
Theoretical Computer Science 407 (2008) 117–133

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On complexity functions of infinite words associated with generalized
Dyck languages
Marion Le Gonidec ∗
Institut de Mathématiques de l’Université de Liège, Grande traverse 12, Bat B37, B-4000 Liège, Belgique

a r t i c l e i n f o

Article history:
Received 23 January 2008
Received in revised form 21 April 2008
Accepted 11 May 2008
Communicated by Z. Esik

Keywords:
Infinite words
Countable automata
Dyck language
Complexity

a b s t r a c t

In this article, we construct a family of infinite words, generated by countable automata
and also generated by substitutions over infinite alphabets, closely related to parenthesis
languages and we study their complexity functions. We obtain a family of binary infinite
wordsm(b), indexed on the number b ≥ 1 of parenthesis types, such that the growth order
of the complexity function ofm(b) is n(log n)2 if b = 1 and n1+log2b b if b ≥ 2.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Infinitewords over finite alphabets appear inmany areas ofmathematics and theoretical computer sciences. For example,
an infinite wordm = m0m1m2 . . . over a finite alphabet can be associatedwith a set or a partition of integers, a real number,
a language, an automaton or a dynamical system. The combinatorial and statistical properties of infinite words often reveal
interesting properties of the associated objects (see for example [20,4,21] for overviews).
The structure of an infiniteword, and especially the diversity of the factors occurring in an infinitewordm = m0m1m2 . . .

over a finite alphabet can be well described by a sequence, called the complexity function, counting the subwords ofm. This
sequence, usually treated as a function and denoted by pm, maps an integer n to the number pm(n) of different factors of
length n occurring inm. As furthermotivations for studying this function, the sequence

(
log pm(n)
n

)
n≥1
tends to the entropy of

the dynamical system associated with the word (see for example [14]) and it is also linked with the Kolmogorov complexity
of the word (see [22]). Studying complexity functions can also be useful in other mathematical areas. For example, if an
infinite wordm represents the expansion in some integer base of an irrational algebraic number, its complexity must satisfy
lim infn→+∞

pm(n)
n = +∞ (see [1]).

Even if complexity functions have many simple properties, their computation often remain awkward. Furthermore,
various behaviour are possible, from constant functions to exponential growth functions and from simple to irregular
increasing functions. Computing complexity functions has been the aim of many works (see [3] or [12] for surveys). Indeed,
for a given word, there is no universal algorithm to compute its complexity exactly. The existing methods which are often
based on the study of special factors of the infinite word and synchronization principles. We refer to [5,6] for formulas
linking special factors and complexity. Special factors are really useful to compute complexity, especially when studying
infinite words generated by simple algorithms. Methods involving special factors allow us to compute complexity functions
exactly in many particular cases and also to obtain possible growth orders of the complexity functions for some large classes

∗ Tel.: +32 4 366 92 66.
E-mail address:M.LeGonidec@ulg.ac.be.

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.05.015

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:M.LeGonidec@ulg.ac.be
http://dx.doi.org/10.1016/j.tcs.2008.05.015

118 M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133

of infinite words. By possible growth orders, we mean functions f satisfying f (n) = O(pm(n)) and pm(n) = O(f (n)) for at
least one wordm of the class. For example, complexity functions of automatic words have growth orders equal to 1 or n [10]
and fixed points of substitutions over finite alphabets have growth orders equal to 1, n, n log log n, n log n or n2 [19].
Following these results of A. Cobham and J.-J. Pansiot, we might look for similar results for infinite words generated by

some more complex algorithms such as pushdown automata or countable automata. This question can also be expressed
using substitutions, for infinite words built by projection letter-to-letter morphism (called projections) of fixed points of
substitutions of constant length over countable alphabets. An interesting sub-class of suchwords ismade up of characteristic
words of context-free languages of integer expansions in integer bases generated by deterministic and real time pushdown
automata.
This topic is also close to the open problem of finding possible growth orders of complexity functions of substitutive

words, that is, images by morphisms of fixed points of substitutions over finite alphabets. Indeed, the theorem of Pansiot
[19] does not hold for substitutive words. A significant partial result, proved by Cassaigne and Nicolas [9] ensures that, for
all integers k ≥ 1, there exists a substitutive word with complexity function growth order n1+

1
k .

We have shown in [15] that the complexity functions of a large class of words over finite alphabets, generated by
deterministic and countable automata of uniformly bounded degree, are at most polynomial, that is, pm(n) ≤ Cnα for a
constant α. Moreover, the constant α only depends on the number of transition labels of the automaton and on the uniform
bound of its in-degree.
The first examples, made by using a simple countable automaton, are presented in [16]. These are examples of infinite

words associated with context-free languages of integer binary expansions and have complexity functions equivalent to
n(log2 n)2. In an effort to find the possible growth orders of complexity functions for words associated with context-free
languages generated by deterministic and real time pushdown automata and to answer the question of the reachability of
the upper bound announced in [15], we have naturally considered words associated with parenthesis languages, as these
languages are classical examples of context-free languages. This article presents this family whose set of growth order of
complexity functions is {n1+log2b b, b ≥ 2} ∪ {n(log n)2}.

2. Well-parenthesized integers and infinite words associated with Dyck’s languages

In this section,we build the familyF =
{
m(b), b ∈ N, b ≥ 1

}
. It is parameterized by a positive integer b, of infinitewords

m(b) with alphabet {0, 1}. The wordm(b) is the characteristic word of the subset of Nmade up of integers whose expansion
in base 2b corresponds to a well-parenthesized expression over b sorts of parenthesis, using a letter-to-letter morphism.
In what follows, we will use usual notations about infinite words (See for example [20]). We denote, for any integer

q greater than or equal to 2, by the word ρq(n) = nl . . . n1n0 the q-ary expansion of the integer n =
∑l
i=0 niq

i where
ni ∈ {0, . . . , q− 1} and nl 6= 0.

2.1. Definitions

Let us fix an integer b > 0 and let Pb = {p0, . . . , pb−1} be the set of b symbols corresponding to b different opening
parenthesis. The related closing parenthesis set is noted Pb = {p0, . . . , pb−1}.
LetDb be the restricted Dyck language over Pb ∪ Pb, that is the language of well parenthesized expressions over Pb ∪ Pb:

Db =
{
w ∈ (Pb ∪ Pb)∗, ∀k ≤ |w|,∀i ∈ J0, b− 1K, |Prefk(w)|pi ≤ |Prefk(w)|pi and |w|pi = |w|pi

}
.

Remark 2.1. In some papers, restricted Dyck languages are called, for short, Dyck languages (see for example [25]) but the
usual Dyck language over Pb ∪ Pb is made of words ofDb and mirror-images of words ofDb. This classical language appears
for example in the Chomsky–Schützenberger theorem [11] which state that every context-free language is the image of the
intersection of a Dyck languageD′b and a rational language by a homomorphism.

Definition 2.2. For all integers b ≥ 1, let Db : J0, 2b − 1K∗ → (Pb ∪ Pb)∗ be the morphism of monoïds defined over
J0, 2b− 1K by:

Db(i) =
{
pi if i ∈ J0, b− 1K,

p2b−1−i if i ∈ Jb, 2b− 1K

and extended by concatenation to J0, 2b− 1K∗.
We say that an integer n ∈ N is a well-parenthesized integer in base 2b ifDb(ρ2b(n)) belongs toDb, that is, if its image by

Db is a well parenthesized expression. We denote by Ib the set of well parenthesized integers in base 2b, that is:

Ib = {n ∈ N | Db (ρ2b(n)) ∈ Db},

and by Lb its associated language of 2b-ary expansions:

Lb = {ρ2b(n) | n ∈ Ib}.

M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133 119

For example, the integer n = 3696 is a well-parenthesized integer in base 4 as ρ4(3696) = 321 300 and the word
D2(321 300) = p0p1p1p0p0p0 is a well-parenthesized expression. In the same way, the integer n = 26 244 is not a well-
parenthesized integer in base 6 as ρ6(26 244) = 321 300 and D3(321 300) = p2p2p1p2p0p0 is not a well-parenthesized
expression.

Remarks 2.3. When b = 1, the correspondence between digits and parenthesis by morphism D1 is quite natural, but its
generalization to b ≥ 2 is less straightforward as it is not intrinsic. We chose to generalize the above statement as it
well extends the balance property of expansions of well-parenthesized integers in base 2. Indeed, expansions of well-
parenthesized integers in base 2 are balanced words, that is words containing as much occurrences of 1 as occurrences
of 0. This property can also be expressed the following way: for every well-parenthesized integer n in base 2, if we set
ρ2b(n) = n2l−1 . . . n1n0, then we have

∑2l−1
i=0 ni = l.

Using Db as a generalization of D1, this property is well extended as, for all integers b ≥ 1 and for every well-
parenthesized integer n in base 2b, if we set ρ2b(n) = n2l−1 . . . n1n0, then we have

2l−1∑
i=0

ni = (2b− 1)l.

This way, there is no favoured type of parenthesis. For any given length, all expansions of well-parenthesized integers have
the same sum of digits. Of course, there are many other ways to generalize morphismD1 and we can ask whether results
presented below are preserved or not if we change this extension.

Definition 2.4. For every integer b ≥ 1, we define the infinite word m(b) = m(b)0 m
(b)
1 m

(b)
2 . . .m(b)n . . . over {0, 1} as the

characteristic word of the set Ib, that is,

∀n ≥ 0, m(b)n = 1⇐⇒ n ∈ Ib ⇐⇒ Db(ρ2b(n)) ∈ Db.

For example, we have:

m(1) = 10107101029105101031011310105101031017101051010310 . . .
m(2) = 108102101401021081011101110111021023101110

In order to understand how the well-parenthesized integers in base 2b are distributed in N, we study in this article the
complexity function of their characteristic wordm(b).

2.2. Main theorem and sketch of proof

We now state the main theorem.

Theorem 2.5. The growth order of the complexity function of m(b), denoted by fb(n), is given by:

fb(n) =
{
n (log2 n)

2 if b = 1,
n1+log2b b if b ≥ 2,

where the notation log2b n stands for
ln n
ln 2b , for all b ≥ 1.

To prove this theorem, we will construct, for each value of b, two constants c(b) and C(b) such that, for sufficiently large
integers n,

c(b)fb(n) ≤ pm(b)(n) ≤ C(b)fb(n).

The first remark is that we have to isolate case b = 1, as the combinatorial and statistical properties of m(1) are quite
different from the properties of wordsm(b) when b ≥ 2 (see Paragraph 4.1). Thus, the growth order of pm(1) will be studied
in a separate part (Section 4). However, we use same sketch of proof in the section regarding cases b ≥ 2 (Section 3) and in
the section regarding case b = 1.
In Paragraph 3.1, we will find upper bounds for pm(b)(n) when b ≥ 2, using methods developed in [15] to show that

pm(b)(n) = O (fb(n)). In Paragraph 3.2, we will find lower bounds of pm(b)(n) for all integers b ≥ 2, showing a family of
special factors of length n to prove that fb(n) = O

(
pm(b)(n)

)
and some results presented in this paragraphwill also be useful

for case b = 1.

2.3. Alternative constructions of words {m(b), b ≥ 1}

Before starting the proof of Theorem 2.5, we present two constructions of words m(b) which are more convenient than
the construction presented in 2.1. These following two constructions underline different properties ofm(b) and provide tools
to study their complexity functions so these both points of view will be used in the rest of the article. These are based on

120 M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133

the fact that m(b) is the indicative word of the context-free language Lb. Indeed, for any integer b ≥ 1, the language Lb is
recognized by the pushdown automaton Ab = (S, J0, 2b − 1K, Pb, φ) using empty stack acceptance mode, which means
that,

w ∈ Lb ⇐⇒ φb(s0ε,w) ∈ Sε,

where

• S = {s0, s1} is the space of states,
• J0, 2b− 1K is the input alphabet,
• Pb is the stack alphabet,
• φb : C ⊂ SP∗b × J0, 2b− 1K→ SP∗b is the transition function, given by, for allW in P

+

b :

∀i ∈ Jb, 2b− 1K, φb(s0ε, i) = s1p2b−1−i,
∀i ∈ Jb, 2b− 1K, φb(s1W , i) = s1p2b−1−iW ,
∀i ∈ J0, b− 1K, φb(s1pnW , i) = s1W ,

where this function is naturally extended to a subset of SP∗b × J0, 2b− 1K∗ by

φb(sW , w) = φb
(
. . . φb(φb(sW , w0), w1) . . .), w|w|−1

)
,

• and s0ε is the initial configuration.

As the automatonAb recognizes the language Lb, we have, for any integer n,m
(b)
n = 1 if and only if ρ2b(n) is accepted byAb.

Remarks 2.6. In this case, the space of states S of Ab can be reduced to a singleton (state s1) but splitting it in two states
s0 and s1 does not change the accepted language and allows us to feed the automaton with non proper expansions without
changing exit states. Moreover, this will be useful to underline the equivalence between the both constructions of words
m(b) we are going to use in the proof of Theorem 2.5. Indeed, to compute the complexity function of the word m(b), the
pushdown automaton does not provide efficient tools so we do not develop it further. For further information about links
between context-free languages and pushdown automata, we refer to [2]. Nevertheless, we can obtain the two ways of
generating the wordsm(b) we will need in this article from the pushdown automatonAb. The first way is to constructm(b)
by concatenation of the exit states of a countable automaton and the second is to construct m(b) as a projection (letter-to-
letter morphism) of the infinite fixed point of a substitution of constant length over a countable alphabet.

2.3.1. Construction by countable automaton
The construction of words m(b) by pushdown automata Ab is not the best point of view to solve the problems of

accessibility and co-accessibility between configurations that we will face in this article. Indeed, it does not allow to see
easily the action of the transition function over configurations. A better point of view is to consider the transition graph Tb
of the pushdown automatonAb. The transition graph Tb = (s1P∗b ∪{s0ε}, ϕb, s0ε, Sε) acts here as an 2b-automaton (see [17]
or [15]) and by construction, recognizes the same language asAb. The 2b-automata Tb is defined by the following elements:

• P∗b ∪ {s0} is the space of states of Tb,
• J0, 2b− 1K is the input alphabet of Tb,
• ϕb is the transition function of Tb, defined on a subset of

(
s1P∗b ∪ {s0ε}

)
× J0, 2b− 1K to s1P∗b ∪ {s0ε}, defined by:

∀i ∈ Jb, 2b− 1K, ϕb(s0ε, i) = s1p2b−1−i,
∀W ∈ P∗b , ∀i ∈ Jb, 2b− 1K, ϕb(s1W , i) = s1p2b−1−iW ,
∀W ∈ P∗b , ∀i ∈ J0, b− 1K, ϕb(s1piW , i) = s1W .

This function is also naturally extended to a subset of
(
s1P∗b ∪ {s0ε}

)
× J0, 2b− 1K∗ by

ϕb(W , w) = ϕb
(
. . . ϕb(ϕb(W , w0), w1) . . .), w|w|−1

)
.

• s0ε is the initial state of Tb,
• Sε is the final states set of Tb.

We refer to Muller and Schupp [18] and the works of Caucal [7,8] for literature on transition graphs; see also [24] or [23]
for results on infinite graphs.
These deterministic countable automata Tb can be completed by adding a ‘‘trash state’’ x so that, for every state s of

s1P∗b ∪ {s0ε, x}, and for every integer i of J0, 2b− 1K, there is one and only one edge of Tb starting from s and labeled by i.
The automaton obtained this way is a countable deterministic 2b-automaton and the infinite word m(b) over {0, 1} is

defined by:

∀n ≥ 0, m(b)n = 1⇐⇒ ϕb(ε, ρ2b(n)) ∈ Sε.

The transition graphs T1 and T2 are represented in Figs. 1 and 2. For more visibility, the trash state has been removed
from T2 and we have made the following simplifications of notation: s1W 7→ W and s0ε 7→ s0.

M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133 121

Fig. 1. Countable automaton generating the infinite wordm(1) .

Fig. 2. Countable automaton generating the infinite wordm(2) .

2.3.2. Construction by substitution and projection
The other way to construct the wordm(b) is as a projection (letter-to-letter morphism) of the fixed point of a substitution

over a countable alphabet, due to the connection between automata and substitutions (see [17] for example).
Let us introduce a family of substitutions {bδ, b ≥ 1} over countable alphabets:

• For b = 1, let A1 = {p0}∗ ∪ {s0, x}, where s0 and x are two symbols out of {p0}∗. Let 1δ be the following substitution over
A1:

1δ : A1 → A21
x 7→ (x)2
s0 7→ (s0)(p0)
ε 7→ (x)(p0)

pn, n > 0 7→ (pn−10)(pn+10).

• For any b ≥ 2, let Ab = P∗b ∪ {s0, x}, where s0 and x are two symbols out of P
∗

b . Let
bδ be the following substitution over

Ab:
bδ : Ab → A2bb

x 7→ (x)2b

s0 7→ (s0)(x)b−1(pb−1) . . . (p1)(p0)
ε 7→ (x)b(pb−1) . . . (p1)(p0)

s = piw 7→ (x)i(w)(x)b−1−i(pb−1s) . . . (p1s)(p0s)

For all integers b ≥ 1, the substitution bδ is extended to A∗b and A
N
b by concatenation. The substitution

bδ has a unique
infinite fixed pointm(b) in AN

b , starting by the letter s0, that is, a unique infinite word such that

bδ
(
m(b)

)
= m(b).

Remark 2.7. The connection between the two constructions relies on the correspondence between the applications bδi :
s 7→ bδ(s)i and the applications ϕb(·, i). When the automaton Tb is fed with ρ2b(n), the outing state is exactlym(b)n . See [17]
or [15] for more details.

122 M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133

For example, we have:

m(1) = s0(p0)(ε)(p20)(x)(p0)(p0)(p
3
0)(x)

2(ε)(p20)(ε)(p
2
0)(p

2
0)(p

4
0)(x)

5(p0)(p0)(p30)(x)(p0)(p0)(p
3
0)

(p0)(p30)(p
3
0)(p

5
0)(x)

10(ε)(p20)(ε)(p
2
0)(p

2
0)(p

4
0)(x)

2(ε)(p20)(ε)(p
2
0)(p

2
0)(p

4
0)(ε)(p

2
0)(p

2
0)(p

4
0)(p

2
0)(p

4
0)

(p40)(p
6
0)(x)

21(p0)(p0)(p30)(x)(p0)(p0)(p
3
0)(p0)(p

3
0)(p

3
0)(p

5
0)(x)

5(p0)(p0)(p30)(x)(p0)(p0)(p
3
0)(p0)

(p30)(p
3
0)(p

5
0)(x)(p0)(p0)(p

3
0)(p0)(p

3
0)(p

3
0)(p

5
0)(p0)(p

3
0)(p

3
0)(p

5
0)(p

3
0)(p

5
0)(p

5
0)(p

7
0)(x)

42(ε)(p20)(ε)(p
2
0)

(p20)(p
4
0)(x)

2(ε)(p20)(ε)(p
2
0)(p

2
0)(p

4
0)(ε)(p

2
0)(p

2
0)(p

4
0)(p

2
0)(p

4
0)(p

4
0)(p

6
0)(x)

10(ε) . . .

m(2) = s0(x)(p1)(p0)(x)5(ε)(p21)(p0p1)(ε)(x)(p1p0)(p
2
0)(x)

22(p1)(p0)(x)(p1)(p31)(p0p
2
1)(p1)(x)

(p1p0p1)(p20p1)(x)
2(p1)(p0)(x)5(p0)(p21p0)(p0p1p0)(p0)(x)(p1p

2
0)(p

3
0)(x)

89(ε)(p21)(p0p1)(ε)(x)
(p1p0)(p20)(x)

5(ε)(p21)(p0p1)(x)(p
2
1)(p

4
1)(p0p

3
1)(p

2
1)(x)(p1p0p

2
1)(p

2
0p
2
1)(x)(ε)(p

2
1)(p0p1)(x)

5(p0p1)
(p21p0p1)(p0p1p0p1)(p0p1)(ε)(p1p

2
0p1)(p

3
0p1)(x)

9(ε)(p21)(p0p1)(ε)(x)(p1p0)(p
2
0)(x)

20(ε)(x)(p1p0)
(p20)(x)(p1p0)(p

3
1p0)(p0p

2
1p0)(p1p0)(x)(p1p0p1p0)(p

2
0p1p0)(ε)(x)(p1p0)(p

2
0)

We defineΠb as the projection from Ab to {0, 1} defined by:

Πb(s) =
{
1 if s ∈ {ε, s0},
0 else.

The projection Πb is extended to AN
b by concatenation and, for all integers b ≥ 1, the infinite word m

(b) satisfies m(b) =
Π(m(b)).

Remark 2.8. Construction by substitution and projections provides the main part of tools used to study complexity
functions of words m(b) so we will use this construction for most of the article. However, the construction by automata
remains helpful, often providing an easier understanding and allowing graphic interpretations.

3. Complexity function growth orders for pm(b)(n) when b ≥ 2

Notations 3.1. To prove these results, we will use the construction of the words m(b) by substitutions and projection. So,
to make the proofs easier to read, we will denote the functionΠb ◦ bδ

k
by δk when no confusion is possible, for all integers

b ≥ 1 and positive integers k.

3.1. Upper bounds of pm(b)(n) when b ≥ 2

For every b ≥ 2, finding an upper bound of the complexity function of m(b) relies on the study of factors of length two
occurring in the fixed pointm(b) of bδ. This study is the aim of the two following lemmas.

Lemma 3.2. Let b ≥ 2.
Let k be a positive integer and s be an element of Ab.
The word δk(s) contains some occurrences of 1 if and only if s = s0 or s ∈ ∪ki=0P

i
b and |s| and k have same parity.

So, for all integers k = 2q + r, with r ∈ {0, 1} and q ∈ N∗, we have b
k+2
−br

b2−1
+ 1 letters of Ab such that δk(s) is different of

0(2b)
k
.

This lemma is straightforwardusing the followingproperty of fixedpoints of substitutions of constant length (Proposition 3.1
of [15]): for all letters s occurring inm(b) and for all non negative integers k, if we denote the word bδ

k
(s) = u0u1 . . . u(2b)k−1,

then

∀n ∈ J0, (2b)k − 1K, un = bδn0 ◦
bδn1 ◦ · · · ◦

bδnl ◦
bδ
2b−(l+1)
0 (s),

where ρ2b(n) = nl . . . n1n0 is the proper expansion of n in base 2b.
We can also see this property on the graph of the automaton of Tb. Indeed, the word δk(s) contain some occurrences of

1 if and only if bδ
k
(s) contains some occurrences of ε or s0, that is, it contains some occurrences of the letter 1 if and only if

there exists a path of length k from s to ε or s0 in the directed graph of Tb.

Lemma 3.3. Let b ≥ 2. A word x1x2 of A2b is a factor of m
(b) if and only if:

1. ∃s ∈ Ab, x1x2 = (s)(x),
2. ∃s ∈ Ab \ {s0}, x1x2 = (x)(s),
3. x1x2 = (p0p1)(ε),
4. ∃s ∈ P∗b , ∃i ∈ J0, b− 2K, x1x2 = (pi+1s)(pis),
5. ∃s ∈ P∗b , x1x2 = (s)(p

2
b−1s),

6. ∃s ∈ P∗b , ∃k ≥ 1, x1x2 = (p
k
0p1p

k−1
0 s)(s).

M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133 123

Proof of Lemma 3.3. This lemma also relies on a property of fixed points of substitutions of constant length (Proposition
3.3 of [15]). Indeed, as m(b) is the fixed point of bδ starting with s0, if we set bδ(s0) = s0s1 . . . s2b−1, we have the following
equality:

m(b) = s0s1 . . . s2b−1bδ(s1)bδ(s2) . . . bδ(s2b−1)bδ
2
(s1)bδ

2
(s2) . . . bδ

2
(s2b−1)bδ

3
(s1) . . . bδ

3
(s2b−1)

From this statement, the word x1x2 is a factor ofm(b) if and only if one of the following cases happens:

(i) ∃j ∈ J0, 2b− 2K, x1x2 = sjsj+1 ,

(ii) ∃k > 0, ∃j ∈ J1, 2b− 2K, x1 = bδ
k
2b−1(sj) and x2 =

bδ
k
0(sj+1),

(iii) ∃k ≥ 0, ∃j ∈ J1, 2b− 2K, x1 ∈ E \ {s0}, x2 ∈ bδ
k
0 ◦

bδj+1 ◦
bδ
−1
j ◦

bδ
−k
2b−1({x1}),

(iv) ∃k > 0, x1 = bδ
k
2b−1(s2b−1) and x2 =

bδ
k+1
0 (s1).

Case (i) corresponds to words x1x2 extracted from the word s0s1 . . . s2b−1, case (ii) corresponds to words x1x2 extracted at
the junction of words bδ

k
(sj) and bδ

k
(sj+1), case (iii) corresponds to words x1x2 extracted from words bδ

k
(sj) and case (iv)

corresponds to words x1x2 extracted at the junction of words bδ
k
(s2b−1) and bδ

k+1
(s1).

The different factors ofm(b) announced in Lemma 3.3 will progressively appear, analysing these different cases.
The factors ofm(b) obtained in case (ii) are

• x1x2 = (x)(x), obtained when k ≥ 0 and j < b− 1 or k > 0 and j = b− 1 ,
• x1x2 = (x)(pb−1) obtained when k = 0 and j = b− 1,
• x1x2 = (pi+1)(pi) for i ∈ J0, b− 2K, obtained when k = 0 and j ≥ b,
• x1x2 = (pk0pi)(x) for k ≥ 1 and i ∈ J2, b− 1K, obtained when k ≥ 1 and j ∈ Jb, 2b− 2K,
• x1x2 = (p0p1)(ε) and x1x2 = (pk0p1)(x) for k ≥ 2, obtained when k ≥ 1 and j = 2b− 2.

The factors ofm(b) obtained in case (iv) are the words x1x2 = (pk0)x for any k ≥ 1.
To describe the factors of m(b) which can be reached in case (iii), it is useful to notice that all the letters of Ab occur in

m(b), and to detail the actions of the applications bδ
k
0 ◦

bδj+1 ◦
bδ
−1
j ◦

bδ
−k
2b−1 on singletons {s} for s ∈ Ab and for all k ≥ 1.

For all i in J0, b− 2K:

bδ
k
0 ◦

bδi+1 ◦
bδ
−1
i ◦

bδ
−k
2b−1({s}) =

Ab \ {s0} if s = x,
{x} if Prefk(s) = pk0p2b−1−i,
∅ else,

for i = b− 1:

bδ
k
0 ◦

bδb ◦
bδ
−1
b−1 ◦

bδ
−k
2b−1({s}) = ∅,

for all i in Jb, 2b− 2K:

bδ
k
0 ◦

bδi+1 ◦
bδ
−1
i ◦

bδ
−k
2b−1({s}) =

{
{x} if Prefk+1(s) = pk0p1,
∅ else,

for i = 2b− 2:

bδ
k
0 ◦

bδi+1 ◦
bδ
−1
i ◦

bδ
−k
2b−1({s}) =

{v} if s = pk0p1p
k−1
0 v,

{x} if Prefk+1(s) = pk0p2b−1−i and Pref2k(s) 6= p
k
0p1p

k−1
0 ,

∅ else.

Using these equalities, we obtain:

• the words (x)(x), (x)(s) and (s)(x) for all s of Ab are factors ofm(b) except for (x)(s0),
• the words (s)(p2b−1s) for all s of Ab are factors ofm

(b),

• the words (pi+1s)(pis) for all s of P∗b and all i ∈ J0, b− 2K are factors ofm(b),
• the words (pk0p1p

k−1
0 s)(s) for all s ∈ P∗b are factors ofm

(b).

All different factors ofm(b) announced in Lemma 3.3 have been displayed. �

124 M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133

Proof (Upper bounds of pm(b)(n)when b ≥ 2). Let us fix an integer k = 2q + r for r ∈ {0, 1} and q ∈ N and an integer n
satisfying (2b)k ≤ n < (2b)k+1.
First, we find an upper bound of pm(b)((2b)

k) for all integers k ≥ 0 and then we will obtain an upper bound of pm(b)(n) for
all integers n ≥ 1.

Asm(b) is the fixed point of the substitution bδ, we havem(b) = bδ
k
(
m(b)

)
. According to this, every factor of length (2b)k

of m(b) occurs as a subfactor of some δk(x1)δk(x2) where x1x2 is a factor of length two of m(b). In order to find a thin upper
bound of the number of factors of length (2b)k, we need to know how many factors x1x2 of m(b) have the property that the
projectionΠb does not maps both bδ

k
(x1) and bδ

k
(x2) on the word 0(2b)

k
.

Let us divide this set of factors ofm(b) of length two in two parts:

(A) factors x1x2 for which only one among the words δk(x1) and δk(x2) is different from the word 0(2b)
k
. Typically, these are

words (s)(x) or (x)(s) for the letters s ∈ P∗b such that ε or s0 occurs in bδ
k
(s),

(B) factors x1x2 for which both δk(x1) and δk(x2) are different from the word 0(2b)
k
.

From Lemma 3.2, we know that b
k+2
−br

b2−1
+ 1 letters s of Ab provide words bδ

k
(s) which are different from 0(2b)

k
thus we

can construct at most 2
(
bk+2−1
b2−1

+ 1
)
− 1 different factors x1x2 of type (A) as (x)(s0) never occurs inm(b).

Let us now count the factors x1x2 of type (B). From Lemma 3.3, those factors can be of the following types:

(i) (p0p1)(ε),
(ii) (pi+1s)(pis) for s ∈ P∗b and i ∈ J0, b− 1K,
(iii) (s)(p2b−1s) for s ∈ P

∗

b ,

(iv) (pα0p1p
α−1
0 s)(s) for s ∈ P∗b and an integer α ≥ 1.

(i) When x1x2 = (p0p1)(ε), the words δk(x1) and δk(x2) are different from 0(2b)
k
only when k is even.

(ii) Factors x1x2 = (pi+1s)(pis), for s ∈ P∗b are of type (B) onlywhen the length |s| of theword s is smaller than k and |s| and
k have different parity (see Lemma 3.2). So, in this way, we obtain b

k+2
−b1−r

b2−1
factors of length two such that the projection

Πb maps neither bδ
k
(x1) nor bδ

k
(x2) to the word 0(2b)

k
.

(iii) Factors x1x2 = (s)(p21s), for s ∈ P
∗

b are of type (B) onlywhen the length of s is strictly smaller than k andwith the same
parity as k (see Lemma 3.2). Thus we obtain b

k
−br

b2−1
factors of length two such that the projectionΠb maps neither bδ

k
(x1) nor

bδ
k
(x2) to 0(2b)

k
.

(iv) Factors of type x1x2 = (pα0p1p
α−1
0 s)(s) for s ∈ P∗b are of type (B) only when |s| = k− 2β , for a fixed integer β ∈ J1, qK

and α ≤ β (where k = 2q+ r with r ∈ {0, 1}). We obtain by this construction N =
∑q

β=1 βb
k−2β additional factors of type

(B). From the expression of N , we get:

N =


1

(b2−1)2

(
bk+2 − b2−1

2 k− 1
)

if k is even,

b
(b2−1)2

(
bk+1 − b2−1

2 k+ b+
b2−1
2

)
if k is odd.

From this equality, we only need that N ≤ b
(b2−1)2

(
bk+1 − b2−1

2 k+ b+
b2−1
2

)
for all integers k.

It appears from the enumeration of factors of type (A) and (B) that the number of different words δk(x1)δk(x2) different
from 02(2b)

k
occurring inm(b) admits the following upper bound U(k):

U(k) =
1

2(b2 − 1)

(
2(4b2 + 1)bk − b(b2 − 1)k+ b(b2 + 6b− 1)− 12

)
.

It follows that pm(b)
(
(2b)k

)
≤ (2b)kU(k) and pm(b)

(
(2b)k+1

)
≤ (2b)k+1U(k+ 1). Using the fact that complexity function is

an increasing function and that log2b(n) is in Jk, k+ 1J for all integers n of J(2b)k, (2b)k+1J, we get:

∀n ≥ 1, pm(b) (n) ≤
2bn

2(b2 − 1)

(
2b(4b2 + 1)nlog2b b − b(b2 − 1) log2b n+ 6b

2
− 12

)
.

and so pm(b)(n) = O
(
n1+log2b b

)
. �

M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133 125

3.2. Lower bounds of pm(b)(n) when b ≥ 2

To obtain lower bounds of complexity functions of words m(b), we need to know more about the structure of words
δk(w)which are different from 0(2b)

k
, for a fixed integer k. We first study the number of occurrences of the letter 1 and their

repartition in such words. It will allow us to match special factors of fixed length and in this way, to find the lower bounds
of complexity. Indeed, for a fixed binary word m, the difference pm(n + 1) − pm(n) corresponds exactly to the number of
left special factors (and also to the number of right special factors).
Themain difficulty to overcome in the proof arises from the construction of thewordsm(b) by substitution and projection.

This problemalso appears for substitutivewords (see [9]). Indeed, the projection erases a lot of information and the following
two phenomena may appear:

• two or infinitely many different special factors ofm(b) can project on the same special factor ofm(b),
• two or infinitely many different non-special factors ofm(b) can project on a single special factor ofm(b).

As a consequence, the difficulty is not really to find special factors but to ensure the special factors we have found are
different. To do this, we will extract special factors from factors of type δk((x)(x)(s)) ofm(b) (see Lemmas 3.14 and 3.15). To
ensure that words δk(s) are sufficiently different to produce different special factors, we first determine a set which indexes
the occurrences of the letter 1 in words δk(s). This set will also give information about where these occurrences take place.
This is the aim of Lemma 3.6 and Proposition 3.9. Then, Lemma 3.11 will count these occurrences and as it is not sufficient
to differenciate them, we study further the repartition of letters 1 in words δk(s) in Lemma 3.13.

Notations 3.4. For a fixed integer b ≥ 1, we introduce notations about integers and their 2b-ary expansions, which will be
useful to make the proofs easier to read.
For a given word w of J0, 2b − 1K∗, we denote by [w]2b the integer for which w is an expansion in base 2b (w can be a

non proper expansion), that is [w]2b =
∑|w|−1
i=0 wi(2b)|w|−1−i.

We also denote by bδw the function defined by:
bδw =

bδw|w|−1 ◦ · · · ◦
bδw1 ◦

bδw0 .

For a given word s of P∗b ,

• the image of s by the application pi 7→ i is denoted s̃, so that s̃i = 2b− 1−D−1b (si),
• the image of s by the application pi 7→ 2b− 1− i and mirror image is denoted ŝ, so that ŝi = D−1b (s|s|−1−i).

Remarks 3.5. From these notations, we get:

• for some s ∈ P∗b , the word ŝ is the shortest word such that δ ŝ(ε) = s.
• the wordDb(ŝ) is the mirror image of s.
• the word Db(ŝs̃) is the shortest well parenthesized expression with prefix Db(ŝ) as, for all integers n ∈ J0, |s| − 1K,

Db(s̃)n = pi if and only ifDb(ŝ)|s|−1−n = pi (the word s̃ labels the shortest path from s to ε in the graph of Tb).

For example, if we set b = 2 and s = p0p0p1p0p1, then s̃ = 00 101 and ŝ = 23 233 and the word D2(ŝ)D2(s̃) =
p1p0p1p0p0p0p0p1p0p1 is the shortest well parenthesized expression over two parenthesis types with prefix D2(ŝ). On
the other hand, if we set b = 3 and s = p0p0p1p0p1, then s̃ = 00 101 and ŝ = 45 455 and the word D3(ŝ)D3(s̃) =
p1p0p1p0p0p0p0p1p0p1 is also the shortest well parenthesized expression over three parenthesis types with prefixD3(ŝ).
If we set b = 1, all these notations are really heavy but valid as, for any element s = pn0 of {p0}

∗, we have s̃ = 0n and
ŝ = 1n.

Lemma 3.6. Let b ≥ 1. Let s be a word of P∗b andw a word of J0, 2b− 1K
∗.

The wordDb(ŝw) belongs toDb if and only if there exists |s| + 1words, denoted byw(0),w(1), . . . ,w(|s|) of J0, 2b− 1K∗ such
that, for all i of J0, |s|K,Db(w(i)) ∈ Db and

w = w(0)s̃0w(1)s̃1 . . . w(|s|−1)s̃|s|−1w(|s|).

Proof of Lemma 3.6. Let s be a word of P∗b andw a word of J0, 2b− 1K
∗.

Obviously, ifw = w(0)s̃0w(1)s̃1 . . . w(|s|−1)s̃|s|−1w(|s|)where all thewordsDb(w(i)) belong toDb, thenDb(ŝw) also belongs
toDb, asD(ŝs̃) is a well parenthesized expression too.
Let us now fix a wordw such thatDb(ŝw) belongs toDb.
We proceed by induction on the length of the considered element s to prove that there exists a (|s| + 1)-uple of words

w(i) of J0, 2b−1K∗ satisfyingDb(w
(i)) belongs toDb for all i and such thatw = w(0)s̃0w(1)s̃1 . . . w(|s|−1)s̃|s|−1w(|s|). For s = ε,

this property is obvious.
Assuming this property is true for words of Pnb , for a fixed n ≥ 0, let us fix a word s in P

n+1
b and let w be a word of

J0, 2b− 1K∗ such thatDb(ŝw) belongs toDb. Let us define the word u as the shortest prefix ofw such thatDb(ŝnu) belongs

126 M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133

to Db. IfDb(ŝn) = pi then the last letter of umust be pi, that isDb(s̃0) and if we note w(0) = Pref|u|−1(u) (this word can be
the empty word ε), then the wordDb

(
w(0)

)
also belongs toDb.

Moreover, if we notew′ = Suff|w|−|u|(w) and s′ = Prefn(s), so that ŝw = ŝ′ŝnw(0)s̃0w′, thenDb(ŝ′w′) belongs toDb. Using
the induction hypothesis on the element s′, we obtain the following decomposition ofw:

w = w(0)s̃0w′(0)s̃′0w′(1)s̃′1 . . . w′(n−1)s̃′n−1w′(n),

wherew′(i) belongs to J0, 2b− 1K∗ andDb(w
(i)) belongs toDb for every i ∈ J0, nK.

As s̃′ i = s̃i+1, there exists n+ 2 words w(i) in J0, 2b− 1K∗, such thatDb(w(i)) belongs toDb for every i ∈ J0, n+ 1K and
satisfying:

w = w(0)s̃0w(1)s̃1 . . . w(n)s̃nw(n+1).

This concludes the induction process and ends the proof of Lemma 3.6. �

Notations 3.7. For a pair of positive integers (α, β), we callUb(α, β) the set of (β+1)-uples (w(0), w(1), . . . , w(β)) ofwords
over the alphabet J0, 2b− 1K, such that |w(0)w(1)w(β)| = 2α and for all i in J0, βK,D(w(i)) belongs toDb, that is

Ub(α, β) =

{(
w(0), w(1), . . . , w(β)

)
, Db

(
w(i)

)
∈ Db,

β∑
i=0

|w(i)| = 2α

}
.

We also denote Nb(k, l) = Card
(
Ub(

k−l
2 , l)

)
, for all integers k ≥ 3 and all integers l ≤ kwith the same parity as k.

Definition 3.8. Let w = w0w1 . . . wl be a finite word over an alphabet A and n be an integer of J0, lK. We say that a letter a
of A occurs at rank n in the wordw ifwn = a.

Proposition 3.9. Let b ≥ 1. Let us fix an integer k ≥ 3 and an element s ∈ P lb where l = k− 2a (with a ≤ b
k
2c).

The letter 1 occurs in δk(s) at rank n ∈ J0, (2b)k − 1K if and only if a ≥ 0 and there exists (l+ 1) words w(0), w(1), . . . , w(l)
ofUb(a, l) such that n =

[
w(0)s̃0w(1)s̃1 . . . w(l−1)s̃l−1w(l)

]
2b .

Proof of Proposition 3.9. Let us fix an integer l = k − 2a with a ≤ b k2c and an element s in P
l
b. Let n be an integer of

J0, (2b)k − 1K and the word w ∈ J0, 2b − 1Kk defined by w = 0k−|ρ2b(n)|ρ2b(n) so that n = [w]2b and the letter of bδ
k
(s)

occurring at rang n is bδw(s).
We first notice that δk(s)n = 1 if and only if bδw(s) = ε.
If we have δk(s)n = 1, then bδw(s) = ε because s0 cannot be reached from any element s of P∗b . As s =

bδ ŝ(ε),
we also have bδw ◦ bδ ŝ(ε) = ε, that is bδ ŝw(ε) = ε. As a consequence, the word Db(ŝw) is a well parenthesized
expression and Lemma 3.6 gives the general form of w: there exists (l + 1) words w(0), w(1), . . . , w(l) ofUb(a, l) such that
w = w(0)s̃0w(1)s̃1 . . . w(l−1)s̃l−1w(l). In particular, when |s| > k, any wordw can have this property as |s̃| > k and |w| = k.
On the other hand, if 0 ≤ a ≤ b k2c and there exists (l+ 1)wordsw

(0),w(1), . . . ,w(l) ofUb(a, l) such that

w = w(0)s̃0w(1)s̃1 . . . w(l−1)s̃l−1w(l),

then it follows that bδw(s) = bδw(0) s̃0w(1) s̃1...w(l−1) s̃l−1w(l)(s) =
bδw(l) ◦

bδ s̃l−1 ◦
bδw(l−1) ◦ · · · ◦

bδw(1) ◦
bδ s̃0 ◦

bδw(0)(s).
As wordsDb

(
w(i)

)
are well parenthesized expressions, the functions bδw(i) are all equal to the identity function over P

∗

b ,
so bδw(s) = bδ s̃l−1 ◦ · · · ◦

bδ s̃1 ◦
bδ s̃0(s) =

bδ s̃(s). From Remarks 3.5, we get bδw(s) = ε and further δk(s)n = 1. �

Corollary 3.10. Let b ≥ 1.
Let us fix some integer k ≥ 3 and an element s of P∗b .

1. If |s| = k (a = 0), the word δk(s) contains a single occurrence of the letter 1 which occurs at rank [s̃]2b and if |s| < k (a > 0),
the word δk(s) holds at least two occurrences of the letter 1.

2. For all integers k ≥ 3 and all integer l ≤ k with the same parity as k, the setUb
(k−l
2 , l

)
provides an indexation of the ranks of

occurrences of 1 in the words δk(s). This index only depends on k and l, so the number |δk(s)|1 of letters 1 in δk(s) is the same
for all s in P l.

Lemma 3.11. Let b ≥ 1. For an integer k ≥ 3 and an element s ∈ P lb with l ≤ k of same parity as k, the number of occurrences
of the letter 1 in δk(s) is given by Nb(k, l) where

Nb(k, l) = Card
(

Ub

(
k− l
2
, l
))
= b

k−l
2
l+ 1
k+ 1

(
k+ 1
k−l
2

)
.

M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133 127

Proof of Lemma 3.11. Let us begin the proof by recalling some combinatorial results. The number of well parenthesized
expressions of length 2α, α in N, over b sorts of parenthesis is bαCα where Cα =

1
α+1

(2α
α

)
is the α-th Catalan number. For all

pairs of integers (α, β), we also get:

Card (Ub(α, β)) = bα
∑

n0+···+nβ=α

β∏
j=0

Cnj .

In order to obtain a simple expression for Nb(α, β), we use some methods from analytic combinatorics. For an
introduction to these methods, one can consult the book by Flajolet and Sedgewick [13]. For a given pair of positive integers
(α, β), we set:

C(α, β) =
∑

n0+···+nβ=α

β∏
j=0

Cnj .

We also consider the generating series of Catalan numbers, noted κ:

κ(t) =
∑
n≥0

Cntn.

This series satisfies the equation κ(t) = 1+tκ(t)2 and C(α, β) = [tα] κ(t)β+1, where [tα] κ(t)β+1 represents the coefficient
of tα in κ(t)β+1, so computing the C(α, β) is equivalent to computing the coefficients of κ(t)β+1.
The trick is to compute coefficients of the series (κ(t)−1)β+1. Indeed, the series K(t) =

∑
n≥1 Cntn satisfies the equation

K(t) = t(K(t)+ 1)2, which is a Lagrangian equation: it can be written under the form K(t) = tf (K(t)) for f (x) = (x+ 1)2.
In this context, we can use the inversion theorem, so we obtain for all pairs (α, n) of positive integers:

[tα] K(t)n =
n
α

[
tα−n

]
f (t)α =

n
α

(
2α
α − n

)
.

From the functional equations satisfied by κ and K , we also get that K(t) = tκ(t)2 and it allows us to obtain:

κ(t)2n =
K(t)n

tn
and κ(t)2n+1 =

K(t)n+1

tn
+
K(t)n

tn
.

thus, we get

[tα] κ(t)2n =
[
tα+n

]
K(t)n =

n
α + n

(
2(α + n)
m

)
and

[tα] κ(t)2n+1 =
[
tα+n

]
K(t)n+1 +

[
tα+n

]
K(t)n =

n+ 1
α + n

(
2(α + n)
α − 1

)
+

n
α + n

(
2(α + n)

α

)
.

Simplifying, we obtain, for every integer n,

[tα] κ(t)2n+1 =
2n+ 1

2α + 2n+ 1

(
2(α + n)+ 1

α

)
,

Furthermore, for all pairs (α, β) of positive integers, we get:

C(α, β) = [tα] κ(t)β+1 =
β + 1

2α + β + 1

(
2α + β + 1

α

)
,

and the expression of the Nb(k, l) follows: Nb(k, l) = b
k−l
2 l+1
k+1

(k+1
k−l
2

)
. �

Lemma 3.12. for all b ≥ 2 and k ≥ 4, the application φk : a 7→ Nb(k− 1, k− 2a− 1) is strictly increasing on J1, b k2c − 1K.

This technical lemma will provide that special factors we are going to display are all different from each other.

Proof of Lemma 3.12. For k = 4 and k = 5, φk is strictly increasing as J1, b k2c − 1K is then reduced to the singleton {1}.
For k ≥ 6, we form the quotient φk(a+1)

φk(a)
for a in J1, b k2c − 2K:

φk(a+ 1)
φk(a)

=
Nb(a+ 1, k− 1− 2(a+ 1))

Nb(β, k− 1− 2a)
= b

(k− 2β − 2)(k− β)
(k− 2β)(β + 1)

,

128 M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133

and we consider the following function:

ϕ :
[
1, b k2c − 2

]
→ R

x 7→
(k−2x−2)(k−x)
(k−2x)(x+1)

we have:

ϕ′(x) =
4k
(
−4x2 + 4(k− 1)x− k2 + k− 2

)
(k− 2x)2(x+ 1)2

.

The function ϕ′ is negative on J1, b k2c − 2K, so ϕ is a decreasing function and for all integers β in J1, b k2c − 2K, we obtain:

Nb(β + 1, k− 1− 2(β + 1))
Nb(β, k− 1− 2β)

≥ bf
(
b
k
2
c − 2

)
>
b
2
,

whatever the parity of k and it implies that ϕk is strictly increasing on J1, b k2c − 1Kwhen b ≥ 2. �

In Proposition 3.9 and Lemma 3.11, we have established howmany occurrences of the letter 1 thewords δk(s) hold. Now,
we have to know more about where these occurrences take place. This is the aim of the following lemma.

Lemma 3.13. Let b ≥ 1.
Let us fix an integer k ≥ 2, an element s ∈ P lb for l = k− 2a with a in J1, b k2cK and an integer i in J1, l− 1K.

1. For every element (w(i+1), w(i+2), . . . , w(l)) ofUb(a, l− i− 1),[
s̃0 . . . s̃iw(i+1)s̃i+1w(i+2) . . . w(l−1)s̃l−1w(l)

]
2b ≤

[
s̃0 . . . s̃i(2b− 1)a0as̃i+1 . . . s̃l−1

]
2b
.

2. If (w(0), w(1), . . . , w(l)) is inUb(a, l) with at least one non empty wordw(j) among the i first ones, then[
s̃0 . . . s̃i(2b− 1)a0as̃i+1 . . . s̃l−1

]
2b
≤
[
w(0)s̃0w(1)s̃1 . . . w(l−1)s̃l−1w(l)

]
2b .

3. When a ≥ 1, there are no occurrences of the letter 1 in δk(s) between the letters 1 occurring at ranks[
s̃0 . . . s̃i(2b− 1)a0as̃i+1 . . . s̃l

]
2b and

[
s̃0 . . . s̃i−1(b)(b− 1)s̃i . . . s̃l((b)(b− 1))a−1

]
2b.

4. The rank where the Nb(k− i− 1, l− i− 1)-th the letter 1 occurs in δk(s) is
[
s̃0 . . . s̃i(2b− 1)a0as̃i+1 . . . s̃l

]
2b.

Proof of Lemma 3.13. The first three items of this lemma easily follow from the two basic facts detailed below.
The words s̃ belong to J0, b − 1K∗ and all the words which Db maps on non empty well parenthesized expressions are

words of J0, 2b− 1K∗ starting with a letter of Jb, 2b− 1K .
The second fact used is that, among the words w over J0, 2b − 1K∗ of length less than 2a which Db maps on well

parenthesized expressions, the one giving the greatest integer [w]2b isw = (2b− 1)a0a.
The fourth item can be deduced from previous items and the definition of the integers Nb(·, ·). �

We are now ready to display the right special factors ofm(b). By counting these special factors, wewill find a lower bound
of pm(b)(n+ 1)− pm(b)(n) for sufficiently large positive integers n and, by adding these inequalities, we will obtain a lower
bound for the complexity function pm(b)(n).

Lemma 3.14. Let b ≥ 2.
For every element s in P∗b , the word (x)(x)(s) occurs in m

(b).

Proof of Lemma 3.14. We first notice that every element s of P∗b occurs inm
(b), for every b ≥ 2.

If b = 2, the letter (p1p0s) occurs in m(2) for every element s of P∗2 . As m
(2) is the fixed point of 2δ, the words 2δ(p1p0s)

and 2δ
2
(p1p0s) also occur inm(2). As Pref5

(
2δ
2
(p1p0s)

)
= (x)4(s), the word (x)(x)(s) occurs inm(2).

If b ≥ 3, the letter (pb−1s) occurs in m(b) for every element s of P∗b . As m
(b) is the fixed point of bδ, words bδ(p1p0s) also

occur inm(b). As Prefb
(
bδ(pb−1s)

)
= (x)b−1(s), the word (x)(x)(s) occurs inm(b). �

Lemma 3.15. Let b ≥ 2.
Let us fix an integer k ≥ 3, and an integer n satisfying (2b)k ≤ n < (2b)k+1.
For each element s ∈ P l−1b with l = k − 2a, where a belongs to J1, b k2c − 1K, and each integer j of J1, b − 1K, the word

δk((x)(x)(pjs)) contains a special factors of length n denoted u(n,s,j).

M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133 129

Fig. 3. Construction of the right special factor u(s,n,j) .

Proof of Lemma 3.15. Let s be an element in P l−1b for l = k− 2awith a in J0, b k2c − 1K and j be an integer in J1, b− 1K.
From to Proposition 3.9, the following set of integers is the set of ranks where the letter 1 occurs in δk(p0s):

Rk(p0s) =
{[
w(0)0w(1)s0w(2) . . . w(l−1)s̃l−1w(l)

]
2b , (w

(0), w(1), . . . , w(l)) ∈ Ub (a, l)
}
,

and the following set of integers is the set of ranks where the letter 1 occurs in δk(pjs):

Rk(pjs) =
{[
w(0)jw(1)s0w(2) . . . w(l−1)s̃l−1w(l)

]
2b , (w

(0), w(1), . . . , w(l)) ∈ Ub (a, l)
}
.

Moreover, of all l-uple (w(1), . . . , w(l)) ofUb(a, l− 1), we have the following equality:[
jw(1)s0w(2)s̃1 . . . w(l−1)s̃l−1w(l)

]
2b −

[
0w(1)s0w(2)s̃1 . . . w(l−1)s̃l−1w(l)

]
2b = j(2b)

k−1.

Thus, using Lemma 3.13, the ranks where the Nb(k− 1, l− 1) first occurrences of the letter 1 in δk(pjs) can be deduced from
the ranks where the Nb(k− 1, l− 1) first occurrences of the letter 1 in δk(p0s) by adding j(2b)k−1.
On the other hand, as we have[
b(b− 1)js̃(b(b− 1))a−1

]
2b −

[
b(b− 1)0s̃(b(b− 1))a−1

]
2b = j(2b)

k−3,

so the rank of the (Nb(k− 1, l− 1)+ 1)-th occurrence of the letter 1 in δk(pjs) (according to Lemma 3.13,
rank

[
b(b− 1)js̃(b(b− 1))a−1

]
2b according to Lemma 3.13) can be deduced from the rank of occurrence of the

(Nb(k− 1, l− 1)+ 1)-th letter 1 in δk(p0s) (i. e. rank
[
b(b− 1)0s̃(b(b− 1))a−1

]
2b) by adding j(2b)

k−3.
These facts allow us to build a special factor parameterized by the element s of P l−1b and the integer j ∈ J1, b − 1K.

For all s ∈ P l−1b , we define the word u
(n,s,j) of length n extracted from δk(x)δk(x)δk(pjs) so that the last letter of u(n,s,j) is

the
[
b(b− 1)js̃(b(b− 1))a−1

]
2b-th letter of δ

k(pjs) (see Fig. 3), that is, if we set δk(x)δk(x)δk(pjs) = v0v1 . . . v3(2b)k−1 and
Rb(s, j) =

[
b(b− 1)js̃(b(b− 1))a−1

]
2b, then

u(n,s,j) = v2(2b)k+Rb(s,j)−2−nv2(2b)k+Rb(s,j)−1−n . . . v2(2b)k+Rb(s,j)−2.

The words u(n,s,j) are right special factors of m(b). Indeed, as (x)(x)(p0s) and (x)(x)(pjs) occur in m(b), the words
δk(x)δk(x)δk(p0s) and δk(x)δk(x)δk(pjs) occur in m(b) and the word u(n,s,j) can be extended on the right by the letter 1 as
a subword of δk(x)δk(x)δk(pjs) and by the letter 0 as a subword of δk(x)δk(x)δk(p0s). �

Lemma 3.16. Let b ≥ 2.
Let k ≥ 4 be an integer and n be an integer satisfying (2b)k ≤ n < (2b)k+1. The function Sn, defined below is injective.

Sn :
⋃
a∈J1,q−1K (Pb \ {p0})× P

k−2a−1
b → {0, 1}n

(n, s, j) 7→ u(n,s,j)

Proof of Lemma 3.16 . Let u(n,s,j) and u(n,s′,j′) be two words of Sn
(⋃

a∈J1,q−1K (Pb \ {p0})× P
k−2a−1
b

)
.

Assume u(n,s,j) = u(n,s
′,j′). As the letter 1 occurs Nb(k − 1, |s|) times in u(n,s,j), then Nb(k − 1, |s|) = Nb(k − 1, |s′|) and

Lemma 3.12 ensures that Nb(k− 1, |s|) injectively determines the integer |s|when k is fixed, so |s| = |s′|.
We now fix |s| = |s′| = l = k− 2a− 1. As the first occurrence of 1 in u(n,s,j) is also the first occurrence of 1 in δk(pjs), the

number of letters from this first occurrence of 1 to the end of u(n,s,j) is given by:[
b(b− 1)js̃(b(b− 1))a−1

]
2b
−

[
js̃(b(b− 1))a

]
2b
=

[
b(b− 1)j′s̃′(b(b− 1))a−1

]
2b
−

[
j′s̃′(b(b− 1))a

]
2b
.

From this equality, we get [js̃]2b = [j′s̃′]2b and furthermore j = j′ (as j and j′ are different from 0) and s = s′.
Thus, the number of occurrences of the letter 1 and their repartition in u(n,s,j) uniquely characterize the elements s and j

so Sn is injective. �

130 M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133

Fig. 4. Automaton generating the drunken man infinite words.

Proof (Lower bounds of pm(b)(n)when b ≥ 2). Let us fix an integer k ≥ 4, k = 2q + r with r in {0, 1} and an integer n
satisfying (2b)k ≤ n <(2b)k+1.
In Lemma 3.15, we have identified a family of right special factors u(n,s,j) of length n. From Lemma 3.16, the displayed

special factors are different when s varies in P l−1b , when a =
k−l
2 varies in J1, b k2c − 1K and when j varies in J1, b− 1K.

The family of special factors
{
u(n,s,j)

}
is in bijection with the set ∪a∈J1,q−1K (Pb \ {p0}) × Pk−2a−1b , so, we have at least

bk−1−br+1
b+1 special factors of length n inm(b). Then, we obtain

∀k ≥ 4,∀n ∈ J(2b)k, (2b)k+1 − 1K, pm(b)(n+ 1)− pm(b)(n) ≥
bk−1 − b2

b+ 1
.

Adding these inequalities, we get for all integers k ≥ 5 and for every integer n ∈ J(2b)k, (2b)k+1 − 1K,

pm(b)(n)− pm(b)
(
(2b)4

)
≥

1
b+ 1

k−1∑
i=4

(2b)i(bi−1 − b2)+
1
b+ 1

(
n− (2b)k

)
(bk−1 − b2),

and it follows, for all k ≥ 5 and all n in J(2b)k, (2b)k+1 − 1K:

pm(b)(n)− pm(b)
(
(2b)4

)
≥

1
b+ 1

(
(bk−1 − b2)

(
n− (2b)k

)
+

(
(2b2)k − (2b2)4

)
b(2b2 − 1)

+ b2
(
(2b)k − (2b)4

)
2b− 1

)
.

With lower bounds n
log2b b

b for bk and n
2b for (2b)

k, we obtain, for all n ≥ (2b)4:

pm(b)(n) ≥ An
1+log2b b + Bn+ C,

where the constants A, B and C only depend on b. This concludes the proof of Theorem 2.5 for b ≥ 2 as we proved
n1+log2b b = O

(
pm(b)(n)

)
. �

4. Complexity function growth order of pm(1)(n)

4.1. About the difference of behaviour

As wewill see, the combinatorial and statistical properties of the wordm(1) are closer to the drunkenman infinite words
properties than to the words m(b) ones, when b ≥ 2. Drunken man infinite words have been presented in [16]. Indeed, the
automaton generating drunken man infinite words (see Fig. 4) is very similar to the automaton generating m(1), except for
the trash state x, of course.
The difference between the behaviour of m(1) and m(b) for b ≥ 2 comes from the differences between the transition

graphs associated with pushdown automata generating them. Indeed, for b ≥ 2, the number of states of the transition
graph at fixed length from the final states grows exponentially, whereas it grows linearly for b = 1. Using substitutions,
it can be translated as follows: the number of letters s in Ab such that the iterate bδ

k
(s) contains some occurrences of the

letter 1 grows linearly for b = 1 whereas it grows exponentially for b ≥ 2 (as functions of k).
However, the proofs regarding case b = 1 use the same process as for case b ≥ 2. The methods used to find upper

bounds of complexity functions in cases b = 1 and b ≥ 2 are the same but to obtain lower bounds in case b = 1, we need
to exhibit a family of special factors which is really different from the displayed families when b ≥ 2. The family of special
factors of m(1) we are going to show is quite close to the family of special factors of drunken man infinite words, displayed
in [16].
Moreover, despite using quite heavy notations when b = 1, some propositions and lemmas detailed for case b ≥ 2 in

Section 3 are also available for b = 1. To lighten the arguments and the proofs of this section, we will use simplifications of
notations introduced in Notations 4.1.

M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133 131

Notations 4.1. We identify P∗1 with N, A1 with N ∪ {s0, x} so that:
1δ : A1 → A21

x 7→ (x)2
s0 7→ (s0)(1)
0 7→ (x)(1)

n, n > 0 7→ (n− 1)(n+ 1).

The fixed point of this substitution is:

m(1) = s0(1)(0)(2)(x)(1)(1)(3)(x)2(0)(2)(0)(2)(2)(4)(x)5(1)(1)(3)(x)(1)(1)(3)(1)(3)(3)(5)(x)10

(0)(2)(0)(2)(2)(4)(x)2(0)(2)(0)(2)(2)(4)(0)(2)(2)(4)(2)(4)(4)(6)(x)21(1)(1)(3)(x)(1)(1)(3)(1)
(3)(3)(5)(x)5(1)(1)(3)(x)(1)(1)(3)(1)(3)(3)(5)(x)(1)(1)(3)(1)(3)(3)(5)(1)(3)(3)(5)(3)(5)(5)(7)
(x)42(0)(2)(0)(2)(2)(4)(x)2(0)(2)(0)(2)(2)(4)(0)(2)(2)(4)(2)(4)(4)(6)(x)10(0)(2)(0)(2)(2)(4) . . .

and if we defineΠ1 : N ∪ {s0, x} → {0, 1} byΠ−11 ({1}) = {s0, 0}, thenm(1) = Π1
(
m(1)

)
.

4.2. An upper bound of pm(1)(n)

To find an upper bound of the complexity function, we use the following two lemmas which are the equivalent to
Lemmas 3.2 and 3.3 for case b = 1.

Lemma 4.2. For a given positive integer k, the word δk(s) contains occurrences of 1 if and only if s = s0 or s ∈ {k − 2i, i ∈
J0, b k2cK}, so we have b

k
2c + 1 letters of A1 such that δ

k(s) is different from 02
k
.

Lemma 4.3. The word x1x2 is a factor of m(1) if and only if:
1. x1x2 ∈ {(s0)(1), (x)(x), (x)(1), (x)(0), (0)(2), (1)(0)},
2. ∃n ∈ N, x1x2 = (n)(x),
3. ∃s ∈ N, s ≥ 1, ∃q ∈ J− 1, b n2cK, x1x2 = (s)(s− 2q),

These two propositions can be proved using the same arguments as for Lemmas 3.2 and 3.3. Using these two results in
the same way as for b ≥ 2, we can show that:

∀n ≥ 1, pm(1)(n) ≤
n
4

(
(log2 n)

2
+ 22 (log2 n+ 2)

)
,

which implies that pm(1)(n) = O
(
n(log2 n)2

)
.

4.3. A lower bound of pm(1)(n)

To obtain a lower bound of the complexity function of m(1), we will use some results presented in Section 3.2. Indeed,
Proposition 3.9, Lemmas 3.11 and 3.13 are valid for b = 1. With new notations, Proposition 3.9 and Lemma 3.11 become
the following two results.

Proposition 4.4. Let us fix an integer k ≥ 3 and an element s = k− 2a of N with (a ≤ b k2c).
The letter 1 occurs in δk(s) at rank n ∈ J0, 2k − 1K if and only if a ≥ 0 and there exists (s+ 1) words w(0), w(1), . . . , w(s) of

U1(a, s) such that n =
[
w(0)0w(1)0 . . . w(s−1)0w(s)

]
2 .

Lemma 4.5. Let b ≥ 1. For an integer k ≥ 3 and an element s = k − 2a of N with 0 ≤ a ≤ b k2c, the number of occurrences of
the letter 1 in δk(s) is given by N1(k, s) where

N1(k, s) = Card (U1 (a, s)) =
s+ 1
k+ 1

(
k+ 1
a

)
.

From Proposition 4.4 and Lemma 3.13, we also get the following proposition:

Proposition 4.6. Let k ≥ 2 be a positive integer and s = k− 2a be an element of N for a in J1, b k2cK.
The word δk (s) contains at least two occurrences of 1. Moreover, the rank of the first occurrence of the letter 1 in δk (s) is

given by [0s(10)a]2 and the rank of the last two occurrences of the letter 1 in δk (s) are given by
[
1a−1010k−a−1

]
2 and

[
1a0k−a

]
2

respectively.

Starting from these three results, we are going to find a family of special factors ofm(1). A first remark is that we cannot
copy what we have already done for b ≥ 2. Indeed, special factors displayed in case b ≥ 2 come from pairs of words of type
δk ((x)(x)(s)) and δk

(
(x)(x)(s′)

)
, where (s, s′) ∈ Pb are of same length, that is s and s′ are at same distance from ε. It is not

possible to use the same constructionwhen b = 1 as there is only one letter s in P1 = N at each distance from 0. Fortunately,
we can find a family of special factors using the phenomenon presented in the following proposition.

132 M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133

Fig. 5. Construction of the special factorw(n,a,a′) .

Proposition 4.7. For all s in N with s ≥ 2, for all q ∈ J0, b s2cK, the words (s− 2)(s)(s− 2q) and (s− 2)(s)(x) occur in m
(1).

This proposition can be shown easily by noticing that the words (s− 1)(s− q+ 1) and (s− 1)(x) occur in m(1) (see
Lemma 4.3) so their images by 1δ also occur in m(1) as m(1) is the fixed point of 1δ. Their images 1δ((s− 1)(s− q+ 1))
and 1δ((s− 1)(x)) contain the word (s− 2)(s)(s− 2q) and the word (s− 2)(s)(x) respectively.

From Proposition 4.7, we can display a family of special factors ofm(1) using pairs of words of type δk ((s− 2)(s)(s− 2q))
and δk((s− 2)(s)(x)). This is very similar to drunken man infinite words case (see [16]).
For all integers k ≥ 2 and all integers n such that 2k ≤ n < 2k+1, we construct a special factor w(n,a,a

′) for each pair of
integers (a, a′) such that 1 ≤ a ≤ a′ ≤ b k2c.
The factorw(n,a,a

′) is extracted from δk
(
(k− 2(a+ 1))(k− 2a)(k− 2a′)

)
such that the last letter ofw(n,a,a

′) is the letter
before the first occurrence of 1 in δk

(
k− 2a′

)
. The factorw(n,a,a

′) can also be extracted from δk ((k− 2(a+ 1))(k− 2a)(x)),
followed by the letter 0 so the factorw(n,a,a

′) is a special factor (see Fig. 5).
If thewordw(n,a,a

′) contains at least two occurrences of the letter 1, fromProposition 4.6, the length for the block of letters
0 between the last two occurrences of the letter 1 inw(n,a,a

′) which are the last two occurrences of the letter 1 in δk
(
pk−2a

)
,

that is
[
1a0k−a

]
2 −

[
1a−1010k−a−1

]
2 totally characterize a, and the length of the ending block of letters 0 of w

(n,a,a′), that

is 2k −
[
1a0k−a

]
2 +

[
0k−2a(10)a

′
]
2
totally characterize a′. To use this argument, we only need to be sure that the last two

occurrences of the letter 1 of δk
(
pk−2a

)
actually occur inw(n,a,a

′), so we need the following technical condition:

2k −
[
1a−1010k−a−1

]
2 +

[
0k−2a

′

(10)a
′
]
2
≤ n,

that is,

2k−a + 2k−a−1 +
22a
′
+3
− 2
3

≤ n.

This condition is actually realized if 1 ≤ a ≤ a′ ≤ b k2c − 2 when k ≥ 6.
Thereby, we have found a family of special factors of length n, given by {w(n,a,a

′), 1 ≤ a ≤ a′ ≤ b k2c − 2}, which are

different from each other when k ≥ 6. As a consequence,m(1) has at least

(
b
k
2 c−2

)(
b
k
2 c−1

)
2 different special factors of length

n ∈ J2k, 2k+1 − 1Kwhen k ≥ 6.
It follows a lower bound of pm(1)(n+ 1)− pm(1)(n), for all integers k ≥ 6 and all integers n such that 2

k
≤ n < 2k+1,

pm(1)(n+ 1)− pm(1)(n) ≥

(
b
k
2c − 2

) (
b
k
2c − 1

)
2

≥
(k− 5) (k− 3)

8
,

and, by adding these inequalities, we also obtain a lower bound of pm(1)(n), for all integers n ≥ 26, under the form
pm(1)(n) ≥ n

(
A(log2 n)2 + B log2 n+ C

)
+ D, that is n(log2 n)2 = O

(
pm(1)(n)

)
.

5. Open questions

The family presented here was first studied to obtain examples of q∞-automatic words with complexity more than n1+ε
with ε > 0. In view of the results, the next step is to establish whether or not we can find examples of q∞-automatic words,
with complexity satisfying pm(n)� n2 , and also to see if it is actually possible to reach the upper bound announced in [15].
Another motivation for this article is the nature of involved languages of integer expansions, which are context-free.

Indeed, it would be interesting to know the possible growth orders of complexity functions of characteristic words of
context-free languages in general. This question will probably need other tools, as many context-free languages cannot
be constructed with the same kind of countable automata used in this article, for example because of the existence of ε-
transitions in the associated pushdown automaton or for determinism issues.
The property of recognizability by countable automata is, in itself, an interesting topic. Indeed, the notion of

recognizability by countable automata is different whether we choose to read integer expansions from the most to the
least significant digit as we have done in this article, or from the least to the most significant digit (examples presented here
are recognizable in both reading directions).

M. Le Gonidec / Theoretical Computer Science 407 (2008) 117–133 133

References

[1] B. Adamczewski, Y. Bugeaud, On the complexity of algebraic numbers I. expansions in integer bases, Annals of Math. 165 (2007) 547–565.
[2] J.-M. Autebert, J. Berstel, L. Boasson, Context-free languages and pushdown automata, in: Handbook of formal languages, vol. 1, Springer, 1997,
pp. 111–174.

[3] J.-P. Allouche, Sur la complexité des suites infinies, Bull. Belg. Math. Soc. Simon Stevin 1 (2) (1994) 133–143.
[4] J.-P. Allouche, J. Shallit, Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, 2003.
[5] J. Cassaigne, Special factors of sequences with linear subword complexity, in: Developments in language theory (Magdeburg, 1995), World Sci.
Publishing, 1996, pp. 25–34.

[6] J. Cassaigne, Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin 4 (1) (1997) 67–88.
[7] D. Caucal, On the regular structure of prefix rewriting, Theoret. Comput. Sci. 106 (1992) 61–86.
[8] D. Caucal, On infinite transition graphs having a decidable monadic theory, Theoret. Comput. Sci. 290 (2003) 79–115.
[9] J. Cassaigne, F. Nicolas, Subword complexity, 2008, Preprint.
[10] A. Cobham, Uniform-tag sequences, Math. Syst. Theory 6 (1972) 164–192.
[11] N. Chomsky, M.-P. Schürtzenberger, The algebraic theory of context-free languages, in: P. Braffort, D. Hirshberg (Eds.), Computer Programming and

Formal Systems, North-Holland, 1966, pp. 195–242.
[12] S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Math. 206 (1-3) (1999) 145–154.
[13] P. Flajolet, R. Sedgewick, Analytic combinatorics, Preliminary version, Available on: http://algo.inria.fr/flajolet/Publications/books.html. 2007.
[14] P. Kůrka, Topological and Symbolic Dynamics, in: Cours spécialisés, vol. 11, SMF, 2003.
[15] M. Le Gonidec, Sur la complexité de mots infinis engendrés par des q-automates dénombrables, Ann. Inst. Fourier 56 (7) (2006) 2463–2491.
[16] M. Le Gonidec, Drunken man infinite words complexity, RAIRO/ITA, 2007 (in press).
[17] C. Mauduit, Propriétés arithmétiques des substitutions et automates infinis, Ann. Inst. Fourier 56 (7) (2006) 2525–2549.
[18] D. Muller, P. Schupp, The theory of ends, pushdown automata and second-order logic, Theoret. Comput. Sci. 37 (1985) 51–75.
[19] J.-J. Pansiot, Complexité des facteurs des mots infinis engendrés par morphismes itérés, Lecture Notes in Comp. Sci. 172 (1985) 380–389, Automata,

Languages and Programming (Antwerp, 1984).
[20] N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, in: V. Berthé, S. Ferenczi, C. Mauduit, A. Siegel (Eds.), in: Lect. Notes in

Math., vol. 1794, Springer, 2002.
[21] D. Perrin, J.-E. Pin, Infinite Words. Automata, Semi-groups, Logic and Games, in: Pure and Applied Math., vol. 141, Elsevier, 2004.
[22] L. Staiger, Kolmogorov complexity of infinite words, CDMTCS Research Report Series 279 (2006).
[23] C. Stirling, Language theory and infinite graphs, Marktoberdorf summerschool, 2005, Notes for Logical Aspects of Secure Computer Systems.
[24] W. Thomas, An short introduction to infinite automata, in: Proceedings of the International Conference of Developments in Language Theory,

in: Lecture Notes in Comput. Sci., vol. 2295, Springer, 2002, pp. 130–144.
[25] G. Viennot, Enumerative combinatorics and algebraic languages, in: Fundamentals of Computation Theory, in: Lecture Notes in Comput. Sci., vol. 199,

Springer, 1985, pp. 450–464.

http://algo.inria.fr/flajolet/Publications/books.html

	On complexity functions of infinite words associated with generalized Dyck languages
	Introduction
	Well-parenthesized integers and infinite words associated with Dyck's languages
	Definitions
	Main theorem and sketch of proof
	Alternative constructions of words {m(b), bgeq 1}
	Construction by countable automaton
	Construction by substitution and projection

	Complexity function growth orders for pm(b)(n) when bgeq 2
	Upper bounds of pm(b)(n) when bgeq 2
	Lower bounds of pm(b)(n) when bgeq 2

	Complexity function growth order of pm(1)(n)
	About the difference of behaviour
	An upper bound of pm(1)(n)
	A lower bound of pm(1)(n)

	Open questions
	References

