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a b s t r a c t

We draw attention to combinatorial network abstraction problems. These are specified by
a class P of pattern graphs and a real-valued similarity measure % that is based on certain
graph properties. For a fixed pattern P and similarity measure %, the optimization task on
a given graph G is to find a subgraph G′ ⊆ G which belongs to P and minimizes %(G,G′). In
this work, we consider this problem for the natural and somewhat general case of trees and
distance-based similarity measures. In particular, we systematically study spanning trees
of graphs that minimize distances, approximate distances, and approximate closeness-
centrality with respect to standard vector- and matrix-norms. Complexity analysis within
a unifying framework shows that all considered variants of the problem are NP-complete,
except for the case of distance-minimization with respect to the norm L∞. If a subset
of edges can be ”forced” into the spanning tree, no polynomial-time constant-factor
approximation algorithmexists for the distance-approximation problems unless P = NP.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

Network analysis aims to algorithmically expose certain meaningful structures and characteristics of a complex network
that can be considered essential for its functionality (see, e.g., [3] for a recent survey). These structures might explain network
functionality and the inter-relationships between its members on several levels of aggregation. A (simple) sub-network
containing only the essential parts of a given network is what we refer to as a network abstraction.

In this work, we formalize the combinatorial network abstraction problem by specifying a class P of admissible pattern
graphs and a real-valued similarity measure % that rates the degree of correct approximation of a given graph G by a
subgraph G′ ⊆ G based on certain graph properties. For a fixed pattern class P and a fixed measure %, the optimization
task is to find for any input graph G a subgraph G′ which belongs to P such that %(G,G′) is minimal. Notably, the dual
problem of fixing %(G,G′) and finding a graph class P that meets this constraint has been considered extensively in the
literature, whereas our approach seemingly has not yet been systematically investigated.

We restrict ourselves to trees as the class of pattern graphs in this work since they are the most sparse and simple
subgraphs that may connect all vertices of a network (however, many results easily carry over to related structures such as
spanning subgraphs with a restricted number of edges). Moreover, for several applications the use of spanning trees as an
approximation of the network has some promising advantages:

(1) Understanding network dynamics. A recent study [15] of communication kernels (which handle the majority of network
traffic) shows that the organization of many complex networks is heavily influenced by their scale-free spanning trees.

I An extended abstract of this work appears in the proceedings of the 16th Annual International Symposium on Algorithms and Computation (ISAAC’05),
Springer LNCS 3827, pp. 1100–1109, held in Sanya, PR China, December 19–21, 2005.
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Fig. 1. With respect to the norm L∞ , distance-minimization and distance-approximation do not provide good approximate solutions for each other. Whilst
the upper spanning tree provides a minimum diameter spanning tree for G, it approximates an optimal distance-approximating spanning tree only by a
factor of Θ(`) = Θ(‖V‖). The lower spanning tree is an optimal distance-approximating spanning tree for G but suboptimal with respect to minimizing
‖DT‖L,∞ . Note that there is no spanning tree for G which provides an optimal solution to both problems.

(2) Guiding graph-layout for large networks. We can use elegant tree-layout algorithms for drawing a tree that closely reflects
the main characteristics of a given network.

(3) Compressing networks. Even with most complex networks being sparse themselves, abstraction by trees reduces network
sizes significantly. Without essentially changing the network characteristics, this is worthwhile given storage limitations
and time requirements.

As to suitable graph properties (i.e., those for which a high amount of similarity between a network and its abstraction is
desirable), this work concentrates on distances as an inherent graph property. To quantify this degree of similarity, we use
standard vector and matrix norms ‖ · ‖r (see Section 1.4 for a review and definitions) on the distance matrix DG of an input
graph G = (V, E) and the distance matrices of its spanning trees. To this end, we consider the following three optimization
problems:

(1) Find a spanning tree that minimizes distances. This corresponds to a similarity measure%r(G, T) = ‖DT‖r . As an example, for
the L1 norm the tree realizing the minimum is known as the minimum average distance tree (or, MAD-tree for short) [13,
8]. For the L∞ matrix norm, the tree realizing the minimum is known as the minimum diameter spanning tree [6,11].

(2) Find a spanning tree that approximates distances. This corresponds to a similarity measure %r(G, T) = ‖DT − DG‖r . As an
example, using the L∞ matrix-norm here we would be searching for a tree that, for all vertex pairs, does not exceed a
certain amount of additive increase in distance. Such trees are known as additive tree-spanners [17]. With the L1 norm,
we would again be looking for a MAD-tree.

(3) Find a spanning tree that approximates centralities. In this paper, we consider the popular notion of closeness centrality
[2,23] which, for any graph G = (V, E) and vertex v ∈ V , is defined as cG(v) = (

∑
t∈V dG(v, t))−1. The optimization problem

is then based on the similarity measure %r(G, T) = ‖cG − cT‖r for some vector norm ‖ · ‖r .

Note that—except for the L1 matrix-norm—distance-minimizing spanning trees and optimal distance-approximating
spanning trees typically cannot be used to provide good approximate solutions for each other. An example for this (with
respect to L∞) is given in Fig. 1.

1.2. Results

We study the impact of the norm on the computational complexity of the above-mentioned network abstraction
problems. For computing distance-minimizing spanning trees, two results have already been known, namely that there
exists a polynomial-time algorithm for computing a minimum diameter spanning tree [6,11] and that it is NP-complete
to decide on input (G, γ) whether there is a spanning tree T of G such that ‖DT‖L,1 ≤ γ [13]. For distance-approximating
spanning trees, even for L1 and L∞, no such results have so far been established to the best of our knowledge.1 We close this
gap here.

• In Section 3, we prove that deciding whether there exists a spanning tree T such that ‖DT‖r ≤ γ for any given instance
(G, γ) is NP-complete for all matrix norms within our framework where complexity has been unknown so far. We also
consider fixed-edge versions of this problem (as, e.g., in [5]), meaning that problem instances may specify a set of edges E0
that must be contained in the spanning tree. If we allow arbitrary edge sets for E0, then even the minimum diameter
spanning tree problem becomes NP-complete.
• In Section 4, we prove that deciding whether there is a spanning tree T of G such that ‖DT − DG‖ ≤ γ for any given

instance (G, γ) is NP-complete for all matrix norms within our framework, i.e., essentially for all standard norms (with
exception of the spectral norm, a case which is left open). This is somewhat surprising, since at least in the case of L∞ one
might have hoped for a polynomial-time algorithm based on the polynomial-time algorithms for computing minimum
diameter spanning trees. We also prove that the fixed-edge versions of finding optimal distance-approximating spanning
trees cannot be polynomial-time-approximated within a constant factor unless P = NP.
• Finally in Section 5, we prove that with respect to closeness centrality deciding whether there is a spanning tree T such

that ‖cG − cT‖r ≤ γ for any given instance (G, γ) is NP-complete for the L1 vector-norm.

1 Note that in contrast to some claims in the literature the results in [18] do not provide a proof for the NP-completeness of deciding whether there is a
spanning tree T with ‖DT − DG‖L,∞ ≤ γ, neither does an easily conceivable adaption.
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1.3. Related work

In addition to the already mentioned minimum diameter spanning trees [6,11] and MAD-trees [13,8], there are several
notions of distance-approximability by trees that have been considered in the literature. One variant is obtained by
considering the stretch dT(u, v)/dG(u, v) over all distinct vertices u, v ∈ V . If the stretch is at most γ, then the tree is called
γ-multiplicative tree spanner (see, e.g., [22]). Finding a minimum maximum-stretch tree is NP-hard even for unweighted
planar graphs [10], and cannot be approximated by a factor better than (1+

√
5)/2 unless P = NP [19]. The problem of finding

the minimum average-stretch tree is also NP-hard [13]. Recently, combinations of additive and multiplicative tree-spanners
have been proposed [9].

Spanning subgraphs (not only trees) with certain bounds on distance increases have been intensively studied since the
pioneering work in [1,21,7]. The most general formulation of a spanner problem is the following [18]: a spanning subgraph
H of G is an f (x)-spanner for G if and only if dH(u, v) ≤ f (dG(u, v)) for all u, v ∈ V(G). As examples, for f (x) = t + x we obtain
additive t-spanners, and for f (x) = t · x we obtain multiplicative t-spanners. The computational problem then is to find an
f (x)-spanner with the minimum number of edges, a problem somewhat dual to ours (as it fixes a bound on the distance
increase and tries to minimize the size of the subgraphs, whereas we fix the size of the subgraph and try to minimize the
bounds).

In a series of papers, the hardness of the spanner problems has been exhibited [20,5,4,16]. The version of this problem
that is probably the closest to the problems we consider here is to ask for a given graph G and two given parameters m, t
if there exists is an additive t-spanner for G with no more than m edges. This problem is NP-complete [18]. In the case that
m = n−1 is fixed, the problem considered in [18] becomes the problem of finding the best possible distance-approximating
spanning tree with respect to ‖ · ‖L,∞. However, their NP-completeness proof relies heavily on the number of edges in the
instance and hence a translation to an NP-completeness proof for the tree case is not obvious.

1.4. Notation

We consider simple, undirected and unweighted graphs G = (V, E). For two vertices v,w ∈ V , the distance between v and
w in G, defined as the minimum length of a path in G starting in v and ending in w, is denoted by dG(v,w). The corresponding
distance matrix is denoted by DG, i.e., the entries in DG satisfy DG[i, j] = dG(vi, vj). Clearly, DG is symmetric with all entries
being non-negative. Moreover, for any spanning tree T of a graph G, we have for all vi, vj ∈ V that DT[i, j] ≥ DG[i, j]. We use
the following well-known norms to evaluate a matrix A in Rn×n:

1. The Lp norms ‖A‖L,p
def
=
(∑n

i=1
∑n

j=1 |ai,j|
p
)1/p for 1 ≤ p <∞.2

2. The L∞ norm ‖A‖L,∞
def
= maxi,j∈{1,...,n} |ai,j|.

3. The maximum column sum norm ‖A‖1
def
= maxj∈{1,...,n}

∑n
i=1 |ai,j|.

4. The maximum row sum norm ‖A‖∞
def
= maxi∈{1,...,n}

∑n
j=1 |ai,j|.

Trivially, for symmetric matrices we have ‖A‖1 = ‖A‖∞. Thus, all our results regarding the maximum column sum norm
also hold for the maximum row sum norm (and vice versa). Therefore, we only consider the maximum column sum norm
in our results to avoid redundancy.

2. Gadgets

2.1. Graph representation of X3C instances

The NP-complete Exact-3-Cover problem is defined as follows:

Exact-3-Cover (X3C)
Input: A family C = {C1, . . . , Cs} of 3-element subsets of a set L = {l1, . . . , l3m}.
Question: Does there exist a subfamily S ⊆ C of pairwise disjoint sets such that

⋃
A∈S = L?

A subfamily S satisfying the required properties is called an admissible solution to an instance (C, L). Suppose we are
given an X3C instance (C, L). Let a and b be arbitrary natural numbers. Following a construction from [13], we define a graph
Ga,b(C, L) illustrated in Fig. 2. It consists of the vertex set

V
def
= C ∪ L ∪ {r1, . . . , ra}︸ ︷︷ ︸

def
= R

∪ {x}︸︷︷︸
def
= X

∪ {k1,1, . . . , k1,b, k2,1, . . . , k2,b, . . . , k3m,1, . . . , k3m,b}︸ ︷︷ ︸
def
= K

.

2 In the last part of the paper, we use Lp norms for vectors as well: for any vector x ∈ Rn , define ‖x‖p
def
= (

∑n
i=1 |xi|

p)1/p for 1 ≤ p <∞.



4 S. Eckhardt et al. / Theoretical Computer Science 407 (2008) 1–20

Fig. 2. Graph representation of an X3C instance and a corresponding solution tree.

Since the image somewhat resembles a helicopter, for the sake of readability we identify the vertices from the different sets
as rotor (vertices from R), axis (vertex x), upper body (vertices from C), lower body (vertices from L) and skid vertices (vertices
from K). The edge set is defined as follows

E
def
=
{
{rµ, x} | µ ∈ {1, . . . , a}

}
∪
{
{Cµ, x} | µ ∈ {1, . . . , s}

}
∪
{
{lµ, Cν} | lµ ∈ Cν

}
∪
{
{lµ, lν} | µ, ν ∈ {1, . . . , 3m}

}
∪
{
{kµ,ν, lµ} | µ ∈ {1, . . . , 3m} and ν ∈ {1, . . . , b}

}
.

As with the vertices, we give names to the different groups of edges:

• For all µ ∈ {1, . . . , a}, the edge {rµ, x} is called a rotor edge.
• For all µ ∈ {1, . . . , 3m} and ν ∈ {1, . . . , b}, the edge {kµ,ν, lµ} is called a skid edge.
• For all µ ∈ {1, . . . , s} the edge {Cµ, x} is called an axis edge.
• For all µ ∈ {1, . . . , s} and ν ∈ {1, . . . , 3m}with lν ∈ Cµ, the edge {Cµ, lν} is called a central edge.
• For all µ, ν ∈ {1, . . . , 3m}, the edge {lµ, lν} is called hull edge.

Proposition 1. Let (C, L) be an X3C instance and a, b be natural numbers. Suppose T is a spanning tree of the graph Ga,b(C, L).

(1) All rotor edges and all skid edges are in the tree.
(2) If for some upper body vertex Cµ, T does not contain the axis edge {Cµ, x}, then we have dT(Cµ, rν) ≥ 4 and dT(Cµ, rν) ≥

dGa,b(C,L)(Cµ, rν)+ 2 for all rotor vertices rν.
(3) If for some lower body vertex lµ there is no adjacent central edge in T, then for every rotor vertex rκ and we have dT(lµ, rκ) ≥ 4

and dT(lµ, rκ) ≥ dGa,b(C,L)(lµ, rκ)+1, and for every skid vertex kµ,λ adjacent to lµ, we have dT(kµ,λ, rκ) ≥ 5, and dT(kµ,λ, rκ) ≥
dGa,b(C,L)(kµ,λ, rκ)+ 1.

Given an admissible solution S to an X3C instance (C, L), we can identify a corresponding spanning subgraph TS called
solution tree in Ga,b(C, L) through the edge set consisting of all rotor edges, all axis edges, all skid edges and, for all Cν ∈ S
and lµ ∈ Cν, the central edge {Cν, lµ}.

Proposition 2. Let (C, L) be an X3C instance having an admissible solution S ⊆ C, let a and b be natural numbers, and let TS be
a solution tree in Ga,b(C, L) that corresponds to S.

(1) Every upper body vertex Cµ has degree one or four in TS .
(2) Let u be the axis vertex or a rotor vertex and v ∈ V . Then dTS (u, v) = dGa,b(C,L)(u, v).
(3) For any two upper body vertices Cµ, Cν, dTS (Cµ, Cν) = dGa,b(C,L)(Cµ, Cν).

Lemma 3. Let (C, L) be an X3C instance, a, b ∈ N, and let T be any spanning tree of the graph Ga,b(C, L). There exists an admissible
solution S ⊆ C such that T = TS if and only if the following conditions are satisfied:

(1) The tree T contains all axis edges.
(2) For every lower body vertex lµ, there is an upper body vertex Cν such that T contains the central edge {lµ, Cν}.
(3) An upper body vertex Cµ has either four neighbors in T or one.

Proof. Clearly, the three conditions are necessary for a tree TS to correspond to an admissible solution S. For the other
direction, suppose the tree T satisfies all conditions. By the first and second conditions, for every two lower body vertices
lµ, lν (with µ 6= ν), there exist upper body vertices Cκ, Cλ such that the path (lµ,Cκ, x,Cλ, lν) exists in T. Thus the hull edge
{lµ, lν} cannot belong to T. Consequently, using the third condition, we obtain an admissible solution by defining S to consist
of all Cµ having exactly four neighbors in T. �
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Fig. 3. Construction of a 2HS gadget G(C,S, k). The dashed paths that are drawn bold consist solely of edges that must be contained in a spanning tree for
the graph.

2.2. Graph representation of 2HS instances

The NP-complete 2-Hitting Set problem is defined as follows3:

2-Hitting Set (2HS)
Input: A family C of m 2-element subsets of a set S = {s1, . . . , sn} and k ∈ N.
Question: Does there exist a subset S′ ⊆ S such that ‖S′‖ ≤ k and for each µ ∈ {1, . . . ,m}, there is at least one
element in Cµ ∩ S′?

A subset S′ ⊆ S having the required properties is called an admissible solution to a 2HS instance (C,S, k). Suppose we are
given an instance (C,S, k) of 2HS where ‖C‖ = m and ‖S‖ = n. We define the graph G(C,S, k) to consist of:

• the three vertices a, a′, and b.
• for each sµ ∈ S, two vertices vµ and v′µ called connection vertices. Both vµ and v′µ are connected via a path

(vµ, u
µ
1 , . . . , uµm+1v

′

µ) of length m + 2 called elongation path and a path (vµ, v
µ
1 , . . . , vµmv′µ) of length m + 1 called the

literal path. Each such subgraph is called a literal gadget Gµ.
• for each clause Cµ = {sν, sκ} ∈ C, a path of length 2n(m+2), called clause path, connecting vνµ with vκµ and a path of length

2n(m+ 2), called safety path, connecting vνµ with a′.

The construction is illustrated in Fig. 3.
In each spanning tree T of the gadget, all cycles must be broken. The main idea behind the gadget is that the literal paths

are tuned such that they are exactly one edge longer than the elongation paths. If we restrict ourselves to consider only the
subset of all spanning trees which contain all edges of all clause paths, then the cycles induced by the clause paths can only be
broken by destroying a certain amount of literal paths, each such destruction causes the distance between a and b to increase
by exactly one. This increase is called the penalty. The following lemma formalized this idea.

Lemma 4. Let (C,S, k) be an instance of 2HS. Then we have dG(C,S,k)(a, b) = 2+ n(m+ 2). Moreover, there exists an admissible
solution S′ ⊆ S to (C,S, k) if and only if there exists a spanning tree T of G(C,S, k) containing all edges in the clause paths such
that dT(a, b) ≤ dG(C,S,k)(a, b)+ k.

Proof. The first statement follows from the observation that any path from a to b using a clause or safety path has length at
least 2+ 2n(m+ 2) while the shortest path between a and b via literal or elongation paths has length n(m+ 1)+ n+ 2. For
the second statement, we prove the two directions separately.

(⇒) Suppose S′ is an admissible solution to (C,S, k), i.e., ‖S′‖ ≤ k. Construct a spanning tree of G(C,S, k) as follows:

(1) For each clause Cµ = {sν, sκ} ∈ C do the following: if sν ∈ S′, then remove the edge {vνµ−1, v
ν
µ}. If sκ ∈ S′, then remove

the edge {vκµ−1, v
κ
µ}. (We denoted vν0 = vν and vκ0 = vκ here.) If not both sν and sκ are elements of S, then remove an edge

from the safety path between sν and a′.4
(2) For each sµ ∈ S′, remove edge {vµm, v′µ}.
(3) For each sµ 6∈ S′, remove the edge {vµ, u

µ
1 }.

Note that no edge from a clause path was removed. We ensured that each cycle induced by the literal and elongation paths
is broken because at least one edge is removed by second and third construction rule. The cycles induced by the clause and
safety paths are broken by the first and third construction rule: For each clause Cµ = {sν, sκ} ∈ C, at least one of the sets
{{vνµ−1, v

ν
µ}, {v

ν
m, v′ν}} and {{vκµ−1, v

κ
µ}, {v

κ
m, v′κ}} is removed, thus either vνµ or vκµ is not reachable via the clause path from vν or v′ν

(vκ or v′κ, respectively). An edge from the safety path is removed, except if both {{vνµ−1, v
ν
µ}, {v

ν
m, v′ν}} and {{vκµ−1, v

κ
µ}, {v

κ
m, v′κ}}

are removed, in which case neither vνµ nor vκµ is reachable via the clause path from any of vν, v′ν, vκ, v′κ. A cycle induced by

3 2HS is better known as Vertex Cover. For the sake of readability (i.e., to avoid an overuse of the terms ”vertices” and ”edges”), we use the 2HS
formulation.

4 Without the safety paths, the given edge removal scheme might leave a clause gadget disconnected in T.
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multiple clause paths not leading via any connection vertices cannot occur, since the connection is broken at one of the
literals in S′. As a result, there is a path between a and b in T leading via elongation (sµ ∈ S′) or literal (sµ 6∈ S′) paths. By
means of construction, the distance via a literal path is shorter by one than the distance via an elongation. Therefore,

dT(a, b) = 2+ (n− ‖S‖)(m+ 2)+ ‖S‖(m+ 3) ≤ dG(C,S,k)(a, b)+ k.

(⇐) Suppose T is a spanning tree of G(C,S, k) containing all edges of the clause paths and satisfying dT(a, b) ≤
dG(C,S,k)(a, b)+ k. Since dG(C,S,k)(a, b)+ k ≤ 2+n(m+3) < 2+2n(m+2), the path cannot lead via any clause or safety paths.
Hence, it must lead via literal and elongation paths only. The length of any (intact) elongation path is m + 2, the length of
any (intact) literal path is m + 1. Therefore, the path from a to b leads over exactly k elongation paths. Let S′ be the set of
literals sµ for which the path leads from vµ to v′µ via an elongation path. Here, the literal path must be broken (due to the
minimality of the path length). Conversely, for every sµ 6∈ S′, the literal path is not broken, i.e., (vµ, v

µ
1 , . . . , vµm, v′µ) is a path

in T. Assume we have for any clause Cµ = {sν, sκ} ∈ C (where ν < κ) that Cµ ∩ S′ = ∅. The clause path connects vνµ with vκµ.
Since sν, sκ 6∈ S′, the vertex vνµ is connected to v′ν is connected to vκ is connected to vκµ which is a contradiction to T being a
tree. �

3. Trees that minimize distances

In this section, we consider the problem of computing spanning trees of given graphs that minimize distances among the
vertices of the graph under certain matrix norms.

Problem: DMST (with respect to ‖ · ‖r)
Input: A connected graph G and an algebraic number γ
Question: Does G contain a spanning tree T with ‖DT‖r ≤ γ?

We also consider the fixed-edge version of this problem. Here, the input is a graph G, an edge set E0 ⊆ E(G), and an algebraic
number γ, and the question is whether there exists a spanning tree T such that E0 ⊆ E(T) and ‖DT‖r ≤ γ.

We begin with our study by proving that computing distance-minimizing spanning trees is computationally hard under
the Lp matrix-norm for all reasonable 1 ≤ p < ∞. Note that the case p = 1 corresponds to the MAD-tree problem which
was shown to be NP-complete in [13]. In fact, our proof generalizes the X3C-based proof technique from [13].

Theorem 5. DMST with respect to ‖ · ‖L,p is NP-complete for all p ∈ N+.

Proof. Containment in NP is obvious. We prove the hardness by reduction from X3C using the graph representation
Ga,0(C, L) for any X3C instance (C, L). We will fix the parameters a and γ in an appropriate manner later, so that (C, L)
has an admissible solution S ⊆ C if and only if Ga,0(C, L) has a spanning tree T such that ‖DT‖

p
L,p ≤ γ

p.
Suppose S ⊆ C is an admissible solution to instance (C, L). Let TS be the corresponding spanning tree of Ga,0(C, L). Define:

N
def
=

∑
u,v∈V and

u∈R∪X or v∈R∪X

dGa,0(C,L)(u, v)
p and M

def
=

∑
u,v∈C∪L

dTS (u, v).

By Proposition 2, N remains unchanged if the distances in Ga,0(C, L) are replaced by the distances in TS . We now set our
parameters as follows:

a
def
=

⌈
M

4p − 3p

⌉
and γ def

= (N +M)1/p.

Clearly, ‖DTS‖
p
L,p = N +M = γp. Thus, TS is a spanning tree of Ga,0(C, L) having the desired distance property.

Suppose T is a spanning tree of Ga,0(C, L) such that ‖DT‖
p
L,p ≤ γ

p. We apply the characterization of a solution tree specified
in Lemma 3 and show by contradiction that all conditions are satisfied. Note that, by Proposition 2, N is a lower bound for
the p-distance sum between vertices in R ∪ X.

• Assume to the contrary that some axis edge {Cµ, x} is not in T. Then, for the corresponding upper body vertex Cµ,
dT(Cµ, x) ≥ 3 and for all rotor vertices rν, dT(Cµ, rν) ≥ 4. Thus, ‖DT‖

p
L,p ≥ N − 1p

− 2pa+ 3p
+ 4pa and we conclude

‖DT‖
p
L,p − γ

p
≥ 3p
− 1+ a(4p

− 2p)−M > 1+M
(4p
− 2p)

4p − 3p
−M > 1,

a contradiction.
• Assume to the contrary that there is some lower body vertex lµ not adjacent to any upper body vertex Cν in T. Then,
‖DT‖

p
L,p ≥ N − 2p

− 3pa+ 3p
+ 4pa and we conclude

‖DT‖
p
L,p − γ

p
≥ 3p
− 2p
+ a(4p

− 3p)−M > 1+M
(4p
− 3p)

4p − 3p
−M = 1,

a contradiction.
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Fig. 4. Construction for proving the NP-completeness of the fixed-edge version of DMST with respect to ‖ · ‖L,∞ . The dashed bold paths consist solely of
edges that are included in the edge set required to be in a spanning tree for G).

• Note that, if all axis edges are in T and for every lower body vertex, there is at least one adjacent upper body vertex in T,
then all edges but the central edges are already fixed by now and the distances in T and Ga,0(C, L) are the same except
for those between vertices in L (between L and C, each lµ has p-distance one to exactly one Cν and 3p otherwise). Let g be
the number of pairs (lµ, lν) such that central edges {lµ, Cκ} and {lν, Cκ} exist in T. The total number of pairs is 9m2

− 3m.
We obtain

3m∑
µ=1

3m∑
ν=1

dT(lµ, lν)
p
= 2pg + 4p(9m2

− 3m− g).

The maximum possible value of g is 6m which corresponds to the case that the third condition in Lemma 3 is satisfied.
Assume to the contrary g < 6m. Then we have

‖DT‖
p
L,p − γ

p
≥ −2p6m− 4p(9m2

− 9m)+ 2pg + 4p(9m2
− 3m− g) = (6m− g)(4p

− 2p) > 1,

a contradiction.

This proves the theorem by applying Lemma 3. �

We know from the literature [14,6,11] that a minimum diameter spanning tree in a graph can be found in time
O(mn+ n2 log n). However, if we require that certain edges have to be in the spanning tree, feasibility becomes out of reach.

Theorem 6. The fixed-edge version of DMST with respect to ‖ · ‖L,∞ is NP-complete.

Proof. Containment in NP is obvious. To show the NP-hardness, we describe a reduction from 2HS based on the graph
representation G(C,S, k) for any given instance (C,S, k) of 2HS. Let N be the number of vertices of G(C,S, k). Define G to
be the graph constructed from G(C,S, k) by adding

• vertices c, c′, d, d′,
• edges {c, c′}, {d, d′}, {c′, a}, {b, d′}, and
• two paths P and Q connecting c, c′ and d, d′, respectively, each of length N + 1.

An illustration of G is given in Fig. 4.
Define the set E0 of edges that must be contained in any desired spanning tree to consist of all edges in clause paths of

G(C,S, k) and all edges in paths P and Q . That is, any spanning tree T of G with E0 ⊆ E(T) must include P and Q completely.
Therefore, dT(c, d) ≥ 2N. For any vertices v, w in G(C,S, k) and any vertex u which is G but not in G(C,S, k), we have
dT(v,w) ≤ N − 1 and dT(v, u) ≤ 2N − 1. All in all, this shows that the distance in T between vertices c and d determines the
diameter of T, i.e., ‖DT‖L,∞ = dT(c, d). Clearly, any path from vertex c to vertex d must pass vertices a and b. Consequently,

‖DT‖L,∞ = 2N + 2+ dT(a, b).

Define γ def
= 2N + 4 + n(m + 2) + k where n = ‖S‖ and m = ‖C‖ for a given 2HS instance (C,S, k). Using Lemma 4, we

immediately see that (C,S, k) has an admissible solution S′ ⊆ S if and only if there exists a spanning tree T in the graph G
which includes all edges of E0 and satisfies ‖DT‖L,∞ ≤ γ. This proves the theorem. �

As the next theorem shows, distance-minimizing spanning trees are hard to find under the maximum column sum norm
and, thus, the maximum row sum norm as well.

Theorem 7. DMST with respect to ‖ · ‖1 is NP-complete.

Proof. Containment in NP is obvious. Again, NP-hardness is proven by reduction from X3C using the graph representation
Ga,0(C, L) for a given X3C instance (C, L) and an appropriate choice of the parameters a and γ. We will fix the parameter
later, so that (C, L) has an admissible solution S ⊆ C if and only if Ga,0(C, L) has a spanning tree T such that ‖DT‖1 ≤ γ.
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Suppose S ⊆ C is an admissible solution to (C, L). Let TS be the corresponding spanning tree in the graph Ga,0(C, L). The
vertices in the rotor, axis or lower body sets of vertices all have the same column sums. We calculate for a rotor vertex rµ
and an lower body vertex lν:∑

v∈V

dT(rµ, v) = 2a+ 2s+ 9m− 1∑
v∈V

dT(x, v) = a+ s+ 6m∑
v∈V

dT(lν, v) = 3a+ 3s+ 12m− 8.

For upper body vertices, we have to make a distinction between vertices with one neighbor in TS or four:∑
v∈V

dT(Cµ, v) =
{

2a+ 2s+ 9m− 1 if Cµ has one neighbor in TS

2a+ 2s+ 9m− 7 if Cµ has four neighbors in TS .

We define our parameters as follows:

a
def
= s+ 12m+ 8 and γ

def
= 6s+ 48m+ 16.

Clearly, we have ‖DTS‖1 = 6s+ 48m+ 16 = γ. Thus, TS is a spanning tree in Ga,0(C, L) having a distance property as desired.
Suppose T is a spanning tree in Ga,0(C, L) satisfying ‖DT‖1 ≤ γ. We apply the characterization of a solution tree given in

Lemma 3 and show by contradiction that all conditions are satisfied. The structure of the rest of the proof is very similar to
the structure of the proof of Theorem 5, except that we must check the conditions with different parameters: First, if for
some upper body vertex Cµ the edge {Cµ, x} does not belong to T, then

∑
v∈V dT(Cµ, v) ≥ 4a+2s+6m−5 = 6s+54m+27 > γ,

a contradiction. Second, if there is a lower body vertex lµ not adjacent to any vertex upper body vertex Cν in T, then∑
v∈V dT(lµ, v) ≥ 4a+2s+3m+2 = 6s+51m+34 > γ, a contradiction. Finally, assume to the contrary that there is a vertex

upper body vertex Cµ having two or three neighbors in T. Remember that the first two conditions imply that there is no hull
edge {lµ, lν} in T. Let lν be one of Cµ’s neighbors in T. We calculate

∑
v∈V dT(lν, v) ≥ 3a+ 3s+ 12m− 5 = 6s+ 48m+ 19 > γ,

a contradiction. This proves the theorem by Lemma 3. �

Remark 8. Both constructions in Theorems 5 and 7 do not rely on using the edges between the vertices in L of the graph
representation of an X3C instance. Consequently, the constructed graphs are planar (if we assume that all clauses in the X3C
instance are distinct). This means that computing distance-minimizing spanning trees for these norms is already NP-hardin
planar graphs.

4. Trees that approximate distances

We now turn to the problem of finding spanning trees approximating the distances in a graph reasonably well under a
certain given matrix norm.

Problem: DAST (with respect to ‖ · ‖r)
Input: A connected graph G and an algebraic number γ
Question: Does G contain a spanning tree T with ‖DT − DG‖r ≤ γ?

We also examine the fixed-edge version of this problem, which is specified in the same way as for DMST.

4.1. NP-completeness results

Independent of the norm, we show all problems to be NP-complete. Notice that with respect to the L1 matrix-
norm, computing distance-minimizing and optimal distance-approximating spanning trees is equivalent. An immediate
consequence is NP-completeness under L1 matrix-norm (from Theorem 5 or [13]).

Theorem 9. DAST with respect to ‖ · ‖L,p is NP-complete for all p ∈ N+.

Proof. Containment in NP is obvious. NP-hardness is proven by reduction fromX3Cusing the graph representationGa,0(C, L)
for a given X3C instance (C, L) and an appropriate choice of the parameters a and γ. We will fix the parameter later, so that
(C, L) has an admissible solution S ⊆ C if and only if Ga,0(C, L) has a spanning tree T such that ‖DGa,0(C,L) − DT‖

p
L,p ≤ γ

p.
Suppose S ⊆ C is an admissible solution to (C, L). Let TS be the corresponding spanning tree inGa,0(C, L). By Proposition 2,

we only have dTS (lµ, lν)− dGa,0(C,L)(lµ, lν) > 0 and dTS (lµ, Cν)− dGa,0(C,L)(lµ, Cν) > 0. Thus,

‖DGa,0(C,L) − DTS‖
p
L,p = 2

2p3(s− m)+ 3m(s− 1)︸ ︷︷ ︸
upper to lower body

+ 3m+ 3p 9m2
− 9m
2︸ ︷︷ ︸

lower to lower body

 .
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We now set our parameters as follows:

a
def
= γp and γ def

= ‖DGa,0(C,L) − DTS‖L,p.

Note that computing γ in polynomial time is possible, since all information needed is already given in the input. By definition,
TS is a spanning tree in Ga,0(C, L) having the desired distance property.

Suppose T is a spanning tree inGa,0(C, L) satisfying ‖DGa,0(C,L)−DT‖
p
L,p ≤ γ

p. We apply the characterization of a solution tree
given in Lemma 3 and show by contradiction that all conditions are satisfied. Again, the structure of the proof is very similar
to the proof Theorem 5, but this time we used the parameter a to control the increase in distance, not the distance itself. First,
if for some upper body vertex Cµ, the edge axis edge {Cµ, x} does not belong to T, this implies dT(Cµ, v) ≥ dGa,0(C,L)(Cµ, v)+2,
for v a rotor or axis vertex. Thus, ‖DGa,0(C,L)−DT‖

p
L,p ≥ (a+ 1)2p > γp, a contradiction. Second, if there is a lower body vertex

lµ not adjacent to any upper body vertex Cν in T, then dT(lµ, v) ≥ dGa,0(C,L)(lµ, v) + 1, for v a rotor or axis vertex. This gives
‖DGa,0(C,L) − DT‖

p
L,p ≥ a + 1 > γp, a contradiction. Finally, note that, if the first and second condition in Lemma 3 are both

satisfied, then all edges but the central edges are already fixed by now and the distances in T and Ga,0(C, L) are the same.
For the distances from upper to lower body vertices we have:

dT(lµ, Cν) =


dGa,0(C,L)(lµ, Cν) if edge {lµ, Cν} is in T
dGa,0(C,L)(lµ, Cν)+ 1 if edge {lµ, Cν} is not in T and lµ /∈ Cν
dGa,0(C,L)(lµ, Cν)+ 2 if edge {lµ, Cν} is not in T and lµ ∈ Cν.

Let hi be the number of upper body vertices Cµ having exactly i neighbors in T. It clearly holds that h1 + h2 + h3 + h4 = s and
h2 + 2h3 + 3h4 = 3m. Moreover, we have

3m∑
µ=1

s∑
ν=1

(
dGa,0(C,L)(lµ, Cν)− dT(lµ, Cν)

)p
= 3s(m− 1)+ 2p(3h1 + 2h2 + h3).

Note that 3h1 + 2h2 + h3 = 3(s− m). For the distances between lower body vertices lµ, lν, we obtain for µ 6= ν,

dT(lµ, lν) =


dGa,0(C,L)(lµ, lν)+ 1 if edges {lµ, Cκ} and {lν, Cκ} belong to T

for some κ ∈ {1, . . . , s}
dGa,0(C,L)(lµ, lν)+ 3 otherwise.

Let g be the number of pairs (lµ, lν) such that µ 6= ν and for some κ ∈ {1, . . . , s}, both central edges {lµ, Cκ} and {lν, Cκ} exist
in T. We calculate

3m∑
µ=1

3m∑
ν=1

(
dGa,0(C,L)(lµ, lν)− dT(lµ, lν)

)p
= g + 3p(9m2

− 3m− g).

The maximum possible value of g is 6m. The case g = 6m implies h4 = m and therefore corresponds to the case that the third
condition in Lemma 3 is satisfied. Assume to the contrary g < 6m. Then we have

‖DGa,0(C,L) − DT‖
p
L,p − γ

p
≥ 6s(m− 1)+ 2p+1(3s− 3m)+ g + 3p(9m2

− 3m− g)

− 6s(m− 1)− 2p+1(3s− 3m)− 6m− 3p(9m2
− 9m)

= (3p
− 1)(6m− g) > 1,

a contradiction. This proves the theorem by Lemma 3. �

To be able to carry out the NP-completeness proof for the L∞ matrix-norm, it is helpful to first have a completeness result
for the fixed-edge version.

Lemma 10. The fixed-edge version of DAST with respect to ‖ · ‖L,∞ is NP-complete.

Proof. The proof is the same as the one forDMSTwith respect to ‖·‖L,∞ (see Theorem 6). The only difference in the reduction
from 2HS is that the parameter γ is now defined as 2N + k (which is clear to follow from Lemma 4) for a 2HS instance
(C,S, k). �

We now try to get rid of the fixed edges. In order to achieve this, we replace fixed edges by cycles such that deleting a
fixed edge will cause the distance between two cycle vertices to increase by more than the allowed threshold γ. A similar
technique with two cycles was used in [5, Lemma 3] to guarantee that any minimum t-spanner (i.e., a spanning subgraph
with smallest number of edges such that dG(u, v) ≤ t · dT(u, v) for all u, v ∈ V) contains a certain edge. However, this
construction does not work in the context of additive distance growth and trees.

Lemma 11. Let G = (V, E) be any graph and let {v,w} be an arbitrary non-bridge edge in G. For k > 3, let G′ be the graph resulting
from adding a path (v, u1, . . . , uk,w) to G where uµ /∈ V for all µ ∈ {1, . . . , k}. There exists a spanning tree T of G which includes
the edge {v,w} and satisfies ‖DT − DG‖L,∞ ≤ k if and only if there exists a spanning tree T ′ of G′ such that ‖DT′ − DG′‖L,∞ ≤ k.
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Proof. For any spanning tree T of a graph G = (V, E), we define δT(v)
def
= maxw∈V(dT(v,w) − dG(v,w)). Let P be the path

(v, u1, . . . , uk,w) to be added to the graph G = (V, E) with respect to the edge {v,w}. That is, G′ = G ∪ P. We prove the two
directions separately.

(⇒) Suppose there is a spanning tree T of G such that ‖DT − DG‖L,∞ ≤ k and edge {v,w} belongs to T. Without loss of
generality, we assume that δT(v) ≤ δT(w). Define T ′ to be the spanning tree in G′ with edge set E(T) ∪ E(P) by removing the
edge {u

b
k
2 c

, u
d
k+1

2 e
} in the middle of P. We have two cases.

• Suppose δT(v) < k. We have the following bounds on distancechanges in T ′ with respect to G′:
– For x, y ∈ V(G) we have dT′(x, y) ≤ dG′(x, y)+ k.
– For x, y ∈ V(P) we have dT′(x, y) ≤ dG′(x, y)+ k.
– For µ ∈ {1, . . . , b k2 c} and y ∈ V(G) we find

dT′(uµ, y)− dG′(uµ, y) = dT′(uµ, v)+ dT′(v, y)− dG′(uµ, v)− dG′(v, y)

= dT′(v, y)− dG′(v, y) ≤ k.

– Forµ ∈ {d k+1
2 e, . . . , k} and y ∈ V(G), we have a similar inequality, if the shortest path from uµ to y in G′ contains vertex

w. Otherwise, we obtain

dT′(uµ, y)− dG′(uµ, y) = dT′(uµ, v)+ dT′(v, y)− dG′(uµ, v)− dG′(v, y)

= 1+ dT′(v, y)− dG′(v, y) ≤ 1+ (k− 1) = k.

This completes the first case.
• Suppose δT(v) = δT(w) = k. For k ≥ 0 and for any vertex z ∈ V , define B=k(z)

def
= {x ∈ V | dT(x, z)− dG(x, z) = k}. First, we

consider vertices x, y ∈ B=k(v) ∪ B=k(w) and claim that
– either dT(v, x) = dT(w, x)+ 1 and dT(v, y) = dT(w, y)+ 1,
– or dT(w, x) = dT(v, x)+ 1 and dT(w, y) = dT(v, y)+ 1.

Assume to the contrary that this is not true, i.e., we have dT(v, x) = dT(w, x)+1 and dT(w, y) = dT(v, y)+1. (By symmetry,
it is enough consider this situation.) Now we may conclude that a path from x to y in T must pass v and w where x is nearer
to w and y is nearer to v. Hence:

dT(x, y)− dG(x, y) = dT(x,w)+ 1+ dT(v, y)− dG(x, y)

≥ dT(x,w)+ 1+ dT(v, y)− dG(x,w)− dG(v, y)− 1 (by triangle ineq.)
≥ dT(x,w)− dG(x,w)+ dT(v, y)− dG(v, y)− 2 (edge {v,w} ∈ E(T))
≥ 2k− 4 (since x, y ∈ B=k(v) ∪ B=k(w)).

For k > 4 this leads to a contradiction and thus, our claim is true in this case. The case k = 4 will be treated separately
below.

So, without loss of generality, we suppose that dT(v, x) = dT(w, x) + 1 and dT(v, y) = dT(w, y) + 1. We obtain the
following distance changes in T ′ with respect to G′:
– For x, y ∈ V(G) we trivially have dT′(uµ, y) ≤ dG′(uµ, y)+ k.
– For µ ∈ {1, . . . , b k2 c} and y ∈ V(G), the shortest path between uµ and y visits v. Thus, dT′(uµ, y) ≤ dG′(uµ, y)+ k.
– For µ ∈ {d k+1

2 e + 1, . . . , k} and y ∈ V(G), the shortest path between uµ and y visits w. Thus, dT′(uµ, y) ≤ dG′(uµ, y)+ k.
– For µ = d k+1

2 e and y ∈ B=k(v) ∪ B=k(w) we know from above that the shortest path between uµ and y visits w and
hence, dT′(uµ, y) ≤ dG′(uµ, y)+ k. For y 6∈ B=k(v) ∪ B=k(w) we obtain

dT′(uµ, y)− dG′(uµ, y) = dT′(uµ, v)+ dT′(v, y)− dG′(uµ, v)− dG′(v, y)

≤ 1+ (k− 1) = k.

Finally, for k = 4, note that dT(uµ, v) = dG(uµ, v) and dT(uµ,w) = dG(uµ,w), if we remove the edge {u2, u3}. Hence,
dT′(uµ, y)− dG′(uµ, y) = min (dT(v, y)− dG(v, y), dT(w, y)− dG(w, y)) ≤ k.

This completes the second case.

(⇐) Suppose there is a spanning tree T ′ for G′ with ‖DT′ − DG′‖L,∞ ≤ k. We show that for any such tree, the edge {v,w}must
be in T ′. Note that {v,w} is in at least two cycles in G′, where one is a cycle with P and another one is the cycle making {v,w}
a non-bridge-edge in G. These cycles must be broken in order for T ′ to be a tree. We show that there is only one possibility
to break these cycles (see Fig. 5 for illustration):

• Breaking the cycle in P at {uµ, uµ+1} and the cycles in G at {v,w} yields

dT′(uµ, uµ+1)− dG′(uµ, uµ+1) = dT′(uµ, uµ+1)− 1
= dT′(uµ, v)+ dT′(v,w)+ dT′(w, uµ+1)− 1
≥ dT′(uµ, v)+ 2+ dT′(w, uµ+1)− 1
= k+ 1 > k,

a contradiction.
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Fig. 5. Illustration of the proof of Lemma 11. Only T3 has distance difference of at most k for i = b k2 c.

• Breaking the cycles in P at {v,w} and any of the other one at an arbitrary edge, say {x, y}with y /∈ {v,w} yields

dT′(x, y)− dG′(x, y) = dT′(x, y)− 1
= dT′(x, v)+ dT′(v,w)+ dT′(w, y)− 1
≥ dT′(x, v)+ k+ 1 > k,

again a contradiction.

It follows that when breaking the cycle in G at any edge e 6= {u,w} and the cycle with P at the edge {u
b
k
2 c

, u
d
k+1

2 e
}, we can

”reverse” the assembly—that is, we can omit the part of T ′ that spans P, and thus obtain a tree T of G for which ‖DT−DG‖L,∞ ≤ k
and {v,w} is an edge in T. �

From these two lemmas we easily obtain our result concerning the L∞ matrix-norm.

Theorem 12. DAST with respect to ‖ · ‖L,∞ is NP-complete.

Proof. Using Lemma 10, we prove the NP-hardness by a reduction from the fixed-edge version of DAST. We may restrict
ourselves to instance (G, E0, γ) with γ > 3. First, note that if E0 contains any bridges, we may remove these from E0 without
changing the optimum solution to the given instance, as a bridge must be contained in any spanning tree of G. Second, if some
edges in E0 form a cycle, we may immediately reject the instance. Using Lemma 11 we describe the following reduction:
for every edge {v,w} ∈ E0 iteratively add a path (v, u1, . . . , uk,w) with new vertices. Let G′ be the resulting graph, which
of course can be constructed in polynomial time in the size of G. An easy induction on the size of E0 now shows that G has
a spanning tree containing all edges of E0 such that ‖DT − DG‖L,∞ ≤ γ if and only if G′ has a spanning tree T ′ such that
‖DT′ − DG′‖L,∞ ≤ γ. �

Concluding this section, we show the hardness with respect to the maximum column sum norm.

Theorem 13. DAST with respect to ‖ · ‖1 is NP-complete.

Proof. Containment in NP is obvious. We prove NP-hardness by reduction fromX3Cusing the graph representationGa,b(C, L)
for a given X3C instance (C, L) and an appropriate choice of the parameters a, b and γ. We will fix the parameter later, so
that (C, L) has an admissible solution S ⊆ C if and only if Ga,b(C, L) has a spanning tree T such that ‖DGa,b(C,L) − DT‖1 ≤ γ.
We may suppose that s ≥ 1 and thus m ≥ 1. For each µ ∈ {1, . . . , 3m}, let h(µ) denote the number of sets of C in which lµ

appears, i.e., h(µ) = ‖{ν | lµ ∈ Cν}‖. Define hmax
def
= maxµ h(µ).

Suppose S ⊆ C is an admissible solution to (C, L). Let TS be the corresponding spanning tree in Ga,b(C, L). The vertices
in the sets R, X, L, and K all have the same column sums. Thus, for a rotor vertex rµ, the axis vertex x, a lower body vertex lν
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and a skid vertex kν,κ, we calculate:∑
v∈V

dT(rµ, v)− dGa,b(C,L)(rµ, v) = 0∑
v∈V

dT(x, v)− dGa,b(C,L)(x, v) = 0∑
v∈V

dT(lν, v)− dGa,b(C,L)(lν, v) = s+ h(ν)+ 9m− 9+ b(9m− 7)∑
v∈V

dT(kν,κ, v)− dGa,b(C,L)(kν,κ, v) = s+ h(ν)+ 9m− 9+ b(9m− 7).

For upper body vertices we have to make a distinction between vertices with one neighbor in T and vertices with four
neighbors in T. We obtain for an upper body vertex Cµ:∑

v∈V

dT(Cµ, v)− dGa,b(C,L)(Cµ, v) =
{
(3m+ 3)(b+ 1) if Cµ has 1 neighbor in TS

(3m− 3)(b+ 1) if Cµ has 4 neighbors in TS .

Setting the parameters a
def
= γ + 1, b def

= s + 1 and γ def
= s + hmax + 9m − 9 + b(9m − 7), we get ‖DGa,b(C,L) − DT‖1 = s

+ hmax + 9m− 9+ b(9m− 7) = γ. Consequently, TS is a spanning tree of Ga,b(C, L) having the desired distance property.
Suppose T is a spanning tree in Ga,b(C, L) satisfying ‖DGa,b(C,L)−DT‖1 ≤ γ. We apply the characterization of a solution tree

given in Lemma 3 and show by contradiction, that all conditions are satisfied.
First, assume to the contrary some axis edge {Cµ, x} does not belong to T. Then

∑
v∈V dT(Cµ, v) − dGa,b(C,L)(Cµ, v) ≥ 4a > γ,

a contradiction. Second, assume to the contrary that there is a lower body vertex lµ not adjacent to any upper body vertex
Cν in T. Then

∑
v∈V dT(lµ, v) − dGa,b(C,L)(lµ, v) ≥ a > γ, a contradiction. Finally note that, if the first and second condition in

Lemma 3 are both satisfied, then all edges but the central edges are already fixed by now and the distances in T and Ga,b(C, L)
are the same. Assume to the contrary that there is an upper body vertex Cµ having two or three neighbors in T. Let lν be a
neighbor of such a vertex Cµ and let degT(Cµ) denote the number of neighbors of Cµ in T. Then, we conclude∑

v∈V

dT(lν, v)− dGa,b(C,L)(lν, v) = s+ h(lν)− 2+ degT(Cµ)− 2+ 3(3m− degT(Cµ)+ 1)(b+ 1)

= γ − s− hmax − 9m+ 9− b(9m− 7)s+ h(lν)− 4+ degT(Cµ)

+ 3(3m− degT(Cµ)+ 1)(b+ 1)

= γ + (h(lν)− hmax)+ 8− 2 degT(Cµ)+ b(10− 3 degT(Cµ))

≥ γ − s+ b > γ,

a contradiction. This proves the theorem by Lemma 3. �

4.2. Inapproximability results

In this section we show that, independent of the norm used, it is hard to approximate the fixed-edge version of DAST in
polynomial time within a constant factor. To put this into more precise terms, for a given graph G and a set E0 ⊆ E(G) of
fixed-edges we say that an algorithm A is a constant-factor approximation algorithm for the fixed-edge version of DAST with
respect to ‖·‖ if A in polynomial time computes a spanning tree TA of G with E0 ⊆ E(T) such that ‖DTA−DG‖ ≤ δ ·‖DTopt−DG‖

for some constant δ > 0. Here, Topt is the optimal tree, i.e., ‖DTopt − DG‖ = minT ‖DT − DG‖ over all spanning trees T of G.
The inapproximability proofs are based on the 2HS graph representation. To sketch the main idea of our construction:

In Lemma 4, it was shown that the size of the solution of the 2HS instance equals the number of literal paths in the graph
representation that are opened in the corresponding spanning tree T. Futhermore, for each literal path that is open in T the
distance between a and b is increased by one, because the shortest path in T connecting a and b must use an elongation path
instead of the shorter literal path. In the following, we refer to this as the penalty for opening the literal path. Clearly, in the
above construction, the penalty for each opened literal path is one. The main idea is to find a graph representation such that
the penalty is increased. More formally, the refined graph representation G(C,S, k, j) of an instance (C,S, k) of 2HS depends
on an additional constant factor j and is constructed recursively such that it has a spanning tree T containing a set of fixed
edges E0 ⊆ E(T) with dT(a, b) ≤ dG(C,S,k,j)(a, b)+ kj if and only if the instance (C,S, k) has a solution of size k.

Suppose we are given an instance (C,S, k) of 2HS where ‖C‖ = m and ‖S‖ = n. For j ∈ N+ we define the graph
G(C,S, k, j) recursively as follows: for j = 1 the graph G(C,S, k, j) is the same as the graph G(C,S, k). For j > 1, define
lj−1

def
= dG(C,S,k,j−1)(a, b). Then G(C,S, k, j) consists of

• vertices a, a′, and b
• literal paths Pµ for each sµ ∈ S, consisting of vertices vµ1 , . . . , vµlj−1−1.
• elongation gadgets Gµ for each sµ ∈ S, consisting a copy of a graph G(C,S, k, j − 1), where the vertices a, a′ and b in

G(C,S, k, j− 1) are relabeled as aµ, a′µ and bµ, respectively.
• clause paths of length 2nlj−1 for each clause Cµ = {sν, sκ} ∈ C connecting vνµ with vκµ, and
• safety paths of length 2nlj−1 for each clause Cµ = {sν, sκ} ∈ C, connecting vνµ with a′.



S. Eckhardt et al. / Theoretical Computer Science 407 (2008) 1–20 13

For each clause µ ∈ C the vertices aµ and bµ are connected via the literal path (aµ, v
µ
1 , . . . , vµlj−1−1, bµ) of length lj−1.

Furthermore the edges {a, a′},{a′, a1}, {bm, b}, and the edges {bi, ai+1} for all 1 ≤ i ≤ m − 1 are in G(C,S, k, j). Again, the
graph size is polynomial in the size of the instance (C,S, k) and j. The following Lemma is the equivalent to Lemma 4 for
the original graph representation of 2HS:

Lemma 14. Let (C,S, k) be an instance of 2HS and j ∈ N+.

1. We have dG(C,S,k,j)(a, b) = 3 nj+1
−1

n−1 + nj(m− 1)− 1.
2. There exists an admissible solution S′ ⊆ S to (C,S, k) if and only if there exists a spanning tree T of G(C,S, k, j) containing

all edges in the clause paths of all instances G(C,S, k, j′) (for j′ < j) of which G(C,S, k, j) is composed; including the clause
paths in G(C,S, k, j) such that dT(a, b) ≤ dG(C,S,k,j)(a, b)+ kj.

Proof. For j = 1 the statements equal those of Lemma 4. Suppose j > 1, and assume that the lemma holds forG(C,S, k, j−1).
Again, let lj−1 = dG(C,S,k,j−1)(a, b). For the first statement note that the path between a and b using a′ and all literal paths Pµ
for all µ ∈ C has length 2+ n · (lj−1 + 1). On the other hand, a path connecting a and b using either a clause path or a safety
path has length at least 2 · n · lj−1 and thus does not determine the distance between a and b. Using an elongation gadget
instead of a literal path yields the same distance. Thus we have proven that

dG(C,S,k,j)(a, b) = 2+ n · (lj−1 + 1) = 2+ n ·
(

3
nj
− 1

n− 1
+ nj−1(m− 1)

)
= 3

nj+1
− 1

n− 1
+ nj
· (m− 1)− 1.

Assume that the second statement holds for G(C,S, k, j− 1). We show that it holds for G(C,S, k, j) as well.
(⇒) Suppose S′ is an admissible solution to (C,S, k), i.e., ‖S′‖ ≤ k. Construct a spanning tree of G(C,S, k) as follows:

1. For each clause Cµ = {sν, sκ} ∈ C do the following: if sν ∈ S′, then remove the edge {vνµ−1, v
ν
µ}. If sκ ∈ S′, then remove

the edge {vκµ−1, v
κ
µ}. (We denoted vν0 = aν and vκ0 = aκ here.) If not both sν and sκ are elements of S′, then remove an edge

from the safety path between sν and a′.5
2. For each sµ ∈ S′, remove edge {vµlj−1−1, bµ} (open the literal path).
3. For each sµ 6∈ S′, remove the edge {aµ, a′µ} (open the elongation gadget).

Note that no edge from a clause path was removed. We ensured that each cycle induced by the literal path and elongation
gadget is broken because at least one edge is removed by second and third construction rule. The cycles induced by the
clause and safety paths are broken by the first and third construction rule: for each clause Cµ = {sν, sκ} ∈ C at least one of
the sets {{vνµ−1, v

ν
µ}, {v

ν
lj−1−1, bν}} and {{vκµ−1, v

κ
µ}, {v

κ
lj−1−1, bκ}} is removed, thus either vνµ or vκµ is not reachable via the clause

path from aν or bν (aκ or bκ, respectively). An edge from the safety path is removed, except if both {{vνµ−1, v
ν
µ}, {v

ν
lj−1−1, bν}} and

{{vκµ−1, v
κ
µ}, {v

κ
lj−1−1, bκ}} are removed, in which case neither vνµ nor vκµ is reachable via the clause path from any of aν, bν, aκ, bκ.

A cycle induced by multiple clause paths not leading via any connection vertices cannot occur, since the connection is broken
at one of the literals in S′.

As a result, there is a path between a and b in T leading via elongation gadgets (sµ ∈ S′) or literal (sµ 6∈ S′) paths. The
penalty for each elongation gadget used is kj−1 by induction hypothesis. Since ‖S‖ = k elongation gadgets are used in the
spanning tree constructed we have

dT(a, b) = 2+ (n− ‖S‖)(lj−1 + 1)+ ‖S‖(lj−1 + 1+ kj−1)

= dG(C,S,k,j) + ‖S‖ · k
j−1
= dG(C,S,k,j) + kj.

(⇐) Suppose T is a spanning tree of G(C,S, k, j) containing all edges of the clause paths and satisfying dT(a, b) ≤
dG(C,S,k,j)(a, b)+ kj. Since

dG(C,S,k,j)(a, b)+ kj = 3
nj+1
− 1

n− 1
+ nj(m− 1)− 1+ kj < 2+ 2 · n · lj−1,

the path cannot lead via any clause or safety paths. Hence, it must lead via literal paths and elongation gadgets only. The
length of any (intact) elongation gadget path is lj−1 + kj−1 by induction hypothesis, the length of any (intact) literal path is
lj−1. Therefore, the path from a to b leads over exactly k elongation gadgets. Let S′ be the set of literals sµ for which the path
leads from aµ to bµ via an elongation gadget. Here, the literal path must be broken (due to the minimality of the path length).
Conversely, for every sµ 6∈ S′, the literal path is not broken, i.e., (aµ, v

µ
1 , . . . , vµlj−1−1, bµ) is a path in T. Assume that we have

for any clause Cµ = {sν, sκ} ∈ C (where ν < κ), Cµ ∩ S′ = ∅. The clause path connects vνµ with vκµ. Since sν, sκ 6∈ S′, the vertex
vνµ is connected to bν is connected to aκ is connected to vκµ which is a contradiction to T being a tree. �

5 Without the safety paths, the given edge removal scheme might leave a clause gadget disconnected in T.
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Fig. 6. Illustrating the construction of the graphs used to prove the inapproximability of the fixed-edge version of DAST with respect to ‖ · ‖L,∞ . The dashed
bold paths consist of fixed edges.

We introduce a shorthand notation. Let G = (V, E) be any graph and let T be any spanning tree of G. We define the
mapping ∆G[T] : V × V → N for all u, v ∈ V as ∆G[T](u, v)

def
= dT(u, v)− dG(u, v).

Lemma 15. Unless P = NP, there is no polynomial-time algorithm A that, given a 2HS instance (C,S, k) and parameter j ∈ N+,
computes a spanning tree TA of G(C,S, k, j) such that ∆G(C,S,k,j)[TA](a, b) ≤ δ ·∆G(C,S,k,j)[Topt](a, b) for any δ > 0.
Here, Topt is a spanning tree of G(C,S, k, j) such that ∆G(C,S,k,j)[Topt](a, b) = minT ∆G(C,S,k,j)[T](a, b) where the minimum is taken
over all spanning trees T of G(C,S, k, j) that include all clause paths.

Proof. Assume there is an algorithm A that runs in polynomial time such that ∆G(C,S,k,j)[TA](a, b) ≤ δ ·∆G(C,S,k,j)[Topt](a, b)

for some δ > 0. Define j
def
= b

log δ
log 8

7
c. Consider an algorithm A′ that, on instance (C,S, k) of 2HS, constructs G(C,S, k, j)

and applies algorithm A on G(C,S, k, j). Then, by Lemma 14, we have that (C,S, k) has a solution of size kopt if and only if
there exists a spanning tree T of G(C,S, k, j) that contains all edges of all clause paths such that ∆G(C,S,k,j)[T] ≤ kjopt. Thus
for the tree TA computed by the algorithm A, it holds that ∆G(C,S,k,j)[TA](a, b) ≤ δ · k

j
opt. Note that there exists a kA with

kA ≤ b
j
√

∆G(C,S,k,j)[TA](a, b)c if and only if there exists a solution of size kA to the given 2HS instance. Hence, we conclude

kA ≤ δ
1
j · kopt ≤ δ

log(8/7)
log δ · kopt ≤

8
7
· kopt.

Therefore, since A runs in polynomial time, A′ runs in polynomial time (note that j is constant). Thus, we have a polynomial-
time algorithm that approximates 2HS within a factor of 8

7 , implying P = NP according to [12]. �

Theorem 16. Unless P = NP, there is no polynomial-time constant-factor approximation algorithm for the fixed-edge version of
DAST with respect to ‖ · ‖L,∞.

Proof. Let (C,S, k) be a 2HS instance and let G′ = G(C,S, k, j) be a refined graph representation of (C,S, k) for some j ∈ N+.
Let n denote the number of vertices in G′. We construct a graph G consisting of a chain G′1, . . .G

′

n of n copies of G′ where the
vertex b (denoted bi in G) of G′i is connected to the vertex a of G′i+1 (denoted ai+1 in G) by the edge {bi, ai+1} in G. Additionally,
G consists of

• four vertices c, c′, d′, and d connected by edges {c, c′} and {d, d′},
• two edges {c′, a1} and {bn, d′}, and
• two paths p and q connecting c, c′ and d, d′, respectively, each of length n+ 1.

The construction for G is illustrated in Fig. 6.
Let E′i be the set of edges in all clause paths in G′i . Define the set E0 of fixed edges as

E0
def
=

n⋃
i=1

E′i ∪ E(p) ∪ E(q).

Then, any solution tree T to the fixed-edge version of DAST with respect to ‖ · ‖L,∞ on G must contain p and q completely.
However, it must not include {c, c′} and {d, d′}, since otherwise there would be a cycle in the spanning tree. Hence,
∆G[T](d, d′) = ∆G[T](c, c′) = n. Also, for any vertices x ∈ V(G′1) ∪ · · · ∪ V(G′n), y ∈ G, and any spanning tree T of G,

∆G[T](x, y) < n︸︷︷︸
originating

G′

+

n∑
i=1

∆G[T](ai, bi)︸ ︷︷ ︸
chain

+ n︸︷︷︸
p,p or G′

in chain

= 2n+
n∑

i=1
∆G[T](ai, bi)

while

∆G[T](c, d) = 2n+
n∑

i=1
∆G[T](ai, bi). (1)
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Fig. 7. Illustrating the construction of the graphs used to prove the inapproximability of the fixed-edge version of DAST with respect to ‖ · ‖L,∞ . The dashed
bold paths consist solely of edges that are included in E0 (i.e., the set of edges that is required to be in a spanning tree for G).

Hence, for any spanning tree T of G, ‖DT − DG‖L,∞ = ∆G[T](c, d). Furthermore, note that there exists a spanning tree T of G
with E0 ⊆ E(T) such that ‖DT − DG‖L,∞ = ∆G[T](c, d) = 2n + k · n if and only if there exists a spanning tree T ′ of G′i with
E′i ⊆ E(T ′) and ∆G′ [T ′](a, b) = k for some 1 ≤ i ≤ n.

In order to prove the inapproximability of the fixed-edge version of DAST with respect to ‖·‖L,∞, assume that there exists
a polynomial-time constant-factor approximation algorithm A computing solutions TA. Let δ > 0 be the approximation
factor. Again, let Topt be the optimal spanning tree of G with respect to ‖ · ‖L,∞. Note that dTopt(ai, bi) = dTopt(aj, bj) for all
1 ≤ i, j ≤ n. (This follows from the optimality of Topt). Then,

0 ≥ ‖DTA − DG‖L,∞ − δ · ‖DTopt − DG‖L,∞

= ∆G[TA](c, d)− δ ·∆G[Topt](c, d))

= 2n+
n∑

i=1
∆G[TA](ai, bi)− δ ·

(
2n+

n∑
i=1

∆G[Topt](ai, bi)
)

= 2n+
n∑

i=1
∆G[TA](ai, bi)− δ · (2n+ n ·∆G[Topt](a1, b1))

≥ 2n+ n · min
1≤i≤n

∆G[TA](ai, bi)− δ · (2n+ n ·∆G[Topt](a1, b1))

= n ·
(
2+ min

1≤i≤n
∆G[TA](ai, bi)− δ · (2+∆G[Topt](a1, b1))

)
.

Without loss of generality, assume that ∆G[Topt](a1, b1) ≥ 1. We obtain

min
1≤i≤n

∆G[TA](ai, bi) ≤ 3c ·∆G[Topt](a1, b1).

Hence, if there were a constant-factor approximation algorithm A for the fixed-edge version of DAST with respect to
‖ · ‖L,∞, there would also be a polynomial-time algorithm A′ computing a spanning tree TA′ of G′ such that ∆G′ [TA′ ](a, b) ≤
δ ·∆G′ [Topt](a, b): First construct the chain of copies G and then use A to compute the tree TA. Choose T ′ = TA ∩ G′i such that
∆G′i
[TA](ai, bi) is minimal. As shown above, this gives a tree TA′ with ∆G′ [TA′ ](a, b) ≤ δ · ∆G′ [Topt](a, b). By Lemma 15, this

implies P = NP. �

Theorem 17. Unless P = NP, there is no constant-factor approximation algorithm for the fixed-edge version of DAST with respect
to ‖ · ‖L,p.

Proof. Let (C,S, k) be a 2HS instance and let G′ = G(C,S, k, j) be a refined graph representation of (C,S, k) for some j ∈ N+.
Let n denote the number of vertices in G′. We construct graph G consisting of G′ and two groups of n3p vertices each attached
by an edge to a ∈ V(G′) and b ∈ V(G′), respectively (see Fig. 7). Observe that all of the added edges are included in a spanning
tree T of G. Let the set E0 of fixed-edges be the set of all edges in all clause paths in G′, including the edges in clause paths in
G(C, SF, k, j′) (with j′ < j) of which G′ is composed.

Let Inner be the set of vertices contained in V(G′) and Outera, Outerb the set of vertices attached to a and b, respectively.6
Then,

‖DT − DG‖
p
F,p =

∑
u∈Inner
v∈Inner

∆G[T](u, v)
p
+ 2 ·

∑
u∈Outera
v∈Inner

∆G[T](u, v)
p
+ 2 ·

∑
u∈Outerb
v∈Inner

∆G[T](u, v)
p
+

∑
u∈Outera
v∈Outera

∆G[T](u, v)
p

+
∑

u∈Outerb
v∈Outerb

∆G[T](u, v)
p
+ 2 ·

∑
u∈Outera
v∈Outerb

∆G[T](u, v)
p. (2)

6 Note that V(G) = Inner ∪ Outera ∪ Outerb .
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Assume there exists a spanning tree T ′ of G′ with ∆G′ [T ′](a, b) = k and E0 ⊆ E(T ′). Then there exists a spanning tree T of G
where ∑

u∈Inner
v∈Inner

∆G[T](u, v)
p
≤ n2
· max

u∈Inner
v∈Inner

∆G′ [T
′
](u, v)p ≤ n2+p, (3)

∑
u∈Outera
v∈Inner

∆G[T](u, v)
p
≤ n3p

· n · np, (4)

∑
u∈Outera
v∈Outera

∆G[T](u, v)
p
=

∑
u∈Outerb
v∈Outerb

∆G[T](u, v)
p
= 0, and (5)

∑
u∈Outera
v∈Outerb

∆G[T](u, v)
p
= (n3p)2

· kp. (6)

Note that Eq. (4) also holds true for Outerb and hence, using Eqs. (3)–(6) in (2),

‖DT − DG‖
p
F,p ≤ n2+p

+ 4n1+4p
+ 2n6pkp < 5n1+4p

+ 2n6pkp ≤ n6p(1+ 2kp). (7)

On the other hand, Eq. (2) yields

‖DT − DG‖
p
F,p ≥ 1+

∑
u∈Outera
v∈Outera

∆G[T](u, v)
p
+

∑
u∈Outerb
v∈Outerb

∆G[T](u, v)
p
+ 2 ·

∑
u∈Outera
v∈Outerb

∆G[T](u, v)
p

> 2n6p
· kp. (8)

In order to prove the inapproximability of the fixed edges version of DAST with respect to ‖ · ‖L,p, assume that there exists a
constant-factor approximation algorithm A that computes a tree TA. Then, using Eqs. (7) and (8), we obtain

0 ≤ cp · ‖DTopt − DG‖
p
L,p − ‖DTA − DG‖

p
L,p

≤ cp · n6p
· (1+ 2∆G[Topt](a, b)

p)− 2n6p
·∆G[TA](a, b)

p

≤ 2n6p
· cp ·

[(1
2
+∆G[Topt](a, b)

p
)
−∆G[TA](a, b)

p
]
. (9)

Therefore, again assuming ∆G[Topt](a, b) ≥ 1,

∆G[T,A](a, b) ≤ δ ·
p

√
1
2
+∆G[Topt](a, b)p ≤ 2δ ·∆G[Topt](a, b). (10)

Hence, applying algorithm A on the above construction, we can compute a spanning tree T ′ of G′ with E0 ⊆ E(T) such that
‖DT′ − DG′‖L,p ≤ δ · ‖DTopt − DG′‖L,p. By Lemma 15, this implies P = NP. �

Theorem 18. Unless P = NP, there is no polynomial-time constant-factor approximation algorithm for the fixed edges version of
DAST with respect to ‖ · ‖1.

Proof. Let (C,S, k) be a 2HS instance and let G′ = G(C,S, k, j) be a refined graph representation of (C,S, k) for some j ∈ N+.
Let n denote the number of vertices in G′. Define ` def

= 2n2. We construct a graph G consisting of a chain G′1, . . . ,G
′

`2 of `2

copies of G′, where the vertex b (denoted bi in G) of G′i is connected to the vertex a of G′i+1 (denoted ai+1 in G) by the edge
{bi, ai+1} in G. Additionally, G consists of

• four vertices c, c′, d′, and d connected by edges {c, c′} and {d, d′},
• two edges {c′, a1} and {b`2 , d′}, and
• two paths p′ and q, each of length `+ 1, connecting c with c′ and d with d′, respectively.

(Note how this construction is—except for the path’s length and number of copies of G′—very similar to the one used in the
proof of Lemma 16. Therefore, Fig. 6 may serve as an illustration.)

Let E′i be the set of edges in all clause paths in G′i . Define the set E0 of fixed edges as

E0
def
=

`2⋃
i=1

E′i ∪ E(p) ∪ E(q).

Then, the solution tree T to the fixed-edge version of DAST with respect to ‖ · ‖1 on G must contain p and q completely.
However, it must not include {c, c′} and {d, d′}, since otherwise there would be a cycle in the spanning tree. Hence,
∆G[T](d, d′) = ∆G[T](c, c′) = `. For any spanning tree T and any vertex v ∈ V(G), define

ColSum(v)
def
=

∑
w∈V(G)

∆G[T](v,w). (11)

Choose a vertex x satisfying ‖DT − DG‖1 = ColSum(x).
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First, we will show that x is either c or d (which are handled analogously). Assume x is a vertex on p other than c, e.g., with
distance i to c, then for any vertex u not on p, ∆G[T](x, u) = ∆G[T](c, u) − i, whereas the sum of the differences in distance
to vertices on p is smaller by at least p (the difference in distance between c and c′—this can be seen by a simple coupling
argument because we always have ∆’s ranging from 1 to the maximum). Now, assume x is a vertex not on p or q, i.e., a vertex
of G′i . Without loss of generality, assume that i < `2

2 . For j < i, we pair each vertex u ∈ G′j with a vertex v ∈ G′i+j. Then we find
that

∆G[T](c, u)+∆G[T](c, v)−∆G[T](x, u)−∆G[T](x, v)

≥ ∆G[T](c, aj)+∆G[T](aj, u)+∆G[T](c, bi)+∆G[T](bi, v)

−∆G[T](x, bj)−∆G[T](bj, u)−∆G[T](x, bi)−∆G[T](bi, v)

= (∆G[T](c, aj)−∆G[T](x, bi))+ (∆G[T](aj, u)−∆G[T](bj, u))+ (∆G[T](c, bi)−∆G[T](x, bj))

≥ (`− n)+ (0− n)+ (`− n) = 2`− 3n. (12)

For each remaining vertex v ∈ G′j for j > 2(i− 1), we find that

∆G[T](c, v)−∆G[T](x, v) = ∆G[T](c, bi)+∆G[T](bi, v)−∆G[T](x, bi)−∆G[T](bi, v) ≥ `− n.

The vertices on p and q are coupled again to find that for u on p and v on q we have

∆G[T](c, u)+∆G[T](c, v)−∆G[T](x, u)−∆G[T](x, v)

≥ ∆G[T](c, u)+∆G[T](c, u)+∆G[T](u, ai)+∆G[T](ai, bi)+∆G[T](bi, v)

−∆G[T](x, ai)−∆G[T](ai, u)−∆G[T](x, bi)−∆G[T](bi, v)

≥ ∆G[T](c, u)+∆G[T](c, u)+∆G[T](ai, bi)−∆G[T](x, ai)−∆G[T](x, bi)

≥ −2n.

For any vertex v of G′i we obtain ∆G[T](c, v) − ∆G[T](x, v) ≥ ` − n. As a result, we find that (t being the number of paired
vertices in copies of G′ by equation (12))

∑
v∈V(G)

∆G[T](c, v)−∆G[T](x, v) ≥ t · (2`− 3n)+ (`2n− t + n)(`− n)−
`

2
n− 2`n

≥ t · (2n2
− 2n)+ 4n3(n4

− 1) > 0.

Therefore, either c or d will have the largest column sum of any vertex in G.
Assume that there exists a polynomial-time constant-factor approximation algorithm A′ for the fixed-edge version of

DAST with respect to ‖ · ‖. That is, for some δ > 0, the algorithm outputs, on G, a spanning tree TA′ of G such that

‖DTA′
− DG‖1 ≤ δ · ‖DTopt − DG‖1. (13)

We know that the maximal column-sum is taken at c or d. Without loss of generality, ‖DT − DG‖1 = ColSum(c). We show
how to obtain an algorithm A from A′ which constructs a spanning tree TA for G satisfying Eq. (13) and having the property
that for any i and h we have ∆G′i

[TA](ai, bi) = ∆G′h
[TA](ah, bh). The algorithm works as follows. First, run A′ on G, producing

a spanning tree TA′ for G that satisfies Eq. (13). Then, select a G′i for which ∆G′i
[TA′ ](ai, bi) is minimal and replace—for every

G′h for which ∆G′h
[TA′ ](ah, bh) is not minimal—the respective part of TA′ by the spanning tree constructed for G′i . Replacing

the spanning tree increases the column-sum of c by at most n2 (the ∆’s in the graph whose spanning tree was replaced).
However, it also decreases the column sum of c by at least ` (the ∆’s to the vertices in q); thus, Eq. (13) still holds. Hence, we
can replace the individual spanning tree for the G′i until for all G′i , ∆G′i

[T](a, b) is identical. We may thus assume for the rest

of the proof that in any spanning tree T for G, all G′i have spanning trees with the same ∆G[T](a, b). Define k
def
= ∆G[T](a, b).

Therefore, for vertex c, we have

ColSum(c) =
∑

w∈V(p)

∆G[T](c,w)+
∑
i=;`2

∑
w∈V(G′i)

∆G[T](c,w)+
∑

w∈V(q)

∆G[T](c,w)

≥
1
4
`2
+ n ·

`2∑
i=1

(`+ (i− 1) · k)+ (`+ 1) · (`+ `2
· k)+

1
4
`2

=
1
2
`2
+ n ·

(
`3
+

1
2
`4
· k−

1
2
`2
· k
)
+ `2
+ `+ `3

· k+ `2
· k

=
3
2
`2
+ `3
· n+ `+ k ·

(1
2
`4
· n−

1
2
`2
· n+ `3

+ `2
)

. (14)
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Furthermore,

ColSum(c) =
∑

w∈V(p)

∆G[T](c,w)+
`2∑
i=1

∑
w∈V(G′i)

∆G[T](c,w)+
∑

w∈V(q)

∆G[T](c,w)

≤
1
4
`2
+ n ·

`2∑
j=1

(`+ (j− 1) · k+ n)+ (`+ 1) · (`+ `2
· k)+

1
4
`2

=
1
2
`2
+ n ·

(
`3
+

1
2
`4
· k−

1
2
`2
· k+ `2

· n
)
+ `2
+ `+ `3

· k+ `2
· k

=
3
2
`2
+ `3
· (1+ n)+ `+ k ·

(1
2
`4
· n−

1
2
`2
· n+ `3

+ `2
)

. (15)

Using Eqs. (14) and (15), we conclude from Eq. (13) that for n ≥ 2, we have

0 ≥ ‖DTA − DG‖1 − δ · ‖DTopt − DG‖1 ≥
3
2
`2
+ `3
· n+ `+ kA ·

(1
2
`4
· n−

1
2
`2
· n+ `3

+ `2
)

− δ ·

(3
2
`2
+ `3
· (n+ 1)+ `+ kopt ·

(1
2
`4
· n−

1
2
`2
· n+ `3

+ `2
))

≥

3
2`

2
+ `3
· n+ `

1
2`

4 · n− 1
2`

2 · n+ `3 + `2
+ kA − δ ·

( 3
2`

2
+ `3
· (n+ 1)+ `

1
2`

4 · n− 1
2`

2 · n+ `3 + `2
+ kopt

)
≥ kA − δ · (1+ kopt).

Assuming that kopt ≥ 1 we thus find kA ≤ 2δ · kopt. By Lemma 15, this implies P = NP. �

5. Trees that approximate centralities

A centrality measure is a mapping from the vertices of a graph to real numbers. Closeness centrality cG : V → R for a
graph G is defined for all v ∈ V as follows [2,23]:

cG(v)
def
=

(∑
t∈V

dG(v, t)

)−1

.

It is clear from the definition that for each subgraph G′ of a graph G, we have cG(v) ≥ cG′(v) for all vertices v in the graph.
We are interested in the problem of computing a spanning tree of a given graph such that its centrality function is as

close as possible to the centrality function of the graph under some vector norms.

Problem: CAST (with respect to ‖ · ‖r)
Input: A graph G (not necessarily connected) and an algebraic number γ
Question: Does G contain a spanning tree T with ‖cG − cT‖r ≤ γ?

It turns out that computing trees approximating the closeness centrality best possible with respect to the average deviation
is computationally hard.

Theorem 19. CAST with respect to ‖ · ‖1 is NP-complete.

Proof. Containment in NP is obvious. We prove NP-hardness by reduction from X3C using a graph representation slightly
different to the one we used so far. The difference lies in the following: in our new graph representation G∗a,b(C, L) = (V∗, E∗)
we omit the hull edges, i.e., we have

V∗ = V

E∗ = E \
{
{lµ, lν} | µ, ν ∈ {1, . . . , 3m} and µ 6= ν

}
where Ga,b(C, L) = (V, E). It is easy to see that Lemma 3 also holds for the new graph representation. Later we will set the
parameters a, b and γ in a way that (C, L) has an admissible solution S ⊆ C if and only if G∗a,b(C, L) has a spanning tree T
such that ‖cG∗a,b(C,L) − cT‖1 ≤ γ. In the following we may restrict ourselves to the cases where m ≥ 5.

Suppose S ⊆ C is an admissible solution to (C, L). Let TS be the corresponding spanning tree in G∗a,b(C, L). We obtain

cTS (v)
−1
=



2s+ 3(3+ 4b)m+ 2a− 1 if v ∈ R
s+ 3(2+ 3b)m+ a if v ∈ X
2s+ 3(3+ 4b)m+ 2a− 6(b+ 1)− 1 if v ∈ S
2s+ 3(3+ 4b)m+ 2a− 1 if v ∈ C \ S
3s+ 3(4+ 5b)m+ 3a− 8(b+ 1) if v ∈ L
4s+ 3(5+ 6b)m+ 4a− 8(b+ 1)− 1 if v ∈ K.
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We set our parameters as follows:

a
def
= 3s(b+ 1)+ 3m(s− 1)(b+ 1)+ 3m(m− 1)(b+ 1)2

b
def
= 9s+ 1

γ
def
= ‖cG∗a,b(C,L) − cTS‖1.

Thus, TS is a spanning tree of G∗a,b(C, L) having the desired centrality property. Note that all parameters and the graph
representation G∗a,b(C, L) can be computed in polynomial time in the size of (C, L). In particular, it is not necessary to know
exactly the vertices of S.

Suppose that T is a spanning tree of G∗a,b(C, L) satisfying ‖cG∗a,b(C,L)− cT‖1 ≤ γ. We compare the centrality of each vertex in
the tree T with its centrality in a hypothetical solution tree for the X3C instance (C, L). For v ∈ V , define imitating centralities
ĉ(v) as follows: if v ∈ V \ C, then ĉ(v) is equal to the values cTS from above; for vertices v ∈ C, we define

ĉ(v)−1 def
=

{
2s+ 3(3+ 4b)m+ 2a− 6(b+ 1)− 1 if v ∈ {C1, . . . , Cm}

2s+ 3(3+ 4b)m+ 2a− 1 if v ∈ {Cm+1, . . . , Cs},

i.e., the clause vertices C1, . . . , Cm simulate an admissible solution to (C, L). Note that ‖cG∗a,b(C,L) − ĉ‖1 = γ. We apply the
characterization of a solution tree in Lemma 3 (in the version suitable for the graph representation G∗a,b(C, L)) and show that
all conditions are satisfied.

• Assume to the contrary that the first condition in Lemma 3 does not hold, i.e., for some µ ∈ {1, . . . , s}, the edge {Cµ, x}
does not belong to T. Simple calculations yield the following bounds on deviations from the imitating centralities.
– For v ∈ R ∪ X we obtain cT(v)−1

≥ ĉ(v)−1
+ 2. Note that this inequality is crucial in getting a contradiction as it holds

for a+ 1 vertices.
– For v ∈ C we obtain cT(v)−1

≥ ĉ(v)−1
− 6(b+ 1).

– For v ∈ L ∪ K, we have cT(v)−1
≥ ĉ(v)−1

− 2(s− 1)− 6(m− 1)(b+ 1).

Thus, using the identity 1
x+y
=

1
x
−

y
x(x+y)

which is at least true whenever x > 0 and y 6= −x, the total centrality of T can
be estimated as∑

v∈V

cT(v) ≤

(∑
v∈V

ĉ(v)

)
−

2(a+ 1)

(a+ c1)(a+ c2)
+

A

(2a+ c3)(2a+ c4)

where c1, c2, c3, c4 and A are appropriate positive integers (that depend on s, m, and b). It is clear that the latter sum in
the inequality is negative for a large enough. Inspecting the concrete values

c1 = s+ 3(2+ 3b)m
c2 = s+ 3(2+ 3b)m+ 2
c3 = 2s+ 3(3+ 4b)m− 6(b+ 1)− 1
c4 = 2s+ 3(3+ 4b)m− 12(b+ 1)− 1
A = 6s(b+ 1)+ 6m(s− 1)(b+ 1)+ 18m(m− 1)(b+ 1)2,

we see that 0 ≤ c1 ≤ c3 and 0 ≤ c2 ≤ c4 for m ≥ 5. Thus, our choice of a from above is appropriate. Hence,

‖cG∗a,b(C,L) − cT‖1 > ‖cG∗a,b(C,L) − ĉ‖1 = γ,

a contradiction.
• The second condition of Lemma 3 holds because T is a spanning tree of G∗a,b(C, L).
• Note that, if the first and second condition in Lemma 3 are both satisfied, then all edges but the central edges are already

fixed by now and the distances in T andGa,b(C, L) are the same. Assume to the contrary that the third condition in Lemma 3
does not hold, i.e., there is a vertex Cµ having two or three neighbors in T. Let degT(v) denote the degree of vertex v in T.
We consider several cases:
– For v ∈ R ∪ X we clearly obtain cT(v)−1

= ĉ(v)−1.
– For v ∈ C we have cT(v)−1

≥ ĉ(v)−1
− 6(b+ 1).

– For v ∈ L it suffices to have cT(v)−1
≥ ĉ(v)−1.

– For v ∈ K we obtain cT(v)−1
≥ ĉ(v)−1

+ 2(b+ 1)(4− degT(u)) where u ∈ C and T contains edges {v,w} and {w, u} for
some w ∈ L. Note that since there is a vertex in C with at most three neighbors in T, there are at least b vertices in K
such that cT(v)−1

≥ ĉ(v)−1
+ 2(b+ 1). This is the crucial inequality in getting a contradiction.

Using the identity 1
x+y
=

1
x
−

y
x(x+y)

from above once more, we get the following estimation for the total centrality:

∑
v∈V

cT(v) ≤

(∑
v∈V

ĉ(v)

)
+

6s(b+ 1)

ĉ(v0)−1(ĉ(v0)−1 − 6(b+ 1))
−

2(b+ 1)b

ĉ(u0)−1(ĉ(u0)−1 + 4(b+ 1))
,
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where v0 ∈ C and u0 ∈ K. An easy estimation of the relation between ĉ(v0)
−1 and ĉ(u0)

−1 shows that, for m ≥ 5, the latter
difference is at most

18s(b+ 1)− 2(b+ 1)b

ĉ(u0)−1(ĉ(u0)−1 + 4(b+ 1))
< 0,

by our choice of b. Hence,

‖cG∗a,b(C,L) − cT‖1 > ‖cG∗a,b(C,L) − ĉ‖1 = γ,

a contradiction.

This proves the theorem by Lemma 3. �

Remark 20. Observe that the graph representation used in the proof of Theorem 19 always produces planar graphs if X3C
instances are assumed not to contain two or more identical clauses. That is, CAST with respect to ‖ ·‖L,1 is NP-complete even
when restricted to planar graphs.

6. Conclusion

We have introduced the problem of combinatorial network abstraction and systematically studied it for the natural
case of trees and distance-based similarity measures (distance minimization, distance approximation, and centrality
approximation). This provides the first computational complexity study in this area, presented in a unifying framework.
As an interesting technical problem left open here, future research might consider the presented problems with respect
to the spectral norm—in the light that NP-completeness appears with coarser norms and the value of the spectral norm is
always smaller than that of the norms considered here, maybe we can expect polynomial-time solvability there.
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