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a b s t r a c t

In this work we present a simple and efficient algorithm which, with high probability,
provides an almost uniform sample from the set of proper k-colourings on an instance of
sparse random graphs Gn,d/n, where k = k(d) is a sufficiently large constant. Our algorithm
is not based on the Markov Chain Monte Carlo method (M.C.M.C.). Instead, we provide a
novel proof of correctness of our algorithm that is based on interesting ‘‘spatial mixing’’
properties of colourings of Gn,d/n. Our result improves upon previous results (based on
M.C.M.C.) that required a number of colours growing unboundedly with n.
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1. Introduction

For a graph G = (V , E), a (proper) k-colouring is an assignment σ : V → [k] such that adjacent vertices receive different
colours, where for some positive integer k, [k] indicates the set {1, . . . , k}. It is well known that it is NP-hard to estimate
the minimum number of colours in a proper k-colouring, i.e. estimate the chromatic number of G. However, in many cases
there are estimates and upper bounds of the chromatic number e.g. if∆ is the maximum degree of G, then one can k-colour
G for k = ∆+ 1. Furthermore, for special classes of graphs the chromatic number has been estimated accurately, e.g. in [1],
Achlioptas and Naor have found the two possible values of the chromatic number that an instance of a sparse random graph
has with high probability (w.h.p.), i.e. with probability that tends to 1 as the size of the graph tends to infinity. All these facts
raise the interesting computational challenge of finding the number of proper k-colourings for k greater than the chromatic
number.
In [13], Valiant introduced the notion of #P-hardness and proved that counting k-colourings is #P-complete. The

existence of a polynomial-time algorithm for exact counting is considered highly unlikely. Thus, we focus on designing
polynomial-time algorithms for approximate counting. Practically, the closer k gets to the chromatic number of G, the more
difficult it becomes to estimate the number of its k-colourings. By [7] and [8] we can reduce the estimation of the number
of k-colourings of G to sampling almost uniformly from the set of all its proper k-colourings. By ‘‘almost’’ we mean with
distribution close, in some sense, to the uniform distribution.
In this work, we focus on sampling k-colourings of instances of a sparse random graph, i.e. random graphs with vertices

having an expected degree equal to some constant, d, and k = k(d) is a sufficiently large constant which scales as d14, for
sufficiently large d.

Definition 1.1. Let n be a positive integer and p, 0 ≤ p ≤ 1. The random graph Gn,p is a probability space over the set of
graphs on the vertex set {1, . . . , n} determined by
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Pr[{i, j} is an edge of G] = p

with these events being mutually independent.

For a sparse random graph the parameter p is of the form p = d/n, where d is a positive real constant. We take d > 1
(otherwise the problem of sampling is trivial).
The mathematical tool that we use for studying the problem of sampling k-colourings of instances of a sparse random

graph is the ‘‘spin systems’’ and more specifically the proper colouring model, also referred to as antiferromagnetic Potts
model at zero temperature in statistical physics.
Colouring Model on a finite graph. The colouring model on a finite graph G = (V , E) and set of colours [S], for some
positive integer S, is defined as follows. The system consists of a set of sites, which correspond to the vertices of G, and each
site is assigned a spin, i.e. a member of [S]. A configuration is an assignment of spins to V . Not all configurations can occur
in the colouring model. A configuration that may occur is called a feasible configuration. The set of feasible configurations is
the set of proper S-colourings of the underlying graph G.
For a colouringmodel with underlying graph G = (V , E)which uses S colours, the vertices-sites interact with each other

so that the following holds: For any vertex set V ′ ⊆ V , let ∂V ′ = {v ∈ V \V ′| ∃u ∈ V ′ s.t. {u, v} ∈ E}. Consider the
colouring C(∂V ′) ∈ [S]∂V

′

, which is such that there is a proper colouring in [S]V with the vertices in ∂V ′ coloured as C(∂V ′).
In a system where the vertices in ∂V ′ are coloured as C(∂V ′), the colour assignments of the vertices in V ′ are distributed
uniformly over all the colour assignments of the vertices in V ′ ∪ ∂V ′ that agree with C(∂V ′) on the vertices in ∂V ′.2
Frequently, one imposes boundary conditions on the model, which correspond to fixing the colour assignment at some

‘‘boundary’’ vertex set of G; we use the term ‘‘free boundary’’ when there are no boundary conditions specified.

Definition 1.2. For a finite graph G = (V , E) and an integer S, let PCS(G, S, C(L)) be a colouring model with underlying
graph G, with feasible configurations containing all the proper S-colourings of G and with the boundary L ⊆ V coloured as
C(L). LetΩ(G, S, C(L)) be the set of feasible configurations of the system.

The omission of the boundary conditions parameter implies free boundary. If the first parameter is a class of random
graphs, e.g. Gn,p, then we consider that the underlying graph is an instance of this class.
Clearly, Ω(G, S, C(L)) is the set of all proper S-colourings of G that have the vertices in the set L ⊆ V coloured as

specified by the assignment C(L). For a system PCS(G, S, C(L)) we always assume that the boundary C(L) is such that
Ω(G, S, C(L)) 6= ∅.
For convenience, we use the following notation rules throughout this work: In PCS(G = (V , E), S, C(Λ)), forΛ ⊆ V the

colour assignment of each vertex v ∈ V , or the set of vertices V ′ ⊆ V are considered to be equal to the random variables
XCΛv ∈ [S] and X

CΛ
V ′ ∈ [S]

V ′ , correspondingly.
The probability of finding a colouring model at a specific configuration is the uniform distribution over all proper

colourings of the underlying graph. Generally, the probability of finding a system in a specific configuration is given by
the Gibbsmeasure specified by this system.

Definition 1.3. For the system PCS(G = (V , E), S), the functionµ(·) : 2[S]V → [0, 1] indicates the Gibbs measure specified
by this system.

In the system PCS(G = (V , E), S, C(L)), for ∀v ∈ V , we denote with µ(Xv|C(L)), the marginal Gibbs measure of the
random variable Xv .

1.1. Our work and related work

Previous work. The pioneering work of Dyer et.al., in [4], proposes a very interesting Markov Chain Monte Carlo (MCMC)
based algorithm, which with high probability (w.h.p.), i.e. with probability that tends to 1 as the size of the graph tends
to infinity, provides an almost uniform sample from the set of proper colourings of Gn,d/n which uses at least Θ(

log log n
log log log n )

colours. Noting that w.h.p. the maximum degree of a sparse random graph is Θ(log n/ log log n), to our knowledge, this
work was the first to present a procedure for sampling colourings that uses fewer colours than the maximum degree.

In parallel and independently, E.Mossel andA. Sly have recently derived essentially the same result aswe have here,
(i.e. a randomsampling k-colourings of a sparse randomgraphwhere k is a constant) by using anMCMCapproach, [11].

Our work. Consider the system PCS(G = (V , E), S), where G is an instance of Gn,d/n and S = S(d) is a sufficiently large
integer. Here, we present an algorithmwhich, w.h.p. and in timeO(n2), returns a S-colouring ofG3 according to a probability
measure which is asymptotically equal the Gibbs measure that the system specifies.

2 A rigorous definition of a colouring model involves the definition of a set of functions, the compatibility functions (see [15]). However, the definition
we give here is a direct consequence of that with the compatibility functions.
3 A configuration of PCS(G, S).
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A possible schema of our algorithm is the following: The algorithm assumes an arbitrary permutation of the vertices of
the input graph, e.g. (v1, v2, . . . , vn), and in turn it assigns each of them a colour as follows: For 1 ≤ i ≤ n, let Ai ⊆ V be the
set of i− 1 first coloured vertices and let C(Ai) be their colour assignment. Assume that the colouring C(Ai), of the vertices
in Ai, is done according to a probability measure which is sufficiently close toµ(XAi = C(Ai)). Then, the algorithm computes
efficiently a ‘‘good’’ estimation of µ(Xvi |C(Ai)) and assigns vi a colouring according to this probability measure. The notion
of ‘‘good’’ in the estimation of µ(Xvi |C(Ai)) implies that this estimation should be so accurate that it will be possible for the
algorithm to colour the graph with distribution sufficiently close to Gibbs measure of PCS(G, S).
Note that there is no known procedure that is able to compute exactly each of the measures µ(Xvi |C(Ai)), i = 1, . . . , n,

efficiently, i.e. in polynomial-time, for this class of graphs.
So as to provide efficiently ‘‘good’’ approximations of the measuresµ(Xvi |C(Ai)), for i = 1, . . . , n, the algorithm exploits

ideas which are similar to those presented in [10] and [14], for counting satisfiable truth assignments in a random k-
SAT formula and independent sets of general graphs, correspondingly. However, our proof techniques are novel and some
technical results are of independent interest. For an earlier version of our result, see [5].
More specifically, our algorithm exploits two properties of the system PCS(Gn,d/n, S) which hold w.h.p. The first one is

that each vertex v of Gn,d/n with all the vertices within graph distance ε log n from v form an induced subgraph which is
either unicyclic or tree, for a sufficiently small constant ε = ε(d). The second one is that for a sufficiently large integer
S = S(d), the Gibbs measure that PCS(Gn,d/n, S) specifies exhibits a specific spatial mixing property. In essence, we show
that if S is greater than a specific value, which depends only on the expected degree d, then an asymptotic independence
between the colour assignment of any vertex v and the colour assignment of any subset of vertices, which is at a sufficiently
large (graph) distance from v, holds in the system.
Note that showing an asymptotic independence between the colour assignment of any vertex v and the colour

assignment of any vertex set at a distance greater than ε log n, for sufficiently small ε = ε(d), implies that when the i-
th vertex is to be coloured the following holds: If the colouring C(Ai) is done with probability measure which is sufficiently
close toµ(XAi = C(Ai)), then the algorithm can have a ‘‘good’’ estimation ofµ(Xvi |C(Ai)) by just checking only the colourings
of vertices that belong to a very simple structured neighborhood of vi , i.e. a treewith atmost one additional edge. The notion
of a ‘‘good’’ estimation is the same as the one stated previously. This kind of structure in the neighborhood of the vertex vi is
highly desirable since then it allows us to get a colouring of vi, which is distributed as this ‘‘good’’ estimation ofµ(Xvi |C(Ai)),
in time which is upper bounded by a polynomial of n.
The proof of validity of the spatial mixing property of the spin systems we consider here is of independent interest to

that of the algorithm. Therefore, it is treated separately in Section 3.

1.2. Further definitions (spatial dependency)

For the graph G = (V , E) and any two vertex sets V ′, V ′′ ⊂ V , we denote by dist(V ′, V ′′) the graph distance of the two
sets, i.e. the minimum length shortest path between all the pairs of vertices (v1, v2) ∈ V ′ × V ′′.

Definition 1.4. Let G = (V , E) be an instance of Gn,d/n and let l be a positive real. For the vertex v ∈ V , let Gv,d,l be the
induced subgraph of G, which contains the vertex v and all the vertices within graph distance blc from v.

For a measure of comparison between probability measures we use the total variation distance.

Definition 1.5. For measures µ and ν on the same discrete spaceΩ , the total variation distance dTV (µ, ν) between µ and
ν is defined as

dTV (µ, ν) =
1
2

∑
x∈Ω

|µ(x)− ν(x)| .

Definition 1.6 (Spatial Dependency). Consider the graph G = (V , E), an instance of Gn,d/n, the positive integers S, l and the
positive real s. For each v ∈ V consider the subgraph Gv,d,l with vertex set Vv,l. For a given v ∈ V , consider also any two
S-colourings C1(V1) and C2(V1)with V1 ⊂ Vv,l and dist({v}, V1) ≥ l, havingΩ(Gv,d,l, S, C1(V1)),Ω(Gv,d,l, S, C2(V1)) 6= ∅. If
for every v ∈ V it holds

dTV (µ̃(Xv|C1(V1)), µ̃(Xv|C2(V1))) ≤ s

with µ̃(·) specified by the system PCS(Gv,d,l, S), then we say that ‘‘ ∀v ∈ V the distance l Spatial Dependency of the S-
colourings of G is s’’. This will be denoted as ∀v ∈ V SD(v, l) = s.

The above definition can be trivially extended to any system with any type of underlying graph.
It is easy for one to see that if ‘‘∀v ∈ V the distance l Spatial Dependency of the S-colourings of G = (V , E) is s’’, then in

the system PCS(G, S) and for each vertex v ∈ V any two colourings C ′1(V1) and C
′

2(V1)with V1 as given in Definition 1.6 and
C ′1 and C

′

2 havingΩ(G, S, C
′

1(V1)) 6= ∅ andΩ(G, S, C
′

2(V1)) 6= ∅ it holds:

dTV (µ(Xv|C1(V1)), µ(Xv|C2(V1))) ≤ s

withµ(·) specified, now, by the system PCS(G, S). The above holds since for each v ∈ V , ifΩ1 = {C(V1)|Ω(Gv,d,l, S, C(V1) 6=
∅} andΩ2 = {C(V1)|Ω(G, S, C(V1) 6= ∅}, then clearlyΩ2 ⊆ Ω1.
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1.3. Structure of the remaining paper

The remainder of our paper has the following structure. Section 2 is devoted to presenting a detailed description of the
sampling algorithm and its properties. More specifically, in Section 2.1 we state the two basic properties of the systems
PCS(Gn,d/n, S) on which our algorithm is based. These two properties are stated, correspondingly, in Lemma 2.1 and in
Theorem 2.2. In Section 2.1 we provide the proof of Lemma 2.1 which is relatively simple, while we postpone until Section 3
the proof of Theorem 2.2, which is more complex and it is somehow of independent interest of the actual algorithm. In
Section 2.2 we give a detailed presentation of the sampling algorithm and of its properties regarding accuracy and efficiency
without proof. The presentation is accompanied by a discussion on the proof techniques we use.
In Section 3 we provide an analytic discussion regarding the properties of the spin-system that our algorithm considers

and we show Theorem 2.2. In Section 4 we present the proof of all the theorems and lemmas that are stated in Section 2.2.
For ease of verification of our proof, we provide here the dependence of each lemma and theorem on lemmas logically

preceding it: Lemma 2.1, Lemma 2.3, Lemma 3.9 and Lemma 3.13, have no lemmas preceding them. Lemma 3.15 has
predecessors Lemma 2.1, Lemma 3.9 and Lemma 3.13. Lemma 3.16 has predecessor Lemma 3.15. Lemma 3.18 has no
predecessors. Lemma 3.20 has predecessors Lemma 3.13 and Lemma 3.9. Lemma 3.21 has predecessors, Lemma 3.18 and
Lemma 3.20.
Theorem2.2has preceding all the lemmasof this paper except for Lemma2.3. Theorem2.4has predecessors, Theorem2.2,

Lemma 2.3. Theorem 2.5, has predecessor Lemma 2.1. Finally, Theorem 3.5 has no predecessors.

2. Statement of results

2.1. Properties of the spin system

In this section we state two crucial properties that the colouring model has with high probability, when the underlying
graph is an instance of a sparse random graph. These properties are stated in the following lemma and theorem. The first one
refers to the structure of the neighborhood of each vertex in an instance of a sparse random graph. The second one refers to a
property of the colourings (configurations) of such a spin-system. In essence, in a PCS(Gn,d/n, S), if S is greater than a specific
value, which depends only on the expected degree d, then an asymptotic independence between the colour assignment of any
vertex v and the colour assignment of any subset of vertices which is at a graph distance, at least,

⌊
0.9

4 log(e2d/2)
log n

⌋
from v

holds.

Lemma 2.1. Let G = (V , E) be an instance of Gn,d/n, where d ≥ 1 is a fixed positive real. With high probability (w.h.p.) the graph
has no vertex v with the following property: The induced subgraph of G that contains v and all vertices within a distance ε log n
from v, contains more than one cycle, for any real ε > 0 such that ε ≤ (4 log(e2d/2))−1.

Proof. To prove the lemma assume the contrary, i.e. there is some vertex v ∈ V whose corresponding graph Gv,d,ε log n (see
Definition 1.4) contains two cycles, i.e. C1 and C2 each of length at most 2ε log n, the value of ε will be determined later. The
above assumption implies that there are two pairs of paths starting from v, such that: The paths in each pair do not have all
their edges common and there is some vertex in Gv,d,ε log n that can be reached from v by both paths of the pair. The existence
of such two pairs of paths implies that in Gv,d,ε log n there is a set of, at most 4ε log n, vertices which have among each other
a number of edges which exceeds the number of vertices by one.
Thus, the proof of the lemma reduces to showing that in Gn,d/n, there is no set of, at most, 4ε log n vertices which contains

a number of edges that exceed the number of vertices in the set by one, for sufficiently small ε. Let D be the event ‘‘such a
set exists’’. Setting r = 4ε log nwe have

Pr[D] ≤
r∑
k=1

(
n
k

)( (k
2

)
k+ 1

)(
d
n

)(k+1)
≤

r∑
k=1

(ne
k

)k ( ek(k+ 1)
2(k+ 1)

)(k+1) (d
n

)(k+1)
≤
de
2n

r∑
k=1

(
e2

2

)k
kdk

≤
d2e3

4
4ε log n
n

r−1∑
k=0

(
de2

2

)k
≤
d2e3ε log n

n
(de2/2)r − 1
de2/2− 1

taking ε such that 4ε · log(de2/2) < 1 the r.h.s. of the last equation is o(1), as the nominator is o(n). Thus, for sufficiently
small ε it holds that Pr[D] = o(1) �
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Theorem 2.2. Let G = (V , E) be an instance of Gn,d/n, where d > 1. If S is a sufficiently large integer, which depends on d, and
ε = 0.9

4 log(e2d/2)
, then w.h.p., i.e. with probability 1 − O(n−0.1), for every vertex v ∈ V the distance bε log nc Spatial Dependency

of the S-colourings of PCS(G, S) is n−1.25. For sufficiently large d, we should have S ≥ d14.

It should be mentioned that, if d is relatively small, then with the same probability for PCS(Gn,d/n, S) the distance bε log nc
Spatial Dependency of theS-colourings of PCS(G, S) can become n−1.25, however, for a number of colourswhich is a constant
greater than d14.
Section 3 is devoted to the proof of Theorem 2.2.

2.2. Our Algorithm

The sampling algorithm we propose here takes as an input the graph G = (V , E), an instance of Gn,d/n with d > 1,
and the positive integer S. Assume that the input graph G has the following three properties: First, for each v ∈ V the
subgraph Gv,d,ε log n+2, for ε = 0.9

4 log(de2/2)
, is either unicyclic or tree. Second, G is such that the Gibbs measure µ(·), which

PCS(G, S) specifies, exhibits the spatial mixing property that is indicated in the statement of Theorem 2.2. Third, G can be
coloured with S-3 colours. Under these assumptions and by taking a sufficiently large constant S, the algorithm outputs a
S-colouring of Gwith a probability measure that is within total variation distance n−0.25 from the uniform over the set of all
S-colourings of the input graph, i.e. the Gibbs measure µ(·).
By Lemma 2.1 and Theorem 2.2, we know that the first two of the above assumptions about the input graph hold with

high probability for an instance of Gn,d/n. Also, for a number of colours S as large as is indicated by Theorem 2.2, an instance
of Gn,d/n is colourable with S-3 colours w.h.p. (see [1,6]). It should be mentioned that our algorithm is based on properties
of the spin-system which a priori hold w.h.p. This implies that we can expose the entire instance of the input graph at the
beginning and expect these desired properties to hold (which is highly probable).
We continue by giving a description of the sampling algorithm in the form of pseudo code. In what follows, we assume

that vi is the i-th vertex to be coloured by the algorithm and Ai is the set of vertices that have already been coloured before
vi. We also assume that Ai is coloured as C(Ai). We denote with (Vi, Ei) the vertex set and the edge set, correspondingly, of
the graph Gvi,d,ε log n, where ε =

0.9
4 log(de2/2)

. Let µ̃i(·) denote the Gibbs measure specified by the system PCS(Gvi,d,ε log n, S).

Sampling Algorithm
Input: G = (V , E), instance of Gn,d/n, number of colours S
Take an arbitrary permutation of the vertices in V , i.e. (v1, . . . , vn)
A1 = ∅
For i = 1, . . . , n

-Create the subgraph Gvi,d,ε log n = (Vi, Ei)
-If Gvi,d,ε log n = (Vi, Ei) is not a tree or a unicyclic graph

Then Return Failure
-Colour vi according to µ̃i(Xvi |C(Ai ∩ Vi))
using dynamic programming
-Ai+1 := Ai ∪ {vi}

Return Colouring of G

If the algorithm, at each iteration of the for loop, could assign to the vertex vi a colouring, according to µ(Xvi |C(Ai)),
instead of µ̃i(Xvi |C(Ai ∩ Vi)), then it would be exact. However, there is no known polynomial-time procedure that is able to
compute the exact measure µ(Xvi |C(Ai)) for this class of spin systems. In essence, we use the measure µ̃i(Xvi |C(Ai ∩ Vi)) as
an estimation of µ(Xvi |C(Ai)) in our algorithm.
In what follows, we discuss in detail two major, open issues about the algorithm above. The first one is its accuracy, i.e.

how close the probability measure of the colouring that is returned, is to the uniform over all proper S-colourings of the
input graph. The second one is its efficiency, i.e. how much time is needed for the execution of the algorithm with respect
to the size of the input graph.
As far as the accuracy of the algorithm is concerned, we see that for a given colour assignment C(Ai), the algorithm

approximates the measure µ(Xvi |C(Ai))with the following convex combination of measures:∑
j

aj · µ̃i(Xvi |Cj(Bi))

where Bi = (Ai∩Vi)∪V ′ and V ′ ⊆ V contain all the vertices at a distance bε log nc from vi. Also, for any j, Cj(Bi) is a colouring
which agrees with C(Ai ∩ Vi) on the colour assignment of the vertices in Ai ∩ Vi and the measure µ̃i() assigns it a positive
probability aj.
Furthermore, we note that µ̃i(Xvi |Cj(Bi)) = µ(Xvi |Cj(Ai ∪ V

′)) as long as the colouring Cj(Bi) is such that
Ω(G, S, Cj(Bi)) 6= ∅. However, it is possible that for some j it holds that Ω(G, S, Cj(Bi)) = ∅. If we consider without
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proof, for the moment, that for all j, Cj(Bi) is such that Ω(G, S, Cj(Bi)) 6= ∅, we can rewrite the above summation as
follows:∑

j

aj · µ(Xvi |Cj(Ai ∪ V
′)).

Since the above combination of measures is convex, the total variation between the estimation of µ(Xvi |XAi = C(Ai)) and
the actual measure is upper bounded by the quantity

max
j

{
dTV (µ(Xvi |C(Ai)), µ(Xvi |Cj(Bi)))

}
.

To bound the above total variation distance we use Theorem 2.2. More specifically, Theorem 2.2 states that by taking
a sufficiently large S, w.h.p. the system that our algorithm considers specifies a Gibbs measure, µ(·), which exhibits the
following property:

dTV (µ(Xv|C1(V ′′)), µ(Xv|C2(V ′′))) ≤ n−1.25 (1)

where V ′′ ⊂ V is such that dist({v}, V ′′) ≥ bε log nc and C1(V ′′), C2(V ′′) are any colourings such that ω(G, S, C1(V ′′)),
ω(G, S, C2(V ′′)) 6= ∅.
However, for our algorithmwe need to get a little further thanwhat is stated in the above equation.When the vertex vi is

to be coloured, it is possible that many vertices at a small distance from vi have, already, been coloured. Generally, fixing the
colour assignments of the vertices in Ai possibly imposes a probability measure for the S-colourings of Gwhich is different
from the Gibbs measure µ(·). Our sampling algorithm, for a given input G and S, specifies a probability measure for the
colour assignments of the vertices in Ai and in turn for the S-colourings of G. In order for the algorithm to be accurate, it is
essential that at the i-th iteration of the for loop the following relation holds:

dTV (µAi(Xvi |C1(V
′′

i )), µAi(Xvi |C2(V
′′

i ))) ≤ n
−1.25. (2)

The measure µAi(·) is the Gibbs measure of the system PCS(G, S) with the vertices in Ai assigned a colouring with the
probability measure that is specified by the algorithm.4 The vertex set V ′′i ⊂ V contains all vertices at a distance bε log nc
from vi.
Note that by the law of total probability we can deduce the following.

Remark. If the algorithm assigns the vertices in Ai, for i = 1, . . . , n, a colouring C(Ai) ∈ SAi according to the probability
measure µ(XAi = C(Ai)), then the probability measure of the any configuration of the system PCS(G, S), with the vertices
in Ai coloured as above, will be given by µ(·).

The above remark implies that the statistical properties of the system PCS(G, S) do not change as long aswe fix the colour
assignments of any vertex set according to the Gibbs measure that this system specifies. This consequently implies that (2)
is valid as long as at the i-th iteration of the for loop of the algorithm the vertices in Ai are assigned a colouring according to
µ(·).
Finally, when we argue about the colourings that the measures µ̃i(), for i = 1, . . . , n, give positive probability, we use

the following lemma:

Lemma 2.3. Assume that in the execution of the algorithm each of the graphs Gvi,d,ε log n+2, for i = 1, . . . , n, is either unicyclic or
tree andS is as large as specified by Theorem 2.2.With probability, at least, 1−n−0.1 for all themeasures µ̃i(·), where i = 1, . . . , n,
the following is valid: For V ′i ⊂ V such that dist({vi}, V

′

i ) ≤ bε log nc and for any colouring C(V
′

i ) for which µ̃i(XV ′i = C(V
′

i )) 6= 0
it holds thatΩ(G, S, C(Ai ∪ V ′i )) 6= ∅, where i = 1, . . . , n.

The proof of Lemma 2.3 is provided in Section 4. Taking all the above facts into consideration, Theorem 2.4 gives a
characterization of the probability measure of the colouring that is returned by the algorithm in terms of its total variation
distance from the Gibbs measure µ(·) that specifies the system PCS(G, S), i.e. the uniform over all the proper S-colourings
of the input graph G.

Theorem 2.4. If S is a sufficiently large integer constant, then, with probability 1−O(n−0.1), the sampling algorithm is successful
and returns a S-colouring of the input graph G, whose distribution is within total variation distance n−0.25 from the uniform over
all the proper S-colourings of G.

The proof of Theorem 2.4 is given in Section 4.

4We avoidedwriting themeasures in the above relation by conditioning on the colour assignment of Ai because wewant to stress out that the colouring
of the vertices in Ai is done according to some probability measure.
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As far as the execution time of the algorithm is concerned, we make the following remark. According to Lemma 2.1, the
set {Gvi,d,ε log n, for i = 1, . . . , n}, for ε =

0.9
4 log(e2d/2)

, w.h.p., i.e. with probability 1 − n−0.1, contains graphs which are either
unicyclic or trees. If this is not the case, then we consider that the algorithm fails. As argued in [4], we can have a colouring
of the vertex vi according to µ̃i(Xvi |C(Ai∩Vi)) by generating a random colouring of Gvi,d,ε log n where the vertices in Ai∩Vi are
colored as C(Ai∩Vi) in time upper bounded by l · k3, where l = |Vi| and k = S (for more details see the proof of Theorem 2.5
and [4]).

Theorem 2.5. The time complexity of the sampling algorithm is w.h.p. asymptotically upper bounded by O(n2), where n is the
number of vertices of the input graph.

The proof of Theorem 2.5 is given in Section 4.

We note that at the i-th iteration of the for-loop of the algorithm, we can apply the Junction tree algorithm (see [15]) to
compute the probability measure µ̃i(Xu|C(Ai ∩ Vi)). The execution time of the junction tree is asymptotically bounded by
O(n2+c), where c < 1 is a sufficiently large constant.

3. Spatial mixing

This section is devoted to showing Theorem 2.2. For the graph G = (V , E), an instance of Gn,d/n, we consider the system
PCS(G, S), for some positive integer S. Theorem 2.2 states that in PCS(G, S), for every v ∈ V the distance bε log nc Spatial
Dependency is upper bounded by n−1.25 if S is a sufficiently large constant and ε = 0.9

4 log(e2d/2)
.

By definition, for each v ∈ V the bε log nc Spatial Dependency in the system PCS(G, S) will be n−1.25 with probability
equal to the probability of the union of the following set of events: For each v ∈ V , in the system PCS(Gv,d,ε log n, S) for the
vertex v the bε log nc Spatial Dependency is n−1.25.
Observe that Theorem 2.2 defines such small ε that with probability, at least, 1−n−0.1 the set {Gv,d,ε log n|v ∈ V } contains

graphs for which each of them is either unicyclic or tree. With this observation, instead of Theorem 2.2 we show the two
following lemmas.

Lemma 3.16. Consider the system PCS(Gv,d,ε log n, S), for d > 1, ε = 0.9
4 log(e2d/2)

and for Gv,d,ε log n we condition that it is

a tree. If S is a sufficiently large constant, then with probability, at least, 1 − 2n−1.25 for the above system it holds that
SD(v, bε log nc) = n−1.25. For sufficiently large d, we should have S ≥ d14.

Lemma 3.21. Consider the system PCS(Gv,d,ε log n, S), for d > 1, ε = 0.9
4 log(e2d/2)

and for Gv,d,ε log n we condition that it is a

unicyclic graph. If S is a sufficiently large constant, then with probability, at least, 1− 2n−1.25 for the above system it holds that
SD(v, bε log nc) = n−1.25. For sufficiently large d, we should have S ≥ d14.

Given the validity of Lemma 3.16 and Lemma 3.21, Theorem 2.2 follows directly, see Corollary 3.1.

Corollary 3.1. If Lemma 3.16 and Lemma 3.21 are true, then Theorem 2.2 is true, as well.

Proof. Theorem 2.2 holds for PCS(G = (V , E), S), where G is an instance of Gn,d/n, if the following event holds with
probability at least 1− O(n−0.1), for appropriately large S.

Event1 = ‘‘for every graph Gv,d,ε log n of the set of graphs that G specifies, it holds
that the PCS(Gv,d,ε log n, S) has the property that SD(v, bε log nc) = n−1.25’’.

Assume, first, that for each v ∈ V the subgraph Gv,d,ε log n, for ε = 0.9
4 log(de2/2)

, is either unicyclic or tree. By Lemma 3.16 and

Lemma 3.21 for each vertex v in G it holds that for sufficiently large S, which for sufficiently large d becomes S ≥ d14, the
event

Eventv = ‘‘ the system PCS(Gv,d,ε log n, S) has the property that SD(v, bε log nc) = n−1.25’’

holds with probability, at least, 1− 2n−1.25. Clearly,

Pr[Event1] = 1− Pr
[
∪vEventv

]
.

By the union bound we get that Pr[Event1] ≥ 1− 2n−0.25.
By Lemma 2.1, the assumption we have made about the structure of neighborhood of each vertex v ∈ V is valid with

probability at least 1− n−0.1. Clearly, for PCS(G, S) the event E1 holds with probability at least (1− n−0.1)(1− 2nn
−0.25

) =
1− O(n−0.1). �
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The proof of Lemma 3.16 and Lemma 3.21 are based on comparing, in terms of total variation distance, the twomeasures
µ̃(Xv|C(L)) and µ̃(Xv|C ′(L)) as these are specified by the system PCS(Gv,d,ε log n, S). The vertex set L is assumed to contain all
the vertices in Gv,d,ε log n that are at a distance bε log nc from v and the boundary conditions C(L) and C ′(L) are taken so as to
maximize the total variation distance of the two measures, whileΩ(Gv,d,ε log n, S, C(L)),Ω(Gv,d,ε log n, S, C ′(L)) 6= ∅.
More specifically, for the case of Lemma 3.16 where the underlying graph of the spin-system is a tree, we introduce a

stochastic process which we call ColourRoot. For any tree T rooted at vertex r and some integer k, the process ColourRoot
when applied to T and when it uses k colours, it colours in a recursive manner the tree T so that the vertex r is coloured
according to the Gibbs measure µ̂(Xv|C(V ′)), as this is specified by the system PCS(T , k, C(V ′)). We consider an appropriate
coupling for two executions of the ColourRoot, that are applied to Gv,d,ε log n and use S colours, which assign to v colourings
according to µ̃(Xv|XL = C(L)) and µ̃(Xv|XL = C ′(L)), correspondingly. The lemma follows by bounding appropriately the
probability for the two processes, in the coupling, to assign a different colour to the vertex v (see [2] for bounding total
variation distances by using coupling). For a detailed presentation of the process ColourRoot and the coupling we use, see
Section 3.1. For the proof of Lemma 3.16, see Section 3.2.
To prove Lemma 3.21, we provide a lemma which reduces the problem of bounding the total variation distance of the

measures µ̃(Xv|C(L)) and µ̃(Xv|C ′(L)) to bounding appropriately the total variation distance between Gibbs measures de-
fined on systems whose underlying graph is a tree. This tree is constructed subject to the unicyclic graph Gv,d,ε log n. Then,
Lemma 3.21 follows by using essentially the same approach as we do for proving Lemma 3.16. For a detailed discussion on
the reduction and the proof of Lemma 3.21, see Section 3.3.

Remark. Both Lemma 3.16 and Lemma 3.21 are based on the fact that we expect a very large proportion of the vertices of an
instance of Gn,d/n to have constant degrees. In essence, there is a constant c0 = c0(d) such that for any c > c0 the expected
proportion of vertices that have a degree less than c tends to 1, exponentially fast with c . This argument is justified by the
following corollary, which is proved in [6].

Corollary 3.2 (Janson et. al. [6], pp 28.). If a random variable Z is distributed as in B(n, q), the binomial distribution with
parameters n and q, with λ = nq then

Pr[Z ≥ x] ≤ e−x x ≥ 7λ.

3.1. The process ColourRoot and a coupling

Towards proving Lemma 3.16 and Lemma 3.21 we introduce the stochastic process ColourRoot (T , S,C(L)), where T =
(V , E) is a tree, S is a positive integer and the vertices in L ⊂ V are assigned a colouring C(L) such thatΩ(T , S, C(L)) 6= ∅.
The process ColourRoot(T , S, C(L)) assigns a colouring (not necessarily proper) to the vertices in V\L such that ∀u ∈ V\L the
probability measure of its colour assignment is equal to µ(Xu|C(L ∩ Tu)), where Tu is the subtree of T rooted at u, while the
Gibbs measureµ(Xv|C(L∩Tu)) is specified by the system PCS(Tu, S, C(L∩Tu)). When the third parameter of the ColourRoot
is omitted, it is implied that there is no fixed colour assignment to any vertex.
The ColourRoot(T , S, C(L)) assigns a colouring to each vertex u in the tree T based on the following observation. For the

vertex u in the tree T , consider the vertex set CHu, which contains the children of u in Tu, and the system PCS(Tu, S, C(L∩Tu)).
For the graph T0 = ∪w∈CHuTw consider the set of S-coloringsΩ0 = Ω(T0, S, C(L ∩ T0)). Assume that each C ∈ Ω0 specifies
a colouring of the vertices in CHu that uses all butWC colours from the set [S]. Note that if the system PCS(Tu, S, C(L ∩ Tu))
is in equilibrium, the probability for the vertices in T0 = ∪w∈CHuTw to be coloured as specified by C ∈ Ω0 is proportional to
the quantityWC , i.e.

WC∑
C∈Ω0

WC
.

Definition 3.3. With the above notation, the process ColourRoot(T , S, C(L)) assigns a colour to the vertex u of T as follows:

1. Each C ∈ Ω0 is assignedweightWC which is equal to the number of colours in the set [S] that do not appear in the colour
assignment that C specifies for the vertices in CHu.

2. Select fromΩ0 so that the probability for each member to be chosen is proportional to the weight it has been assigned
to it. Let C ′ be the chosen member.

3. Assign to the vertex u a colour that is chosen uniformly at random among the colours in the set [S] that do not appear in
the colouring of the vertices in CHu, as this is specified by C ′.

We, also, introduce the notion of disagreement probability for a coupling of the processes ColourRoot(T , S, C(L)) and
ColourRoot (T , S, C ′(L)).

Definition 3.4. Consider a coupling of ColourRoot (T , S, C(L)) and ColourRoot(T , S, C ′(L)). The disagreement probability
for a vertex u in T , denoted by pu, is equal to the probability of the event that the two processes in the coupling assign
different colours to u.

The coupling of ColourRoot (T , S, C(L)) and ColourRoot(T , S, C ′(L)) is of our main interests due to the following, very
significant, fact.
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Theorem 3.5. Consider the tree T = (V , E) rooted at the vertex r, the integer S, some set A ⊆ V and any two S-colourings C(A)
and C ′(A) such thatΩ(T , S, C(A)),Ω(T , S, C ′(A)) 6= ∅. Assume that there is a coupling of the ColourRoot(T , S, C(A)) and the
ColourRoot(T , S, C ′(A)) for which the probability of disagreement for the root r is equal to pr. Then, it holds that

dTV (µ(Xr |C(A)), µ(Xr |C ′(A))) ≤ pr.

where µ(Xr |C(A)) and µ(Xr |C ′(A)) are specified by the system PCS(T , S).

Proof. The theorem follows directly from the Coupling Lemma (see [2]). �

For the system PCS(T , S), where T is a tree rooted at vertex r , one can derive upper bounds for SD(r, l), for some positive
integer l, by using the above theorem and the coupling of the ColourRoot which is provided in the following definition.

Definition 3.6. Consider the tree T = (V , E) rooted at vertex r , an integer S and the set V1 ⊂ V such that dist({r}, V1) ≥ l,
for some integer l. Let C(T , S, l) be the coupling of the processes ColourRoot(T , S, C1(V1)) and ColourRoot(T , S) such that
the colour assignment C1(V1), is taken so as tomaximize the disagreement probability at the root of T . The couplingC(T , S, l)
assigns colours to the vertex u of T as follows:

• Couple step 2 of the two processes so as to maximize the probability for the set CHu to have the same colour assignment
in the two processes.
• Conditional on the choices that the two processes have made at their step 2, assign colours to u so as to minimize the
disagreement probability pu.

In the coupling C(T , S, l), if the height of T is less than l, then the set V1, which is given in Definition 3.6, is empty. It is
easy for one to see that in that case the disagreement probability for all vertices in T is zero.

Corollary 3.7. Consider a tree T , rooted at vertex r. If the couplingC(T , S, l), for some positive integers S and l, has disagreement
probability pr on the root of T , then for PCS(T , S) it holds that SD(r, l) ≤ 2pr.

Proof. For the tree T , rooted at vertex r , and the integers S, l, assume that in the coupling C(T , S, l) the disagreement
probability on the root r is pr. Consider the vertex set L which contains vertices at a distance, at least, l from the root r .
Let also C̃(L) and Ĉ(L) be the two colourings which maximize the total variation distance of the measures µ(Xr |C̃(L)) and
µ(Xr |Ĉ(L)), as these are specified by the system PCS(T , S). It holds that

SD(r, l)= dTV
(
µ(Xr |C̃(L)), µ(Xr |Ĉ(L))

)
≤ dTV

(
µ(Xr |C̃(L)), µ(Xr)

)
+ dTV

(
µ(Xr), µ(Xr |Ĉ(L))

)
≤ 2pr.

The second derivation follows by the triangle inequality for measures. The corollary follows. �

It should be mentioned that we will not need to give an explicit description of the coupling C(T , S, l). It will suffice to
show that C(T ,S,l) has two specific properties, i.e. those indicated by Lemmas 3.9 and 3.13.5
The remainder of this section contains the statement and the proof of Lemmas 3.9 and 3.13. These two lemmas provide

means to derive upper bounds for the probability of disagreement for each vertex u of T , in C(T , S, l), by providing an
inductive description of the coupling in terms of disagreement probabilities. More specifically, consider some vertex u, in
the tree T , and the set CHu of its children. If the coupling C(T , S, l) assigns colours to each vertex w ∈ CHu such that the
probability of disagreement is equal to pw , then for the vertex u the probability of disagreement pu is upper bounded as
follows:

pu ≤ a(|CHu|, S) ·

( ∑
w∈CHu

pw

)
where a(|CHu|, S) is a quantity of size that depends on the cardinality of CHu and S.
We distinguish two classes of vertices in T regarding the relation between their number of children and the number of

available colours S, i.e. themixing vertices and the nonmixing vertices. Themixing vertices have a number of children which
is smaller than S and the constant a(|CHu|, S) is very small, i.e. << 1. The nonmixing vertices have high degrees and the
constant a(|CHu|, S)may become very large.

Definition 3.8. Each vertex u of the tree T is ‘‘mixing’’ if, for a given t , the number of its children in T is at most t , otherwise
it is ‘‘nonmixing’’.

5 However, if the reader is keen on finding one, then he can deduce it from the proofs of Lemmas 3.9 and 3.13 and the proofs of the claims inside them.
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The value of t , the maximum number of children of a mixing vertex in the coupling C(T , S, l), is always less than the
number of available colours. Generally, for a given tree T and a number of colours S, we take t so large as to minimize the
probability of disagreement of the root of T .

Lemma 3.9. Consider the tree T , the integers S, l and the coupling C(T , S, l). Let u be a vertex of T which ismixing. If for every
vertexw ∈ CHu the probability of disagreement is pw , then, for the vertex u, the probability of disagreement pu is bounded as

pu ≤
t · S

(S − t)2
·

( ∑
w∈CHu

pw

)
where t is the maximum number of children of a mixing vertex.

Proof. When the vertex u is to be coloured in C(T , S, l), assume that the processes ColourRoot(T , S, C1(V1)) and
ColourRoot(T , S) during step 2 choose from the set of colourings ΩC and ΩF , correspondingly. Let A be the event that
ColourRoot(T ,S,C1(V1)) andColourRoot(T ,S) choose colourings fromΩC andΩF , correspondingly, that specify twodifferent
colour assignments for the set CHu. It holds that

Pr[disagreement on u] = Pr[disagreement on u|A]Pr[A] + Pr[disagreement on u|A]Pr[A].

It should be mentioned that if the eventA does not hold (A holds), then there is a coupling for step (3) of the two processes
ColourRoot that assigns the same colour to the vertex u, i.e. Pr[disagreement on u|A] = 0. Thus,

Pr[disagreement on u] = Pr[disagreement on u|A]Pr[A]. (3)

We will provide appropriate upper bounds for the probability terms in (3) so as to prove the lemma, i.e. the terms
Pr[A] and Pr[disagreement on u|A]. We start with the probability term Pr[A]. The assumption that for each w ∈ CHu the
disagreement probability in C is pw is equivalent to the following: There is a coupling, call itK1, which chooses uniformly
at random (u.a.r.) from the setsΩF andΩC and the two chosen elements specify different colour assignments for the vertex
set CHu with probability which is upper bounded by

∑
w∈CHu pw .

Noting that |ΩF | 6= |ΩC |, we create the set Ω ′F such that each element of ΩF appears |ΩC | times in Ω
′

F . Similarly, we
create the setΩ ′C such that each element ofΩC appears |ΩF | times inΩ

′

C . It holds |Ω
′

C | = |Ω
′

F |.

Claim 3.10. We can have a coupling, call itK2, that chooses uniformly at random (u.a.r.) an element from each of the sets Ω ′C
andΩ ′F such that the probability for the two chosen elements to specify different colour assignments for the vertex set CHu is upper
bounded by

∑
w∈CHu pw .

The proof of Claim 3.10 is given after this proof.

Assume that in C each of the executions of ColourRoot at step (2), now, considers the setsΩ ′C andΩ
′

F , correspondingly,
instead of ΩC and ΩF . Clearly, the fact that the processes ColourRoot consider the sets Ω ′C and Ω

′

F , does not change the
marginal probability measure of the colour assignment of the vertex u in each processes.

Claim 3.11. Consider the coupling C(T , S, l) and assume that the number of children of the vertex u is k and the disagreement
probability forw ∈ CHu is pw . If at the coupling of step (2) of the processes ColourRoot each C ∈ Ω ′C ∪Ω

′

F is assigned weight WC ,
then for the eventA it holds that

Pr[A] ≤
1
qk,S

max
C∈Ω ′F∪Ω

′
C

{WC }

min
C∈Ω ′F∪Ω

′
C

{WC |WC > 0}

∑
w∈CHu

pw. (4)

Where qk,S is the probability of the event that after k trials, not all elements of [S] have been chosen, when at each trial we choose
u.a.r. a member of [S].

The proof of Claim 3.11 is given after the proof of Claim 3.10.
Since the number of children of a mixing vertex is less than the number of available colours, there is no colouring of the

vertices in CHu that leave no available colour for u. This implies that in our case qk,S = 1. Note, at the coupling of step (2) of
the ColourRoot no member of eitherΩ ′C orΩ

′

F is assigned weight which is more than S and less than S− t , where t is equal
to the maximum number of children that a mixing vertex can have. Thus, we conclude

Pr[A] ≤
S

S − t

∑
w∈CHu

pw.

We proceed to derive a bound for Pr[disagreement on u|A]. For this, we use the following claim.
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Claim 3.12. Consider the coupling C(T , S, l), when it assigns colourings to the vertex u. The coupled processes chose a member
ofΩ ′F andΩ

′

C , correspondingly, and we assume that each member specifies a list of available colours for the vertex u, i.e. l1 and l2.
Assuming that |li| > 0, for i = 1, 2, there is a coupling that can choose the same colour for the vertex u with probability at least

1−
max{|l1\l2|, |l2\l1|}
min{|l1|, |l2|}

.

The proof of Claim 3.12 is given after the proof of the two previous claims that appear in this proof.

By Claim 3.12 it holds that

Pr[disagreement on u|A] ≤
t

|S| − t

since in our case it holds |l1\l2|, |l2\l1| ≤ t and |l1|, |l2| ≥ S − t , where l1, l2 are defined as in the statement of Claim 3.12.
Combining all the above facts, we get the lemma. �

We now proceed to prove the claims stated in the proof of Lemma 3.9.

Proof of Claim 3.10. The couplingK2 is defined as follows: Choose u.a.r. a member ofΩC , let C be the chosen element. By
usingK1 take the corresponding element ofΩF , let C ′ be that element. Then, choose u.a.r. one among the copies of C inΩ ′C
and one of the copies of C ′ inΩ ′F .
The claim follows by noting the following: First, each of the elements of bothΩ ′C andΩ

′

F is chosen uniformly at random.
Second, the chosen elements ofΩ ′C andΩ

′

F specify different colour assignments for CHu iff C and C
′ do the same. �

Proof of Claim 3.11. Consider that we choose fromΩ ′F such that the element C is chosen with probability proportional to
its weight,WC . Consider the same for the setΩ ′C . If there is a coupling of these two randomweighted selections above, such
that the probability of the eventA to be upper bounded as in (4), then we are done.
The assumption that for eachw ∈ CHu the disagreement probability in the couplingC(T , S, l) is equal to pw , is equivalent

to the following: There is a mapping, call it f : Ω ′F → Ω ′C , which is one to one (and ‘onto’, since |Ω
′

F | = |Ω
′

C |) and for any
pair of colourings (C, f (C)) ∈ Ω ′F × Ω

′

C , with C chosen u.a.r., the probability to specify different colourings for the vertex
set CHu is upper bounded by

∑
w∈CHu pw .

Clearly, the mapping f defines a coupling for the ‘‘nonweighted’’ joint random selection of the elements the setsΩ ′F and
Ω ′C , since the two sets are equal sized. Based on f , we define a coupling for the ‘‘weighted’’ joint random selection of the
elements of the setsΩ ′F andΩ

′

C .
From Ω ′i , we produce the set Ω

W
i , for i ∈ {C, F} as follows: For each C ∈ Ω

′

i , insert into Ω
W
i , WC copies of C , i.e. the

elements {C1, . . . , CWC }. The weighted random selection fromΩ
′

i is equivalent to consider that we have chosen C ∈ Ω
′

i if a
random uniform selection fromΩWi have chosen one of {C1, . . . , CWC }. Thus, the construction of a coupling of the weighted
joint selection from the setsΩ ′F andΩ

′

C can, equivalently, be reduced to creating a coupling that selects uniformly at random
one element from each of the setsΩWF andΩ

W
C . This is what we are doing in the remainder of the proof.

First, we create a mapping f ′ : (ΩWF ∪ ω2) → (ΩWC ∪ ω1), where ω2 ⊂ ΩWF and ω1 ⊂ ΩWC and they will be defined
soon after. We construct the mapping f ′ based on the mapping f . Then we define the coupling which consists of choosing
u.a.r. a member ofΩWF ∪ω2 and then applying the chosen element to f

′ so as to get a member ofΩWC ∪ω1. In this coupling,
the marginal probability for each member inΩWF to be chosen will be the same for all members. This will, also, hold for the
members ofΩWC . The claim will follow by bounding, appropriately, the quantity Pr[A] in this coupling.
We define the sets ω1, ω2 as we construct f ′. The mapping f ′ is defined as follows: For each C ∈ Ω ′F , with f (C) = Q and

WC = Wf (C) > 0, set f ′(Ci) = Qi for i = 1, . . . ,WC . For each C ∈ Ω ′F , with WC > Wf (C) and f (C) = Q , set f
′(Ci) = Qi

for i = 1, . . . ,Wf (C) and for i = Wf (C) + 1, . . . ,WC set f ′(Ci) a u.a.r. chosen member of ΩWC . Let ω1 be the set of all the
elements ofΩWC that were randomly selected in themanner that is described above. For each C ∈ Ω

′

F , withWC < Wf (C) and
f (C) = Q , we set f ′(Ci) = Qi for i = 1, . . . ,WC , and for i = WC + 1, . . . ,Wf (C), for the copy Qi choose u.a.r. a member of
Ω ′F to correspond to. Letω2 be the set of all the elements ofΩ

′

F that were randomly selected in the manner that is described
above.
If we choose uniformly at random from ΩWF ∪ ω2, each element of Ω

W
F appears equiprobably. Similarly, if we choose

u.a.r. fromΩWC ∪ω1, each element ofΩ
W
C appears equiprobably. Furthermore, if we choose u.a.r. fromΩ

W
F ∪ω2, and apply

f ′ to get a member fromΩWC ∪ ω1, all the members ofΩ
W
C ∪ ω1 have the same probability to be chosen, since the mapping

f ′ is one to one and onto (|ΩWF ∪ ω2| = |Ω
W
C ∪ ω1|). Thus, in the coupling where we choose u.a.r.Ω

W
F ∪ ω2 and apply the

mapping f ′ and get a member of ΩWC , the marginal probability for all the members of Ω
W
F (and Ω

W
C ) to be chosen is the

same.
What remains to be shown is that in the coupling, above, the event A occurs with probability Pr[A] which is upper

bounded as in (4).
Clearly, for the colourings in the pairs (C, f (C)) ∈ Ω ′F×Ω

′

C that define the same colour assignment for the vertex set CHu,
we haveWC = Wf (C). For C ∈ Ω ′F in such a pair of colourings, it holds that the copy Ci, that C has in Ω

W
F , is corresponded
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through f ′ to the copy Qi, that Q = f (C) has inΩWC , i.e. Qi = f (Ci), for i = 1, . . . ,WC . Note that the eventA does not hold
for these pairs, (Ci, f ′(Ci)) for i = 1, . . . ,WC .
For each pair (C, f (C)) ∈ Ω ′F ×Ω

′

C that define a different colour assignment for the vertex set CHu, it does not necessarily
holdWC = Wf (C). Consider, first, the case whereWC = Wf (C). Then, for C ∈ Ω ′F in such a pair of colourings, it holds that
each copy Ci, that C has inΩWF , is corresponded through f

′ to the copy Qi, that Q = f (C) has inΩWC , for i = 1, . . . ,WC . The
eventA does hold for these pairs, (Ci, f ′(Ci)) for i = 1, . . . ,WC .
Finally, we consider the case where the pair (C, f (C)) ∈ Ω ′F ×Ω

′

C defines a different colour assignment for the vertex set
CHu andWC 6= Wf (C). W.l.o.g. we assume thatWC > Wf (C). Then, for C ∈ Ω ′F in such a pair of colourings, it holds that each
copy Ci, that C has inΩWF , is corresponded through f

′ to the copy of Qi, that Q = f (C) has inΩWC , for i = 1, . . . ,Wf (C). The
eventA does hold for the pairs (Ci, f ′(Ci)), i = 1, . . . ,Wf (C). The copy Ci, for i = Wf (C) + 1, . . . ,WC , is mapped through f ′

to a u.a.r. chosen member of ωWC . Note that the eventA does not necessarily hold for these pair. However, we assume that
it does, which is, clearly, an overestimate for the probability Pr[A].
Let, ΩWA ⊂ ΩWF ∪ ω2 be such that Ω

W
A = {C ∈ Ω

W
F ∪ ω2| for (C, f

′(C)) the eventA holds} and ΩA ⊂ Ω ′F be ΩA =

{C ∈ Ω ′F | for (C, f (C)) the eventA holds}. Clearly, Pr[A] =
|ΩWA |

|ΩWF ∪ω2|
.

LetΩ(>0)
i ⊂ Ω ′i be such thatΩ

(>0)
i = {C ∈ Ω ′i |WC > 0} and qi =

|Ω
(>0)
i |

|Ω ′i |
, for i ∈ {C, F}. One can see that |ΩWA | ≤ |ΩA|

maxC∈Ω ′C∪Ω ′F {WC }, and |Ω
W
F ∪ ω2| ≥ |Ω

(>0)
F | ·minC∈Ω>0C ∪Ω>0F {WC }. From the fact that |Ω

>0
F | = qF |ΩF |we get that

Pr[A] ≤

max
C∈Ω ′C∪Ω

′
F

{WC }

qF · min
C∈Ω>0C ∪Ω

>0
F

{WC }
|ΩA|

|ΩF |
.

Clearly, qF = qk,S , where qk,S is defined in the statement of the claim. The claim follows by noting that
|ΩA|
|ΩF |
≤
∑

w∈CHu pw . �

Proof of Claim 3.12. The coupling with which we can choose the same colour for the vertex uwith probability indicated in
the statement of the claim is themaximal coupling (see [9]).
More specifically, we assume, w.l.o.g., that |l1| ≥ |l2|. Let U be a random variable uniformly distributed in (0, 1). We

assume that if i−1
|l1|

< U < i
|l1|
, we choose the color i ∈ l1, for= 1, . . . , |l1|. Also, ∀i ∈ l1 ∩ l2 assume that if i−1|l1| < U <

i
|l1|

we choose i in l2. For U everywhere else in (0, 1) make an arbitrary arrangement so as each element of l2 is chosen with
probability 1/l2. By the assumption that |l1| ≥ |l2|, all members i ∈ l1∩ l2 we have been assigned intervals which correspond
to probability 1/|l1| ≤ 1/|l2|.
Clearly, the interval in (0, 1) that corresponds to choosing different colourings from l1 and l2 is of length

|l1\l2|
|l1|
. The claim

follows by the fact that

|l1\l2|
|l1|
≤
max{|l1\l2|, |l2\l1|}
min{|l1|, |l2|}

. �

Lemma 3.13. Consider the tree T , the integers S, l and the coupling C(T , S, l). Let u be a vertex of T which is nonmixing and has
k children. If for everyw ∈ CHu the probability of disagreement is pw , then, for the vertex u, the probability of disagreement pu is
bounded as

pu ≤ S
1
qk,S

( ∑
w∈CHu

pw

)
(5)

where qk,S is the probability of the event that after k trials, not all elements of the set [S] have been chosen, when at each trial we
choose uniformly at random a member of [S].

Proof. When the vertex u is to be coloured in C(T , S, l), assume that the processes ColourRoot(T , S, C1(V1)) and
ColourRoot(T , S) during step 2 choose from the set of colourings ΩC and ΩF , correspondingly. Let A be the event that
ColourRoot(T ,S,C1(V1)) andColourRoot(T ,S) choose colourings fromΩC andΩF , correspondingly, that specify twodifferent
colour assignments for the set CHu. Then it holds

Pr[disagreement on u] = Pr[disagreement on u|A]Pr[A] + Pr[disagreement on u|A]Pr[A].

It should be mentioned that, if the eventA does not hold (A holds), then there is a coupling for step (3) of the ColourRoot
that assigns the same colour to the vertex u in C, i.e. Pr[disagreement on u|A] = 0. Thus,

Pr[disagreement on u] = Pr[disagreement on u|A]Pr[A]. (6)
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We derive appropriate upper bounds for the probability terms in (6) so as to prove the lemma, i.e. the terms Pr[A] and
Pr[disagreement on u|A]. We work exactly in the same manner as in the proof of Lemma 3.9 so as to get an upper bound
for the term Pr[A], i.e. we have

Pr[A] ≤
1
qk,S

max
C∈Ω ′F∪Ω

′
C

{WC }

min
C∈Ω ′F∪Ω

′
C

{WC |WC > 0}

∑
w∈CHu

pw.

Note that at the coupling, of the step (2) of the ColourRoot, for colouring u, nomember of eitherΩ ′C orΩ
′

F is assignedweight
more than S and theminimumnon zeroweight is 1. Furthermore, for a nonmixing vertex u of sufficiently high degree, there
are colourings of its children that use every colour in [S], these colourings are assigned weight zero, in this case we have
qk,S ≤ 1.
The lemma follows by assuming that Pr[disagreement on u|A] = 1 which is, clearly, an overestimate for this probability

term. �

3.2. The case of a tree — The proof of Lemma 3.16

Consider an instance of Gn,d/n, where d > 1, and for each vertex v consider the graph Gv,d,ε log n, where ε = 0.9
log(e2d/2)

. By
Lemma 2.1 it holds that w.h.p. Gv,d,ε log n is either a unicyclic graph or a tree. Here, we condition that the graph Gv,d,ε log n is a
tree.

Definition 3.14. The graph Gv,d,ε log n when we condition that it is a tree, defines a probability space over the trees which
we denote by Td.

Note that each nonleaf vertex of an instance of Td has a number of childrenwhose distribution is dominated by B(n, d/n),
i.e. the binomial distribution with parameters n and d/n.
Consider the coupling C(T , S, bε log nc), where T is an instance of an instance of Td rooted at the vertex r and ε, S are as

large as is indicated in Lemma 3.16. Lemma 3.16 will follow by showing that with probability, at least, 1− 2n−1.25 it holds
pr ≤ n−1.25/2 (see Corollary 3.7).
In C(T , S, l), where T is an instance of Td rooted at r and a given S, the disagreement probability pr depends only on

the structure of T . We remind the reader that in C, we assume that the boundary conditions are set so as to maximize the
disagreement probability pr. Clearly, pr is a random variable. We use the Lemma 3.9 and Lemma 3.13 to derive an upper
bound for the expectation of pr which depends on l, S and t , the maximum number of children of a mixing vertex. Let q(t)
be the probability for a random variable, distributed as in B(n− 1, d/n), for fixed d, to be less than t .

Lemma 3.15. For positive integers S, l, real d > 1 and T , an instance of Td rooted at the vertex r, the expectation of the
disagreement probability pr, in the coupling C(T , S, l), is bounded as

E[pr ] ≤
(
d
t · S

(S − t)2
q(t)+ 2d

(
S(1− q(t))+

S

S − 1

(
exp

{
d

(S − 1)

}
− q(t)

)))l
. (7)

Proof. We remind the reader that t stands for the maximum number of children of a mixing vertex. Let q(t) be the
probability for a random variable, distributed as in B(n− 1, d/n), for fixed d, to be less than t . Let

a(i) =


t · S

(S − t)2
if i ≤ t

S

qi,S
otherwise

where qi,S , is as defined in the statement of Lemma 3.13.
Consider the coupling C(T , S, l), where T is an instance of Td rooted at the vertex r . Let E[pr] be the expectation of the

disagreement probability on the root r . Conditioning on the number of children of r and the disagreement probability pw ,
∀w ∈ CHr in C(T , S, l), by Lemma 3.9 and Lemma 3.13 we get

E[pr|pw, ∀w ∈ CHr ] ≤ a(|CHr |) ·
∑
w∈CHr

pw.

By definition,∀w ∈ CHr , pw is upper bounded by the disagreement probability on the vertexw in the couplingC(Tw, S, l−1)
where Tw is the subtree of T rooted at vertex w. Call this disagreement probability p∗w . It should be clear to the reader that
pw refers to the coupling C(T , S, l), while p∗w refers to C(Tw, S, l− 1). It is direct that

E[pr] ≤
n∑
i=0

ia(i)Pr[|CHr | = i]E[p∗w] for w ∈ CHr .
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Note that the random variables p∗w for w ∈ CHr are identically distributed and independent of the number of children of r .
Also, noting that the function f (i) = i · a(i) is increasing for t << S and by the fact that the distribution of the number of
children of r is dominated by the B(n, d/n), (by proposition 9.1.2. of [12]), it holds that

E[pr] ≤
n∑
i=0

i · a(i)
(
n
i

)
pi(1− p)n−iE[p∗w] for w ∈ CHr (8)

where p = d/n. Let S1 =
∑t
i=0 i · a(i)

(n
i

)
pi(1− p)n−i and S2 =

∑n
i=t+1 i · a(i)

(n
i

)
pi(1− p)n−i.

S1 ≤
t · S

(S − t)2

t∑
i=0

i
(
n
i

)
pi(1− p)n−i

=
t · S

(S − t)2
np

t−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i

=
t · S

(S − t)2
q(t)d.

Before calculating S2, we eliminate the probability term qi,S from the a(i) for i > t . For qi,S it holds that

qi,S ≥ S

(
1−

1
S

)i (
1− qi,(S−1)

)
i.e. the probability of the event ‘‘not choosing some element of [S] after i trials’’ is greater than, or equal to the probability
of the event ‘‘not choosing exactly one element of [S]’’, since the second event is a special case of the first one. Furthermore,
since qk,(S−1) ≤ qk,S we get that

qi,S ≥ S

(
1−

1
S

)i (
1− qi,S

)
.

Let Ω = {1, . . . , n} and let t0 = sup{t ∈ Ω| qt,S ≥ 1/2}. Instead of using qi,S we make the following simplification. For
i > t0 we bound the quantity 1/qi,S as

1
qi,S
≤

2

S
(
1− 1

S

)i = 2S
(

S

S − 1

)i
.

Also, for i ≤ t0, clearly, 1/qi,S ≤ 2.

S2 ≤ 2S
t0∑

i=t+1

i
(
n
i

)
pi(1− p)n−i + 2

n∑
i=t0+1

i
(
n
i

)(
S

S − 1

)i
pi(1− p)n−i

≤ 2S
n∑

i=t+1

i
(
n
i

)
pi(1− p)n−i + 2

n∑
i=t+1

i
(
n
i

)(
S

S − 1

)i
pi(1− p)n−i

≤ 2Snp
n−1∑
i=t

(
n− 1
i

)
pi(1− p)n−1−i + 2np

S

S − 1

n−1∑
i=t

(
n− 1
i

)(
S

S − 1

)i
pi(1− p)n−1−i

≤ 2Sd

(
1−

t−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i

)

+ 2
S

S − 1
d

((
1− p+

S

S − 1
p
)n−1
−

t−1∑
i=0

(
n− 1
i

)(
S

S − 1

)i
pi(1− p)n−1−i

)

≤ 2Sd (1− q(t))+ 2
S

S − 1
d

((
1+

1
S − 1

p
)n−1
−

t−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i

)

≤ 2Sd (1− q(t))+ 2
S

S − 1
d

((
1+

1
S − 1

p
)n−1
− q(t)

)
≤ 2d

(
S(1− q(t))+

S

S − 1
(exp{d/(S − 1)} − q(t))

)
.

Substituting the bounds for S1 and S2 in (8) we get

E[pr] ≤
(
d

tS
(S − t)2

q(t)+ 2d
(

S(1− q(t))+
S

S − 1
(exp{d/(S − 1)} − q(t))

))
E[p∗w]

forw ∈ CHr . We can substitute E[p∗w] in the samemanner as E[pr], i.e. by using induction and assuming that for the vertices
at distance l from the root the expectation of the probability of disagreement is 1. Then, the lemma follows. �
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Finally, Lemma 3.16 follows by setting appropriate quantities for S and l in (7) and then by applying the Markov
inequality. Here it is crucial to remark that if d is sufficiently large, then for t ≥ 7d it holds q(t) ≥ 1− d−28.

Lemma 3.16. Consider the system PCS(Gv,d,ε log n, S), for d > 1, ε = 0.9
4 log(e2d/2)

and for Gv,d,ε log n we assume that it is a tree.

If the S is a sufficiently large constant, then with probability, at least, 1 − 2n−1.25 for the above system it holds that
SD(v, bε log nc) = n−1.25. For sufficiently large d, we should have S ≥ d14.

Proof. In the coupling C(Gv,d,ε log n, S, l) it holds that the expectation of pv is bounded as

E[pv] ≤
(
d
t · S

(S − t)2
q(t)+ 2d

(
S(1− q(t))+

S

S − 1
(exp{d/(S − 1)} − q(t))

))l
(9)

where l is theminimumdistance of v and the boundary set L, q(t) is equal to the probability for a randomvariable, distributed
as in B(n− 1, d/n), for fixed d, to be less than t , the maximum number of children of a mixing vertex.
Set l = ε log n in (9), where ε = 0.9

log(e2d/2)
. So as to prove the lemma, it suffices to show that for S as described in the

statement (of the lemma) and appropriately large t we get E[pv] ≤ n−2.5. Clearly, for E[pv] ≤ n−2.5 and by using theMarkov
Inequality (see [3]) we can get that

Pr[pv ≥ n−1.25/2] ≤ 2
E[pv]
n−1.25

≤ 2n−1.25.

If E[pv] ≤ n−2.5, then with probability at least 1− Pr[pv ≥ 2n−1.25] ≥ 1− 2n−1.25 for the system PCS(Gv,d,ε log n, S) it holds
that SD(v, bε log nc) ≤ n−1.25, which proves the lemma. This statement follows by Definition 1.6 and Theorem 3.5. Thus,
what remains to be shown is that there are appropriate values for t and S such that E[pv] ≤ n−2.5.
First, we show that if d is a sufficiently large constant, then for S ≥ d14 and t such that q(t) ≥ 1 − d−28 we get

E[pv] ≤ n−2.5. Using Corollary 3.2 we see that when t ≥ max{7d, 28 log d + 1} it holds q(t) ≥ 1 − d−28. Assuming
that d is a sufficiently large constant, we substitute the values of S with d14 and t = 7d in (9) and get

E[pv] ≤
(

7d16

(d14 − 7d)2
+ 2d

(
d14d−28 +

d14

d14 − 1

(
1+

d
d14 − 1

+
eξ

2!
d2

(d14 − 1)2
− 1+ d−28

)))ε log n
where 0 < ξ < d/(d14 − 1). In the above inequality we used the fact that 1− d−28 ≤ q(t) ≤ 1 and we substituted ed/(S−1)
by an appropriate polynomial, which is derived by MacLaurin series of the function f (x) = ex, for real x. Thus, we get

E[pv] ≤
(

7d−12

(1− 7d−13)2
+ 2d

(
d−14 +

1
1− d−14

(
d−13

1− d−14
+
e
2

d−26

(1− d−14)2
+ d−28

)))ε log n
≤

(
d−12

(
7

(1− 7d−13)2
+ 2d−1 +

2
(1− d−14)2

+
ed−13

(1− d−14)3
+

2d−15

1− d−14

))ε log n
.

Taking d at least 20, we get that

E[pv] ≤ nε log(9.2d
−12).

Replacing ε, we see that it suffices to hold 0.9 log(9.2d−12) ≤ −10 log(e2d/2), or 9.2d−12 ≤ (e2d/2)−11.11 which clearly
holds for sufficiently large constant d.
For relatively smaller d, one can easily see that setting S = dx, for an appropriately large constant exponent x and

arranging the quantity t so as q(t) ≥ 1− d−2x can get

E[pv] ≤
(
d−x+2

(
t/d

(1− d−xt)2
+ 2d−1 +

2d−x−1

1− d−x
+

2
(1− d−x)2

+ e
d−x+1

(1− d−x)3

))ε log n
.

We take x sufficiently large so as to have 1− d−x ≥ 1− 10−3 and xd−x ≤ 10−3.
If t = 7d, then, with the above assumptions, we can easily derive that E[pv] ≤ (d−x+216)ε log n. If E[pv] ≤ n−2.5, then we

should have 16d−x+2 ≤ (e2d/2)11.11, which clearly holds for sufficiently large x.
If 2x log d + 1 > 7d, then by Corollary 3.2 we should have t = 2x log d + 1. With the assumptions we have made for x

we get that E[pv] ≤ (d−x+2(2.1x
log d
d + 9))

ε log n. If E[pv] ≤ n−2.5, then it should hold (d−x+2(2.1x
log d
d + 9)) ≤ (e

2d/2)11.11,
which clearly holds for sufficiently large x. The lemma follows. �
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3.3. The case of a unicyclic graph — The proof of Lemma 3.21

Consider an instance of Gn,d/n, and the set of its subgraphs Gv,d,ε log n, as in Section 3.2. By Lemma 2.1, it holds that w.h.p.
Gv,d,ε log n is either a unicyclic graph or a tree. Now we condition that Gv,d,ε log n is a unicyclic graph.
First, we showhowcanwe extend the techniques for proving Lemma3.16, i.e. proving spatialmixing properties of system

with an underlying graphwhich is a tree, and prove Lemma 3.21, which refers to systems with a unicyclic underlying graph.
Consider the depth first search in Gv,d,ε log n that starts from the vertex v and let u be the first vertex of the unique cycle

that is reached by the search. Clearly, there are two possible choices for this search to explore the vertices of the cycle that
u belongs to. If w1 and w2 are the vertices on the cycle that are also adjacent to u, then let T 1 and T 2 be the two depth-first
search trees of Gv,d,ε log n, rooted at v, with the first tree having u adjacent only tow1 and the second having u adjacent only
tow2.

Definition 3.17. With the above notation, the tree Tr,d,ε log n is isomorphic to the tree that comes up from the union of T 1
and T 2w2 plus an edge connecting the vertices u in T

1 withw2 in T 2w2 . The root r of Tr,d,ε log n corresponds to the vertex v in T
1.

Note that the number of children of a nonleaf vertex of Tr,d,ε log n has distribution which is dominated by B(n, d/n) with
the condition that it is at least 2.
Each of the trees T 1 and T 2w2 , in the definition of Tr,d,ε log n, are isomorphic to some subgraph of Gv,d,ε log n, i.e. there is a

correspondence between the vertices in T 1 and T 2w2 with the vertices in Gv,d,ε log n. Based on this correspondence, we can
define a (surjective) function h : VT → VG, where VT is the set of vertices of Tr,d,ε log n and VG the set of vertices in Gv,d,ε log n.
Let L be the set that contains all the vertices in Gv,d,ε log n that are at a graph distance, at least, bε log nc from v. Consider

the S-colouring C1(L) which is such that the set the total variation distance of the Gibbs measures µ(Xv|C1(L)) and µ(Xv),
as these are specified by the system PCS(Gv,d,ε log n, S), is maximized.
For the tree Tr,d,ε log n derived by Gv,d,ε log n, the integers S and l, let C ′(Tr,d,ε log n, S, l), be a coupling of the stochastic

processes ColourRoot(Tr,d,ε log n, S, CT1 (A)) and ColourRoot(Tr,d,ε log n, S). The set A is such that ∀v̂ ∈ A ∃û ∈ (V1∪ L) such that
h(v̂) = û and CT1 (v̂) = C1(û). The coupling C ′(Tr,d,ε log n, S, l) is, in essence, the same as the coupling C(Tr,d,ε log n, S, l) with
only one difference: Consider C ′(Tr,d,ε log n, S, l)when it assigns colourings to a nonmixing vertex uwhich has i children and
assume that for eachw ∈ CHu the disagreement probability is pw . Then, the disagreement probability pu, for the vertex u, is
bounded as

pu ≤
S

qi,S,2

∑
w∈CHu

pw. (10)

where qi,S,2 is the probability of the event that after k trials not all elements of the set [S] have been chosen, when at each
trial we choose u.a.r. a member of [S] and conditioning that the first two trials chose different elements of [S].
Comparing the bound in (10) with that was given in (5), in the statement of Lemma 3.13, we see that qi,S,2 ≤ qi,S . This

fact implies that the coupling C ′ exists as, on the same input, it gives either the same, or worse bounds than C for the
disagreement probabilities.

Lemma 3.18. Consider the graph Gv,d,ε log n, the corresponding tree Tr,d,ε log n, with d > 1 and ε = 0.9
4 log(e2d/2)

, and the
positive integer S. If pr is the bound for the disagreement probability that we derive from Lemma 3.9 and (10) for the coupling
C ′(Tr,d,ε log n, S, bε log nc), then for the system PCS(Gv,d,ε log n, S) it holds that SD(v, bε log nc) ≤ 2pr.

Proof. Let L be the set that contains all the vertices in Gv,d,ε log n that are at graph distance, at least, bε log nc from v. Consider
the S-colouring C(L) which is such that the total variation distance of the Gibbs measures µ(Xv|C(L)) and µ(Xv), as these
are specified by the system PCS(Gv,d,ε log n, S), is maximized.
Let u be the vertex in Gv,d,ε log n which belongs to the unique cycle of Gv,d,ε log n and among all the vertices on the cycle it

has the smallest distance from v. Let Gu be the connected subgraph of Gv,d,ε log n that contains the vertex u and the vertices
whose distance from v is greater than that of the vertex u from v. It is easy to see thatGu is a unicyclic graph andGv,d,ε log n\Gu
is a tree.
Assume that there is a coupling such that choosing uniformly at random amember from each of the sets of S-colourings

Ω(Gu, S, C(L ∩ Gu)) and Ω(Gu, S) the probability for the two chosen colourings to specify different colour assignments
for the vertex u is Q . Also, let pv be the upper bound of the disagreement probability in the coupling of the processes
ColourRoot(T , S, C(T∩L)) and ColourRoot(T , S), where T = Gv,d,ε log n\(Gu\{u}), thatwe derive by using Lemma3.9 and (10)
and assuming that the disagreement probability of the vertex u is set a priori toQ . Note that the graphGv,d,ε log n\(Gu\{u}) is a
tree. It is easy for one to see that pv is, also, an upper bound for the total variation distance of the Gibbsmeasuresµ(Xv|C(L))
and µ(Xv), as these are specified by the system PCS(Gv,d,ε log n, S).
For an appropriately constructed tree T u, with respect to Gu, and appropriate boundary condition C ′1, if the coupling of

the processes ColourRoot(T u, S, C ′1) and ColourRoot(T
u, S) has disagreement probability P at the vertex u, for which Q ≤ P ,6

6 The probability Q is at the beginning of the previous paragraph.
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then the lemmawill follow.W.l.o.g. assume that the vertex v belongs to the unique cycle ofGv,d,ε log n, i.e. theGu andGv,d,ε log n
are identical.
Consider the function h : VT → VG, where VT is the set of vertices of Tr,d,ε log n and VG the set of vertices in Gv,d,ε log n, h(·)

is defined in the paragraph after Definition 3.17. Let L′ be the set of vertices in Tr,d,ε log n such that L′ = {u ∈ VT |h(u) ∈ L}.
It is direct that the vertex set L′ is at a distance, at least, bε log nc from r , in Tr,d,ε log n. Let, also, CT (L′) be a colouring which
assigns eachw ∈ L′ the same colour as C(L) specifies forw0 = h(w).
If Nv is the vertex set that contains all the adjacent vertices of v in Gv,d,ε log n, then for each w0 ∈ Nv we define Gw0 to

be the connected component of Gv,d,ε log n\{v} that containsw0. It is straightforward that the component Gw0 is a tree which
is isomorphic to the subtree Tw of Tr,d,ε log n, where h(w) = w0. This isomorphism implies that there is a correspondence
between the elements of the setsΩ(Gw0 , S, C(L)) andΩ(Tw, S, CT (L′)) such that any two corresponding colourings C1 and
C2 have the property that ∀u1 ∈ Tw C1(h(u1)) = C2(u1). Clearly, there is a similar correspondence between the members
of the sets ofΩ(Gw0 , S) andΩ(Tw, S), forw ∈ CHr andw0 = h(w).
Assume that in C ′(Tr,d,ε log n, S, bε log nc) for each w ∈ CHr the disagreement probability is pw . Then, with the above

correspondence between the pairs of setsΩ(Gw0 , S, C(L))withΩ(Tw, S, CT (L′)) andΩ(Gw0 , S)withΩ(Tw, S)we conclude
that there is a coupling such that choosing u.a.r. from the sets Ω(Gw0 , S, C(L)) and Ω(Gw0 , S) the probability for the two
chosen elements to assign different colour to the vertex w0 is upper bounded by pw , where h(w) = w0. With these facts,
we prove the following claim.

Claim 3.19. If the coupling C ′(Tr,d,ε log n, S, bε log nc) has disagreement probability on the vertex r upper bounded by pr, then
we can have a coupling of the uniform random choices from the sets Ω(Gv,d,ε log n, S, C(L)) and Ω(Gv,d,ε log n, S) such that the
two chosen elements specify different colour assignments for the vertex v with probability upper bounded by pr.

The proof of Claim 3.19 is given after the end of this proof.

With the above claim and what follows, we get the proof of the lemma. Let C̃(L) and Ĉ(L) be the two colourings which
maximize the total variation distance of the measures µ(Xv|C̃(L) and µ(Xv|Ĉ(L)), as these are specified by the system
PCS(Gv,d,ε log n, S).

SD(v, ε log n)= dTV
(
µ(Xv|C̃(L), µ(Xv|Ĉ(L))

)
≤ dTV

(
µ(Xv|C̃(L), µ(Xv)

)
+ dTV

(
µ(Xv), µ(Xv|Ĉ(L))

)
≤ 2dTV (µ(Xv|C(L), µ(Xv))
≤ 2pr

where pr is the bound of the disagreement probability on the vertex r in C ′(Tr,d,ε log n, S, bε log nc). �

We now prove the claim that appears in the proof of Lemma 3.18.

Proof of Claim 3.19. The claim will follow by proving that there exists a coupling of uniform random choices from
Ω(Gv,d,ε log n, S, C(L)) and Ω(Gv,d,ε log n, S) such that the two chosen elements specify different colour assignments for v
with probability upper bounded by the disagreement probability pr in the coupling C ′(Tr,d,ε log n, S, ε log n).
Consider the couplingC ′(Tr,d,ε log n, S, bε log nc). Firstly, we assume that t ′ is themaximumnumber of children of amixing

vertex. Secondly, we assume that for each vertexw ∈ CHr , the probability of disagreement is pw .
By the above assumption and bywhat is stated in the proof of Lemma 3.18, it holds that there is a coupling of the uniform

randomchoices from the setsΩ(Gw0 , S, C(L)) andΩ(Gw0 , S) such that the probability for the two chosen elements to assign
different colour to the vertex w0 is upper bounded by pw , where h(w) = w0. Note also that the vertices v and r have the
same degree in Gv,d,ε log n and Tr,d,ε log n, correspondingly. However, it is not direct that we can apply the Lemma 3.9 and
(10) for bounding the probability of interest in the coupling of the uniform random choices fromΩ(Gv,d,ε log n, S, C(L)) and
Ω(Gv,d,ε log n, S). The difference between the coupling C ′ and that of the uniform random choices of Ω(Gv,d,ε log n, S, C(L))
andΩ(Gv,d,ε log n, S) is that in the second case the colour assignments of two adjacent vertices of v are correlated, while in
the case of C ′ they are not.
We distinguish two cases for the degrees of the vertices r and v. In the first case we assume that the degrees are at most

t ′ (r is mixing) and in the second that the degrees are more than t ′ (r is nonmixing).
In the first case, where the degree of v is at most t ′, despite the fact that the colour assignments of two adjacent vertices

of v are correlated, we can still apply Lemma 3.9. Using the notation of the statement of Lemma 3.9 it holds the following:
If there is a disagreement in the vertices in CHu, then for bounding pu we assume the worst case of disagreement in the
colourings of the vertices in CHu, i.e. it is assumed that all the vertices have different colour assignments in the coupling.
Clearly, this leads to an overestimate for pu, even for the case where the colourings are correlated. Therefore, this bound
is, also, an overestimate for bounding the probability that v is assigned two different colourings in the coupling of the
uniform random choices ofΩ(Gv,d,ε log n, S, C(L)) andΩ(Gv,d,ε log n, S). Clearly, we get the same bound for the probability of
disagreement pr in the coupling C ′(Tr,d,ε log n, S, bε log nc).
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If the degree of the vertex v is i, which is greater than t ′, then we use Lemma 3.13, with a little modification. One can see
that the term 1/qi,S in (5) of the statement of Lemma 3.13 is not exact for our case. More specifically, in the last paragraph
of the proof of Claim 3.11, for our case the quantity qF is not equal to qi,S due to the fact that two vertices do not choose
independently their colour assignments. However, it is direct that for this case qF is lower bounded by the probability of
the event that after i trials, not all the elements of [S] have been chosen, when at each trial we choose u.a.r. a member of
[S] and conditioning that the first two trials choose different elements of [S]. With this modification we can see that in the
coupling of the uniform random choices from the sets Ω(Gv,d,ε log n, S, C(L)) and Ω(Gv,d,ε log n, S) the two chosen element
specify different colour assignments for the vertex v with probability bounded by the quantity

S

qi,S,2

∑
w∈CHr

pw.

Where qi,S,2 is the probability of the event that after k trials, not all elements of [S] have been chosen, when at each trial we
choose u.a.r. a member of [S] and conditioning that the first two trials chose different elements of [S]. Clearly, this is the
same bound we derive for pr in the coupling C ′. The claim follows.

Towards proving Lemma 3.21, we use Lemma 3.18 which allows us to consider the tree Tr,d,ε log n derived by unicyclic
graph Gv,d,ε log n, instead of Gv,d,ε log n. We can follow the same approach as that in Section 3.2 for showing the desired spatial
mixing properties for systems with underlying graph the tree Tr,d,ε log n. Note that now the coupling is C ′. Let q(t) be equal
to the probability for a random variable, distributed as in B(n− 1, d/n), for fixed d, to be less than t .

Lemma 3.20. For positive integers S, l, real d > 1 in the coupling C ′(Tr,d,ε log n, S, l) the expectation of the disagreement
probability pr is bounded as

E[pr ] ≤
(

1
1− (d+ 1)e−d

(
d
t · S

(S − t)2
q(t)+ 2d

(
S(1− q(t))+ exp

{
d

S − 2

}
− q(t)

)))l
.

Proof. We remind the reader that t stands for the maximum number of children of a mixing vertex. Let q(t) be the
probability for a random variable, distributed as in B(n− 1, d/n), for fixed d, to be less than t . �
In Tr,d,ε log n the number of children of a nonleaf vertex has distribution which is dominated by the B(n, d/n) with the

condition that there are at least two children. Let Z be a random variable distributed as in B(n, d/n), clearly

Pr[Z ≥ 2] = 1−
(
1−

d
n

)n
− n
d
n

(
1−

d
n

)n−1
≥ 1− (d+ 1)e−d.

Let

a(i) =


t · S

(S − t)2
if i ≤ t

S

qi,S,2
otherwise

where qi,S,2, is as defined in (10). Consider the coupling C ′(T , S, l), where T is an instance of Tr,d,ε log n rooted at the vertex r .
Let E[pr] be the expectation of the disagreement probability on the root r . Conditioning on the number of children of r and
the disagreement probability pw , ∀w ∈ CHr in C ′(T , S, l), by Lemma 3.9 and (10) we have

E[pr|pw, ∀w ∈ CHr ] ≤ a(|CHr |)
∑
w∈CHr

pw.

Bydefinition,∀w ∈ CHr , pw is upper bounded by the disagreement probability on the vertexw in the couplingC ′(Tw, S, l−1)
where Tw is the subtree of T rooted at vertex w. Call this disagreement probability p∗w . It should be clear to the reader that
pw refers to the coupling C ′(T , S, l), while p∗w to C ′(Tw, S, l− 1). It is direct that

E[pr] ≤
n∑
i=0

ia(i)Pr[|CHr | = i]E[p∗w] for w ∈ CHr . (11)

Also, noting that the function f (i) = i · a(i) is increasing for t << S and by the fact that the distribution of the number of
children of r is dominated by the B(n, d/n), with the condition that it is greater than 1, (by proposition 9.1.2. of [12]) it holds
that

E[pr] ≤
1

1− (d+ 1)e−d

n∑
i=0

a(i)
(
n
i

)
pi(1− p)n−iE[p∗w] for w ∈ CHr

where p = d/n.
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Let S1 =
∑t
i=0 i · a(i)

(n
i

)
pi(1−p)n−i and S2 =

∑n
i=t+1 i · a(i)

(n
i

)
pi(1−p)n−i. Using the derivations of Lemma 3.15 we have

that

S1 =
t · S

(S − t)2
q(t)d.

Before calculating S2, we eliminate the probability term qi,S,2 from a(i) for i > t . Note that qi,S,2 > qi−1,S−1, i.e. qi−1,S−1 is
the probability for not choosing all the elements of a set of cardinality S − 1 after i− 1 trials when at each trial we choose
u.a.r. a member of the set. For qi,S,2 it holds that

qi,S,2 ≥ qi−1,S−1 ≥ (S − 1)
(
1−

1
S − 1

)i−1 (
1− qi−1,(S−2)

)
i.e. the probability of the event ‘‘not choosing some of the S − 1 elements after i − 1 trials’’ is greater than, or equal to the
probability of the event ‘‘not choosing exactly one of S − 1 elements after i − 1 trials’’, since the second event is a special
case of the first one. Furthermore, since qi−1,(S−2) ≤ qi−1,S−1 we get that

qi−1,S−1 ≥ (S − 1)
(
1−

1
S − 1

)i−1 (
1− qi−1,S−1

)
. (12)

LetΩ = {1, . . . , n} and let t0 = sup{t ∈ Ω| qt−1,S−1 ≥ 1/2}. Instead of using qi−1,S−1wemake the following simplification.
For i > t0 we bound the quantity 1/qi−1,S−1 as

1
qi−1,S−1

≤
1

(S − 1)
(
1− 1

S−1

)i−1 = 2
S − 1

(
S − 1
S − 2

)i−1
.

Also, for i ≤ t0, clearly, 1/qi−1,S−1 ≤ 2. With derivations similar to those in the proof of Lemma 3.15 for S2 we get that

S2 ≤ 2d
(

S(1− q(t))+
S

S − 1
(exp{d/(S − 2)} − q(t))

)
.

Substituting the bounds for S1 and S2 in (11) we get

E[pr] ≤
1

1− (d+ 1)e−d

(
d
t · S

(S − t)2
q(t)+ 2d

(
S(1− q(t))+

S

S − 1
(exp{d/(S − 2)} − q(t))

))
E[p∗w]

for w ∈ CHr . We can substitute E[p∗w] in the same manner as E[pr], Using induction and assuming that for the vertices at a
distance l from the root the expectation of the probability of disagreement is 1, the lemma follows. �

Lemma 3.21, follows by combining the Lemmas 3.18 and 3.20.

Lemma 3.21. Consider a system PCS(Gv,d,ε log n, S), for d > 1, ε = 0.9
4 log(e2d/2)

and for Gv,d,ε log n we assume that it is a unicyclic

graph. If the S is a sufficiently large constant, then with probability, at least, 1 − 2n−1.25 for the above system it holds that
SD(v, bε log nc) = n−1.25. For sufficiently large d, we should have S ≥ d14.

Proof. To prove the lemma we first show that using the coupling C ′(Tr,d,ε log n, bε log nc) for the system PCS(Tr,d,ε log n, S)
it holds that SD(r, bε log nc) = n−1.25 with probability at least 1 − 2n−1.25, when S is a sufficiently large constant and for
sufficiently large d, we should have S ≥ d14. Then, the lemma will follow by using Lemma 3.18.
In the coupling C ′(Tr,d,ε log n, S, l) it holds that the expectation of pv is bounded as

E[pr] ≤
(

1
1− (d+ 1)e−d

(
d
t · S

(S − t)2
q(t)+ 2d

(
S(1− q(t))+

S

S − 1
(exp{d/(S − 2)} − q(t))

)))l
. (13)

The quantity q(t) is equal to the probability for a random variable, distributed as in B(n− 1, d/n), for fixed d, to be less than
t , the maximum number of children of a mixing vertex.
Set l = ε log n in (9), with ε = 0.9

log(e2d/2)
. So as to prove the lemma, it suffices to show that for S as described in the

statement (of the lemma) and appropriately large t we get E[pr] ≤ n−2.5. Clearly, for E[pr] ≤ n−2.5 and by using the Markov
Inequality (see [3]) we can get that

Pr[pr ≥ n−1.25/2] ≤ 2
E[pr]
n−1.25

≥ 2n−1.25.

If E[pr] ≤ n−2.5, then with probability at least 1 − Pr[pr ≥ 2n−1.25] ≥ 1 − 2n−1.25 for the system PCS(Tr,d,ε log n, S) it
holds that SD(r, bε log nc) ≤ n−1.25, which proves the lemma. This statement follows by Definition 1.6 and Theorem 3.5 and
Lemma 3.18.
Firstwe show that for sufficiently large d, forS ≥ d14 and t such that q(t) ≥ 1−d−28weget E[pr ] ≤ n−2.5. By Corollary 3.2

we derive that for t = max{7d, 28 log d+ 1} it holds q(t) ≥ 1− d−28.
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Assuming that d is a sufficiently large constant, we substitute S and t in (13) and we get

E[pr] ≤
(

1
1− (d+ 1)e−d

(
7d16

(d14 − 7d)2
+

+
2d

1− d−14

(
d−14 + 1+

d
d14 − 1

+
eξ

2!
d2

(d14 − 1)2
− 1+ d−28

)))ε log n
where 0 < ξ < d/(d14 − 1). In the above inequality we used the fact that 1− d−28 ≤ q(t) ≤ 1, and we substituted ed/(S−1)
by an appropriate polynomial, which is derived by the MacLaurin series of the function f (x) = ex, for x real. Thus, we get

E[pr] ≤
(

d−12

1− (d+ 1)e−d

(
7

(1− 7d−13)2
+

2d−1

1− d−14
+

2
(1− d−14)2

+
ed−13

(1− d−14)3
+2d−15

1− d−14

))ε log n
.

Taking d at least 20, we get that

E[pr] ≤ nε log(9.2d
−12).

Replacing ε, we see that it suffices to hold 0.9 log(9.2d−12) ≤ −10 log(e2d/2), or 9.2d−12 ≤ (e2d/2)−11.11 which clearly
holds for sufficiently large constant d.
For relatively smaller d, one can easily see that setting S = dx, for an appropriately large constant exponent x and

arranging the quantity t so as q(t) ≥ 1− d−2x can get

E[pr] ≤
(

d−x+2

1− (d+ 1)e−d

(
t/d

(1− d−xt)2
+
2d−1

1− d−x
+
2d−x−1

1− d−x
+

2
(1− d−x)2

+ e
d−x+2

(1− d−x)3

))ε log n
.

We take x sufficiently large so as to have 1− d−x ≥ 1− 10−3 and xd−x ≤ 10−3.
If t = 7d, then, with the above assumptions, about x, we can easily derive that E[pr] ≤ (d−x+244)ε log n. For this case to

have E[pr] ≤ n−2.5 we should have 44d−x+2 ≤ (e2d/2)11.11, which clearly holds for sufficiently large x.
If 2x log d+ 1 > 7d, then by Corollary 3.2 we should have t = 2x log d+ 1. With the assumptions we have made for xwe

get that E[pv] ≤ (d−x+2(8x
log d
d +16))

ε log n. Thus, if E[pr] ≤ n−2.5, then we should have (d−x+2(8x
log d
d +16)) ≤ (e

2d/2)11.11,
which clearly holds for sufficiently large x.
The lemma follows. �

4. Properties of the algorithm

We close this work by providing the proofs of the lemma and the two theorems that appear in Section 2.2.

Proof of Lemma 2.3. By Theorem 2.2, the sampling algorithm will need, at least, dx colours, where x = x(d) is a decreasing
function of dwithminimumvalue equal to 14. It is easy for one to see that with probability, at least, 1−n−0.1 the input graph
of the algorithm is colourable with at least dx − 3 colours. More specifically, the input graph is colourable with probability
at least 1− n−0.1 with less colours (see Janson et.al. in [6], Section 7.2).
From now on, we assume that the input is colourable with dx − 3 colours. We remind the reader that we have, already,

assumed that each of the graphs Gvi,d,ε log n+2, for i = 1, . . . , n, is either unicyclic or tree. W.l.o.g. we assume that V
′

i contains
all the vertices at a distance at most bε log nc from vi.
The lemma will follow by showing, that, under the above assumptions, for any colouring C(V ′i ) such that µ̃i(XV ′i =

C(V ′i )) 6= 0, it also holds Ω(G, S, C(V
′

i )) 6= ∅. To show this, we are going to construct a colouring of the input graph
which has the vertices in V ′i coloured as C(V

′

i ).
Since the input is colourable with at least dx− 3 colours, we can colour all the vertices at a distance at least bε log nc+ 2

from vi, by using the dx − 3 colours. Then, we assign the vertices in V ′i the colouring C(V
′

i ). Since µ̃i(C(V
′

i )) > 0 it clearly
holdsΩ(Gvi,d,ε log n, S, C(V

′

i )) 6= ∅.
The only vertices that are not coloured yet, are the vertices that are at a distance bε log nc+1 from vi. By the assumption

we havemade for the structure of Gvi,d,ε log n+2 it holds that each of the uncoloured vertices either has at most two neighbors
in V ′i and no uncoloured neighbor, or it has one neighbor in V

′

i and one uncoloured neighbor.
For an uncoloured vertex v of the first case, we note that the neighbors in Vi use at most 2 colours while the remaining

neighbors use all but 3 colours. Clearly, there exists at least one colour that does not appear in the neighborhood of v. We
colour v with this colour.
In the same manner, for an uncoloured vertex v of the second case, we see that there exist, at least, 2 colours that do not

appear in its neighborhood and there exists a neighbor u which is not coloured yet. We can assign u a colour that does not
appear in its colored neighbors. For the vertex v there remains, at least, one available colour which is assigned to it.
The lemma follows. �



154 C. Efthymiou, P.G. Spirakis / Theoretical Computer Science 407 (2008) 134–154

Proof of Theorem 2.4. The algorithm is considered successful if the input graph G = (V , E) has the following properties:
First, for the iteration i of the for-loop of the algorithm, the induced subgraph that contains vi and all the vertices that are
within a graph distance bε log nc + 2 from vi, with ε = 0.9

4 log(de2/2)
, is either unicyclic or a tree. According to Lemma 2.1 this

holds with probability, at least, 1− n−0.1. Second, for a number of colours, S, as large as indicated by Theorem 2.2 the Gibbs
measure of PCS(G, S) exhibits the spatial mixing property stated in Theorem 2.2. Third, the measures µ̃i, for i = 1, . . . , n,
have the property indicated in Lemma 2.3.
Consider that the input graph of the algorithmG is an instance ofGn,d/n andwe take S as large as indicated in Theorem2.2.

Then, the algorithm is successful with probability at least 1− O(n−0.1).
From now on, we assume that the input G belongs to this set of instances of Gn,d/n that the algorithm is successful (which

includes almost all instances for sufficiently large S).
What remains to be shown is the bound for the total variation distance between the probability measure of the colouring

that is returned by the algorithm and the uniform over all the proper S-colouring of the input graph G.
Consider the following coupling of our algorithm and an ideal algorithm that gives a perfect uniform sample by colouring

vertices one by one in some way. At each repetition, both algorithms assign a colour to some (the same) vertex in Gn,d/n.
Consider a specific step of the couplingwhere the vertex v is to be coloured. By Theorem2.2 and (2),we canhave a sufficiently
large S such that, conditioning on the fact that all vertices until now are identically coloured by the two algorithms, the
probability for v to have a different colour assignment in the coupling is at most n−1.25. Thus, the probability for the coupling
to end with no disagreement is at least (1− n−1.25)n > 1− n−0.25. The theorem follows. �

Proof of Theorem 2.5. First, we note that the algorithmwill return failure if any of the graphs Gvi,d,ε log n is neither unicyclic
nor a tree. The number of steps the algorithm needs in the case of failure is at most equal to the number of steps that it will
need in the case of a nonfail. Thus, time complexity of the nonfailing execution is an upper bound of the time complexity of
the algorithm.
The algorithm needs O(n) steps to create the graph Gvi,d,ε log n at the i-th iteration of its for loop. The graph Gvi,d,ε log n can

be created by using any traversal algorithm, e.g. depth first search. This time bound follows by the fact that the number of
vertices and the number of vertices in Gvi,d,ε log n are upper bounded by the number of vertices and the edges of the input
graph. Using the Chernoff bounds (see [6]) it is direct to show that w.h.p. the number of edges in an instance of Gn,d/n is O(n).
Implementing a colouring of vi according to µ̃i(Xvi |C(Ai ∩ Vi)) is equivalent to generating a random list colouring of

Gvi,d,ε log n and keeping only the colour assignment of vi from this colouring. In the list colouring problem every vertex u ∈ Vi
has a set L(u) of valid colours, where L(u) ⊆ [S] and u can only receive a colour in L(u). As argued in [4], for a tree on l vertices
we can exactly compute the number of k-colourings in time l · k. Therefore we can also generate a random list colouring of
the tree. Also, for a unicyclic component we can simply consider all the ≤ k2 colourings of the endpoints of the extra edge
and then recurse the remaining tree. In essence, the timewe need to colour vi according to µ̃i(Xvi |C(Ai∩Vi)) is at most O(n).
The theorem follows by noting that we need to colour n vertices. �
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