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a b s t r a c t

The analysis of the time separations of events is a fundamental problem in the design and
evaluation of discrete event systems. Important progresses have been made based on the
event rule system model in the last decade. The existing results for event rule systems
with min and max constraints can be summarized briefly as: the exact evaluation of time
separations for acyclic systems is NP-complete; for cyclic systems, the structural condition
of being tightly coupled is sufficient for long-term time separations of events to be bounded.
In this paper, we establish a necessary and sufficient structural boundedness condition—
uniformity for cyclic event rule systemswith bothmin andmax constraints. Tightly coupled
systems are shown to be a special class of uniform systems. Thewell-known CAS algorithm
for finding bounds on long-term time separations is adapted to find finite bounds for
uniform systems. Our results are obtained by exploring the algebraic structures guiding
the evolution of the systems.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The evolution of discrete event systems is driven by events. When designing a system, the timing of events is crucial for
the system to be both safe and efficient. The analysis of the time separations of events is a central problem in the design and
evaluation of timing aspects of discrete event systems. Most of the important progress on this topic has been made in the
event rule system framework in the last decade [17,16,26,15,27,4,14]. The framework of event rule systems was introduced
for performance analysis of asynchronous circuits by Burns in [2].
For acyclic event rule systems, the problems of interest include:

A1. Develop algorithms to determine the exact time separation of a given pair of events.
A2. If the exact determination of separation is hard, develop fast approximation algorithms.

For A1, in [17], a polynomial algorithm to calculate exact time separations was developed for systems with max-only
constraints. It was also shown in [17] that the problem of deciding the exact time separations for general acyclic event
rule systems with both min and max constraints is known to be NP-complete. In [26,27], algorithms are developed for
analyzing acyclic systems with max and linear constraints. The algorithms are conjectured to run in polynomial-time. The
exact complexity of themax and linear problem is unfortunately unknown. ForA2, in [4],McMillan andDill’s time separation
algorithm was extended to acyclic event rule systems with both min and max constraints.
For cyclic event rule systems, the problems of interest include:

C1. Establish conditions under which the long-term time separations of events are bounded.

∗ Corresponding author. Tel.: +86 10 62783612; fax: +86 10 62786911.
E-mail address: zhaoqc@tsinghua.edu.cn (Q. Zhao).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.08.014

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:zhaoqc@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.tcs.2008.08.014


Q. Zhao et al. / Theoretical Computer Science 407 (2008) 496–510 497

C2. Develop algorithms to determine time separations of events or their upper bounds.
For C1, based on a modification of McMillan and Dill’s time separation algorithm and deep algebraic observations, [16]
established that for a class of cyclic max-only event rule systems known as well-formed1 strongly connected systems, the
long-term time separations are bounded. It was extended to the exact timing analysis of a class of CSP programs allowing
restricted choices [15]. [4] extended the notion of strong connectivity for well-formed max-only event rule systems to
the condition of tightly coupled for well-formed event rule systems with both min and max constraints, and proved that
the long-term time separations are bounded for well-formed tightly coupled systems. For C2, in [19], a polynomial-time
algorithmwas described for approximate timing analysis of max-only systemswith repeated events. [16] proposed an exact
algorithm to determine the exact time separations for cyclic well-formed strongly connected max-only event rule systems.
As an extension, a symbolic algorithm based on presburger arithmetic was used in [14] to obtain symbolic expressions
of long-term time separations in terms of variables representing component delays. In [4], a pseudopolynomial algorithm
known as CyclicApproxSep(CAS) algorithm was proposed to determine an upper bound for the long-term time separations
of events for cyclic event rule systems with both min and max constraints (see also [5]).
In this paper, we study C1 and establish a new structural condition for bounding long-term separations in cyclic event

rule systems with both min and max constraints. The new condition is captured by the notion of uniformity which was
introduced in [28] in the context of stochastic min–max systems. Our main finding is that in terms of structure, uniform
systems are the broadest class of systems with both min and max constraints having finite long-term time separations. We
also touch on C2 by first giving an example of uniform systemswhere the CAS algorithm in [4] fails to give finite bounds, and
by then introducing a modification to CAS so that finite bounds can be obtained. Our method is largely based on the formal
model of min–max systems which was first introduced by Gunawardena in [12] to model event rule systems. The existing
work under themin–max framework ismostly focused on cycle time analysis (see e.g., [20,13,10,8,6,24] and for well-known
special class of max-plus systems, see e.g., [9,1]). Related to our work, [21,25,28] studied the structural properties of min–
max systems with focus on existence of global cycle time.
The rest of this paper is organized as follows. In Section 2, we present the definition of cyclic timing constraint graphs

(introduced in [4]) as the formal model of cyclic event rule system and present the definition of uniform systems and show
that the tightly coupled systems proposed in [4] are a special class of uniform systems. Then in Section 3, we prove that
for uniform systems with bounded component delays, the long-term time separations of events are bounded. So we extend
the sufficient condition of problem C1 from tightly coupled systems to a broader type of cyclic event rule systems—uniform
systems. Furthermore, we prove that for non-uniform systems, there must be specific edge delay assignments such that the
long-term time separations are unbounded.We discuss the test of uniformity in Section 4. In Section 5, we study an existing
algorithm—the CAS algorithm given in [4] for problem C2. We first present one example of uniform systems where the CAS
algorithm fails to give finite bounds. A simplemodification to CAS is then given to find finite bounds for all uniform systems.
Possible applications of ourmain results are discussed in Section 6 including a class of systemswith choice. At last, Section 7
concludes the paper.

2. Models, definitions and notations

2.1. Cyclic timing constraint graphs

Graphically, cyclic event rule systems can be specified by cyclic timing constraint graphs. In the following, we present the
cyclic timing constraint graph model introduced in [4] for describing cyclic event rule systems. The readers can find more
details there.
To motivate the event rule system models and their graphical description in cyclic timing constraint graphs, let us first

introduce an example before presenting the formal definitions.
Example 1. Fig. 1 shows a circuit similar to the example in [18] (on page 306 Fig. 8.5(b)). It contains three gates: one AND
and two NOTs. Fig. 2 is its cyclic timing constraint graph G, in which we use vertices a ,b, c , d, e, f to represent the events x+
(raising event of signal x), y+, z+, x− (falling event of signal x), y−, z− respectively. Fig. 3 is a portion of its unfolded graph
G∗. G0, Gi and Ci are also visualized in it.

Formally, a cyclic timing constraint graph of a cyclic event rule system is a directed graph G = (V , E) equipped with edge
delays defined as follows.
(1) G = (V , E) : G is a directed graph. V is the vertex set of G; E is the edge set of G.
(2) v ∈ V : v is a vertex in V , which represents the corresponding event. There is a unique root vertex RESET in V . It has
no input edges. The set of vertices V is divided into two disjoint subsets: the set of min vertices (shown as circles ‘©’
in figures) and the set of max vertices (shown as squares ‘�’ in figures). The events corresponding to min-type vertices
occur when one of their input constraints is satisfied; the events corresponding to max-type vertices occur when all of
their input constraints are satisfied.

1 The definition of well-formed systems will be given in Section 2.1 as can be found in [16].
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Fig. 1. A circuit.

Fig. 2. Cyclic timing constraint graph G of the system in Fig. 1.

Fig. 3. A portion of unfolded graph G∗ of the cyclic timing constraint graph in Fig. 2.

(3) 〈u, v〉 ∈ E : 〈u, v〉 is the edge in E, which represents the event rule from the event represented by u to the one represented
by v. The set of edges E is also divided into two disjoint subsets: the set ofmarked edges (indicated by ‘•’ on edges) and
the set of unmarked edges. The timing constraints are different for marked and unmarked edges. A marked edge from u
to v specifies a constraint imposed by the k-th occurrence of u on the k+ 1-th occurrence of v; An unmarked edge from
u to v specifies a constraint of the k-th occurrence of u on the k-th occurrence of v.

(4) δu,v ∈ [du,v,Du,v] : δu,v is the delay associated with the edge 〈u, v〉; du,v and Du,v are the lower and upper bounds of the
delay δu,v respectively, where du,v and Du,v are finite.

A cyclic timing constraint graph G can be unfolded to an infinite graph (known as unfolded graph of G). Formally, the
unfolded graph G∗ is defined as follows.

(1) G∗ = (V ∗, E∗) : G∗ is the unfolded graph of G; V ∗ is the vertex set of G∗; E∗ is the edge set of G∗.
(2) uk ∈ V ∗ : uk is the vertex in V ∗, which represents the k-th occurrence of the event represented by u.
(3) 〈uk, vk′〉 ∈ E∗ : 〈uk, vk′〉 is the edge in E∗, which represents the rule from the event represented by u to the one
represented by v.

(4) τvk′ is the time of k
′-th occurrence of the event represented by v as below, where preds(vk′) is the set of vertices with

an edge to vk′ .
• If v is a max-type vertex, τvk′ = maxuk∈preds(vk′ )(τuk + δuk,vk′ );
• If v is a min-type vertex,2 τvk′ = minuk∈preds(vk′ )(τuk + δuk,vk′ ).

2 The event occurring earliest will trigger the occurrence of a min-type event (with a delay). Here we assume that for the k′-th occurrence of event v,
only the first occurring event among all the events in preds(v) driving a min-type event v will take effect, the k′-th occurrences of other events in preds(v)
will be ignored.
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(5) Ci is the i-th cutset of G∗, which should satisfy the following three properties which are the properties from P1 to P3 in
the definition of tightly coupled mentioned in [4]:
• The size ofR′(C1) is finite3;
• Ci = {vi : v1 ∈ C1} after the relabeling process;
• Ci

⋂
Cj = ∅,∀i 6= j.

(6) Gi = (Vi, Ei) : Gi is the subgraphs of G∗ containing the portion between (including) cutsets Ci and Ci+1; Vi is the set of
vertices in Gi and Ei is the set of edges in Gi, i.e.,
• Vi = R(Ci)

⋂
(R′(Ci+1)

⋃
Ci+1)4;

• Ei = {〈u, v〉 : u, v ∈ Vi and 〈u, v〉 ∈ E∗}.
(7) G0 = (V0, E0) : G0 is the subgraph of G∗ containing the portion from RESET to the cutset C1; V0 is the set of vertices in
G0 and E0 is the set of edges in G0, i.e.,
• V0 = R′(C1)

⋃
C1;

• E0 = {〈u, v〉 : u, v ∈ V0 and 〈u, v〉 ∈ E∗}.

A cyclic timing constraint graph is said to bewell-formed, if every cycle has at least one marked edge and for every event
v in the cyclic component, there exists at least one cycle with exactly one marked edge. All cyclic timing constraint graphs
mentioned in the rest of this paper are well-formed by default.
To study the long-term time separations of events in our systems, we also need to define their state function and state

vectors with the help of two definitions from [13]:

(1) A min–max expression is a term f in the grammar: f := x1, x2, . . . |f + a|f ∨ f |f ∧ f , where x1, x2, . . . are real variables,
a ∈ R is referred to as a parameters and the infix operators ∨ and ∧ are used to stand for the maximum and minimum
operators respectively, i.e., a ∨ b = max(a, b) and a ∧ b = min(a, b).

(2) A min–max function of dimension n is a function F : Rn → Rn, each of whose components, Fi : Rn → R, is a min–max
expression of n variables x1, . . . , xn.

Now we define the state vectors and state function for cyclic timing constraint graphs:

(1) State vector : denoted as Ti, and Ti = (τvi |vi ∈ Ci)n×1 ∈ Rn.
(2) State function : denoted as F , and F : Rn → Rn is a min–max function of dimension n, where Ti+1 = F(Ti) and n = |Ci|.

To avoid ambiguity, we define two types of equalities formin–max functions in the rest of paper. For twomin–max functions
F and H ,

(1) F(X) = H(X) : means F(X) and H(X) have same values for a specific X ∈ Rn.
(2) F = H : means F(X) = H(X) for all X ∈ Rn.

It is clear that Ti can be expressed as amin–max function of T1. Denote this function by F i−1.We assume that F 0 is the identity
function. In terms of the composition functions, it is easy to verify that F i = F(F i−1) for all i ≥ 1.

Example 1 (Continued). The state function of the cyclic event rule system in Fig. 2 is:

Ti+1 = F(Ti) =

((τai + δai,ci) ∨ (τbi + δbi,ci))+((δci,di + δdi,fi) ∧ (δci,ei + δei,fi))+ δfi,ai+1 ,
((τai + δai,ci) ∨ (τbi + δbi,ci))+

((δci,di + δdi,fi) ∧ (δci,ei + δei,fi))+ δfi,bi+1

 , (1)

where Ti = (τai , τbi)
T, i = 1, 2, . . . are the state vectors.

2.2. Uniform systems

Uniform systems are defined based on the structure of cyclic event rule systems. The property of uniformity is inspired
by an obvious but extremely useful fact that for each cyclic timing constraint graph G, we can associate a unique pure min–
max network Ĝ. By pure, we mean that all delays labeled on the edges of G are set to zeros, i.e., the state functions of Ĝ are
composed of only the two operators ∨ and ∧. We refer to Ĝ as the skeleton of G. It is obvious that Ĝ∗, the unfolded graph of
Ĝ, has the same cutsets as G. The unfolded graph Ĝ∗ can also be obtained by setting all edge delays in G∗ to zeros.
In Ĝ, we define its state function as a pure min–max function F̂ : Rn → Rn by introducing the two definitions below:

(1) A pure min–max expression is a term f in the grammar: f := x1, x2, . . . |f ∨ f |f ∧ f , where x1, x2, . . . ∈ R are variables.
(2) A pure min–max function of dimension n is a function F : Rn → Rn, each of whose components, Fi : Rn → R, is a pure
min–max expression of n variables x1, . . . , xn.

3R′(Ci) is the set of vertices unreachable from all vertices in Ci , see [4] for its formal definition.
4R(Ci) is the set of vertices reachable from at least one vertex in Ci , see [4] for its formal definition.
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Example 1 (Continued). By setting all delays to zeros in (1), we obtain the state function of the skeleton Ĝ of G in Fig. 2. It is
given by the pure min–max function as below:

F̂(Ti) =
(
τai ∨ τbi
τai ∨ τbi

)
, (2)

where Ti = (τai , τbi)
T.

Now we define uniform systems stated in terms of the skeletons of cyclic timing constraint graphs. The notion of
uniformity was first defined in the min–max systems context in [28].

Definition 1. A cyclic timing constraint graph G is said to be uniform, if there exists a non-negative integer r ≥ 1 such that,

F̂ ri = F̂
r
j , ∀i, j = 1, . . . , n. (3)

The minimal such integer r is called the height of G. Here F ri is the i-th component of F
r .

Example 1 (Continued). The system in Example 1 is uniform because F̂1(X) = F̂2(X) = x1 ∨ x2 for all X ∈ R2, where
X = (x1, x2)T. Its height is 1.

A natural question is raised, i.e., what is the relationship between uniform systems and tightly coupled systems that is
also stated in terms of the skeleton of a cyclic timing constraint graph. To answer this question, let us recall first the definition
of tightly coupled systems introduced in [4,3].

Definition 2. [4,3] A cyclic timing constraint graph G is tightly coupled, if the unfolded graph G∗ has a sequence of cutsets,
Ci for all i ≥ 1, such that the following condition is satisfied: for every vertex u in Ci and every vertex v in Ci+1, there exists
at least one path from u to v, such that all vertices along the path are associated with max constraints.

Proposition 1. Tightly coupled systems are uniform systems with height r = 1 with

F̂u = F̂v = (∨v1∈C1τv1), ∀u, v.

Proof. Observe that for a path (v1, . . . , x, y, . . . , u2) from v1 ∈ C1 to u2 ∈ C2, if all vertices along it aremax constraints, then
in Ĝ∗ (the unfolded graph of Ĝ), all vertices along the path (v1, . . . , x, y, . . . , u2) from v1 to u2 will be max vertices, thus for
the state functions in Ĝ, we have

τu2 ≥ · · · ≥ τy ≥ τx ≥ · · · τv1 .

So, from the property of tightly coupled systems, we can see that for every u2 ∈ C2,

τu2 ≥ ∨v1∈C1τv1 .

At the same time, ∨v1∈C1τv1 is the maximal pure min–max function from Rn to R. We can conclude that in Ĝ∗, for every
u2 ∈ C2,

τu2 = ∨v1∈C1τv1 .

Thus, the pure min–max function F̂ from T1 to T2 in Ĝ∗ must satisfy

F̂u = F̂v = (∨v1∈C1τv1), ∀u, v.

This implies that tightly coupled systems are uniform with r = 1. �

Proposition 1 implies that tightly coupled systems are special cases of uniform systems. Not all uniform systems (even
with height r = 1) are tightly coupled. The uniform system in Example 1 turns out to be a non-tightly coupled system. In
fact, every path from ai to ai+1 contains a min vertex fi.

3. Uniformity as a structural condition for boundedness

In this section, we present the boundedness results based on the structural property of uniformity. Let us define some
convenient notations for the unfolded graph G∗. Let |Ci| = n and |Gi| = m for all i ≥ 1 in the following notations:

(1) Λi(ui, vi) is the exact time separation from the vertex ui to the vertex vi in Ci.
(2) ∆i(ui, vi) is the exact time separation from the vertex ui to the vertex vi in Gi.
(3) Λi :Λi = (Λi(ui, vi); ui, vi ∈ Ci)n×n is the matrix of pairwise exact time separations of vertices in cutset Ci.
(4) ∆i :∆i = (∆i(ui, vi); ui, vi ∈ Gi)m×m is the matrix of pairwise exact time separations of vertices in subgraph Gi.
(5) Π(u) is the set of paths from the vertices in cutset C1 to the vertex u.
(6) L(u) is the largest path delay to vertex u, i.e., L(u) = maxP∈Π(u)(

∑
〈x,y〉along P Dx,y).

(7) l(u) is the least path delay to vertex u, i.e., l(u) = minP∈Π(u)(
∑
〈x,y〉along P dx,y).
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(8) Λ̄i(ui, vi) : Λ̄i(ui, vi) = L(vi)− l(ui).
(9) Λ̄i : Λ̄i = (Λ̄i(ui, vi); ui, vi ∈ Ci)n×n.
(10) Define some predicates of matrices as follows. Let A, B be the two matrices with same size and ? represent>,≥,<,≤,
=:

A ? B⇔ ∀i, j : A(i, j) ? B(i, j).

(11) Define twomatrix operations as follows. Let A, B be the twomatrices with same size and ? represent∨ or∧. A?B = C ,
where ∀i, j, C(i, j) = A(i, j) ? B(i, j)

(12) Λ∗k : Λ
∗

k = ∨i≥k(Λi) is the matrix of least upper bounds of pairwise time separations of vertices in the cutsets Ci for
i ≥ k.

(13) ∆∗k :∆
∗

k = ∨i≥k(∆i) is the matrix of least upper bounds of pairwise time separations of vertices in the subgraphs Gi for
i ≥ k.

The problem C1 is equivalent to determining whether ∆∗k is bounded for some k. Since Ci is contained in Gi, it holds that
Λi(ui, vi) = ∆(ui, vi) for all ui, vi ∈ Ci. Furthermore, ifΛi is finite (i.e., all elements ofΛi as a n× nmatrix are finite), then
∆i must also be finite since all edge delays in Gi are bounded. Thus, C1 is reduced to determining whether Λ∗k is bounded
for some k. In the following, we study C1 by investigating the boundedness ofΛ∗k .

Theorem 1. If G is a uniform system with height r, thenΛi ≤ Λ̄r+1 for all i ≥ r + 1 regardless of the value ofΛ1.

Remark. From Theorem 1, we establish Λ∗r+1 ≤ Λ̄r+1. This implies that the long-term time separations of events must be
bounded for all uniform systems nomatter what the initial state and edge delay intervals are.5 So, uniformity is sufficient for
long-term time separations to be bounded. This generalizes the boundedness result of tightly coupled systems established
by [4].

Proof. Let Ui = R(Ci)
⋂
(R′(Cr+i)

⋃
Cr+i), i ≥ 1. Since Gi is isomorphic to G1 for all i ≥ 2, Ui must also be isomorphic to U1

for all i ≥ 2. Thus, the largest path length and the shortest path length from Ci to ur+i ∈ Cr+i must be equal to L(ur+1) and
l(ur+1) for all i ≥ 2.
From the monotone property of min and max operations, it is straightforward to see that for all vertices v in G, if v is of

max type, it must hold for the state τv in G∗ that

max
k∈preds(v)

(τk + dk,v) ≤ τv ≤ max
k∈preds(v)

(τk + Dk,v).

If v is of min type,

min
k∈preds(v)

(τk + dk,v) ≤ τv ≤ min
k∈preds(v)

(τk + Dk,v).

Let all edges 〈u, v〉 in Ui have fixed delays Du,v and denote the occurrence time of vertex v ∈ Ui as τ+v , we have τv ≤ τ
+
v .

Due to the facts that for four real numbers x, y and a, b,

max(x+ a, y+ b) ≤ max(x, y)+max(a, b)
min(x+ a, y+ b) ≤ min(x, y)+max(a, b)

we can show recursively that

τvr+i ≤ τ
+

vr+i
≤ F̂ rv (Ti)+ L(vr+1), ∀vr+i ∈ Cr+i.

Recall that Ti is the state vector of Ci for G. Dually, we can obtain

τur+i ≥ F̂
r
u(Ti)+ l(ur+1), ∀ur+i ∈ Cr+i.

Thus, we can establish

τvr+i − τur+i ≤ F̂
r
v (Ti)+ L(vr+1)− F̂

r
u(Ti)− l(ur+1), ∀ur+i, vr+i ∈ Cr+i.

From the uniformity of the system, i.e., F̂ rv = F̂
r
u ,∀u, v ∈ C1, we have F̂

r
v (Ti) = F̂

r
u(Ti) for all i ≥ 1. Thus, for all Ti ∈ Rn,

τvr+i − τur+i ≤ L(vr+1)− l(ur+1), ∀ur+i, vr+i ∈ Cr+i.

Note that the bound is independent of the values of Ti provided, we can establish the inequality Λr+i(ur+i, vr+i) ≤
L(vr+1) − l(ur+1) = Λ̄r+1(ur+1, vr+1) for all vertices ur+i, vr+i ∈ Cr+i and i ≥ 1, or in matrix term Λi ≤ Λ̄r+1 for all
i ≥ r + 1. �

5 As long as the delay intervals are finite.
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Fig. 4. A uniform system with height 2.

Table 1
Time separations for the systems in Fig. 4

i 1 2 3 4

Λi

0 ε ε

ε 0 ε

ε ε 0


0 ε ε

3 0 1
3 3 0


0 6 6
3 0 1
3 3 0


0 6 6
3 0 1
3 3 0



Below is an example illustrating Theorem 1.

Example 2. This example is inspired by an example in [11]. Its cyclic timing constraint graph is shown in Fig. 4. For this
example, we have

F̂(T1) =

(
τa1 ∨ (τb1 ∧ τc1)
τa1 ∨ τb1 ∨ τc1
τa1 ∨ τb1 ∨ τc1

)
, F̂ 2(T1) =

(
τa1 ∨ τb1 ∨ τc1
τa1 ∨ τb1 ∨ τc1
τa1 ∨ τb1 ∨ τc1

)
.

It is clear from the expression 6 of F̂ 2(T1) that this is a uniform systemwith height r = 2 (and apparently not tightly coupled).
In Table 1,Λi, i = 1, 2, 3, 4, are the exact time separations computed by the branch and boundmethod in [17]withΛ1 = Θ ,

where ε ∆
= +∞ and Θ =

(0 ε ε
ε 0 ε
ε ε 0

)
. It can be verified that Λi ≤ Λ̄3 =

(0 6 6
6 0 6
6 6 0

)
for all i ≥ 3, even if Λ1 = Θ (the

elements ofΛi may not be finite for i = 1, 2).

In the following, we show that uniformity, as a structural condition, is also necessary for long-term time separation to
be bounded.

Theorem 2. If G is a non-uniform system, for every boundedΛ1, there exists a set of finite edge delays such thatΛ∗k is not bounded
for any finite k.

Remark. With Theorems 1 and 2, we have established a necessary and sufficient structural boundedness condition for
cyclic event rule systemswith bothmin andmax constraints. It should be noted that the long-term time separations of non-
uniform systems can still be boundedwith some other specific edge delays. All structural properties based on the skeleton of
a cyclic timing constraint graph cannot be used to judge whether a specific non-uniform system is bounded or not because
they cannot capture the information of edge delays. However, the structural boundedness condition can still be very valuable
in real applications because edge delays cannot be easily determined a priori. The structural property about uniformity can
be helpful in designing event rule systems with guarantee of finite time separations.

We shall prove Theorem2 constructively. Before giving the formal proof, let us show the intuition behind it by considering
the non-uniform system in Example 3.

Example 3. Consider the cyclic timing constraint graph as shown in Fig. 5. Fig. 6 is a portion of its unfolded graph.

State functions F̂ i(T1), i = 1, 2, 3, 4, are listed in Table 2 with T1 = (τa1 , τb1 , τc1)
T. It can be seen that

F̂ 2(F̂ 2) = F̂ 2. (4)

This implies that

F̂ 2k(F̂ 2) = F̂ 2, for k ≥ 1. (5)

6 In general, rules such as f = f ∧ f = f ∨ f , f1 ∨ f2 = f2 ∨ f1 , f1 ∧ f2 = f2 ∧ f1 , (f1 ∨ f2)∧ f3 = (f1 ∧ f3)∨ (f2 ∧ f3) and (f1 ∧ f2)∨ f3 = (f1 ∨ f3)∧ (f2 ∨ f3)
can be used to obtain concise expressions for the pure min–max function F k(Ti).
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Fig. 5. A non-uniform system.

Fig. 6. Unfolded graph of the system in Fig. 5.

Table 2
State functions for the system in Fig. 5

i 1 2 3 4

F̂ i(T1)

τa1 ∨ (τb1 ∧ τc1 )τc1

(τa1 ∨ τc1 ) ∧ τb1


τa1 ∨ (τb1 ∧ τc1 )(τa1 ∨ τc1 ) ∧ τb1

(τa1 ∨ τb1 ) ∧ τc1


τa1 ∨ (τb1 ∧ τc1 )(τa1 ∨ τb1 ) ∧ τc1

(τa1 ∨ τc1 ) ∧ τb1


τa1 ∨ (τb1 ∧ τc1 )(τa1 ∨ τc1 ) ∧ τb1

(τa1 ∨ τb1 ) ∧ τc1



The system must be non-uniform because we can choose a vector T1 such that F̂ 2k(T1) is always a non-constant vector. For
instance, we can choose T1 = (2 1 2 )T. We have F̂ 2(T1) = (2 1 2 )T. Let Y = F̂ 2(T1) = (2 1 2 )T. Next is our
construction leading to unbounded long-term time separations for some of the events in G. From Eq. (4), we have

F̂ 2(Y ) = Y . (6)

From Eq. (6) and direct calculation, we can verify that

F̂ 2(Y + i · ξ) = Y + i · ξ, i = 1, 2, 3, . . . (7)

holds for the vector ξ = (1 0 1 )T. In Fig. 6, choose 1 as the delay of the thick edges (edges pointing to vertices a2i+3 and
c2i+3, i = 1, 2, 3, . . . in G∗) and choose 0 as the delay of other edges. The above selection of edge delays in G∗ leads to in G∗:

T3 = F̂ 2(T1), T2i+3 = F 2(T2i+1) = F̂ 2(T2i+1)+ ξ, i ≥ 1. (8)

From Eqs. (7) and (8) and T1 = (2 1 2 )T, we have for all i ≥ 1

T2i+3 = (2+ i 1 2+ i )T. (9)

From Eq. (9),∆2i+3(b2i+3, a2i+3) ≥ τa2i+3 − τb2i+3 = 2+ i− 1 = 1+ i and∆2i+3(b2i+3, c2i+3) ≥ τc2i+3 − τb2i+3 = 2+ i− 1
= 1+ i. Thus,∆2i+3(b2i+3, a2i+3) and∆2i+3(b2i+3, c2i+3)must be infinite when i goes to+∞, i.e.,Λ∗k is not bounded for all
finite k.

3.1. Proof of Theorem 2

We need some lemmas. Denote S as the set of pure min–max functions Rn → Rn.

Lemma 1. S is a finite set.
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Proof. Due to the basic properties

f = f ∨ f

f = f ∧ f

f1 ∨ f2 = f2 ∨ f1

f1 ∧ f2 = f2 ∧ f1

(f1 ∨ f2) ∧ f3 = (f1 ∧ f3) ∨ (f2 ∧ f3)

(f1 ∧ f2) ∨ f3 = (f1 ∨ f3) ∧ (f2 ∨ f3)

one can show that all pure min–max functions can be expressed in the so-called CNF (conjunctive normal form)

f =
∧
i∈I

(fi)

where fi, i ∈ I are all pure max functions of form fi =
∨
j∈Ji
xj and Ji ⊆ {1, . . . , n}. Since the total number of different subsets

of {1, . . . , n} is finite, there are only a finite number of pure max functions. As a result, the total number of different CNFs
of pure min–max functions is also finite. Thus, the size of S is finite. �

Lemma 2. For a pure min–max function F̂ : Rn → Rn, there must always exist k0 ≥ 1 and d ≥ 1 such that F̂ k0 = F̂ d(F̂ k0).

Proof. Obviously, F̂ i ∈ S for all i ≥ 1. Since S is finite, there must exist j such that F̂ i = F̂ j where j > i. Let k0 = i and
d = j− i. Then F̂ k0 = F̂ k0+d, i.e., F̂ k0 = F̂ d(F̂ k0). �

Obviously, a uniform system G with state function F is a system with k0 = r and d = 1, where r is its height. A tightly
coupled system is a system with k0 = 1 and d = 1.

Lemma 3. For pure min–max function Ĥ: Rn → Rn, assume that there exists a non-constant real vector Y = (y1, y2, . . . , yn)T

(i.e., y1, y2, . . . , yn are not all the same) such that Y = Ĥ(Y ). Without loss of generality, assume y1 ≥ y2 ≥ · · · yp > yp+1 ≥
· · · ≥ yn for some 1 ≤ p < n. If Y ′ = (y′1, y

′

2, . . . , y
′
n)
T is a vector satisfying y′1 ≥ y

′

2 ≥ · · · y
′
p > y

′

p+1 ≥ · · · ≥ y
′
n and all

inequality signs are exactly the same7 as those which appeared in the elements of Y , then Y ′ = Ĥ(Y ′).

Proof. The conclusion follows from the order preserving property of both max and min operations. That is, the max(y1, y2)
(min(y1, y2)) always picks the larger (smaller) one of the two numbers y1 and y2. The choice does not depend on what the
values of y1 and y2 are. In general, every puremin–max function f (y1, y2, . . . , yn) can be viewed as a selection processwhich
will pick from y1, y2, . . . , yn a number of specific ranks. For two sets of numbers {y1, y2, . . . , yn} and {y′1, y

′

2, . . . , y
′
n}, if for

every i, yi and y′i have the same rank in the set {y1, y2, . . . , yn} and the set {y
′

1, y
′

2, . . . , y
′
n} respectively, then a pure min–

max function f (y1, y2, . . . , yn) will always return the value of the same location in both sets, that is, f (y1, y2, . . . , yn) = yi
if and only if f (y′1, y

′

2, . . . , y
′
n) = y

′

i . By applying this fact to all elements of the function Ĥ , we can establish the desired
conclusion. �

Lemma 4. Let F̂ be a pure min–max function. For an integer k ≥ 1, if there is an X ∈ Rn such that F̂ k(X) is a non-constant vector
(i.e., F̂ k1 (X), . . . , F̂

k
n (X) are not all the same.), then there must be a Boolean vector Z ∈ Bn such that F̂ k(Z) is a non-constant vector.

Proof. Let Y = F̂ k(X). Without loss of generality, assume that y1 ≤ · · · ≤ yn. Since Y is a non-constant vector, there must
be an index i0 ≥ 2 such that y1 = · · · = yi0−1 < yi0 ≤ · · · ≤ yn. Since F̂

k is also a pure min–max function, it is clear that
y1 ∈ {x1, . . . , xn}. Let p, q be two indices such that xp = y1 and xq = yi0 . So, xp < xq. Define a Boolean vector Z such that
zi = 0 if xi ≤ xp = y1 and zi = 1 if xi > xp for i = 1, . . . , n. Based on Z , we define a real vector XZ whose elements only
take values from two distinct values {xp, xq} as follows: xZi = xp if zi = 0 and x

Z
i = xq if zi = 1. Note F̂

k(XZ ) is also a vector
whose elements only take values from the set {xp, xq}. Furthermore, Z can be obtained from XZ by subtracting the value xp
from all elements of XZ and then dividing the resulting vector by the value xq − xp, i.e.,

Z =
(
xZ1 − xp
xq − xp

, . . . ,
xZn − xp
xq − xp

)
. (10)

It is easy to show that for a pure min–max function f of n variables,

(1) f (x1 − h, . . . , xn − h) = f (x1, . . . , xn)− h holds for h ∈ R.

7 That is, when yi ≥ yi+1 is true, we ask y′i > y
′

i+1 if yi > yi+1; or y
′

i = y
′

i+1 if yi = yi+1 .
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(2) f ( x1d , . . . ,
xn
d ) =

f (x1,...,xn)
d holds for d > 0.

(3) f (x1, . . . , xi . . . , xn) > a and xi ≤ a imply that
f (x1, . . . , xi . . . , xn) = f (x1, . . . , a, . . . , xn).

(4) f (x1, . . . , xi . . . , xn) > a and xi > a imply that
f (x1, . . . , b, . . . , xn) > a, ∀b ∈ (a,+∞).

By applying (1) and (2) to F̂ ki (X
Z ) sequentially with h = xp and d = xq − xp for i = 1, . . . , n, we obtain from Eq. (10) that

F̂ki (X
Z )−xp

xq−xp
= F̂ ki (Z) holds for the Boolean vector Z . For F̂

k
i0
(X) and a = xp < yi0 , by applying (3) for all i s.t. xi ≤ xp and (4) for all

i s.t. xi > xp, we have F̂ ki0(X
Z ) > xp. This implies that F̂ ki0(X

Z ) = xq = yi0 . Dually, we can show that F̂
k
1 (X

Z ) = xp = y1. Based

on these facts, we can establish for XZ that F̂ ki0(X
Z ) > F̂ k1 (X

Z ). This implies that
F̂ki0
(XZ )−xp
xq−xp

>
F̂k1 (X

Z )−xp
xq−xp

. As a result, F̂ ki0(Z) = 1

and F̂ k1 (Z) = 0. �

Proof of Theorem 2. We prove the theorem constructively. We pick [0, 1] as the delay of all edges in the non-uniform
system G. From Lemma 2, there must exist some k0 and d such that for all T1 ∈ Rn

F̂ d(F̂ k0(T1)) = F̂ k0(T1). (11)

For any given T1 ∈ Rn, based on whether F̂ k0(T1) is a non-constant vector, we divide the proof into these two cases.
Case 1. F̂ k0(T1) is a non-constant vector.
Let Y = F̂ k0(T1) andA = {u|Yu ≥ Yv,∀v ∈ C1}. We can rewrite Eq. (11) as

F̂ d(Y ) = Y . (12)
We choose δk,ui·d+k0+1 = 1 for all u ∈ A, k ∈ preds(ui·d+k0+1) and i ≥ 1. Then pick 0 as the delays for all other edges in G

∗.
We have

Tk0+1 = F̂
k0(T1); Ti·d+k0+1 = F̂

d(T(i−1)d+k0+1)+ ξ, i ≥ 1. (13)

where ξ ∈ Rn and ξv =
{
1 v ∈ A
0 v /∈ A

. By applying Lemma 3 to the case in which Ĥ = F̂ d and Y ′ = Y + iξ , we have from

Eq. (12) that

Y + iξ = F̂ d(Y + iξ). (14)
That is,

F̂ k0(T1)+ iξ = F̂ d(F̂ k0(T1)+ iξ), i ≥ 1. (15)
From Eqs. (13) and (15), we have

Ti·d+k0+1 = F̂
k0(T1)+ iξ, i ≥ 0. (16)

From Eq. (16), we obtain
Λi·d+k0+1(vi·d+k0+1, ui·d+k0+1) ≥ τui·d+k0+1 − τvi·d+k0+1 > i, ∀u ∈ A, v /∈ A.

Thus,Λi·d+k0+1(vi·d+k0+1, ui·d+k0+1)must tend to+∞∀u ∈ A, v /∈ Awhen i approaches+∞.
Case 2. F̂ k0(T1) is a constant real vector.
Since G is non-uniform, there must exist some X ∈ Rn such that F̂ k0(X) is a non-constant vector (otherwise G will be a
uniform system with height k0). Without loss of generality, we assume that X is a Boolean vector (recall Lemma 4). Let
Y = F̂ k0(X) andA = {u|Yu ≥ Yv,∀v ∈ C1}. Notice that Y is also a Boolean vector. By applying Lemma 2 for X , we have

Y = F̂ d(Y ). (17)
We choose δk,ui·d+k0+1 = 1 for all u ∈ A, k ∈ preds(ui·d+k0+1) and i ≥ 0. Then pick 0 as the delays for all other edges in G

∗.
We have

Tk0+1 = F̂
k0(T1)+ ξ ; Ti·d+k0+1 = F̂

d(T(i−1)d+k0+1)+ ξ, i ≥ 1. (18)

where ξ ∈ Rn and ξv =
{
1 v ∈ A
0 v /∈ A

. By applying Lemma 3 to the case in which Y ′ = F̂ k0(T1) + iξ and Ĥ = F̂ d, we obtain

from Eq. (17) that

F̂ k0(T1)+ iξ = F̂ d(F̂ k0(T1)+ iξ), i ≥ 1. (19)

Note the condition of Lemma 3 is satisfied since F̂ k0(T1) is a constant vector and ξ = Y . From Eqs. (18) and (19), we have

Ti·d+k0+1 = F̂
k0(T1)+ (i+ 1)ξ , i ≥ 0. (20)

From Eq. (20), we obtain
Λi·d+k0+1(vi·d+k0+1, ui·d+k0+1) ≥ τui·d+k0+1 − τvi·d+k0+1 = i+ 1, ∀u ∈ A, v /∈ A.

Thus,Λi·d+k0+1(vi·d+k0+1, ui·d+k0+1)must tend to+∞∀u ∈ A, v /∈ Awhen i approaches+∞.
From both cases above, we can conclude thatΛ∗k is not always bounded for all finite k and for all possible boundedΛ1. �
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Fig. 7. Illustration of state transition graph of the Boolean function for Example 2.

4. Test of uniformity

Since the structural property of uniformity can help design circuits with guaranteed finite time separations, its test
problem becomes valuable. As we did for the examples, direct test of uniformity is to manually derive and compare the
elements of the puremin–max function sequence F k(T1). This is somewhat ad hoc in nature. Some systematic way is needed.
In this section, we will reduce the problem to a test on monotone Boolean functions. For a pure min–max function

F̂ : Rn → Rn, we can always obtain a monotone Boolean function F̂B : Bn → Bn by replacing the operation ‘min’ with
‘AND’ and replacing the operation ‘max’ with ‘OR’. For example, the monotone Boolean function F̂B corresponding to the
pure min–max function F̂ in Example 2 is

F̂B(Z) =

(za + (zb · zc)
za + zb + zc
za + zb + zc

)
. (21)

We define uniformity for a Boolean function F̂B : Bn → Bn in the similar way as for a pure min–max function: F̂B is uniform
if there is a non-negative integer r ≥ 1 such that for all Boolean vectors Z , (F̂B)ri (Z) = (F̂B)

r
j (Z), ∀i, j = 1, . . . , n.

Proposition 2. A cyclic event rule system given by a pure min–max function F̂ is uniform if and only if F̂B is a uniform Boolean
function.

Proof. The ONLY IF part is obvious since Bn ⊂ Rn and (F̂B)r(Z) = (F̂)r(Z) on Bn, as a result for all Z ∈ Bn, it holds that
(F̂B)ri (Z) = F̂

r
i (Z) = F̂

r
j (Z) = (F̂B)rj (Z). Let us turn to the IF part. We prove by contradiction. Suppose F̂B is uniform with

height r , but there is an X ∈ Rn such that F̂ r(X) is a non-constant vector. According to Lemma 4, there must be a Boolean
vector Z such that F̂ r(Z) is also a non-constant vector. Note F̂ r(Z) = (F̂B)r(Z). This is in contradiction with the assumption
that F̂B is uniform with height r . �

For small scale system, Proposition 2 allows us to use the iteration graph [22] of the Boolean function F̂B to determine
the uniformity of F̂ . The iteration graph is a graph with 2n nodes. The nodes are labeled by n-dimensional Boolean vectors.
There is an edge from node Z to Z ′ if and only if Z ′ = F̂B(Z). See [22] for discussions on the properties of iteration graphs
of general discrete iterations on finite set. Cycles are called attractors. The special cycles with length 1 are called fixed
points. For monotone Boolean functions F̂B, the two points (1, . . . , 1)T and (0, . . . , 0)T are always fixed points. The state
transition graph of a uniform Boolean function has the feature that (1, . . . , 1)T and (0, . . . , 0)T are the only two attractors.8
For example, the state transition graph of the Boolean function for Example 2 in Eq. (21) is shown in Fig. 7. From the state
transition graphs, one can also decide the height of a uniform function, that is, the length of the longest path from any state
to one of the two fixed points. From Fig. 7 we can see that r = 2. One longest path is from (010) to (011) to (111).
Although from the above analysis, we knowuniformity can always be decided in finite time, it still remains openwhether

there exists a polynomial algorithm to check uniformity. For larger systems, we suggest using symbolicmodel checkers (e.g.,
[7]) on F̂B to handle the uniformity checking problem. The idea is to test whether for all Boolean vectors Z , the Boolean vector
sequence (F̂B)k(Z), k = 1, 2, . . . finally contains either (1, . . . , 1)T or (0, . . . , 0)T. Using a symbolic model checker, once we
find F̂B is uniform, we can further search for the height r of F̂B by applying the model checkers again to judge whether all
components of (F̂B)r are the same on Bn.
Next, we present a sufficient condition for uniformity in Proposition 3.

Proposition 3. If there exists a uniform cutset G′i ⊆ Gi (see Fig. 8) with height 1 in the cyclic component Gi, the cyclic event rule
system as a whole is uniform.

8 Attractors include both limit cycles and fix points.
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Fig. 8. Illustration of Proposition 3.

Proof. Without loss of generality, assume there exist two cutsets C ′i , C
′′

i ⊆ Gi such that C ′′i ⊆ R(C ′i ) and G
′

i =

R(C ′i )
⋂
(R′(C ′′i )

⋃
C ′′i ), see Fig. 8. Define T

′

i and T
′′

i as the state vectors of C
′

i and C
′′

i respectively. Denote F̂
∗ as the function

from T ′i to T
′′

i . The proof can be divided into the three cases below:

• C ′i = Ci and C
′′

i 6= Ci+1,
• C ′i 6= Ci and C

′′

i = Ci+1,
• C ′i 6= Ci and C

′′

i 6= Ci+1.

These three cases can be proved in a similar way. We prove the third case as an example. Denote F̂ ′ as the function from Ti
to T ′i and F̂

′′ the function from T ′′i to Ti+1. Since G
′

i is uniformwith height 1, F̂
∗
u = F̂

∗
v ,∀u, v ∈ C

′′

i . Let F̂
∗
u = ĝ,∀u ∈ C

′′

i , where
ĝ is a pure min–max function. Again from F̂ = F̂ ′′(F̂∗(F̂ ′)), it must hold that F̂v = ĝ(F̂ ′),∀v ∈ Ci. Thus, the system is uniform
with height 1. �

Remark. Proposition 3 has an interesting implication for designing uniform systems. If we have an existing piece of design
which is known to be uniform with height 1, say, tightly coupled, we can generate a larger uniform system in which the
events in this piece form a cutset.

Remark. Proposition 3 is only a sufficient condition. When there is no subset uniform, the whole system may still be
uniform.

5. Adapting CAS algorithm to find bounds on time separations

In this section, we study problem C2 for which the CAS algorithm in [4] has been shown to give finite bounds on time
separations on tightly coupled systems. Since tightly coupled systems are special uniform systems, it is natural to ask
whether CAS can be used directly on uniform systems with provable bounded estimation. It turns out not to be the case. In
this section, we first present one example of uniform systems where CAS fails to give finite bounds. The example is shown
as in Fig. 9 (showing the portion up to the cutset C2 of the unfolded graph G∗). We assume that all delays on all edges in
the repeated part G1 of the system are 0. Since we focus on the long-term behavior, as in [4], we leave initial behavior
unspecified, i.e., we assume that the delays in G0 are arbitrary. It can be directly verified that

F̂ i(T1) = (g(T1), g(T1), g(T1))T, i = 1, 2, . . . ,

where g(T1) = (τa1 ∧ τb1) ∨ (τa1 ∧ τc1) ∨ (τb1 ∧ τc1). So, the system is a uniform system with height r = 1. The long-term
time separations are all finite and in fact are all 0. Meanwhile, the result of direct calculation by CAS on this system is

Λ′i =

(0 ε ε
ε 0 ε
ε ε 0

)
, for i = 1, 2, . . . . (22)

We can see that all time separation bounds are infinite.
For a uniform system of height r , to make CAS produce finite bounds, we slightly change the way of computing bounds

for the cutset Ci. To be specific, we do the following: First compute Λ̄r+1. Then for all i ≥ r , the new bounds for the cutset Ci
is set as the tighter one of (1) the bounds computed by CAS and (2) Λ̄r+1. Then we run CAS as usual except that whenever
the bounds of Ci, i ≥ r are used, we use the new bounds. Here we use the fact that CAS always gives upper bounds for
the subgraph Gi+1 whenever some upper bounds on the cutset Ci are used. In this way, we can make sure finite bounds are
obtained since Theorem 1 establishes that for all i ≥ r ,Λi is bounded above byΛr+1 which is finite.
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Fig. 9. A uniform system on which CAS algorithm fails to give finite bounds on time separations.

Fig. 10. A redundant computing scheme in TMR structure.

6. Discussions on applications

The structural property of uniformity has the following two implications when used in practice. On the one hand, it can
be used to confirm the boundedness of long-term time separations of a general class of cyclic event rule systems. Example 1
is such an example. It is uniform but not tightly coupled. As a more practical example, we would like to analyze an iterative
computing system in Triple Modular Redundancy (TMR) structure [23] as shown in Fig. 10. For a given sequence of data x[i],
i = 1, 2, . . . , the three processors a, b and c run identical operation on x[i] and work in parallel. The purpose of using three
processors is to combat the random failure in hardware by taking advantage of redundancy. The time spent for handling x[i]
on a, b and c are δai ∈ [da,Da], δbi ∈ [db,Db] and δci ∈ [dc,Dc] respectively. The outputs of the three processors are fed into
three comparators e, f and g . As long as both inputs of a comparator are ready, it will compare whether the two input values
are the same. If they are the same, the value will be sent by the comparator as a valid output to the ORmerge h. The cycle of
redundant computing for x[i] is finished once h receives one valid input. That input is used to produce the output y[i] of the
cycle. A new cycle then starts by loading every processor with x[i+ 1].9

Here, we focus on the timing evolution of an ideal case in which there is no random failure at all processors. The question
iswhether the systemhas bounded long-term time separation. To analyze the system,we construct a cyclic timing constraint
graph G for the system as in Fig. 11 and write down the timing constraints as follows. Note delays are not marked in the
figure.

τai = τhi−1 + δai
τbi = τhi−1 + δbi
τci = τhi−1 + δci
τei = (τai ∨ τbi)+ δdi
τfi = (τai ∨ τci)+ δei
τgi = (τbi ∨ τci)+ δfi
τhi = (τei ∧ τfi ∧ τgi)+ δhi .

9When a new cycle for x[i+ 1] is started, the processor running unfinished task for x[i]will cancel it and will load the new data x[i+ 1].
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Fig. 11. Cyclic timing constraint graph for the system in Fig. 10.

Taking Ti = (τai , τbi , τci)
T, i = 1, 2, . . . , as the state vectors, we can obtain the state function of the skeleton Ĝ

F̂(Ti) =

(
(τai ∨ τbi) ∧ (τai ∨ τci) ∧ (τbi ∨ τci)
(τai ∨ τbi) ∧ (τai ∨ τci) ∧ (τbi ∨ τci)
(τai ∨ τbi) ∧ (τai ∨ τci) ∧ (τbi ∨ τci)

)
. (23)

It is straightforward to see that the system is uniform with height 1. At the same time, it is also evident that the system is
not tightly coupled since every path from ai to ai+1 contains both minimum and maximum nodes in Ĝ (also true for nodes
b and c). As an application of Theorem 1, we can conclude that the system has finite long-term time separation.
On the other hand, it could also play some role in the design of asynchronous systems. For example, Proposition 3 has an

interesting implication for designing uniform systems. If we have an existing piece of design which is known to be uniform
with height 1, say, tightly coupled, we can generate a larger uniform system in which the events in this piece form a cutset.
At last, we would like to point out, although there is no choice in the cyclic timing constraint graphs we considered in

this paper, the structural condition of uniformity for bounding long-term time separation for events has the potential to
cover more general cases. An easy extension is the case that choice is made among several alternations sharing a common
skeleton. Take the two alternation case as example. Let G and G′ be two cyclic timing constraint graphs whose skeletons Ĝ
and Ĝ′ are the same. We combine them into one systemwith choice such that the new state equation is given in the form of

Ti+1 = F(Ti) or F ′(Ti),

where the decision on whether F or F ′ is chosen is made by some outside control mechanism. For this case, we can still
define uniformity on F̂ (= F̂ ′) only. Since the proofs of Theorems 1 and 2 are based on skeletons, these two theorems still
hold for the new class of systems with choice.

7. Conclusions

In this paper, our main contribution is the establishment of the sufficient and necessary structural condition for time
separations for cyclic event rule systems to be bounded, namely uniformity. This result is obtained by exploring the algebraic
structures—the skeletons of the cyclic timing constraint graphs of the systems. There are many interesting open problems,
for example, the general structural boundedness condition for systems with choice, how to test uniformity more efficiently
and sufficient conditions for uniformity with height 2 or more.
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