively not
sizable. Canetti et al. [6] proposed a slightly different approach that achieves the same communication overhead. They use
the pseudo-random generator in their scheme. In these schemes, a new group key must be generated in order to remove a
user from the group. These schemes performwell in the case of single join/leave, but they did not handlemultiple join/leave
efficiently.
Contributory group key distribution schemes: The Diffie–Hellman key exchange protocol [9] is the first important

contributory key management protocol, and is also the pioneer of every other protocol of this kind. Later, the following
generalizations of D–H protocol to the group scenario came out as well. [15,5,26,28,27] arrange users in a logical ring or
chain structure, and accumulate the keyingmaterialwhile traversing groupmembers one by one. [1,3] are also of this kind, in
which each node contributes an input to establish a common secret through successive pairwisemessage exchanges among
the nodes in a secure manner using the 2-party D–H exchange [9]. In [32,10,31], logical tree structures are introduced and
the number of rounds for establishing the group key is reduced to the logarithm of the group size. Due to their scalability,
tree-based schemes are selected as the basic building blocks to address the hierarchical access control problem in distributed
environments.
Key pre-distribution schemes: The concept of probabilistic key pre-distribution was proposed by Eschenauer and Gligor in

their pioneering work [11]. Chan et al. [8] generalized this idea, by considering q-compositeness, increasing the security and
robustness against node loss. Liu andNing [16], extending the ideas of [11,8], later designed a polynomial-based framework by
using random subsets and grids. Zhu et al. [36] designed the LEAP protocol, which uses differentmethods for different types of
transmission. They defined four types of keys: individual, pairwise, cluster, and group keys, and use these keys for different
types of transmission. However, no efficient re-keying algorithm is presented in case of node compromise. Inter-node traffic
authentication is also mentioned in their paper. Overall, all key pre-distribution schemes are mainly designed for pairwise
communications in sensor networks. They primarily focus on problems caused by the limitation of sensor network, such as
low computation power, low storage, and unreliable links.
Others: Aside from these threemain categories, there are also some other schemes which address different problems. For

example, [25,17,4] are mainly focusing on group distribution schemes with self-healing properties. [29] designed a multi-
group keymanagement scheme that achieves a hierarchical access control by employing userswith various access privileges.
Their scheme has low communication, computation, and storage overhead. They also pointed out in [30] the problem of
disclosing group membership information caused by key updating information. Bechler et al. [2] used clusters to provide
distributed authentication functionalities. Lou et al. [18] proposed the SPREAD scheme to enhance data confidentiality
service. Chan [7] presented a distributed key pre-distribution scheme (KDPS) using cryptographic operations. He also
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designed an enhanced scheme of Rivest’s scheme [22]. Qiang Huang et al. [14] presented two key establishment schemes
using symmetric keys. Perrig et al. [21] used exhaustive search in an interesting way to design a pairwise key distribution
scheme. Suvo Mittra [19] examined secure unicast and multicast and designed a scalable secure multicasting scheme. They
are somewhat related to our work, and we list them here for the sake of completeness.

8. Conclusion and future work

Re-keying in secure group communication is a time-consuming, yet unavoidable task. In this paper, we have established
lower bounds for both broadcast encryption and group distribution schemes on the theoretical level, and on the practical
level we have designed RBE to meet the lower bounds. However, there are still some interesting questions that remain
unsolved using our model, and has the potential to be further explored in the future. For example, in modeling memory
requirements, we used the idea of overlap to analyze this problem, but for schemes based on pseudorandom generators
(such as [20,13]) it cannot be solved. So far, there are still no appropriate mathematical tools to model schemes of this type
and we strongly believe that this is an interesting area for us to further delve into.

Appendix

Proof of Theorem 6.1. Again, we use La,b to represent the key shared by Sa,b. Suppose the number of users is an exact power
of 2. Then we can use a complete binary tree to represent them. If we fix a degree d, then there are exactly 2d nodes on that
level. Let’s pick one node j from that level and assume the nodes on the path from the root to j are {a0, a1, . . . , ad}, in which
a0 is the root and ad = j. We want to find the common information shared by all nodes of the subtree Tj root at j. Note that
if i is an ancestor of j, the common information shared by Ti will be shared by Tj too, as Tj is a subtree of Ti. In our discussion,
such information is regarded as Ti’s, thus excluded from Tj’s. In other words, we want to consider the common information
shared exclusively by Tj but not by any other nodes. Let the j’s sibling be k and consider the keys of La,b shared by all nodes
of Tj. According to Section 2, a, b should satisfy the following condition:

‘‘a is a common ancestor of all nodes of Tj, and b is the sibling of j’’.

The common keys shared exclusively by Tj are thus
La0,b, La1,b, La2,b, . . . , Lad−1,b,
in contrast to all keys known by Tj as follows
La0,b1 , La0,b2 , La0,b3 , . . . , La0,bd

La1,b2 , La1,b3 , . . . , La1,bd
La2,b3 , . . . , La2,bd

. . .
...
Lad−1,bd ,

where b1, b2, . . . , bd−1 are the siblings of a1, a2, . . . , ad−1 and bd = b. From the observation above, we see that the number
of keys corresponding to Tj is d, the order of j. On level d, there are 2d such subtrees. Since GC can multicast a message to
a subtree Tj by using a special key Sj shared by all nodes of the subtree (this is a special case of Sij when j is null), the total
number of messages GC needs send (measured by the encrypted updating message containing one auxiliary key) is

log n∑
d=0

d · 2d = 2n log n−
n
2
+ 1 = O(n log n).

This theorem is then proved. �
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