
Theoretical Computer Science 407 (2008) 155–181

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Solving structured linear systems with large displacement rank

Alin Bostan a, Claude-Pierre Jeannerod b, Éric Schost c,∗
a Algorithms Project, INRIA Paris-Rocquencourt, 78153 Le Chesnay Cedex, France
b Arénaire Project, INRIA Rhônes-Alpes, Laboratoire LIP (CNRS, ENSL, INRIA, UCBL), ENS Lyon, France
c Computer Science Department, The University of Western Ontario, London, Ontario, Canada

a r t i c l e i n f o

Article history:
Received 23 October 2007
Received in revised form 14 May 2008
Accepted 16 May 2008
Communicated by V. Pan

Keywords:
Structured linear algebra
Dense linear algebra

a b s t r a c t

Linear systems with structures such as Toeplitz, Vandermonde or Cauchy-likeness can be
solved in O (̃α2n) operations, where n is the matrix size, α is its displacement rank, and O˜
denotes the omission of logarithmic factors. We show that for such matrices, this cost can
be reduced to O (̃αω−1n), whereω is a feasible exponent for matrix multiplication over the
base field. The best known estimate forω isω < 2.38, resulting in costs of order O (̃α1.38n).
We present consequences for Hermite–Padé approximation and bivariate interpolation.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Structured linear algebra techniques are a versatile set of tools. They enable one to deal at once with matrices
with features such as Toeplitz, Vandermonde or Cauchy-likeness, which arise in various problems, from interpolation to
reconstruction of rational or algebraic functions, etc.
Following [26], the usual way of measuring to what extent a matrix possesses one such structure is through its

displacement rank, that is, the rank of its image through a suitable displacement operator. For P and Q in respectively Kn×n
and Km×m, where K is our base field, we will use the displacement operator

∆[P,Q] : Kn×m → Kn×m
A 7→ A− P AQ.

Two matrices (Y, Z) in Kn×α × Km×α will be called a P,Q-generator of length α for A if ∆[P,Q](A) = Y Zt . The main idea
behind algorithms for structured matrices is to use such generators as a compact data structure, in cases when∆[P,Q](A)
has low rank. Even though these definitions hold for rectangular A, in most of this article, we have n = m.
Usual choices for P or Q are either diagonal matrices or cyclic down-shift matrices of size n, defined for ϕ in K by

Zn,ϕ =


0 ϕ
1 0

. . .
. . .

1 0

 ∈ Kn×n.

The Toeplitz structure corresponds to P = Zn,0 and Q = Ztm,0, so that∆[Zn,0,Z
t
m,0](A) equals

A — (A shifted down and right by one unit).

∗ Corresponding author. Tel.: +1 519 661 2111.
E-mail addresses: Alin.Bostan@inria.fr (A. Bostan), claude-pierre.jeannerod@ens-lyon.fr (C.-P. Jeannerod), eschost@uwo.ca,

Eric.Schost@polytechnique.fr (É. Schost).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.05.014

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:Alin.Bostan@inria.fr
mailto:claude-pierre.jeannerod@ens-lyon.fr
mailto:eschost@uwo.ca
mailto:Eric.Schost@polytechnique.fr
http://dx.doi.org/10.1016/j.tcs.2008.05.014

156 A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181

The Vandermonde structure is obtained by taking P diagonal andQ a cyclic right-shift matrixZtm,ϕ . For the Cauchy structure,
both P and Q are diagonal. In particular, in all these cases, storing P and Q requires no more than O(n) elements.
In this paper, we consider the following task:
LinearSystem(P,Q, α): Given a P, Q-generator of length α for a matrix A ∈ Kn×n, with α ≤ n, and given v ∈ Kn, find a

solution to the equation Au = v, or determine that none exists.
This problem makes sense only when the operator∆[P,Q] is invertible: this will be the case in our three cases of focus,

Toeplitz-like, Vandermonde-like and Cauchy-like matrices (however, non-invertible operators can be dealt with if some
extra information about A is known, such as suitable columns, see [46] and [45, Section 4.5]). Previous work then yielded
the following kind of results: for these three structures, one can solve the problem LinearSystem using O (̃α2n) operations
in K, where the O˜ notation hides logarithmic factors.
When α is constant, such estimates are optimal up to logarithmic factors. However, there are several situations where

α is not bounded a priori (see examples below). In the extreme case of very loosely structured matrices, when α goes up to
α ' n, the cost above becomes O (̃n3).
On the other side of the spectrum, we find dense linear algebra methods. Let ω ≤ 3 be such that n × n matrices over

K can be multiplied in O(nω) operations (the current record estimate is ω < 2.38 [13]). As in many other references, we
will assume that ω > 2 (in a potential situation with ω = 2, logarithmic factors would appear in some estimates). Linear
systems of size n can then be solved in time O(nω), using for example LSP factorization [25]; with ω < 3, this is better than
the above O (̃n3) estimate.
Our contribution bridges a gap between the approaches of structured and dense linear algebra by providing algorithms

of cost O (̃αω−1n) in the case of Toeplitz-like, Vandermonde-like and Cauchy-like matrices.
Model of computation. Our underlying computational model is the algebraic RAM over the fieldK; a complete definition is
given by Kaltofen in [27]. Concretely, the cost estimates count two kinds of operations:

• Operations inK (sums, products, equality tests, inversions) have unit cost; the generation of a random element inK has
unit cost as well.
• We use integer arithmetic for handling indices in arrays. With a view towards simplicity, we see all these operations at
unit cost.

Regarding the last point, in all our algorithms, the indices we will work with will be polynomial in n (when dealing with
matrices of size n); hence, if desired, the translation to actual binary cost estimates would only induce a polylogarithmic
overhead in n.
Our algorithms rely on polynomial multiplication; we will thus denote by M : N>0 → R>0 a function such that

polynomials in K[x] of degree less than d can be multiplied using at most M(d) operations. Using Fast Fourier Transform
algorithms,M(d) can be taken in O(d log(d) log log(d)), see Section 2 for more details.
Our algorithms are probabilistic. For simplicity, we say that an algorithm has type P(s, d) if it chooses r ≤ s elements inK

and, if these elements are chosen uniformly at random in a finite subset S ofK, the probability of success is at least 1−d/|S|.
In particular, K should have cardinality more than d to guarantee that this probability can be made positive.
Main results. The first result covers matrices having Toeplitz-like structure, with P = Zn,0 and Q = Ztn,0. We obtain a
complexity in O (̃αω−1n) ⊂ O (̃α1.38n), to be compared with an optimal cost of O(α n). For α constant, our result is quasi-
linear in n; when α ' n, we recover the O(nω) behaviour of dense methods, up to logarithmic factors.

Theorem 1. The problem LinearSystem(Zn,0,Ztn,0, α) can be solved in time O(α
ω−1M(n) log2(n)), by a probabilistic algorithm

of type P(3n− 2, n2 + n).

A fundamental application is the solution of approximation problems: given a master polynomial M and polynomials
f1, . . . , fs, one seeks a combination of the fi, with polynomial coefficients of prescribed degrees, which vanishes modulo
M . This includes in particular Padé and Hermite–Padé approximation (takingM = xn), with applications to e.g. recovering
the minimal polynomial of an algebraic power series f (taking fi = f i−1).

Corollary 1. Let M ∈ K[x] be of degree n, let f1, . . . , fs ∈ K[x] be of degrees less than n, and let ν1, . . . , νs ∈ N be such that∑
i≤s νi = n+ 1. One can find g1, . . . , gs ∈ K[x], not all zero, of respective degrees less than ν1, . . . , νs, such that

g1f1 + · · · + gsfs = 0 mod M,

in time O(sω−1M(n) log2(n)). The algorithm is probabilistic of type P(3n− 2, n2 + n).

Our second result addresses the Vandermonde-like case, where P = D(x) is the diagonal matrix defined by a vector
x = [x1, . . . , xn]t ∈ Kn and Q is Ztn,ψ . We assume that x has the form

x =

x1
...
xs

 , with xi =

xi,1...
xi,νi

 ∈ Kνi , (1)

A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181 157

and with the following conditions: for all j, all entries of xj are pairwise distinct; for j < s, xj+1 is a prefix of xj, in the sense
that 0 < νj+1 ≤ νj and xj+1,k = xj,k for k = 1, . . . , νj+1. We will call s the multiplicity of x (see Section 2). Note also that,
given x as in Eq. (1), we can deduce ν1, . . . , νs in time O(n).
Assuming that Eq. (1) is satisfied is a mild assumption: any vector x can be put into this form after permuting its entries.

However, finding the permutation has a cost: this is particularly easy if there is an order on K, using sorting algorithms;
without this assumption, though, the question seems harder: we mention an algorithm of complexity O(M(n) log3(n)) in
Appendix. Hence, we rather stick to the above assumption for simplicity.
We make a second assumption, which is necessary to ensure that our problem is well posed:
ψ xni 6= 1 for i ≤ n. (2)

Theorem 2. Given x and ψ as in Eqs. (1) and (2), one can solve the problem LinearSystem(D(x),Ztn,ψ , α) in time
O(αω−1M(n) log2(n)) by a probabilistic algorithm of type P(4n− 2, 4n2 + n).
An application of the latter theorem is polynomial interpolation. The approach applies to any number of variables, but
we discuss only the bivariate case for simplicity. Consider n pairwise distinct interpolation points in K2; without loss of
generality, we assume that they are given through the following lists, where the points with the same abscissas are grouped
together:

P1 = [p1,1 = (x1, y1,1), . . . , p1,ν1 = (x1, y1,ν1)],
...

Ps = [ps,1 = (xs, ys,1), . . . , ps,νs = (xs, ys,νs)],
(3)

with ν1 ≥ · · · ≥ νs > 0 and n = ν1 + · · · + νs. The following figure illustrates the case s = 3, n = 7 and
(ν1, ν2, ν3) = (3, 2, 2).

In general, it is difficult to state a priori that a multivariate interpolation problem is well defined. Here, however, given
values [vi,j] ∈ Kn, with 1 ≤ i ≤ s and 1 ≤ j ≤ νi, Theorem 1 in [35] (see also [19]) implies that there exists a unique
F ∈ K[x, y] of the form

F =
∑

0≤i<s, 0≤j<νi+1

fi,jxiyj

such that F(pi,j) = vi,j for all i, j (hence themonomial support of the polynomial F corresponds to the index set of the sample
points). In our previous example, F thus has the form

F = f0,0 + f0,1y+ f0,2y2 + f1,0x+ f1,1xy+ f2,0x2 + f2,1x2y.
Finding the coefficients fi,j of F is a linear problem with Vandermonde-like structure; in Section 5.4 we will prove the
following corollary of Theorem 2.
Corollary 2. Given the lists of points P1, . . . , Ps and the lists of values [F(p) : p ∈ P1], . . . , [F(p) : p ∈ Ps], the coefficients fi,j of
F can be computed in time O(νω−11 M(n) log2(n)). The algorithm is probabilistic of type P(4n− 2, 4n2 + n).
Suppose for instance that ν1 = s, ν2 = s − 1, . . . , νs = 1, so that we are interpolating on the simplex of monomials of
degree less than s; here, n = s(s+ 1)/2. Then, our algorithm has subquadratic complexity O (̃n(ω+1)/2) ⊂ O (̃n1.69).
Our third result deals with the Cauchy-like case, where P = D(x) and Q = D(y) are diagonal matrices defined by some

vectors x and y in Kn. We assume as before that x satisfies (1) and, in addition, make a similar assumption on y:

y =

y1
...
yt

 , with yi =

yi,1...
yi,δi

 ∈ Kδi , (4)

and with the following conditions: for all k, all entries of yk are pairwise distinct; for k < t , yk+1 is a prefix of yk. Again, given
x as in Eq. (1) and y as in Eq. (4), one can deduce all the νj and δk in time O(n).
For our Cauchy-like problem to be well posed, we now replace the assumption in Eq. (2) with the following one:
xiyj 6= 1 for 1 ≤ i, j ≤ n. (5)

The complexity result we obtain in this case is then essentially the same as for the Toeplitz-like and Vandermonde-like
cases:

158 A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181

Theorem 3. Given x and y as in Eqs. (1), (4) and (5), one can solve the problem LinearSystem(D(x),D(y), α) in time
O(αω−1M(n) log2(n)), by a probabilistic algorithm of type P(5n− 2, 7n2 + n).

Previous work on structured systems. The notions of displacement rank and displacement operator originate from the
work of Kailath, Kung and Morf [26]. Since then, the literature has vastly developed; see [45] for a list of references.
The basis for Theorem1 is the seminal algorithmof Bitmead andAnderson [7] andMorf [37,38], which nontrivially adapts

Strassen’s divide-and-conquer approach [53] to structured computations. This algorithm requires several invertibility
conditions to hold. Kaltofen [28,29] extended this idea to arbitrary matrices (see also [6, p. 204] for some related ideas),
obtaining a cost of O(α2M(n) log(n)); for small α, this is better than our result in Theorem 1 by a factor of log(n).
We follow these previous approaches; our main technical contribution is an algorithm for the fast multiplication of a

Toeplitz-like matrix (given by a generator of length α) by α vectors: we replace the separate computation of these products
(which has cost quadratic in α) by simultaneous computations, where using polynomial matrix multiplication yields a
subquadratic cost in α.
To prove Theorem 2, we transform a Vandermonde-like system into a Toeplitz-like one, following Pan’s idea [41,42]. We

use a transformation from [24], generalizing it by taking into account the possibility of repetitions in the diagonal component
of the operator. Similarly, the proof of Theorem 3 uses a reduction from Cauchy-like systems to Vandermonde-like ones.
In both the Vandermonde and Cauchy cases, a direct approach (not relying on the reduction to Toeplitz systems) is

possible, see [48,44,47,12] and [45, Chapter 5]. As in the Toeplitz case, the bottleneck of these algorithms is themultiplication
of a structured matrix (given by a generator of length α) by α vectors. However, following this approach, we are not able to
obtain algorithms whose costs would match in all cases those of Theorems 2 and 3.
Applications. An important example of Toeplitz-like system solving is the approximation problem of Corollary 1. In the
particular case of Hermite–Padé approximation, with M = xn, a central reference is Beckermann–Labahn’s algorithm [2],
that has complexity O(sω M(n) log(n)) for computing a σ -basis of order n of the input system (and thus a solution to the
approximation problem); see [23]. In generic cases, an unpublished result of Lecerf reduces the cost to O(sω−1M(n) log n)
and Storjohann [52] subsequently obtained a deterministic algorithm of similar complexity, applying in all cases. However,
to our knowledge, these results do not extend to an arbitrary choice ofM . Following notably [1,54], Beckermann and Labahn
study that general case in [3] under the angle of fraction-free algorithms, with however a complexity more than linear in n.
Another example of a Toeplitz-like system that occurs frequently is when the matrix is block-Toeplitz, a block-size

equal to α giving a displacement rank in O(α). Although Theorem 1 applies to any such system, a deterministic cost of
O(αω−1M(n) log(n)) can be obtained in the particular case where the matrix is invertible. As described for example in [16,
17], this cost follows from combining an inversion formula of [33] with σ -basis computations as in [23].
Multivariate polynomial interpolation has been studied extensively (see [20] for a survey and [4,10,56] for algorithms

relevant to sparse techniques). However, to our knowledge, previous references either do not cover the problems we deal
with, or have higher complexity (typically, quadratic). Regarding the converse evaluation problem, let us mention the
subquadratic complexity result of [40], which however deals with more general situations than ours.
Practical issues. Few practical algorithms are currently known for matrix multiplication with complexity better than cubic
(see [53,34,32] for an exponent 2.776). However, even when using algorithms of cubic complexity, the re-introduction
of dense matrix arithmetic in our algorithms means that we can rely on extremely optimized implementations of matrix
multiplication, such as the ones relying on BLAS libraries for finite field arithmetic [15].
Hence, besides theoretical estimates, the re-introduction of dense matrix multiplication in algorithms for structured

matrices may lead to practical improvements. However, extra workmay be required: useful refinements would for instance
consist in removing the undesired logarithmic factors that appear in Theorems 1–3.
Organization of the paper. After introducing basic notation and results in Section 2, we present in Section 3 the bases of
our technical improvement, which can be stated in terms of polynomial operations only. These results are then applied, first
to the Toeplitz case in Section 4, then to the Vandermonde case in Section 5 and the Cauchy case in Section 6. The Appendix
presents an algorithm for putting an arbitrary vector into the form of Eq. (1), without relying on sorting algorithms.

2. Notation and preliminaries

We gather here all needed notation for vectors and matrices as well as some basic identities and complexity results on
structured and dense matrices.
Matrices, vectors and polynomials. In what follows, we consider matrices and vectors over a field K; vectors in Kn are
identified with column-matrices in Kn×1.
Matrices (resp. vectors) are written in upper-case (resp. lower-case) sans-serif font. If A (resp. B, C, . . .) is a matrix, ai

(resp. bi, ci, . . .) is its ith column. If x (resp. y, z, . . .) is a vector, its ith entry is written xi (resp. yi, zi, . . .). Special matrices
(diagonal, Vandermonde, Toeplitz, . . .) will be written with blackboard bold letters (D, V, . . .).
For n a positive integer and i ≤ n, we let en,i be the ith unit vector inKn, so that en,i is zero, except at the ith entry, which

is 1. The identity matrix in Kn×n, whose ith column equals en,i, will be written In.
Regarding univariate polynomials, we use the following notation:

A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181 159

• The degree of F ∈ K[x] is written deg(F).
• For n ∈ N, we let K[x]n be the n-dimensional vector space of polynomials of degree less than n.
• For n ∈ N and F = f0 + · · · + fn−1xn−1 ∈ K[x]n, we will write Revn(F) for the reversal fn−1 + · · · + f0xn−1 of F .
• For F ∈ K[x] and G ∈ K[x] non-zero, F div G and F mod G are the quotient and the remainder in the division of F by G.
Notation such as AB mod C or AB div C must be interpreted as (AB) mod C or (AB) div C , respectively.

We say that a vector is repetition-freewhen its entries are pairwise distinct. Besides, we use the following notation for vectors
and polynomials derived from a vector a = [a1, . . . , an]t in Kn:

• Flip(a) is the vector [0, an, . . . , a2]t ∈ Kn.

• Pol(a) is the polynomial
∑n−1
i=0 ai+1x

i
∈ K[x]n.

• If F is a function on K, then F(a) is the vector [F(a1), . . . , F(an)]t ∈ Kn.
• Conversely, if a is repetition-free and y is inKn, then Interp(a, y) is the unique polynomial F inK[x]n such that yi = F(ai)
for 1 ≤ i ≤ n.

Families of structured matrices. Several families of structured matrices will be used along this paper. First, we associate
matrices to a vector x = [x1, . . . , xn]t in Kn:

• D(x) ∈ Kn×n is the diagonal matrix whose ith diagonal entry equals xi.
• L(x) is the lower-triangular Toeplitz matrix with first column x:

L(x) =


x1
x2 x1
...

...
. . .

xn xn−1 · · · x1

 ∈ Kn×n.

• U(x) = L(x)t is the upper-triangular Toeplitz matrix with first row xt :

U(x) =


x1 x2 · · · xn

x1 · · · xn−1
. . .

...
x1

 ∈ Kn×n.

• For ϕ in K, we denote by T(x, ϕ) the ϕ-circulant matrix with first column x; that is, T(x, ϕ) = L(x)+ ϕ U(Flip(x)):

T(x, ϕ) =


x1 ϕ xn . . . ϕ x2

x2 x1
. . .

...
...

...
. . . ϕ xn

xn xn−1 . . . x1

 ∈ Kn×n.

• Form ∈ N, the n×m Vandermonde matrix V(x,m) is given by:

V(x,m) =

1 x1 · · · xm−11
...

...
...

1 xn · · · xm−1n

 ∈ Kn×m.

• Given y = [y1, . . . , ym]t in Km such that xiyj 6= 1 for all i, j, the n×m Cauchy matrix C(x, y) is defined by

C(x, y) =


1

1−x1y1
· · ·

1
1−x1ym

...
...

1
1−xny1

· · ·
1

1−xnym

 ∈ Kn×m.

We also associate families of matrices to univariate polynomials:

160 A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181

• Given F = f0 + · · · + fn−1xn−1 ∈ K[x]n andm ∈ N, we denote byM(F ,m) the matrix of the map K[x]m → K[x]n+m−1 of
multiplication by F :

M(F ,m) =



f0
...

. . .

...
. . . f0

fn−1
. . .

...

. . .
...
fn−1


∈ K(n+m−1)×m.

• Given themonic polynomial F = f0+· · ·+ fn−1xn−1+xn, we denote byX(F) thematrix ofmultiplication by x inK[x]/〈F〉:

X(F) =


−f0

1 −f1
. . .

...
1 −fn−1

 ∈ Kn×n.

Structuredmatrix identities. The families of structuredmatrices shown above satisfy many identities. We present now the
ones we will need below; we start by showing how to rewrite products (diagonal matrix)×(Vandermonde matrix) using
polynomial multiplication matrices.

Lemma 1. Let x be repetition-free in Kn, let y be in Kn, and let P ∈ K[x]n be defined by P = Interp(x, y). Then, for m in N, we
have

D(y)V(x,m) = V(x, n+m− 1)M(P,m).

Proof. Let f be in Km and let F = Pol(f) ∈ K[x]m. Then, both vectors D(y)V(x,m) f and V(x, n + m − 1)M(P,m) f have
entries yiF(xi). �

The above identity is used in Sections 5.1 and 6.1 to solve multiplication problems associated to, respectively,
Vandermonde and Cauchy-like matrices. In fact, for Cauchy-like matrices, we will use it in combination with another
identity, shown in Lemma2below: it factorsn×mCauchymatrices bymeans of Vandermonde and transposedVandermonde
matrices; when n = m, this is [18, Proposition 3.2] (see also [45, Exercise 3.10(b)]).

Lemma 2. Let x in Kn and y in Km be such that xiyj 6= 1 for all i, j. Let F ∈ K[x]m+1 be given by F =
∏
j≤m(1− xyj) and let f in

Km be such that Pol(f) = F mod xm. Then

C(x, y) = D(F(x))−1 V(x,m)L(f)V(y,m)t .

Proof. Since F(xi) 6= 0 for all i, we have (1 − xiyj)−1 = F(xi)−1Gj(xi), with Gj = F/(1 − xyj). Therefore, C(x, y) =
D(F(x))−1 [G1(x) · · · Gm(x)]. Now, Gj ∈ K[x]m and thus

Gj = (F mod xm)(1+ yjx+ · · · + ym−1j xm−1) mod xm.

Writing gj for the vector in Km such that Pol(gj) = Gj, we obtain

Gj(x) = V(x,m) gj = V(x,m)L(f)
[
1 yj · · · ym−1j

]t
for 1 ≤ j ≤ m, which concludes the proof. �

Our final expression, already seen e.g. in [24], shows that some companion matrices and diagonal matrices are similar.
We will use it in Section 5.2 for reducing Vandermonde-like systems to Toeplitz-like ones, and then again in Section 6.2 for
reducing Cauchy-like systems to Vandermonde-like ones.

Lemma 3. Let x be a repetition-free vector in Kn and let F be the monic polynomial defined by F =
∏
i≤n(x− xi). Then we have

the equality

D(x) = V(x, n)X(F)V(x, n)−1.

Proof. For y in Kn, we claim that the vectors D(x)y and V(x, n)X(F)V(x, n)−1y have entries xiyi. This is readily seen for the
former one. Defining P = Interp(x, y) ∈ K[x]n, computing the latter vector amounts to evaluate the polynomial (xP mod F)
at x, yielding the values xiyi as well. �

Polynomial expressions.Multiplication by the various families of structured matrices seen before can be reinterpreted in
terms of polynomial operations. This is foremost the case for multiplication by lower- or upper-triangular Toeplitz matrices,
as seen in the following well-known lemma.

A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181 161

Lemma 4. Let y and z be in Kn and let u = L(y) z and v = U(y) z. We have

Pol(u) = Pol(y) Pol(z) mod xn,
Pol(v) = Revn(Pol(y)) Pol(z) div xn−1.

We gather here some further expressions of a similar spirit, that are needed later. First, we show how to rewrite
transposed polynomial multiplication in terms of plain multiplication; the following result is from [9, Section 4.1].

Lemma 5. Let P be in K[x]m, f be in Kn+m−1 and let u = M(P, n)t f ∈ Kn. Then we have

Pol(u) = (Revm(P) Pol(f) div xm−1) mod xn.

The next lemma describes a more complex operation, needed in Section 5.1 for handling Vandermonde-like matrices.

Lemma 6. Let z be in Kn, ϕ be in K, P be in K[x]m, f be in Kn+m−1, and define g ∈ Kn by

g = T(z, ϕ) M(P, n)t f.

Define further

• z′ = Flip(z) in Kn,
• Z = Pol(z) and Z ′ = Pol(z′) in K[x]n,
• F = Pol(f) in K[x]n+m−1.

Then we have the equality

Pol(g) = Z
(
Revm(P) F div xm−1

)
mod xn + ϕ Revn

(
Z ′ (P Revn+m−1(F) div xm−1) mod xn

)
.

Proof. Since by definition T(z, ϕ) equals L(z) + ϕ U(z′), we see that Pol(g) equals Pol(g′) + ϕ Pol(g′′), where
g′ = L(z)M(P, n)t f and g′′ = U(z′)M(P, n)t f. Thus, by applying successively Lemma 4 and Lemma 5 to g′, we first obtain

Pol(g′) = Z
(
Revm(P) F div xm−1

)
mod xn.

To deal with g′′, notice that U(z′) = J L(z′) J, where the reversalmatrix J is zero, except on the anti-diagonal, whose entries
are 1’s. Then, doing as before,

Pol(g′′) = Revn
(
Z ′ Revn

(
(Revm(P) F div xm−1) mod xn

)
mod xn

)
;

observe the presence of the two extra Revn operations, due to the conjugation by the J matrix. To get rid of the second
reversal, one checks that

Revn
(
(Revm(P) F div xm−1) mod xn

)
=
(
P Revn+m−1(F) div xm−1

)
mod xn,

which gives the required result. �

Algorithms for univariate polynomials. As mentioned before, M denotes a function from N>0 to R>0 such that over any
ring, polynomials of degree less than d can be multiplied using at mostM(d) ring operations.
Following [21, Chapter 8], we make the assumption that the function d 7→ M(d)/d is non-decreasing; this implies in

particular that the super-linearity conditionM(d)+M(d′) ≤ M(d+ d′) holds for all d, d′. Using the results of [49,11], one
can takeM(d) ∈ O(d log(d) log log(d)).
Several fast algorithms are based on fast multiplication. Let thus x = [x1, . . . , xn]t be in Kn; we will use the following

well-known results.

Construction from roots. The polynomials
∏
i≤n(x − xi) and

∏
i≤n(1 − xix) can be computed in O(M(n) log(n)) operations

[21, Lemma 10.4].
Evaluation. Given f ∈ Kn, one can compute V(x, n) f (equivalently, evaluate any polynomial F ∈ K[x]n at x) in

O(M(n) log(n)) operations [21, Corollary 10.8].
Transposed evaluation. Given f ∈ Kn, one can compute the vectorV(x, n)t f inO(M(n) log(n)) operations [22, Theorem10.4].
Interpolation. If x is repetition-free and f is in Kn, one can compute the vector V(x, n)−1 f (equivalently, interpolate any

polynomial F ∈ K[x]n at x) in O(M(n) log(n)) operations [21, Corollary 10.12].
Transposed interpolation. If x is repetition-free and f is in Kn, one can compute the vector V(x, n)−t f in O(M(n) log(n))

operations [30, Section 5] (a similar result can be found in [41, Section 10]).

Algorithms for dense matrices. As said earlier, we let 2 < ω ≤ 3 be such that n× nmatrices over K can be multiplied in
O(nω) operations in K.
Dense matrix operations will be used for several purposes. First, since we require that our fast polynomial multiplication

algorithms apply over any ring, we deduce that polynomial matrices over K having degree less than d and size n can be
multiplied in O(nω M(d)) operations. In Section 3, we will actually use the following two results, which deal more precisely
with some specific rectangular polynomial matrix products.

162 A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181

Lemma 7. Let A,B,C be matrices of respective sizes (n× p), (p× n) and (n× p), with entries in K[x]d. Then one can compute
the product ABC using O(pω−1 nM(d)) operations.

Proof. Suppose first that p ≤ n. Up to bordering the matrices by less than p zero rows or columns, we can suppose that p
divides n. Let then ` = n/p.We can rewrite the productABC as a product ofmatrices of size (`×1)×(1×`)×(`×1), having
blocks of size p× p as entries. We then compute this product as A (BC); the cost is O(pω `M(d)), which is O(pω−1 nM(d)).
Suppose now that n ≤ p; as above, we suppose that n divides p and let ` = p/n. Then, the product ABC is rewritten as a

product of matrices of size (1× `)× (`× 1)× (1× `), having blocks of size n× n as entries. We then compute this product
as (AB)C; the cost is O(nω `M(d)), that is, in O(nω−1 pM(d)). This is also in O(pω−1 nM(d)), since 0 ≤ n ≤ p and ω ≥ 2
imply nω−1p ≤ pω−1n. �

Lemma 8. Let A and B be matrices of respective sizes (n× p) and (p×m), with entries inK[x]d. If n ≤ p, then one can compute
the product AB using O(pω−1max{n,m}M(d)) operations.

Proof. Suppose first that n ≤ m. As in the previous lemma, up to borderingA by less than n zero columns andB by less than n
zero columns and rows, we can suppose that n divides p andm. Let k = p/n and ` = m/n. Then, the product AB is rewritten
as a product of matrices of size (1× k)× (k× `), having blocks of size n× n as entries. The cost for computing this product
is thus O(nω k `M(d)) operations, which is O(nω−2 pmM(d)). Since 0 ≤ n ≤ p and ω − 2 ≥ 0, this is in O(pω−1mM(d)), as
required.
Assuming m ≤ n, we obtain a similar estimate of O(mω−2 p nM(d)). Since then 0 ≤ m ≤ p and ω − 2 ≥ 0, this is in

O(pω−1 nM(d)), as required. �

Besides fast (polynomial) matrix multiplication in the above two particular cases, we shall also use fast elimination
on dense matrices. We thus give the following result on isolating a basis of the row-span of a matrix. This is a simple
consequence of Proposition 2.15 in [51].

Lemma 9. Let A be inKn×p. One can compute in time O(rω−2np) a quadruple (r, J,G, P) such that r is the rank of A, J is a subset
of {1, . . . , n} of length r, G is a matrix in K(n−r)×r , P is a permutation matrix of order n, and

E A =

[
A′

0

]
, where E =

[
Ir 0
G In−r

]
P,

and where A′ ∈ Kr×p consists of the rows of A indexed by J.

Proof. Using Algorithm 2.14 in [51], one can compute in time O(rω−2np) the rank r of A along with a permutation matrix
P, and a matrix U of the form

U =

[
F 0
G In−r

]
, with F ∈ Kr×r ,

such that the last n − r rows of the product UPA are zero. Then let J = {i1, . . . , ir}, where ij is the index of the non-zero
entry of the jth row of P. Define E as above, replacing F by the identity Ir in U; then, the first r rows of P A, and thus of E A,
are the rows of A indexed by J . �

The above lemma will be used in Sections 5.3 and 6.3 for introducing zeros in some generators of Vandermonde and
Cauchy-like matrices, and thus handling the high multiplicities that may arise in those cases. Another application of this
lemma is the fast computation of generators of minimal length (or, equivalently, of maximal rank), an operation already
needed for the Toeplitz case. The proof of the result below, which is Remark 4.6.7 in [45], shows this.

Lemma 10. Let P,Q ∈ Kn×n. Given a P,Q-generator of length α ≤ n for A ∈ Kn×n, one can compute a P,Q-generator for A of
minimal length in time O(αω−1n).

Proof. Denoting by (Y, Z) the given generator, we have A − P AQ = Y Zt . Let V be an invertible matrix in Kα×α such that
YV = [Y′ 0], with Y′ ∈ Kn×r and r = rank(Y). Let also Z′ ∈ Kn×r consist of the first r columns of Z V−t . We have Y Zt = Y′ Z′t

and thus (Y′, Z′) is a P,Q-generator for A of length r .
Although Y′ has full rank, Z′ may have rank less than r . Therefore, let further V′ be an invertible matrix in Kr×r such that

Z′ V′ = [H 0], with H ∈ Kn×r
′

and r ′ = rank(Z′). Defining G as the matrix in Kn×r
′

that consists of the first r ′ columns of
Y′ V′−t , we obtain the equality Y′ Z′t = GHt . Since now both G and H have full rank, they form a P,Q-generator for A of
minimal length.
By Lemma 9, the cost of computing r and V is in O(αω−1n). One then obtains Y′ in time O(αω−1n) by multiplication with

V. To get Z′, one can first compute V−t in time O(αω) and then deduce Z V−t in time O(αω−1n). Similarly, deducing (G,H)
from (Y′, Z′) can be done in time O(αω−1n), as required. �

A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181 163

Partitions and multiplicities. Our algorithms for Vandermonde and Cauchy-like systems may require to perform
rearrangements of the diagonal matrices appearing in the corresponding displacement operators. We detail this process
here, pointing out in particular that performing the required permutations is inexpensive.
We start by integer partitions. A partition ν of n ∈ N>0 is a sequence of positive integers ν1 ≥ · · · ≥ νs such that

ν1 + · · · + νs = n. It will be useful to associate to ν the sequence ν∗0 = 0, ν
∗

1 = ν1, . . . , ν
∗

i = ν1 + · · · + νi,
The conjugate of ν is another partition µ = µ1 ≥ · · · ≥ µt of n, where µj is the number of elements i in {1, . . . , s} such

that νi ≥ j; in particular, the conjugate of µ is ν and we have t = ν1 and s = µ1. Remark that given ν, one deduces µ in
n integer additions: after initializing µ at 0, . . . , 0 (ν1 repetitions), we obtain µ by incrementing µj, for i = 1, . . . , s and
j = 1, . . . , νi,
Next, we discuss partitions of vectors. Let thus x be in Kn. We suppose that x has the form of Eq. (1):

x =

x1
...
xs

 , with xi =

xi,1...
xi,νi

 ∈ Kνi ,

where each xj is a repetition-free vector of size νj and where for j < s, xj+1 is a prefix of xj. Since ν = ν1 ≥ · · · ≥ νs is a
partition of n, we let µ = µ1 ≥ · · · ≥ µt be the conjugate partition. The number of occurrences of x1,j in x is thus µj; we
call it itsmultiplicity, and call µ1 = s the multiplicity of x.
It follows that, after permuting its entries, x can be rewritten as

x′ =

xσ(1)...
xσ(n)

 =
x′1
...
x′t

 , (6)

where x′j is a vector consisting of µj repetitions of x1,j. For example, if x = [1, 2, 4, 1, 2, 1, 2]
t , we have

x1 =

[1
2
4

]
, x2 =

[
1
2

]
, x3 =

[
1
2

]
and x′1 =

[1
1
1

]
, x′2 =

[2
2
2

]
, x′3 =

[
4
]
,

with s = t = 3, (ν1, ν2, ν3) = (3, 2, 2), (µ1, µ2, µ3) = (3, 3, 1), σ = [1, 4, 6, 2, 5, 7, 3] and σ−1 = [1, 4, 7, 2, 5, 3, 6].

Lemma 11. Given x as in Eq. (1), one can deduce a permutation σ as in Eq. (6) in time O(n); the converse operation can be done
within the same complexity.

Proof. The partition ν is obtained by scanning x for occurrences of x1,1, in time O(n). One obtains µ as the conjugate of ν
for a similar cost; the permutation σ can then be made explicit as

σ(1), . . . , σ (n) = 1, 1+ ν∗1 , . . . , 1+ ν
∗

µ1−1, . . . , ν1, ν1 + ν
∗

1 , . . . , ν1 + ν
∗

µt−1,

the first block giving the indices of x1,1 = x2,1 = · · · = xs,1 in x and so on. Conversely, given x′, µ is obtained by scanning
x′ for indices where two consecutive entries differ. Then, one recovers ν and σ−1 in the same way as before, changing the
roles of ν and µ. In any case, the cost fits into the required bound. �

By analogy with the square-free decomposition of polynomials, we call the representation in Eq. (6) a repetition-free
decomposition of x.

3. Polynomial operations

Wediscuss now two problems involving polynomials. Both boil down to suitably using polynomial matrixmultiplication
to speed up the simultaneous computation of several bilinear or trilinear expressions; as it turns out, these questions are
the main ingredients of the algorithms in the following sections.

3.1. First problem

In the following, some integers n and α ≤ n are fixed. Let

(Yi)i≤α, (Zi)i≤α and (Fj)j≤α

be inK[x]n. The next propositionwill be used in Section 4, as the key to the proof of Theorem 1 for Toeplitz-like systems. The
cost reported in this proposition is actually the bottleneck of the main algorithm: any reduction on the following estimate
would entail a reduction of the overall cost.

164 A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181

Proposition 1. One can compute the polynomials

Gj =
α∑
i=1

Yi (Zi Fj mod xn), j = 1, . . . , α

in time O(αω−1M(n) log(n)).

The direct approach, used in previous work, consists in computing all polynomials Gj independently, for a cost of
O(α2M(n)) operations. Our contribution showshow to compute the polynomialsGj simultaneously using polynomialmatrix
multiplication.
Proof. Up to replacing nwith n̄ = 2dlog(n)e and Fj with xn̄−nFj, we can (and will) suppose that n is a power of 2.
We first showhow to rewrite truncated products using non-truncated ones, using ideas reminiscent of short products [39].

Let k ≥ 1 be a power of 2 and let ` be in N. For P = p0 + p1x+ · · · , we define P (`,k) ∈ K[x] as follows:

P (`,1) = p` and P (`,k) =
`k+k/2−1∑
i=`k

pixi−`k for k ≥ 2.

In all cases, P (`,k) is a polynomial of degree less than k/2. Using this subdivision enables us to rewrite a truncated product
PQ mod xn as a sum of non-truncated ones.
Lemma 12. For P and Q in K[x] and m a power of 2,

PQ mod xm =
∑

k=1,2,4,...,m

xm−k
m/k−1∑
`=0

P (`,k)Q (m/k−1−`,k),

where the sum is taken on all k ≤ m that are powers of 2.

Proof. We proceed by induction on m ≥ 1, for m a power of 2. If m = 1 the result is clear, so, assuming that the property
holds at indexm/2, we prove it at indexm. Let us write

P mod xm = P0 + xm/2P1 and Q mod xm = Q0 + xm/2Q1,

with P0, P1,Q0,Q1 of degree less thanm/2. Then we have

P (`,k)0 = P (`,k) and P (`,k)1 = P (`+m/2k,k)

for any k ≥ 1 and ` ≥ 0 such that `k + k/2 ≤ m/2. Analogous equalities hold for Q , Q0 and Q1. Now, by definition, the
following equality holds:

PQ mod xm = P0Q0 + xm/2(P0Q1 + P1Q0 mod xm/2). (7)

Observe first that P0Q0 equals P (0,m)Q (0,m), which corresponds to the term k = m on the right-hand side of the formula we
wish to establish. Next, the induction assumption shows that P0Q1 mod xm/2 is given by∑

k=1,2,...,m/2

xm/2−k
m/2k−1∑
`=0

P (`,k)0 Q (m/2k−1−`,k)1 ,

which we rewrite as∑
k=1,2,...,m/2

xm/2−k
m/2k−1∑
`=0

P (`,k)Q (m/k−1−`,k).

Similarly, P1Q0 mod xm/2 equals∑
k=1,2,...,m/2

xm/2−k
m/k−1∑
`=m/2k

P (`,k)Q (m/k−1−`,k).

Putting these equalities in Eq. (7) ends the proof. �

We can now prove the proposition. By Lemma 12, we have for all i and j

Yi(ZiFj mod xn) =
∑

k=1,2,4,...,n

xn−k
n/k−1∑
`=0

Yi Z
(`,k)
i F (n/k−1−`,k)j .

Thus for j ≤ α, we have Gj =
∑
k=1,2,4,...,n x

n−k Gj,k, with

Gj,k =
α∑
i=1

n/k−1∑
`=0

Yi Z
(`,k)
i F (n/k−1−`,k)j .

We next show how to compute all polynomials G1,k, . . . ,Gα,k, for a fixed k.

A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181 165

Lemma 13. Let k ≤ n be a power of 2. Then one can compute G1,k, . . . ,Gα,k in time O(αω−1M(n)).

Proof. Let k′ = n/k, and let Z and F be the (α × k′) and (k′ × α) polynomial matrices

Z =

Z
(0,k)
1 · · · Z (k

′
−1,k)

1
...

...

Z (0,k)α · · · Z (k
′
−1,k)

α

 , F =

F
(k′−1,k)
1 · · · F (k

′
−1,k)

α

...
...

F (0,k)1 · · · F (0,k)α

 .
Then we have the equality[

G1,k · · · Gα,k
]
=
[
Y1 · · · Yα

]
Z F.

All entries of Z and F have degree less than k/2, whereas the polynomials Yi have degree less than n. To balance the degrees,
for i ≤ α, we write Yi =

∑k′−1
`=0 Yi,`x

k`, with Yi,` of degree less than k. We then define the (k′ × α)matrix

Y =

 Y1,0 · · · Yα,0
...

...
Y1,k′−1 · · · Yα,k′−1


with polynomial entries of degree less than k, such that[

Y1 · · · Yα
]
=
[
1 xk x2k · · · x(k

′
−1)k

]
Y. (8)

Using Lemma 7, we can compute the product Y Z F in O(αω−1 k′M(k)) operations. Since k′M(k) ≤ M(n), this cost is in
O(αω−1M(n)). Finally, by Eq. (8), we deduce G1,k, . . . ,Gα,k from the product Y Z F in time O(α k′ k), which is in O(α n). �

To conclude the proof of Proposition 1, we apply Lemma 13 to k = 1, 2, 4, . . . , n, for a total cost of O(αω−1M(n) log(n)).
The cost of deducing G1, . . . ,Gα is a negligible O(α n log(n)). �

3.2. Second problem

As above, some integers n ∈ N and α ≤ n are fixed. Let also s and t be positive integers bounded by α and let ν1, . . . , νs
and δ1, . . . , δt be positive integers such that

n = ν1 + · · · + νs and n = δ1 + · · · + δt .

Let then

(Qi,j)i≤α, j≤s and (Ri,k)i≤α, k≤t

be inK[x], with deg(Qi,j) < νj and deg(Ri,k) < δk. The following result is used in Section 6 to reduce the solution of Cauchy-
like systems to that of Vandermonde-like systems.

Proposition 2. One can compute the polynomials

Pj,k =
α∑
i=1

Qi,jRi,k, j = 1, . . . , s, k = 1, . . . , t

in time O(αω−1M(n) log(n)).

Remark that computing all polynomials Pj,k independently leads to a cost in O(α2M(n)), which is quadratic in α. As we
did in the previous subsection, we are going to use polynomial matrix multiplication to compute the polynomials Pj,k
simultaneously and obtain a cost subquadratic in α.

Proof. Let L = {0, 1, . . . , blog(n)c}. For β, γ ∈ L, define

Sβ = {j : 2β ≤ νj < 2β+1} and Tγ = {k : 2γ ≤ δk < 2γ+1};

we then let qβ = |Sβ | and rγ = |Tγ |. Rewrite the equality n =
∑s
j=1 νj as

n =
∑
β∈L

∑
j∈Sβ

νj.

Since for j ∈ Sβ , all νj are at least 2β , we deduce the following inequality, together with its analogue for the subsets Tγ :∑
β∈L

2βqβ ≤ n and
∑
γ∈L

2γ rγ ≤ n. (9)

166 A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181

Given the integers ν1, . . . , νs and δ1, . . . , δt , all subsets Sβ and Tγ can be obtained in time O(n). Then, for a given pair (β, γ),
the polynomials {Pj,k : j ∈ Sβ , k ∈ Tγ } are the entries of the matrix product QR, with

Q =


...

...
Q1,j · · · Qα,j
...

...


j∈Sβ

, R =

· · · R1,k · · ·
...

· · · Rα,k · · ·


k∈Tγ

.

The polynomial matrix Q has dimensions (qβ × α) and degree less than 2β+1; R has dimensions (α × rγ) and degree less
than 2γ+1.
Let us first deal with the case where β ≤ γ . Then, the polynomials in R have potentially larger degrees than the ones in

Q. To balance these degrees, we write R =
∑2γ−β−1

`=0 R` x2
β+1`, where R` is an (α × rγ) polynomial matrix with entries of

degree less than 2β+1.
From the knowledge of the products {QR` : 0 ≤ ` < 2γ−β}, one can deduce QR using O(α 2γ rγ) extra additions;

summing over all β, γ with β ≤ γ , and using Eq. (9), this amounts toO(α n log(n)) additions. Hence, we focus on computing
the former products. Concatenating all matrices R`, let us define

R′ =
[
R0 · · · R2γ−β−1

]
;

it is then enough to compute QR′, since the QR` can be read off this product.
The matrix R′ has dimensions (α × r ′γ), with r

′
γ = 2

γ−βrγ , and entries of degree less than 2β+1. Since qβ ≤ α, Lemma 8
shows that the cost of computing the product QR′ is in

O(αω−1max{qβ , r ′γ }M(2
β+1)).

Recall that by assumption on the functionM, we haveM(2β+1) ≤ 2β+1M(n)/n. Bounding themax by a sum and substituting
r ′γ by its value, we deduce the upper bound

O
(
αω−1 2β qβ

M(n)
n
+ αω−1 2γ rγ

M(n)
n

)
.

Summing over all β, γ with β ≤ γ , and using Eq. (9), we obtain an upper bound in O(αω−1M(n) log(n)). The case where
β > γ is handled similarly. �

Wewill need in Section 5 the following corollary of the previous proposition, to reduce the solution of Vandermonde-like
systems to that of Toeplitz-like systems. Let s ≤ α and ν1, . . . , νs be as above and let

(Zi)i≤α, (Yi,j)i≤α, j≤s, and (Fj)j≤s

be in K[x], with deg(Zi) < n, deg(Yi,j) < νj and deg(Fj) < n+ νj.

Proposition 3. One can compute the polynomials

Pj =
α∑
i=1

Zi
(
Yi,jFj div xνj−1

)
, j = 1, . . . , s

in time O(αω−1M(n) log(n)).

The remarks we did before still apply: a direct approach consists in computing all polynomials Pj independently, for a cost
in O(α2M(n)). Using polynomial matrix multiplication to share computations, we get a cost subquadratic in α.

Proof. For i ≤ α and j ≤ s, let Gi,j = Yi,jFj mod xνj−1. Then, for j ≤ s, we can define

Qj =
α∑
i=1

ZiGi,j and Rj =
α∑
i=1

ZiYi,j.

It follows that Pj is given by (RjFj − Qj) div xνj−1.
For given i and j, the polynomial Gi,j can be computed in M(νj) operations; hence, the whole time for computing all

these polynomials is at most αM(n). Applying Proposition 2 with t = 1 and δ1 = n, we deduce that we can compute all
polynomials Qj and Rj using O(αω−1M(n) log(n)) operations. Finally, we recover the polynomials Pj in time O(sM(n)) ⊂
O(αM(n)). �

A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181 167

4. The Toeplitz case

The operator associated with the Toeplitz structure is

∆[Zn,0,Ztn,0](A) = A− Zn,0 AZtn,0, A ∈ Kn×n. (10)

This operator is invertible: given (Y, Z) inKn×α ×Kn×α , there exists a unique A such that∆[Zn,0,Ztn,0](A) = YZt ; it is given
by the representation

A =
α∑
i=1

L(yi)U(zi),

called in [28,29] aΣLU representation of length α for A. Using Lemma 4, this representation allows one to compute a matrix-
vector product Au in O(αM(n)) operations. Our problem in this section is the converse one: given v in Kn, find u such that
Au = v (or conclude that no such vector exists).
For largeα, we improve previous algorithms, reducing their complexity fromO(α2M(n) log(n)) toO(αω−1M(n) log2(n)).

The structure of our algorithm is similar to those initiated by Bitmead and Anderson [7] andMorf [37,38]; the key difference
consists in using the results of the previous section to perform efficiently the following operation: given Y, Z as above and
u1, . . . , uα in Kn, compute the α products vj = Auj.

4.1. Preliminaries

In addition to the operator in Eq. (10) we will use the operator

∆[Ztn,0,Zm,0](A) = A− Ztn,0 AZm,0, A ∈ Kn×m.

Regardless of dimensions, the operators ∆[Ztn,0,Zm,0] and ∆[Zn,0,Z
t
m,0] are called respectively φ− and φ+ in [43,28,29];

their generators are called φ−-generators and φ+-generators. From now on, we use this simplifying notation.
We give in this subsection some useful results on generators for submatrices, sums, products, Our contribution is

Proposition 4, which is a faster version of [43, Proposition A.3] for generating matrix products; as in [28,29] we extend the
result to rectangular matrices. Proofs not given here can be found in e.g. [7,38,43,28,45].
A first key feature of the operators φ+ and φ− is that when A is invertible, the ranks of φ+(A) and φ−(A−1) coincide.

Secondly, when A is square, the ranks of φ+(A) and φ−(A) differ by at most 2.
The next lemma gives the complexity of converting from φ−- to φ+-generators; the same holds for converting back.

Lemma 14. Given a φ−-generator of length α for the matrix A ∈ Kn×n, one can compute a φ+-generator of length α + 2 for A
in time O(αM(n)).

Assuming that n = m, partition A into blocks as

A =

[
A1,1 A1,2
A2,1 A2,2

]
, (11)

with Ai,j ∈ Kni×nj , and n1 + n2 = n. Then the rank of φ+(A1,1) is at most that of φ+(A); if A1,1 is invertible and has its
upper-left entry non-zero then the same bound holds for the Schur complement A2,2 − A2,1A

−1
1,1A1,2.

Next, we consider the cost of deducing generators for the blocks Ai,j from generators for A, and conversely.

Lemma 15. Given a φ+-generator of length α for A, one can find φ+-generators of length O(α) for all Ai,j in time O(αM(n)).
Conversely, givenφ+-generators of length atmostα for allAi,j, one can find aφ+-generator of length O(α) forA in timeO(αM(n)).

Adding matrices given by their generators is straightforward (even though the generators thus obtained may not be
minimal).

Lemma 16. If (T,U) and (Y, Z) are φ+-generators for some matrices A and B of the same dimensions, then ([T Y], [U Z]) is a
φ+-generator for A+ B.

We conclude with the key novelty of this subsection, which concerns the complexity of computing a generator for the
product of two matrices.

Proposition 4. Let (T,U) and (Y, Z) be φ+-generators of lengths α and β for some matrices A ∈ Kn×m and B ∈ Km×p. Then
one can find a φ+-generator of length α + β + 1 for the product AB in time O(γ ω−1M(q) log(q)), with γ = max{α, β} and
q = max{n,m, p}.

Proof. Let V = BtU and W = Zn,0 AZtm,0Y; let also a (resp. b) be the lower shift of the last column of A (resp. Bt). Then,
following [43, Proposition A.3], the proof of [28, Proposition 2] shows that [T W a] and [V Z −b] form a φ+-generator of
length α + β + 1 for AB. Hence, it suffices to bound the cost of computing V, W, a and b.

168 A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181

Let us detail the computation of V = BtUwhenm ≥ p. We reduce to the square case by defining B′ = [0 B] ∈ Km×m and
V′ = B′tU ∈ Km×α . Since V can be read off V′, we focus on computing the latter matrix.
Remark that φ+(B′) = YZ′t with Z′t = [0 Zt] ∈ Kβ×m. Since B′ is square, the Gohberg–Semencul formula then shows

that

B′ =
β∑
i=1

L(yi)U(z′i),

where yi is the ith column of Y and z′i the ith column of Z
′. Thus, recalling that J denotes the reversal matrix of orderm, the

transpose of B′ is given by

B′ t =
β∑
i=1

L(z′i)U(yi) =
β∑
i=1

J U(z′i)L(yi) J.

Now, let uj (resp. v′j) be the jth column of U (resp. V
′). The previous formula for B′t and the equation V′ = B′tU thus give

J v′j =
β∑
i=1

U(z′i)L(yi) J uj.

In polynomial terms, in view of Lemma 4, this reads

Revm(Pol(v
′

j)) =

[
β∑
i=1

Z ′i (YiUj mod x
m)

]
div xm−1,

with Z ′i = Revm(Pol(z′i)), Yi = Pol(yi) and Uj = Revm(Pol(uj)). By Proposition 1, we can compute the polynomials

β∑
i=1

Z ′i (YiUj mod x
m), j = 1, . . . , α

in time O(max{α, β}ω−1M(m) log(m)); the vectors v′j are then deduced by coefficient extraction. The case p > m is treated
similarly, padding B with p − m zero rows, and giving a cost of O(max{α, β}ω−1M(p) log(p)). Hence, in any case, V can be
obtained in time O(γ ω−1M(q) log(q)), as claimed. The computation ofW is done similarly too, by multiplying A on the right
by Ztm,0Y, and has a similar cost estimate. Computing a and b is faster: it suffices to multiply A and Bt by a single vector, so
the cost is merely O(γ M(q)). �

4.2. Solving Toeplitz-like linear systems

We now prove Theorem 1. Let (T,U,w) ∈ Kn×α × Kn×α × Kn be the input of problem LinearSystem(Zn,0,Ztn,0, α). As
in [28,29] we will reduce by randomization to a similar problem but with a regularized input (Y, Z, v).
Let B be (implicitly) defined by φ+(B) = TUt , so that the systemwe want to solve is Bt = w. Define A = U(y)BL(z) and

v = U(y)w, where y, z are random vectors in Kn with first entry equal to 1. Then, a vector t satisfies Bt = w if and only if
the vector u = L(z)−1t satisfies Au = v.
Using the proof of Proposition 4 and the simple structure of the matrices U(y) and L(z), one may check that a φ+-

generator (Y, Z) of length α + O(1) for A can be computed in time O(αM(n)). Besides, the vector t can be recovered from u
in timeM(n). Hence, we can focus on solving the latter problem Au = v.
By Theorem 2 in [31], there exists a non-zero polynomial Γ of 2n − 2 variables and degree n2 + n, such that if

Γ (y2, . . . , yn, z2, . . . , zn) 6= 0, the matrix A has generic rank profile.
Supposing that this condition is satisfied, let r be the rank of A and let Ar ∈ Kr×r be the largest non-singular leading

principal submatrix of A. The next proposition bounds the cost of finding a φ−-generator of length α for A−1r . Then, using a
third random vector of size n, Theorem 4 in [31] (see also [28, Proposition 3]) shows how to find a random solution to the
system Au = v, if one exists, in O(αM(n)) operations. This concludes the cost analysis of Theorem 1.
The probability analysis follows from the previous discussion: the Zippel–Schwartz lemma [14,55,50] shows that this

algorithm has type P(3n− 2, n2 + n).

Proposition 5. Assume that A has generic rank profile. Given a φ+-generator of length α for A ∈ Kn×n, one can compute its rank
r as well as a φ−-generator of length at most α for A−1r in time O(α

ω−1M(n) log2(n)).

Proof. We use Kaltofen’s Leading Principal Inverse algorithm [28,29], which follows the ideas of Morf [37,38] and Bitmead–
Anderson [7]; with Lemma 10, this algorithm becomes deterministic, as noted in [47, §7]. The proof of Theorem 3 in [28]
shows that its cost is T (α, n) = O(αω) if n ≤ α and otherwise

T (α, n) = T (α, dn/2e)+ T (α, bn/2c)+ T1(α, n)+ T2(α, n)+ O(αω−1n+ αM(n)). (12)

A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181 169

Here the term in O(αω−1n+αM(n)) bounds the cost of some conversions between φ+- and φ−-generators (Lemma 14) and
the cost of finding generators of minimal length (Lemma 10); the terms T1(α, n) and T2(α, n) are the costs of two tasks we
shall describe now, after recalling some notation from [28].
With n1 = dn/2e, partition A as in Eq. (11) and Ar as

Ar =

[
A1,1 A′1,2
A′2,1 A′2,2

]
.

Assume that A1,1 is non-singular (else, the cost is smaller) and let

∆ = A2,2 − A2,1 A
−1
1,1 A1,2 and ∆′ = A′2,2 − A′2,1 A

−1
1,1 A

′

1,2.

Given φ+-generators of length O(α) for A and A−11,1, the first task is to compute a φ+-generator for∆. Using Lemmas 15 and
16 and Proposition 4, its cost is thus T1(α, n) = O(αω−1M(n) log(n)).
Given φ+-generators of length O(α) for A, A−11,1 and∆

′−1, the second task consists in computing a φ+-generator for A−1r .
Recall first that (see for example Theorem 5.2.3 in [45])

A−1r =

[
B′1,1 B′1,2
B′2,1 ∆′

−1

]
with

B′1,2 = −A
−1
1,1A

′

1,2∆
′−1

B′2,1 = −∆
′−1A′2,1A

−1
1,1

B′1,1 = A−11,1 − B′1,2A
′

2,1A
−1
1,1.

Using again Lemmas 15 and 16 and Proposition 4, we get the same estimate as before: T2(α, n) = O(αω−1M(n) log(n)). In
view of the recurrence relation in Eq. (12), this implies that T (α, n) = O(αω−1M(n) log2(n)). �

4.3. Application: Padé-type approximation

We conclude by proving Corollary 1 on polynomial approximation. Let M ∈ K[x] be of degree n, let f1, . . . , fs ∈ K[x]
be of degrees less than n and let ν1, . . . , νs be positive integers such that

∑
i≤s νi = n + 1. We look for approximants

g1, . . . , gs ∈ K[x], not all zero, with deg(gi) < νi and such that g1f1 + · · · + gsfs = 0 mod M .
WriteM =

∑n
i=0mix

i, withmn = 1 and let X = X(M) ∈ Kn×n be the matrix of multiplication by xmoduloM . For i ≤ s,
define Ai as the Krylov matrix

Ai =
[
fi X fi · · · Xνi−1 fi

]
∈ Kn×νi ,

where fi = [fi,0 · · · fi,n−1]t is the vector of coefficients of fi. Let finally A = [A1 · · · As] ∈ Kn×(n+1) and A′ ∈ K(n+1)×(n+1) be
the matrix obtained by padding Awith an (n+ 1)st row full of 1’s.
Since the right null space of A is nontrivial, the square system A′u = [0 · · · 0 1]t admits a solution, and any such solution

solves our problem. The following lemma shows the Toeplitz-like structure of the matrix A′; combining it with Theorem 1
proves Corollary 1.

Lemma 17. Given M, f1, . . . , fs and ν1, . . . , νs as above, one can compute a φ+-generator of length s + 2 for the matrix A′ in
time O(sM(n)).

Proof. Remark that X = Zn,0 −metn,n, with

m =

 m0...
mn−1

 ∈ Kn and en,n =


0
...
0
1

 ∈ Kn;

since A has dimensions n× (n+ 1), it follows that

φ+(A) = A− XAZtn+1,0 −metn,n AZtn+1,0.

Let a = At en,n ∈ Kn+1 be the transpose of the last row of A and let b = Zn+1,0 a. Then, the previous formula becomes
φ+(A) = A− XAZtn+1,0 −mbt .
Taking f0 = 0 and ν0 = 0, we can write A − XAZtn+1,0 as Y Zt , with Y and Z of dimensions n× s and (n + 1)× s given

as follows: the ith column yi of Y is fi − Xνi−1 fi−1; the ith column zi of Z is zero, except for a 1 at row 1 + ν1 + · · · + νi−1.
Since Xνi−1 fi−1 is the coefficient vector of xνi−1 fi−1 mod M , it can be computed in time O(M(n)), so Y and Z can be computed
in time O(sM(n)).
To determine a φ+-generator of A, it remains to determine the vector a, from which b follows easily. For i ≤ s, let

ai ∈ K1×νi be the last row of Ai, so that

ai =
[
coeff(fi, xn−1) · · · coeff(xνi−1fi mod M, xn−1)

]
.

170 A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181

Define next

mi =

 mn
...

mn−νi+1

 ∈ Kνi and f′i =

 fi,n−1...
fi,n−νi

 ∈ Kνi .

Noticing that L(mi) ati = f′i , we see that the entries of ai can be computed in time O(M(νi)). Since
∑
i≤s νi = n+1, the vector

a = [a1 . . . as]t ∈ Kn+1 can thus be computed in time O(M(n)).
In conclusion, one can compute G = [Y −m] ∈ Kn×(s+1) and H = [Z b] ∈ K(n+1)×(s+1) in time O(sM(n)), such that

(G,H) is a φ+-generator of length s+ 1 for A. One then obtains a φ+-generator of length s+ 2 for A′ by adjoining a last row
of zeros to G and the columns

0
...
0
1

 ∈ Kn+1 and


1
...
1
1

− b ∈ Kn+1

to respectively G and H. �

5. The Vandermonde case

In this section, x ∈ Kn and ψ ∈ K are as in Eq. (1) and (2). The operator associated with the Vandermonde structure is

∆[D(x),Ztn,ψ](A) = A− D(x)AZtn,ψ .

Withour choice ofψ , Theorem4.3.2 in [45] shows that this operator is invertible.Moreover, givenY, Z inKn×α , Example 4.4.6
in [45] shows that the unique matrix A ∈ Kn×n such that∆[D(x),Ztn,ψ](A) = Y Zt is

A = D
(
(1− ψ xn)−1

) α∑
i=1

D(yi)V(x, n)T(zi, ψ)t . (13)

Following Pan’s idea [41,42], we will prove Theorem 2 on the complexity of solving Vandermonde-like systems of the form
Au = v by turning them into Toeplitz-like ones.
We will use the same kind of reduction as in [24]. However, that approach requires the entries of x to be pairwise

distinct, i.e., that V(x, n) be invertible; else, the preprocessing step in [24, Section 2] fails. Similarly, the reduction in [45,
Example 4.8.4] does not solve the problem when V(x, n) is singular (in the application of Section 5.4, this invertibility
assumption does not hold).
The partition of x of Eq. (1) will be used to solve this problem in cases when x has low multiplicity: this is exposed in

Sections 5.1 and 5.2. When the multiplicity becomes too large, some extra work is needed, presented in Section 5.3.

5.1. A multiplication problem

We start by solving a preliminary subproblem. Let Y and Z be in Kn×α , and let A be the unique n × n matrix such that
∆[D(x),Ztn,ψ](A) = Y Zt . Splitting A along its rows according to the given partition of x, we thus write

x =

x1
...
xs

 , with xj ∈ Kνj and A =

 A1
...
As

 , with Aj in Kνj×n, (14)

where all xj are repetition-free. Given vectors w1, . . . ,ws, with wj in Kνj , we study in this subsection the cost of computing
all products Atjwj ∈ Kn, using the results of Section 3.2. This will be the key in our reduction of Vandermonde-like systems
to Toeplitz-like ones.

Proposition 6. Given x, ψ , Y, Z and w1, . . . ,ws as above, and assuming that s ≤ α, one can compute all products Atj wj in time
O(αω−1M(n) log(n)).

Proof. Let yi and zi be the columns of Y and Z. We adapt the partition of x and A to the vectors yi, writing

yi =

 yi,1
...

yi,s

 , with yi,j in Kνj .

A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181 171

Since A is given by Eq. (13), its submatrices Aj are given by Aj = D
(
(1− ψ xnj)

−1
)
Bj, with

Bj =
α∑
i=1

D(yi,j)V(xj, n)T(zi, ψ)t

and thus

Btj =
α∑
i=1

T(zi, ψ)V(xj, n)t D(yi,j). (15)

For j ≤ s, let fj = D((1 − ψ xnj)
−1)wj. The vectors fj can be deduced from x, ψ and the wj in O(n log(n)) operations. Since

we have Atj wj = Btj fj, we are thus left with computing all the products B
t
j fj.

Recalling that xj ∈ Kνj is repetition-free, we let Yi,j = Interp(xj, yi,j) ∈ K[x]νj . Applying Lemma 1 to the right-hand side
of Eq. (15) then gives

Btj =
α∑
i=1

T(zi, ψ)M(Yi,j, n)t V(xj, n+ νj − 1)t .

We can now factor out the rightmost transposed Vandermonde matrices, which do not depend on the summation index i.
Defining

f′j = V(xj, n+ νj − 1)t fj,

we deduce that

Btj fj =
α∑
i=1

T(zi, ψ)M(Yi,j, n)t f′j.

By fast application of a transposed Vandermonde matrix, each vector f′j can be computed in time O(M(n) log(n)); hence, the
total time for their computation is O(αM(n) log(n)).
For i ≤ α and j ≤ s, define the vector gi,j in Kn by

gi,j = T(zi, ψ)M(Yi,j, n)t f′j,

so that Btj fj =
∑α
i=1 gi,j. We will obtain the vectors gi,j by means of Lemma 6. To do so, define the polynomials

Y ′i,j = Revνj(Yi,j), Fj = Pol(f′j) and F ′j = Revn+νj−1(Fj).

Let also Zi = Pol(zi) and Z ′i = Pol(Flip(zi)). Lemma 6 then gives

Pol(gi,j) = Zi (Y ′i,j Fj div x
νj−1) mod xn + ψ Revn

(
Z ′i (Yi,j F

′

j div x
νj−1) mod xn

)
.

Summing over i eventually yields our output

Pol
(
Btj fj
)
=

α∑
i=1

Pol(gi,j) =
α∑
i=1

Zi (Y ′i,j Fj div x
νj−1) mod xn

+ψ Revn

(
α∑
i=1

Z ′i (Yi,j F
′

j div x
νj−1) mod xn

)
. (16)

It remains to perform the cost estimate, using the results recalled in Section 2.

• Using fast interpolation, we compute each Yi,j in time O(M(νj) log(νj)) and thus all Yi,j and Y ′i,j in time O(αM(n) log(n)).
• Applying Proposition 3 to both summands in Eq. (16) shows that all polynomials Pol(Btj fj) can be computed in time
O(αω−1M(n) log(n)), which concludes the proof. �

5.2. The case of low multiplicities

In this subsection, we reduce the resolution of Vandermonde-like systems to that of Toeplitz-like systems. We adapt
the reduction of [24], allowing now for repetitions in x. For the moment, we work in the case where the multiplicity of x is
bounded by α.

Proposition 7. Let x and ψ be as in Eqs. (1) and (2). If the multiplicity s of x satisfies s ≤ α, then the problem
LinearSystem(D(x),Ztn,ψ , α) can be solved in time O(α

ω−1M(n) log2(n)). The algorithm is probabilistic of type P(3n−2, n2+n).

172 A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181

Proof. Given Y and Z in Kn×α and v in Kn, we are looking for solutions u to the system Au = v, where A is such that
∆[D(x),Ztn,ψ](A) = Y Zt .

For j ≤ s, letMj be the monic polynomialMj =
∏
a∈xj
(x− a). Since xj is repetition-free, Lemma 3 shows that

D(xj) = V(xj, νj)X(Mj)V(xj, νj)−1.

It follows that

D(x) = V X V−1, (17)

where V and X are block-diagonal with respective blocks V(xj, νj) and X(Mj).
For j ≤ s, let mj ∈ Kνj be the coefficient vector of −Mj mod xνj , so that X(Mj) = Zνj,0 + mjetνj,νj . Hence, writing

ν∗j = ν1 + · · · + νj as in Section 2,

X = Zn,0 +
s∑
j=1

gje
t
n,ν∗j
, (18)

where for j ≤ s, gj ∈ Kn is obtained by paddingmj with ν∗j−1 zeros on the top and, if j 6= s, with−1 followed by n− ν
∗

j − 1
zeros on the bottom.
Defining B = V−1A and v′ = V−1v, solving Au = v amounts to solve Bu = v′. To do so in the claimed complexity, we

exhibit the Toeplitz-like structure of B and bound the cost of computing v′ and a generator for B. Pre-multiplying byV−1 the
relation

A− D(x)AZtn,ψ = Y Zt ,

we get

B− V−1 D(x)VBZtn,ψ = V−1 Y Zt;

using Eq. (17), we rewrite this as

B− XBZtn,ψ = Y′ Zt , with Y′ = V−1 Y.

Then, from (18) and the relation Zn,ψ = Zn,0 + ψ en,1etn,n, we deduce that

B− Zn,0 BZtn,0 = ψ Zn,0 B en,ne
t
n,1 +

(s∑
j=1

gje
t
n,ν∗j

)
BZtn,ψ + Y′ Zt .

Define the vectors f1 = ψ Zn,0 B en,n and, for j ≤ s, hj = Bten,ν∗j and h
′

j = Zn,ψhj. The above formula then becomes

∆[Zn,0,Ztn,0](B) = f1e
t
n,1 + GH′t + Y′Zt ,

where G (resp. H′) has columns gj (resp. h′j). The matrices [f1 G Y′] and [en,1 H′ Z] thus form a Zn,0,Ztn,0-generator of length
α + s + 1 ≤ 2α + 1 for B. Once this generator and v′ are known, the system Bu = v′ can be solved within the prescribed
complexity by the probabilistic algorithm of Theorem 1.
It remains to estimate the cost of computing v′, f1,Y′,G and H′. We will do so using Proposition 6 as well as the results

recalled in Section 2 on the complexity of polynomial operations.
As a first step, though, we detail further the structure of the vectors hj. For j ≤ s, one has hj = Bten,ν∗j = At V−t en,ν∗j .

In view of the block structures of At and V−1, this can be rewritten as hj = Atj wj, where wj = V(xj, νj)−t eνj,νj is the last
column of V(xj, νj)−t .

• All polynomials Mj (and thus all vectors gj and the matrix G) can be constructed from their roots in O(M(n) log(n))
operations.
• In view of Eq. (13), one can multiply A by the vector en,n in time O(αM(n) log(n)), see e.g. [24, Section 2].
• Since multiplication by V(xj, νj)−1 has cost O(M(νj) log(νj)), multiplication by V−1 has cost O(M(n) log(n)). This implies
that f1 = ψ Zn,0 V−1 A en,n can be deduced from A en,n in time O(M(n) log(n)). Similarly, one can compute Y′ = V−1Y in
time O(αM(n) log(n)) and v′ = V−1v in time O(M(n) log(n)).
• Computing the last column of V(xj, νj)−t takes time O(M(νj) log(νj)), which induces a cost of O(M(n) log(n)) for finding
all vectors wj.
• Knowing allwj, Proposition 6 shows that all vectorshj can be computed in timeO(αω−1M(n) log(n)). Deducing the vectors

h′j takes time O(α n), which concludes the proof. �

A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181 173

5.3. The case of high multiplicities

We conclude the proof of Theorem 2 by considering the case of high multiplicities (s > α), reducing it to the case of low
multiplicities (s ≤ α) seen in Section 5.2. Our reduction has cost O(αω−1 n), which fits in the requested bound. It however
introduces an extra probabilistic aspect; combined with the one of Proposition 7, it yields the overall probability estimate
of Theorem 2.

Proposition 8. Let x and ψ be as in Eqs. (1) and (2). If x has multiplicity larger than α, one can reduce the problem
LinearSystem(D(x),Ztn,ψ , α) to the problem LinearSystem(D(y),Ztn,ψ , α), where y ∈ Kn hasmultiplicity atmostα and satisfies
the constraints of Eqs. (1) and (2). The reduction can be done in time O(αω−1n) by a probabilistic algorithm of type P(n, 3n2).

Proof. Given Y and Z in Kn×α and v in Kn, we are looking for solutions u to the system Au = v, where A is such that
∆[D(x),Ztn,ψ](A) = Y Zt .We assume that Y and Z have full rank; if this is not the case, we can replace (Y, Z) by a minimal-
length generator, whose two matrices then have full rank.
We start by reordering the entries of x to obtain a repetition-free decomposition as in Eq. (6) of Section 2:

x′ =

xσ(1)...
xσ(n)

 =
 x′1
...
x′t

 ,
where x′i is a vector consisting of µi repetitions of the same element ξi, so that n = µ1 + · · · +µt , with ξi 6= ξj for i 6= j and
µ1 ≥ · · · ≥ µt > 0.
Let v′, A′ and Y′ be obtained by applying the same reordering to the entries of v and to the rows of A and Y; hence, (Y′, Z)

is aD(x′),Ztn,ψ -generator for A
′. Since the solution sets of Au = v and A′u = v′ are the same, we focus on the latter problem.

By construction, the matrices A′ and Y′ admit the following decompositions:

A′ =

 A′1
...
A′t

 and Y′ =

 Y′1
...
Y′t

 ,
with A′i in Kµi×n and Y′i in Kµi×α . Remark then that A′i − D(x′i)A

′

i Z
t
n,ψ = Y′i Z

t . Now, D(x′i) equals ξiIµi and, since ψξi
n
6= 1

for all i, all matrices In − ξiZtn,ψ are invertible. We thus obtain the equalities

A′i = Y′iZ
t(In − ξiZtn,ψ)

−1 for 1 ≤ i ≤ t. (19)

Wewill use densematrixmethods to reduce the number of non-zero entries inA′ andY′, whilemaintaining a Vandermonde-
like structure. Let thus τ be such that µτ > α ≥ µτ+1.

• For 1 ≤ i ≤ τ , we have µi > α. We let Ji ⊂ {1, . . . , µi} and Ei ∈ Kµi×µi be the index set and the matrix obtained by
applying Lemma 9 to Y′i . Let also ri = |Ji| = rank(Y

′

i), so that ri ≤ α. Lemma 9 and Eq. (19) then give

Ei Y
′

i =

[
Y′′i
0

]
and Ei A

′

i =

[
A′′i
0

]
,

where Y′′i and A
′′

i have respective sizes (ri × α) and (ri × n), and Y
′′

i consists of the rows of Y
′

i indexed by Ji.
• For τ < i ≤ t , we have µi ≤ α. We let Ei = Iµi , Y

′′

i = Y′i and A
′′

i = A′i .

Let E be the block-diagonal matrix having E1, . . . , Et on the diagonal. Hence, Y′′ = E Y′ consists of the matrices Y′′i ,
interleaved by blocks of zeros when i ≤ τ ; the same holds for A′′ = E A′. Besides, since each D(x′i) is a homothety matrix, it
commutes with Ei; we deduce that (Y′′, Z) is a D(x′),Ztn,ψ -generator for A

′′. Finally, since E is invertible, the solution sets of
A′u = v′ and A′′u = v′′ coincide, where we wrote v′′ = E v′.
We solve the latter problem, by exhibiting the Vandermonde-like structure of A′′ for a modified displacement operator

with lowermultiplicity. Define a vector x′′ ∈ Kn by replacing, for i ≤ τ , the lastµi− ri entries of x′i by new values taken from
K. Due to the presence of corresponding blocks of zeros inY′′ andA′′, thematricesY′′ and Znow formaD(x′′),Ztn,ψ -generator
for A′′.
With r =

∑
i≤τ (µi − ri), suppose that the new values y1, . . . , yr inserted in x′′ are pairwise distinct and that none of

them belongs to x′ or satisfies ψ yni = 1. Then, x
′′ satisfies the constraint of Eq. (2) and has multiplicity at most α (since

all ri are at most α). It remains to reorder the entries of x′′ to obtain a vector y that also satisfies Eq. (1), and let Σ be the
permutation matrix such that y = Σ x′′. Defining U = Σ Y′′, it follows that (U, Z) is a D(y),Ztn,ψ -generator for the matrix
B = Σ A′′. To conclude, let w = Σ v′′; then, the solution sets of A′′u = v′′ and Bu = w coincide.
We have thus reduced solving the system Au = v to solving Bu = w, while providing a generator for B with respect to

the Vandermonde-like structure D(y),Ztn,ψ . It only remains to perform the complexity analysis.

174 A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181

• By Lemma 10, the cost of making the input generator minimal is O(αω−1n).
• The permutation σ that gives x′ can be computed in time O(n) by Lemma 11.
• For i ≤ τ , since Y′i is in Kµi×α with µi ≥ α, one can compute Ei in time O(αω−1µi) by Lemma 9. Since

∑τ
i=1 µi ≤ n, the

total cost is in O(αω−1n).
• Since each matrix Ei is given in the form (ri, Ji,Gi, Pi) of Lemma 9, and thus has O(αµi) non-zero entries, v′′ can be
deduced from v′ in O(αn) operations.
• To put x′′ into the form of Eq. (1), we first put it into the repetition-free form of Eq. (6). Since the repeated entries
are already grouped together (and thus the multiplicities are known), all we have to do is to sort the multiplicities in
decreasing order; this can be done in time O(n) using bucket sorting. Then, Lemma 11 puts the result into the form of
Eq. (1) in time O(n).
• All other operations amount to apply permutations to the entries of matrices and vectors and have negligible cost.

The probability analysis comes by remarking that the values y1, . . . , yr satisfy our requirements if they do not cancel the
polynomial

δ =
∏
i<j≤r

(Yi − Yj) ×
∏
i≤r, j≤t

(Yi − ξj) ×
∏
i≤r

(Y ni ψ − 1), (20)

which, since r and t are bounded by n, has degree at most 3n2. The Zippel–Schwartz lemma gives the required probability
estimate. �

5.4. Application: Bivariate interpolation

We conclude by proving Corollary 2 on the complexity of bivariate interpolation. Let P1, . . . , Ps be the lists of sample
points

P1 = [p1,1 = (x1, y1,1), . . . , p1,ν1 = (x1, y1,ν1)],
...

Ps = [ps,1 = (xs, ys,1), . . . , ps,νs = (xs, ys,νs)],

with ν1 ≥ · · · ≥ νs > 0. Given a vector of values v = [vi,j] ∈ Kn, with 1 ≤ i ≤ s and 1 ≤ j ≤ νi, there exists a unique
polynomial F in K[x, y] of the form

F =
∑

0≤i<s, 0≤j<νi+1

fi,jxiyj

such that F(pi,j) = vi,j for all i, j. To recover F , we will use the Vandermonde-like structure of the corresponding linear
system.
The support of F is thus the set of all monomials xiyj, with 0 ≤ i < s and 0 ≤ j < νi+1. To arrange these monomials in a

suitable order, we let µ = µ1 ≥ · · · ≥ µt be the conjugate partition of ν, with s = µ1 and t = ν1; for 1 ≤ j ≤ t , we define

Bj = [xi−1yj−1 | 1 ≤ i ≤ µj]

and let B be the concatenation of the lists Bj. Thus, for a fixed j, the entries of Bj have the same degree in y and increasing
degrees in x.
It will be convenient to rearrange the lists of sample points, by ‘‘transposing’’ the input lists P1, . . . , Ps to obtain

Q1 = [p1,1, p2,1, . . . , pµ1,1],
Q2 = [p1,2, p2,2, . . . , pµ2,2],

...
Qt = [p1,t , p2,t , . . . , pµt ,t];

we then let Q be the concatenation of Q1, . . . ,Qt . Taking the x-coordinates of the elements in Q , we obtain a vector x inKn;
by construction, x is in the form of Eq. (1). Let further w ∈ Kn be obtained by rearranging v in the same way. By Lemma 11,
one can deduce Q and w from P and v in time O(n).
Let Span(B) ⊂ K[x, y] be the vector space generated by B; we are thus concerned by the evaluationmap F ∈ Span(B) 7→

[F(p)]p∈Q and its inverse. Let

A =
[
b(p)

]
p∈Q , b∈B ∈ Kn×n

be the matrix of this map, with rows indexed by Q and columns by B. Hence,

A =
[
A1 · · · At

]
, with Aj =

[
b(p)

]
p∈Q , b∈Bj

∈ Kn×µj .

A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181 175

Then∆[D(x),Ztn,0](A) can be written GHt , with G and H inKn×t ; the jth column of H is zero, except for a 1 at row 1+µ∗j−1;
the jth column of G is[

1 · · · 1
]t
(for j = 1) or

[
y(p)j−1 − y(p)j−2 x(p)µj−1

]t
p∈Q (for j > 1),

with x(p) the x-coordinate of p ∈ Q and y(p) its y-coordinate. Given Q , the matrices G and H can be computed in time
O(t n log(n)); Theorem 2 then shows that the system A f = w can be solved in time O(tω−1M(n) log2(n)), where f is the
coefficient vector of the polynomial to interpolate andw is the rearranged value vector. Remembering that t = ν1 concludes
the proof.

6. The Cauchy case

In this section, x, y ∈ Kn are as in Eqs. (1), (4) and (5). The operator associated with the Cauchy structure that we
consider here is

∆[D(x),D(y)](A) = A− D(x)AD(y).
It follows from Eq. (5) and [45, Theorem 4.3.2] that such an operator is invertible. Moreover, given G and H in Kn×α ,
Example 4.4.7 in [45] shows that the unique matrix A ∈ Kn×n such that∆[D(x),D(y)](A) = GHt is

A =
α∑
i=1

D(gi)C(x, y)D(hi). (21)

We will prove Theorem 3 on the complexity of solving Cauchy-like systems of the form Au = v by turning them into
Vandermonde-like ones with low multiplicity, and then using the result of Proposition 7. Our reduction follows the one
in [24, Section 3] but adds the possibility of handling repetitions among the entries of the vectors x and y above.
The organization of this section is very similar to that of the previous one; the technical arguments are in the same

vein as well. We shall start in Section 6.1 with solving another multiplication problem, in the spirit of the one used for the
Vandermonde case. Together with the partitions of x and y given in Eqs. (1) and (4), this allows to handle in Section 6.2
the cases where multiplicities are small. Large multiplicities are treated in Section 6.3 with the same tools as for the
Vandermonde case.

6.1. A multiplication problem

Let G and H be in Kn×α , and let A be the unique n × n matrix such that ∆[D(x),D(y)](A) = GHt . Splitting A along its
rows according to the partition of x and along its columns according to the partition of y, we thus write

x =

x1
...
xs

 , with xj ∈ Kνj , y =

y1
...
yt

 , with yk ∈ Kδk ,

and

A =

A1,1 · · · A1,t
...

...
As,1 · · · As,t

 , with Aj,k in Kνj×δk . (22)

Given vectors w1, . . . ,wt , with wk ∈ Kδk , we study in this subsection the cost of computing all the products Aj,k wk ∈ Kνj

when both s and t are bounded by α. The result below, which relies on Proposition 2 of Section 3, will be the key for reducing
Cauchy-like systems to Vandermonde-like ones.
Proposition 9. Given x, y, G, H and w1, . . . ,wt as above, and assuming thatmax{s, t} ≤ α, one can compute all the products
Aj,k wk using O(αω−1M(n) log(n)) operations in K.
Proof. Let gi and hi be the columns of G and H. We adapt the partition of x to gi and the one of y to hi, writing

gi =

 gi,1
...

gi,s

 , with gi,j in Kνj , hi =

 hi,1
...

hi,t

 , with hi,k in Kδk .

For k ≤ t , let Fk =
∏
γ∈yk

(1−xγ) and let vk ∈ Kδk be such that Pol(vk) = Fk mod xδk . Using Eq. (21) and Lemma 2, it follows
that the submatrices Aj,k of A are given by Aj,k = D(Fk(xj))−1 Bj,k, with

Bj,k =
α∑
i=1

D(gi,j)V(xj, δk)L(vk)V(yk, δk)t D(hi,k). (23)

Remark first that the matrices D(Fk(xj)) can easily be obtained, using two polynomial operations of Section 2:

176 A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181

• Each polynomial Fk can be constructed from its roots in time O(M(δk) log(δk)). Since
∑
k≤t δk = n, the cost of getting all

of them is in O(M(n) log(n)).
• By fast evaluation, each Fk(x) ∈ Kn can be obtained in O(M(n) log(n)) operations, and thus all of them in time
O(t M(n) log(n)) ⊂ O(αM(n) log(n)).

We now turn to the computation of the vectors Bj,k wk. Since xj and yk are repetition-free, we let Qi,j = Interp(xj, gi,j) and
Si,k = Interp(yk, hi,k). Applying Lemma 1 twice to the right-hand side of Eq. (23) then gives

Bj,k =
α∑
i=1

V(xj, νj + δk − 1)M(Qi,j, δk)L(vk)M(Si,k, δk)t V(yk, 2δk − 1)t .

We can now factor out the leftmost and rightmost (transposed) Vandermonde matrices, which do not depend on the
summation index i. Defining

fk = V(yk, 2δk − 1)t wk (24)

and

w′j,k =
α∑
i=1

M(Qi,j, δk)L(vk)M(Si,k, δk)t fk, (25)

we deduce from the previous equation that

Bj,k wk = V(xj, νj + δk − 1)w′j,k. (26)

It remains to estimate the cost of computing all vectors Bj,k wk bymeans of Eqs. (24)–(26), and deducing the desired vectors
Aj,k wk. The costs of the first and last steps follow directly from the reminders of Section 2:

• By fast transposed evaluation, each vector fk is obtained in O(M(δk) log(δk)) operations. Since
∑
k≤t δk = n, this gives a

total cost of O(M(n) log(n)).
• Assuming that we know w′j,k, we deduce Bj,k wk by fast evaluation, in

O(M(νj + δk) log(νj + δk))

operations. A total cost of O(αM(n) log(n)) then follows from the facts that

M(νj + δk) ≤ (νj + δk)M(2n)/2n and
∑
j≤s

∑
k≤t

(νj + δk) = (s+ t) n.

• One recovers the vectors Aj,k wk with t n ∈ O(α n) divisions.

It only remains to bound the cost of deducing the vectorsw′j,k in Eq. (25) from the vectors fk. Recall that Pol(vk) = Fk mod x
δk

and let S ′i,k = Revδk(Si,k) and F
′

k = Pol(fk). Then, using Lemmas 4 and 5, we obtain

Pol(w′j,k) =
∑α
i=1 Qi,jRi,k, (27)

where Qi,j ∈ K[x]νj is as above and where Ri,k ∈ K[x]δk is given by

Ri,k = Fk (S ′i,k F
′

k div x
δk−1) mod xδk .

The cost then follows from Section 2 as well as Proposition 2 in Section 3:

• By fast interpolation, each Qi,j can be computed in O(M(νj) log(νj)) operations. Since
∑
j≤s νj = n, this gives a total of

O(αM(n) log(n)).
• By fast interpolation, each Si,k can be computed in O(M(δk) log(δk)) operations. Since

∑
k≤t δk = n, the total cost for all

Si,k and S ′i,k is O(αM(n) log(n)).
• Since S ′i,k ∈ K[x]δk and F

′

k ∈ K[x]2δk−1, a full product S
′

i,k F
′

k has cost O(M(δk)), and thus all Ri,k follow from Fk, S
′

i,k, F
′

k in
time O(αM(n)).
• Applying Proposition 2 to Eq. (27) shows that all the polynomials Pol(w′j,k) can be obtained in time O(α

ω−1M(n) log(n)).
�

6.2. The case of low multiplicities

Here we reduce the Cauchy case to the Vandermonde case, assuming that the multiplicities of x and y are bounded by α.
As in Section 5.2, we adapt the reduction of [24], now allowing for repetitions in both x and y.

A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181 177

Proposition 10. Let x, y ∈ Kn be as in Eqs. (1), (4) and (5). If the multiplicity s of x and the multiplicity t of y satisfy
max{s, t} ≤ α, then the problem LinearSystem(D(x),D(y), α) can be solved in time O(αω−1M(n) log2(n)). The algorithm is
probabilistic of type P(3n− 2, n2 + n).

Proof. Given G,H ∈ Kn×α and v ∈ Kn, we are looking for solutions u to the system Au = v, where A is the n × n matrix
such that∆[D(x),D(y)](A) = GHt .
For k ≤ t , letMk =

∏
γ∈yk

(x− γ). Since yj is repetition-free, Lemma 3 gives

D(yk) = V(yk, δk)X(Mk)V(yk, δk)−1.

Hence

D(y) = V X V−1, (28)

where V and X are block-diagonal with respective blocks V(yk, δk) and X(Mk). For k ≤ t , let mk ∈ Kδk be the coefficient
vector of−Mk mod xδk . Then X(Mk) = Zδk,0 +mk e

t
δk,δk

and, recalling that δ∗k = δ1 + · · · + δk,

X = Zn,0 +
t∑
k=1

dke
t
n,δ∗k
, (29)

where for k ≤ t , dk ∈ Kn is obtained by paddingmk with δ∗k−1 zeros on the top and, if k 6= t , with−1 followed by n− δ
∗

k − 1
zeros on the bottom.
Defining B = AV−t , solving Au = v amounts to solve Bu′ = v and then, if a solution exists, to compute u = V−tu′. To

do so in the claimed complexity, we exhibit the Vandermonde-like structure of B and bound the cost of computing u and a
generator for B. By transposing both sides of Eq. (28), we obtain

B− D(x)BXt = GH′t , with H′ = V−1H.

Now, for k ≤ t , define the vectors ck = B en,δ∗k and c
′

k = D(x) ck. Using Eq. (29), the previous identity then becomes

∆[D(x),Ztn,0](B) = C′ Dt + GH′t , (30)

where C′ has columns c′k and D has columns dk. The matrices [C′ G] and [D H′] thus form a D(x),Ztn,0-generator of length
t +α for B. Since the operator in Eq. (30) is∆[D(x),Ztn,ψ]withψ = 0, the condition in Eq. (2) is clearly satisfied. Moreover,
the multiplicity s of x is bounded by the length t + α of the above generator. Therefore, once this generator is known, the
system Bu′ = v can be solved by the probabilistic algorithm of type P(3n− 2, n2+ n) in Proposition 7; since t ≤ α, the cost
is still in O(αω−1M(n) log2(n)).
It remains to bound the cost computing u, C′, D and H′. To do so, we will use the result in Proposition 9 and the reminders

of Section 2 on the complexity of polynomial operations:

• By fast transposed interpolation and using the block structure of the matrix V, we can deduce the vector u from y and u′
in time O(M(n) log(n)).
• By fast interpolation and using the block structure of the matrix V, we can deduce the matrix H′ from y and H in time
O(αM(n) log(n)).
• All polynomialsMk (and thus all vectors dk and the matrix D) can be constructed from their roots in time O(M(n) log(n)).

In order to bound the cost of computing C′, note that, due to the block structure of A and V−t , each vector ck is in fact given
by ck = Aj,kwk, where wk ∈ Kδk is the last column of V(yk, δk)−t . Thus, we can compute the vectors w1, . . . ,wt and then
solve the multiplication problem of Section 6.1:

• Computing the last column ofV(yk, δk)−t takes time O(M(δk) log(δk)), which induces a cost of O(M(n) log(n)) for finding
all vectors wk.
• Knowing all wk, Proposition 9 shows that all vectors ck can be computed in time O(αω−1M(n) log(n)). Deducing the
vectors c′k by t multiplications with D(x) takes time O(α n), which concludes the proof. �

6.3. The case of high multiplicities

We eventually consider the case of high multiplicities (max{s, t} > α), reducing it to the case of low multiplicities
(max{s, t} ≤ α) seen in Section 6.2. Our reduction has costO(αω−1M(n)) and thus fits in the requested bound; however, like
in the Vandermonde case, randomization is used. Combining the complexity and probability results in the next proposition
with those of Proposition 10 concludes the proof of Theorem 3.

Proposition 11. Let x and y inKn be as in Eqs. (1), (4) and (5). If x or y hasmultiplicity larger thanα, one can reduce the problem
LinearSystem(D(x),D(y), α) to the problem LinearSystem(D(a),D(b), α), where a, b ∈ Kn both have multiplicity at most α
and satisfy the constraints of Eqs. (1), (4) and (5). The reduction can be done in time O(αω−1n) by a probabilistic algorithm of
type P(2n, 6n2).

178 A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181

Proof. If x has multiplicity s > α, we start by reducing the problem LinearSystem(D(x),D(y), α) to the problem
LinearSystem(D(a),D(y), α), where a ∈ Kn has multiplicity at most α and satisfies the constraints of Eqs. (1) and (5).
We can do this first reduction in time O(αω−1n) by a probabilistic algorithm of type P(n, 3n2), using the same technique

as in the proof of Proposition 8. The onlymodifications to do there are to replaceZtn,ψ byD(y), and to replace the polynomial
δ in Eq. (20) by one of the form∏

i<j≤r

(Yi − Yj) ×
∏

i≤r, j≤r ′
(Yi − ξj) ×

∏
i≤r, j≤n

(Yi yj − 1), with r, r ′ ≤ n, (31)

which still has degree bounded by 3n2. We do not give more details on this part of the algorithm.
If y has multiplicity t > α, it remains to reduce LinearSystem(D(a),D(y), α) to LinearSystem(D(a),D(b), α), where b

has multiplicity at most α and satisfies the constraints of Eqs. (4) and (5).
To do so, let G and H in Kn×α and v in Kn be given, and recall that we are looking for solutions to the system Au = v,

where A is such that∆[D(a),D(y)](A) = GHt . We assume that G and H have full rank, for otherwise one can replace (G,H)
by a minimal-length generator, whose matrices then have full rank.
We start by reordering the entries of y to obtain a repetition-free decomposition as in Eq. (6) of Section 2:

y′ =

yσ(1)...
yσ(n)

 =
 y′1
...
y′t ′

 ,
where y′i is a vector consisting ofµi repetitions of the same element ξi, so that n = µ1+ · · · +µt ′ , with ξi 6= ξj for i 6= j and
µ1 ≥ · · · ≥ µt ′ > 0.
Let A′ and H′ be obtained by applying the same reordering to, respectively, the columns of A and the rows of H; hence,

(G,H′) is a D(a),D(y′)-generator for A′. Writing Π for the permutation matrix such that A′ = AΠ , we see that every
solution to the system A u = v corresponds to a solution Π t u to the system A′u′ = v, and conversely. Therefore we focus
on solving A′u′ = v.
By construction, the matrices A′ and H′ admit the following decompositions:

A′ =
[
A′1 · · · A

′

t ′
]
and H′ =

 H′1
...

H′t ′

 ,
with A′i in Kn×µi and H′i in Kµi×α . Remark then that A′i − D(a)A′i D(y

′

i) = GH′ti . Now, D(y
′

i) = ξiIµi and, since ξiaj 6= 1 for all
i ≤ t ′ and all j ≤ n, all matrices In − ξiD(a) are invertible. We thus obtain the equalities

A′i = (In − ξiD(a))
−1 GH′ti for 1 ≤ i ≤ t ′. (32)

We will use dense matrix methods to reduce the number of non-zero entries in A′ and H′, while maintaining a Cauchy-like
structure. Let thus τ be such that µτ > α ≥ µτ+1.

• For 1 ≤ i ≤ τ , we have µi > α. We let Ji ⊂ {1, . . . , µi} and Ei ∈ Kµi×µi be the index set and the matrix obtained by
applying Lemma 9 to H′i . Let also ri = |Ji| = rank(H

′

i), so that ri ≤ α. Eq. (32) then gives

Ei H
′

i =

[
H′′i
0

]
and A′i E

t
i =

[
A′′i 0

]
,

where H′′i and A
′′

i have respective sizes (ri × α) and (n× ri), and H
′′

i consists of the rows of H
′

i indexed by Ji.
• For τ < i ≤ t ′, we have µi ≤ α. We let Ei = Iµi , H

′′

i = H′i and A
′′

i = A′i .

Let E be the block-diagonal matrix having E1, . . . , Et ′ on the diagonal. Hence, H′′ = E H′ consists of the matrices H′′i ,
interleaved by blocks of zeroswhen i ≤ τ ; the sameholds forA′′ = A′ Et , considering columns instead of rows. Besides, since
each D(y′i) is a homothety matrix, it commutes with Eti ; we deduce that (G,H

′′) is a D(a),D(y′)-generator for A′′. Finally,
since E is invertible, every solution to the system A′ u′ = v corresponds to a solution E−t u′ to the system A′′u′′ = v, and
conversely. Therefore, solving the problem A′′u′′ = v is enough.
We do so by exhibiting the Cauchy-like structure of A′′ for a modified displacement operator whose second diagonal

component has lower multiplicity. Define y′′ ∈ Kn by replacing, for i ≤ τ , the last µi − ri entries of y′i by new values taken
from K. Due to the presence of corresponding blocks of zeros in H′′ and A′′, the matrices G and H′′ now form a D(a),D(y′′)-
generator for A′′.
With r =

∑
i≤τ (µi − ri), suppose that the new values z1, . . . , zr inserted in y′′ are pairwise distinct and that none of

them belongs to y′ or satisfies aizj = 1. Then, y′′ satisfies the constraint of Eq. (5) and has multiplicity at most α (since all ri
are at most α).

A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181 179

It remains to reorder the entries of y′′ to obtain a vector b that also satisfies Eq. (1), and letΣ be the permutation matrix
such that b = Σ y′′. Defining F = Σ H′′, it follows that (G, F) is a D(a),D(b)-generator for the matrix B = A′′Σ t . To
conclude, every solution to Bw = v corresponds to a solution u′′ = Σ tw to A′′u′′ = v, and conversely.
We have thus reduced solving the system Au = v to solving Bw = v (and then, if a solution exists, to computing

u = Π Et Σ t w), while providing a generator for Bwith respect to the Cauchy-like structure D(a),D(b).
The complexity analysis of this second reduction is the same as in the proof of Proposition 8 and yields a cost inO(αω−1n)

as required.
For the probability analysis, remark that the values z1, . . . , zr satisfy our requirements if they do not cancel the

polynomial

γ =
∏
i<j≤r

(Zi − Zj) ×
∏

i≤r, j≤t ′
(Zi − ξj) ×

∏
i≤n, j≤r

(aiZj − 1),

which has degree at most 3n2, since r and t ′ are bounded by n. Hence, the algorithm for the second reduction has type
P(n, 3n2). Recalling that the first reduction was also by an algorithm of type P(n, 3n2) concludes the proof. �

Acknowledgments and notes

We thank E. Kaltofen, G. Labahn, M. Morf, V. Y. Pan, B. Salvy, A. Storjohann and G. Villard for useful discussions and
comments. An earlier version of this article (lacking in particular the discussion of the Cauchy case) was published in [8].
The first author was supported by the French National Agency for Research (ANR Project ‘‘Gecko’’) and the Microsoft

Research-INRIA Joint Centre. The third authorwas supported by NSERC (Canada) and by the Canada Research Chair Program.

Appendix

All along this paper, for matrices of Vandermonde or Cauchy type, we assumed that the diagonal matrices used in the
operators are as in Eq. (1). One can always reduce to this situation by permuting the entries of these diagonal matrices. We
discuss here the cost of this operation.
Given a = [a1, . . . , an]t in Kn, we actually study the cost of finding a repetition-free decomposition of a, that is, a

permutation that puts a into the form of Eq. (6) of Section 2. As seen in Lemma 11, the further cost of converting to the
representation of Eq. (1) is then a mere O(n).
If the base field K is endowed with an order <, a sorting algorithm solves the problem in O(n log(n)) comparisons.

However, if we do not allow ordering the elements of K, it is far less clear how to achieve a similar complexity. Our
solution involves polynomial arithmetic, and bears similarities with techniques used in both elliptic curve factorization
algorithms [36] or factorization into coprimes [5].
Proposition 12. Let a = [a1, . . . , an]t be in Kn. One can compute a repetition-free decomposition of a in O(M(n) log3(n))
operations.
Before giving the proof of this proposition, we start by two lemmas on sequence manipulations. As it turns out, one of the
main difficulties is the following (see Lemma 19): given two repetition-free sequences [c1, . . . , cr] and [d1, . . . , dr], such
that di = cσ(i) for some permutation σ of {1, . . . , r}, how to recover σ , if ordering elements is not allowed?
Lemma 18. Let c = [c1, . . . , cs] and d = [d1, . . . , dt] be repetition-free vectors with entries in K. One can compute sequences
of integers `1 < · · · < `u and m1 < · · · < mu such that

{c1, . . . , cs} ∩ {d1, . . . , dt} = {c`1 , . . . , c`u} = {dm1 , . . . , dmu}
in O(M(q) log(q)) operations, with q = max{s, t}.
Proof. Let P =

∏
i≤s(x− ci). Remark that α ∈ K belongs to {c1, . . . , cs} if and only if P(α) = 0; hence, evaluating P at d, we

obtain the indicesmi as those for which P(dmi) = 0. Similarly, one obtains the indices `i by evaluating Q =
∏
i≤t(x− di) at

c. All operations fit into the O(M(q) log(q)) bound. �

Lemma 19. Let c = [c1, . . . , cr] and d = [d1, . . . , dr] be repetition-free vectors with entries in K, such that {c1, . . . , cr} =
{d1, . . . , dr} (as sets). One can compute the unique permutation σ of {1, . . . , r} such that di = cσ(i) in O(M(n) log2(n))
operations.
Proof. Defining s = dr/2e and t = r − s, we split d into the subsequences d′ = [d1, . . . , ds] and d′′ = [ds+1, . . . , dr] of
respective lengths s and t . We then compute the polynomial P =

∏
i≤s(x− di) and evaluate it at c. Let `1 < · · · < `s be the

indices of the entries of cwhere P vanishes andm1 < · · · < mt be those where P is non-zero. We deduce that
{c`1 , . . . , c`s} = {d1, . . . , ds} and {cm1 , . . . , cmt } = {ds+1, . . . , dr}.

We can then proceed recursively, on [c`1 , . . . , c`s] and d
′ on the one hand, and [cm1 , . . . , cmt] and d

′′ on the other hand. This
gives us permutations ρ of {1, . . . , s} and τ of {1, . . . , t}, such that di = c`ρ(i) and dj+s = cmτ(j) hold for i ≤ s and j ≤ t . We
deduce σ , as σ(i) = `ρ(i) for i ≤ s and σ(i) = mτ(i−s) for i > s.
The cost of computing P and re-evaluating it is in O(M(r) log(r)) operations in K; the extra cost is O(r) bookkeeping

operations. Our claim follows from the super-additivity of the functionM. �

180 A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181

We can now prove our claim on the cost of finding a repetition-free decomposition. We give a recursive algorithm that,
given the vector a = [a1, . . . , an], computes a permutation σ of {1, . . . , n} such thataσ(1)...

aσ(n)

 =
a1
...
au

 ,
where the vector ai consists of λi repetitions of an element αi, the αi being pairwise distinct. Remark that this specification
is a slight relaxation of the definition given in Section 2, as we do not require that the multiplicities be sorted. The extra cost
for sorting them is O(n) integer operations, using bucket sorting.
Given a = [a1, . . . , an], we define ` = dn/2e and m = n − ` and recursively call the algorithm on [a1, . . . , a`] and

[a`+1, . . . , an]: we obtain permutations ρ ′ of {1, . . . , `} and ρ ′′ of {1, . . . ,m} such thataρ′(1)...
aρ′(`)

 =
a′1
...
a′s

 and

a`+ρ′′(1)...
a`+ρ′′(m)

 =
a′′1
...
a′′t

 , (33)

where the vector a′i (resp. a
′′

j) consists of νi (resp. µj) repetitions of an element α
′

i (resp. α
′′

j), the α
′

i and α
′′

j being pairwise
distinct.
We now have to determine the common elements between the lists [α′1, . . . , α

′
s] and [α

′′

1 , . . . , α
′′
t]. Using Lemma 18, we

compute in O(M(n) log(n)) operations the sequences of indices `1 < · · · < `r andm1 < · · · < mr such that

{α′1, . . . , α
′

s} ∩ {α
′′

1 , . . . , α
′′

t } = {α
′

`1
, . . . , α′`r } = {α

′′

m1 , . . . , α
′′

mr }.

Using O(n) extra operations, we then obtain the complementary sequences `′1 < · · · < `′s−r and m
′

1 < · · · < m
′
t−r , such

that

{`′1, . . . , `
′

s−r} = {1, . . . , s} − {`1, . . . , `r} and {m
′

1, . . . ,m
′

t−r} = {1, . . . , t} − {m1, . . . ,mr}.

Since the sequences [α′`1 , . . . , α
′

`r
] and [α′′m1 , . . . , α

′′
mr] are repetition-free, there exists a permutation σ of {1, . . . , r} such

that α′`i = α
′′
mσ(i)

for i ≤ r; by Lemma 19, we can compute σ in O(M(n) log2(n)) operations.
Knowing these subsequences, it remains to reorder the vectors in Eq. (33). We first interleave the entries appearing in

both vectors

α′`1 (ν`1 times), α
′′

mσ(1)
(µmσ(1) times), . . . , α

′

`r
(ν`r times), α

′′

mσ(r)
(µmσ(r) times),

followed by the entries appearing only in the first vector,

α′
`′1
(ν`′1

times), . . . , α′
`′s−r

(ν`′s−r times),

and by those appearing only in the first vector,

α′′m′1
(µm′1

times) . . . , α′′mt−r (µm′t−r times).

The permutation σ that actually puts a into the above order is readily deduced for O(n) operations. The overall cost is thus
O(M(n) log2(n)), plus that of the two recursive calls; the estimate given in Proposition 12 follows.

References

[1] B. Beckermann, A reliable method for computing M-Padé approximants on arbitrary staircases, J. Comput. Appl. Math. 40 (1) (1992) 19–42.
[2] B. Beckermann, G. Labahn, A uniform approach for the fast computation of matrix-type Padé approximants, SIAM J. Matrix Anal. Appl. 15 (3) (1994)
804–823.

[3] B. Beckermann, G. Labahn, Fraction-free computation of matrix rational interpolants and matrix GCDs, SIAM J. Matrix Anal. Appl. 22 (1) (2000)
114–144.

[4] M. Ben-Or, P. Tiwari, A deterministic algorithm for sparse multivariate polynomial interpolation, in: 20th Annual ACM Symp. Theory Comp., ACM
Press, 1988, pp. 301–309d.

[5] D.J. Bernstein, Factoring into coprimes in essentially linear time, J. Algorithms 54 (1) (2005) 1–30.
[6] D. Bini, V.Y. Pan, Polynomial and Matrix Computations, in: Fundamental Algorithms, vol. 1, Birkhäuser, 1994.
[7] R.R. Bitmead, B.D.O. Anderson, Asymptotically fast solution of Toeplitz and related systems of linear equations, Linear Algebra Appl. 34 (1980) 103–116.
[8] A. Bostan, C.-P. Jeannerod, É. Schost, Solving Toeplitz- and Vandermonde-like linear systems with large displacement rank, in: ISSAC’07, ACM Press,
2007, pp. 33–40.

[9] A. Bostan, G. Lecerf, É. Schost, Tellegen’s principle into practice, in: ISSAC’03, ACM Press, 2003, pp. 37–44.
[10] J. Canny, E. Kaltofen, Y. Lakshman, Solving systems of non-linear polynomial equations faster, in: ISSAC’89, ACM Press, 1989, pp. 121–128.
[11] D.G. Cantor, E. Kaltofen, On fast multiplication of polynomials over arbitrary algebras, Acta Inform. 28 (7) (1991) 693–701.
[12] Z. Chen, V.Y. Pan, An efficient solution for Cauchy-like systems of linear equations, Comput. Math. Appl. 48 (2004) 529–537.
[13] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic. Comput. 9 (3) (1990) 251–280.
[14] R.A. DeMillo, R.J. Lipton, A probabilistic remark on algebraic program testing, Inform. Process. Lett. 7 (4) (1978) 193–195.
[15] J.-G. Dumas, T. Gautier, C. Pernet, Finite field linear algebra subroutines, in: ISSAC’02, ACM Press, 2002, pp. 63–74.
[16] W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann, G. Villard, Solving sparse rational linear systems, in: ISSAC’06, ACM Press, 2006, pp. 63–70.

A. Bostan et al. / Theoretical Computer Science 407 (2008) 155–181 181

[17] W. Eberly,M. Giesbrecht, P. Giorgi, A. Storjohann, G. Villard, Faster inversion and other black boxmatrix computations using efficient block projections,
in: ISSAC’07, ACM Press, 2007, pp. 143–150.

[18] T. Finck, G. Heinig, K. Rost, An inversion formula and fast algorithms for Cauchy-Vandermondematrices, Linear Algebra Appl. 183 (1) (1993) 179–191.
[19] S. Gao, V.M. Rodrigues, J. Stroomer, Gröbner basis structure of finite sets of points, Preprint, 2003.
[20] M. Gasca, T. Sauer, Polynomial interpolation in several variables, Adv. Comput. Math. 12 (4) (2000) 377–410.
[21] J. von zur Gathen, J. Gerhard, Modern Computer Algebra, second ed., Cambridge University Press, 2003.
[22] J. von zur Gathen, V. Shoup, Computing Frobenius maps and factoring polynomials, Comput. Complexity 2 (3) (1992) 187–224.
[23] P. Giorgi, C.-P. Jeannerod, G. Villard, On the complexity of polynomial matrix computations, in: ISSAC’03, ACM Press, 2003, pp. 135–142.
[24] I.C. Gohberg, V. Olshevsky, Complexity of multiplication with vectors for structured matrices, Linear Algebra Appl. 202 (1994) 163–192.
[25] O.H. Ibarra, S. Moran, R. Hui, A generalization of the fast LUP matrix decomposition algorithm and applications, J. Algorithms 3 (1) (1982) 45–56.
[26] T. Kailath, S.Y. Kung, M. Morf, Displacement ranks of matrices and linear equations, J. Math. Anal. Appl. 68 (2) (1979) 395–407.
[27] E. Kaltofen, Greatest common divisors of polynomials given by straight-line programs, J. ACM 35 (1) (1988) 231–264.
[28] E. Kaltofen, Asymptotically fast solution of Toeplitz-like singular linear systems, in: ISSAC’94, ACM Press, 1994, pp. 297–304.
[29] E. Kaltofen, Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution of sparse linear systems, Math. Comp. 64 (210) (1995)

777–806.
[30] E. Kaltofen, Y. Lakshman, Improved sparse multivariate polynomial interpolation algorithms, in: ISSAC’88, in: LNCS, vol. 358, Springer Verlag, 1988,

pp. 467–474.
[31] E. Kaltofen, D. Saunders, On Wiedemann’s method of solving sparse linear systems, in: AAECC-9, in: LNCS, vol. 539, Springer Verlag, 1991, pp. 29–38.
[32] I. Kaporin, The aggregation and cancellation techniques as a practical tool for faster matrix multiplication, Theoret. Comput. Sci. 315 (2–3) (2004)

469–510.
[33] G. Labahn, D.K. Choi, S. Cabay, The inverses of block Hankel and block Toeplitz matrices, SIAM J. Comput. 19 (1) (1990) 98–123.
[34] J. Laderman, V.Y. Pan, X.-H. Sha, On practical algorithms for accelerated matrix multiplication, Linear Algebra Appl. 162–164 (1992) 557–588.
[35] D. Lazard, Ideal bases and primary decomposition: The case of two variables, J. Symbolic. Comput. 1 (1985) 261–270.
[36] P.L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math. Comp. 48 (177) (1987) 243–264.
[37] M. Morf, Fast algorithms for multivariable systems, Ph.D. Thesis, Stanford University, 1974.
[38] M. Morf, Doubling algorithms for Toeplitz and related equations, in: IEEE Conference on Acoustics, Speech, and Signal Processing, 1980, pp. 954–959.
[39] T. Mulders, On short multiplications and divisions, Appl. Algebra Engrg. Comm. Comput. 11 (1) (2000) 69–88.
[40] M. Nüsken, M. Ziegler, Fast multipoint evaluation of bivariate polynomials, in: ESA 2004, in: LNCS, vol. 3222, Springer, 2004, pp. 544–555.
[41] V.Y. Pan, On some computations with dense structured matrices, in: ISSAC’89, ACM Press, 1989, pp. 34–42.
[42] V.Y. Pan, On computations with dense structured matrices, Math. Comp. 55 (191) (1990) 179–190.
[43] V.Y. Pan, Parametrization of Newton’s iteration for computationswith structuredmatrices and applications, Comput. Math. Appl. 24 (3) (1992) 61–75.
[44] V.Y. Pan, Nearly optimal computations with structured matrices, in: SODA’00, ACM Press, 2000, pp. 953–962.
[45] V.Y. Pan, Structured Matrices and Polynomials, Birkhäuser Boston Inc., 2001.
[46] V.Y. Pan, X. Wang, Inversion of displacement operators, SIAM J. Matrix Anal. Appl. 24 (3) (2003) 660–677.
[47] V.Y. Pan, A. Zheng, Superfast algorithms for Cauchy-like matrix computations and extensions, Linear Algebra Appl. 310 (2000) 83–108.
[48] V.Y. Pan, A. Zheng,M. Abu Tabanjeh, Z. Chen, S. Providence, Superfast computationswith singular structuredmatrices over abstract fields, in: Computer

algebra in scientific computing: CASC’99, Springer, 1999, pp. 323–338.
[49] A. Schönhage, V. Strassen, Schnelle Multiplikation großer Zahlen, Computing 7 (1971) 281–292.
[50] J.T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. ACM 27 (4) (1980) 701–717.
[51] A. Storjohann, Algorithms for matrix canonical forms, Ph.D. Thesis, ETH, Zürich, 2000.
[52] A. Storjohann, Notes on computing minimal approximant bases, Technical report, Symbolic Computation Group, University of Waterloo, 2006.
[53] V. Strassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969) 354–356.
[54] M. Van Barel, A. Bultheel, A general module theoretic framework for vector M-Padé and matrix rational interpolation, Numer. Algorithms 3 (1992)

451–461.
[55] R. Zippel, Probabilistic algorithms for sparse polynomials, in: EUROSAM’ 79, in: LNCS, vol. 72, Springer Verlag, 1979.
[56] R. Zippel, Interpolating polynomials from their values, J. Symbolic. Comput. 9 (3) (1990) 375–403.

	Solving structured linear systems with large displacement rank
	Introduction
	Notation and preliminaries
	Polynomial operations
	First problem
	Second problem

	The Toeplitz case
	Preliminaries
	Solving Toeplitz-like linear systems
	Application: Padé-type approximation

	The Vandermonde case
	A multiplication problem
	The case of low multiplicities
	The case of high multiplicities
	Application: Bivariate interpolation

	The Cauchy case
	A multiplication problem
	The case of low multiplicities
	The case of high multiplicities

	Acknowledgments and notes
	Appendix
	References

