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a b s t r a c t

A time-bound hierarchical key assignment scheme is a method to assign time-dependent
encryption keys to a set of classes in a partially ordered hierarchy, in such a way that each
class in the hierarchy can compute the keys of all classes lower down in the hierarchy,
according to temporal constraints.
In this paper we propose new constructions for time-bound hierarchical key

assignment schemes which are provably secure with respect to key indistinguishability.
Our constructions use as a building block any provably-secure hierarchical key assignment
scheme without temporal constraints and exhibit a tradeoff among the amount of private
information held by each class, the amount of public data, the complexity of key derivation,
and the computational assumption on which their security is based. Moreover, the
proposed schemes support updates to the access hierarchy with local changes to public
information and without requiring any private information to be re-distributed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Users of a computer system could be organized in a hierarchy formed by a certain number of disjoint classes. These
classes, called security classes, are positioned and ordered within the hierarchy based on the fact that some users have
more access rights than others. For example, within a hospital system, doctors can access all data concerning their patients,
whereas, researchers can be limited to consult anonymous clinical information for studies. Similar cases abound in other
areas, particularly in the government and military.
A hierarchical key assignment scheme is a method to assign an encryption key and some private information to each class

in the hierarchy. The encryption key will be used by each class to protect its data by means of a symmetric cryptosystem,
whereas, private information will be used by each class to compute the keys assigned to all classes lower down in the
hierarchy. This assignment is carried out by a central authority, the Trusted Authority (TA), which is active only at the
distribution phase. Akl and Taylor [2] first proposed an elegant hierarchical key assignment scheme. In their scheme each
class is assigned a key that can be used, along with some public parameters generated by the central authority, to compute
the key assigned to any class lower down in the hierarchy. Subsequently, many researchers have proposed schemes that
either have better performance or allow insertions and deletions of classes in the hierarchy (e.g., [4,17,19,22–25]). A recent
work by Crampton et al. [13] provides a detailed classification of many schemes in the literature and evaluates their merits
according to different parameters, such as the amount of private information distributed and stored by users, the amount
of public information, the complexity of key derivation, the complexity of handling dynamic updates to the hierarchy, and
resistance to collusive attacks.

I This paper is the extended version of a short paper accepted at the 12th ACM Symposium on Access Control Models and Technologies — SACMAT 2007,
Sophia Antipolis, France, June 20–22, 2007.
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Recent works remark the need for extending access control models, in order to satisfy various context-sensitive
constraints. An important issue, common to many access control policies, concerns time-dependent constraints of access
permissions. In many real situations it is likely that a user may be assigned to a certain class for only a certain period of
time. In such cases, users need a different key for each time period. In practice, many scenarios present time-dependent
constraints. Such applications include:

• Web-based subscription services. For example, an electronic newspaper company could offer several types of
subscription packages, covering different topics. Each user may decide to subscribe to one package for a certain period
of time (e.g., a week, a month, or a year).
• Multicast programs containing related services. For instance, several cellular phone providers offer a set of extra
broadcast services, such as weather forecasts, news, traffic information, and advertisements. Users may decide to enjoy
only some services for a limited period of time.
• Prepaid credit services. For example, some internet providers offer prepaid plans which require the credit to be used in
a limited period of time. Once such a period is expired the customer should be forbidden to surf the internet.

A time-bound hierarchical key assignment scheme is a method to assign time-dependent encryption keys and private
information to each class in the hierarchy, in such a way that key derivation also depends on temporal constraints. Once
a time period expires, users in a class should not be able to access any subsequent keys if they are not authorized to do
so. Several proposals for time-bound hierarchical key assignment schemes [29,12,18,33] have been shown to be insecure
against collusive attacks, whereby two or more users, assigned to some classes in distinct time periods, collude to compute
a key to which they are not entitled [35,14,34,26,7]. Recently, Wang and Laih [36] and Tzeng [30] showed how to construct
a time-bound hierarchical key assignment scheme starting from the Akl–Taylor scheme [2]. However, since they did not
formalize the definition of security and the adversarial model, it is not clear under which assumption their schemes can be
considered to be secure.
Ateniese et al. [7] first addressed the problem of formalizing security requirements for time-bound hierarchical key

assignment schemes. They distinguished between two different goals, i.e., security with respect to key indistinguishability
and against key recovery, and two different kinds of adversarial behaviors, i.e., the static and adaptive adversarial behaviors.
In particular, they proved that security against adaptive adversaries is (polynomially) equivalent to security against static
adversaries. They also proposed two different constructions for time-bound key assignment schemes. Both constructions
support dynamic updates to the access hierarchy with local changes to the public information and without requiring any
private information to be re-distributed.
Recently, Atallah et al. proposed new time-bound hierarchical key assignment schemes, which are provably-secure

against key recovery and require each user to store only (at most) three secret values [6]. In this paper we propose
new constructions for time-bound hierarchical key assignment schemes which are provably-secure with respect to key
indistinguishability. Our constructions use as a building block any provably-secure hierarchical key assignment scheme
without temporal constraints and allow to establish a tradeoff among the amount of private information held by users, the
amount of public data, the complexity of key derivation, and the computational assumption on which the security of the
schemes is based. The rest of the paper is organized as follows: In Section 2 we first review the definition of time-bound
hierarchical key assignment schemes and then analyze the constructions proposed in [7]. In Section 3 we show how to
construct a provably secure time-bound hierarchical key assignment scheme using as a building block any provably-secure
hierarchical key assignment scheme without temporal constraints. To this aim, we show how to merge the hierarchical and
temporal constraints into a new hierarchy, by using the so called Interval-Hierarchy Based Transformation (IHBT). Afterwards,
we provide a tradeoff between the amount of public data and the complexity of key derivation. In Section 4 we show how to
obtain a further tradeoff, also involving the amount of secret information held by each user, by using the so called Covering
Set Based Transformation (CSBT). In Section 5 we conclude the paper by showing a comparison between our constructions
and related works.

2. Time-bound hierarchical key assignment schemes

Consider a set of users divided into a number of disjoint classes, called security classes. A security class can represent a
person, a department, or a user group in an organization. A binary relation � that partially orders the set of classes V is
defined in accordance with authority, position, or power of each class in V . The poset (V ,�) is called a partially ordered
hierarchy. For any two classes u and v, the notation u � v is used to indicate that the users in v can access u’s data. Clearly,
since v can access its own data, it holds that v � v, for any v ∈ V . We denote by Av the set {u ∈ V : u � v}, for any v ∈ V .
The partially ordered hierarchy (V ,�) can be represented by the directed graph G∗ = (V , E∗), where each class corresponds
to a vertex in the graph and there is an edge from class v to class u if and only if u � v. We denote by G = (V , E) theminimal
representation of the graph G∗, that is, the directed acyclic graph corresponding to the transitive and reflexive reduction of
the graph G∗ = (V , E∗). Such a graph G has the same transitive and reflexive closure of G∗, i.e., there is a path (of length
greater than or equal to zero) from v to u in G if and only if there is the edge (v, u) in E∗. Aho et al. [1] showed that every
directed graph has a transitive reduction which can be computed in polynomial time and that such a reduction is unique for
directed acyclic graphs. In the following we denote by Γ a family of graphs corresponding to partially ordered hierarchies.
For example, Γ could be the family of the rooted trees, the family of the d-dimensional hierarchies [25,5,15], etc.
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As in [7], in this paper we consider the case where the membership of a user to a certain class also depends on temporal
constraints. Let T = (t1, . . . , tn) be a sequence of distinct time periods. Each user may belong to a class for a certain non-
empty contiguous subsequence λ of T . Let P be the set of all nonempty contiguous subsequences of T . Such a set is called
the interval-set over T . We recall the definition of a time-bound hierarchical key assignment scheme given in [7].
Definition 2.1 ([7]). A time-bound hierarchical key assignment scheme for Γ is a pair of algorithms (Gen,Der) satisfying the
following conditions:
1. The information generation algorithm Gen is probabilistic polynomial-time. It takes as inputs the security parameter 1τ , a
graph G = (V , E) in Γ , and the interval-set P over a sequence of distinct time periods T , and produces as outputs
(a) a private information su,λ, for any class u ∈ V and any time sequence λ ∈ P ;
(b) a key ku,t , for any class u ∈ V and any time period t ∈ T ;
(c) a public information pub.
We denote by (s, k, pub) the output of the algorithm Gen on inputs 1τ , G, and P , where s and k denote the sequences of
private information and of keys, respectively.

2. The key derivation algorithm Der is deterministic polynomial-time. It takes as inputs the security parameter 1τ , a graph
G = (V , E) in Γ , the interval-set P over a sequence of distinct time periods T , two classes u and v such that v ∈ Au, a
time sequence λ ∈ P , the private information su,λ assigned to class u for the time sequence λ, a time period t ∈ λ, and
the public information pub, and produces as output the key kv,t assigned to class v at time period t .
We require that for each class u ∈ V , each class v ∈ Au, each time sequence λ ∈ P , each time period t ∈ λ, each

private information su,λ, each key kv,t , each public information pub which can be computed by Gen on inputs 1τ , G, and
P , it holds that

Der(1τ ,G,P , u, v, λ, su,λ, t, pub) = kv,t .
A time-bound hierarchical key assignment scheme is evaluated according to several parameters, such as the amount of

secret data that needs to be distributed to and stored by users, the amount of public data, the complexity of key derivation,
the complexity of key updates due to dynamic changes to the hierarchy, and the resistance to collusive attacks.
As regards as the complexity of key derivation, we are interested both in the number and the type of operations needed

to derive a key. Moreover, notice that in Definition 2.1 we have not specified the structure of the public information pub
and of the graph G. In order to improve the efficiency of key derivation, pub and G could be structured in such a way that,
whenever class v performs key derivation to compute the key of a class u ∈ Av , it does not need to input the algorithm Der
with the whole pub and G, but only with those parts of them involved in the computation. As regards as the complexity of
key updates, due to dynamic changes to the hierarchy, we would like to allow the insertion and deletion of users, classes, or
edges in the hierarchy at any time period, without requiring the TA to re-distribute private information to the other users.
However, the most fundamental feature that a good scheme should have is the resistance to collusive attacks. More

precisely, for each class u ∈ V and each time period t ∈ T , the key ku,t should be protected against a coalition of users
belonging to each class v such that u 6∈ Av in all time periods, and users belonging to each classw such that u ∈ Aw in all time
periods but t . We denote by Fu,t the set {(v, λ) ∈ V ×P : u 6∈ Av or t 6∈ λ}, corresponding to all users which are not allowed
to compute the key ku,t . In this paper we consider security with respect to key indistinguishability. Such a requirement
formalizes the fact that the adversarial coalition is not able to distinguish a key, that should not be accessible by any user
of the coalition, from a random string of the same length. We consider a static adversary STATu,t , which wants to attack a
class u ∈ V at a certain time period t ∈ T and which is able to corrupt all users not allowed to compute the key ku,t . We
define an algorithm Corruptu,t which, on input the private information s generated by the algorithm Gen, extracts the secret
values sv,λ associated to all pairs (v, λ) ∈ Fu,t .We denote by corr the sequence output by Corruptu,t(s). Two experiments
are considered. In the first one, the adversary is given the key ku,t , whereas, in the second one, it is given a random string ρ
having the same length as ku,t . It is the adversary’s job to determine whether the received challenge corresponds to ku,t or
to a random string. We require that the adversary will succeed with probability only negligibly different from 1/2.
If A(·, ·, . . .) is any probabilistic algorithm then a← A(x, y, . . .) denotes the experiment of running A on inputs x, y, . . .

and letting a be the outcome, the probability being over the coins of A. Similarly, if X is a set then x ← X denotes the
experiment of selecting an element uniformly from X and assigning x this value. If w is neither an algorithm nor a set then
x ← w is a simple assignment statement. A function ε : N → R is negligible if for every constant c > 0 there exists an
integer nc such that ε(n) < n−c for all n ≥ nc .
Definition 2.2 ([7]). Let Γ be a family of graphs corresponding to partially ordered hierarchies, let G = (V , E) be a graph
in Γ , let T be a sequence of distinct time periods, let P be the interval-set over T , and let (Gen,Der) be a time-bound
hierarchical key assignment scheme for Γ . Let STATu,t be a static adversary which attacks a class u ∈ V in a time period
t ∈ T . Consider the following two experiments:

Experiment ExpIND−1STATu,t (1
τ ,G,P ) Experiment ExpIND−0STATu,t (1

τ ,G,P )
(s, k, pub)← Gen(1τ ,G,P ) (s, k, pub)← Gen(1τ ,G,P )
corr ← Corruptu,t(s) corr ← Corruptu,t(s)
d← STATu,t(1τ ,G,P , pub, corr, ku,t) ρ ← {0, 1}length(ku,t )
return d d← STATu,t(1τ ,G,P , pub, corr, ρ)

return d
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The advantage of STATu,t is defined as

AdvINDSTATu,t (1
τ ,G,P ) = |Pr[ExpIND−1STATu,t (1

τ ,G,P ) = 1] − Pr[ExpIND−0STATu,t (1
τ ,G,P ) = 1]|.

The scheme is said to be secure in the sense of IND-ST if, for each graph G = (V , E) in Γ , each sequence of distinct time
periods T , each class u ∈ V and each time period t ∈ T , the function AdvINDSTATu,t (1

τ ,G,P ) is negligible, for each static
adversary STATu,t whose time complexity is polynomial in τ .

In Definition 2.2 we have considered a static adversary attacking a class. A different kind of adversary, the adaptive one,
could also be considered. Such an adversary is first allowed to access all public information as well as all private information
of a number of classes of its choice; afterwards, it chooses the class u it wants to attack and the time period t for which the
attack will be mounted. In [7] it has been proven that security against adaptive adversaries is (polynomially) equivalent to
security against static adversaries. Hence, in this paper we will only consider static adversaries.

An extension of the model. In Definition 2.1 we have considered the case where the graph G has the same structure
for any time period, since it represents the same access control policy. However, as noticed in [7], the model could be
generalized to the cases where there are different access control policies, one for each time period. For example, consider
a web-based electronic newspaper company which offers several types of subscription packages, organized as a partially
ordered hierarchy, where leaf nodes represent different topics. Assume that the newspaper company is going to offer some
subscription packages in some fixed time periods. In such a case a user may subscribe to a package only for the time periods
in which the newspaper company offers it. Such a situation can bemodeled by using a different graph to describe the access
control policy for each time period. More precisely, for any i = 1, . . . , |T |, we could represent the access control policy for
time period ti by a graph Gi = (Vi, Ei), where Vi denotes the set of classes affected by the policy at time period ti, whereas,
Ei represent the access relation between the classes.
In order to describe a time-bound hierarchical key assignment scheme for the above general setting, we need to slightly

extend Definition 2.1 to allow the algorithms Gen and Der to take as inputs more than one graph, instead of a single one. In
particular, the algorithm Gen should take as inputs all graphs G1, . . . ,G|T | , whereas, the algorithm Der should take as inputs
the graph Gi, for any i such that ti ∈ λ. Throughout the paper, we will consider the case where the access control policy is
the same for any time period. However, all the constructions presented in this paper, as well as those proposed in [7] and
described in the following, could also be used for the more general setting.

2.1. Previous solutions

In this section we recall some constructions of time-bound hierarchical key assignment schemes and evaluate their
merits. Since we are mainly interested in schemes which are provably secure, we do not consider those which have been
shown to be insecure against collusion attacks [29,12,18,33].
Let Γ be a family of graphs corresponding to partially ordered hierarchies, let G = (V , E) be a graph in Γ , and let

T = (t1, . . . , tn) be a sequence of distinct time periods. The constructions proposed by Ateniese et al. [7] both involve a
transformation of the graph G resulting in a two-level partially ordered hierarchy. The first construction, which we refer
to as the Two-Level Encryption Based Construction (TLEBC) makes use of a symmetric encryption scheme secure against a
non-adaptive chosen plaintext attack, denoted by IND-P1-C0 in [20]. The TLEBC requires O(|E∗| · |T |3) values to be made
public, whereas, each user belonging to a certain class for a time sequence has to store a single secret value. Moreover,
users are required to perform a single decryption operation in order to derive a key (no other operations are involved in key
derivation). The parameters of the TLEBC are summarized in row 1 of Fig. 9. The second solution, which we refer to as the
Two-Level Pairing Based Construction (TLPBC), makes use of pairings and assumes the intractability of the Bilinear Decisional
Diffie-Hellman (BDDH) problem [7]. The TLPBC offers a smaller amount of public information compared to the TLEBC, since
O(|E∗|) values are made public, but requires each user to hold at most |T | private values. However, key derivation requires
one group operation. Both the TLEBC and the TLPBC are provably secure with respect to key indistinguishability and support
dynamic changes to the hierarchy, without requiring the re-distribution of any private information. The parameters of the
TLPBC are summarized in row 1 of Fig. 10.
The schemes proposed byWang and Laih [36] and Tzeng [30] both require |V |·|T | public values, whereas, each user has to

store a single secret value andkeyderivation involves onemodular exponentiation andO(|V |·|T |)operations. However, since
the authors did not formalize the definition of security and the adversarial model, it is not clear under which assumption
their schemes can be considered to be provably secure.

3. A general construction

In this section we consider the problem of constructing a provably secure time-bound hierarchical key assignment
scheme for a family of graphs Γ , using as a building block any provably secure hierarchical key assignment scheme Σ ,
without temporal constraints, for Γ .
The naive solution to construct a time-bound hierarchical key assignment scheme for Γ involves replicating Σ once

for each time period. Let G = (V , E) be a graph in Γ , let pubti and su,ti denote the public information and the private
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Fig. 1. The minimal representation of the interval-hierarchy over T = (t1, t2, t3, t4).

information held by users in class u ∈ V , respectively, in the i-th replicate of Σ . The public information of the time-bound
scheme obtained by the naive solution is pub = (pub1, . . . , pubn), whereas, the private information held by users belonging
to a class u ∈ V for a time sequence λ = (ti, . . . , tj) ∈ P is su,λ = (su,ti , . . . , su,tj). The drawback of such a solution is that it
requires a large amount of public and private information.
In order to obtain schemes offering better performance, we should avoid a simple replication of Σ . For example, we

could use Σ just once, to assign keys and private information to the classes of a new hierarchy, obtained by merging the
hierarchical and temporal constraints in such a way that the users belonging to the same class share the same access rights
(this does not happen in time-bound hierarchical key assignment schemes, since users in the same class may have different
access rights, according to the time periods in which they are able to access the data). The new hierarchy could be obtained
by performing a graph transformation, starting from the graph G and the interval-set P over T . The transformation we
proposemakes use of the partially ordered hierarchywhose classes are the contiguous time subsequences of T . Indeed, such
subsequences, corresponding to the elements of the interval-set P over T , naturally induce a partially ordered hierarchy,
called the interval-hierarchy over T , with respect to the binary relation of inclusion between contiguous subsequences.
We denote by HT = (P , EP ) the minimal representation of the directed acyclic graph representing such a hierarchy. It is
easy to see that |EP | = 2(|P | − |T |) = Θ(|T |2), since any node in P , with the exception of sink nodes, has exactly two
outgoing edges. Fig. 1 shows the minimal representation of the interval-hierarchy over T = (t1, t2, t3, t4), where the node
corresponding to each sequence (ti, . . . , tj) is denoted by [i, j].
Starting from the two graphs G = (V , E) and HT = (P , EP ), we construct a new graph G

′
= (V ′, E ′), by using the

Interval-Hierarchy Based Transformation (IHBT), defined as follows:

• For each class u ∈ V and each time sequence λ ∈ P , we place a class uλ ∈ V ′.
• For each class u ∈ V and each pair of time sequences λ, γ ∈ P connected by an edge in EP , we place an edge between
uλ and uγ in G′, i.e., (uλ, uγ ) ∈ E ′. Such edges are called time edges.
• For each pair of classes u and v connected by an edge in E and each time period t ∈ T , we place an edge between ut and
vt in G′, i.e., (ut , vt) ∈ E ′. Such edges are called policy edges.

It is easy to see that |V ′| = |V | · |P | = O(|V | · |T |2).Moreover, |E ′| = |V | · |EP |+ |E| · |T | = O(|V | · |T |
2
+|E| · |T |). Indeed, E ′

contains |V | · |EP | time edges and |E| · |T | policy edges. The right hand side of Fig. 2 shows the graph G
′ obtained by the IHBT

starting from the graph G shown on the left hand side of Fig. 2 and from the graph HT representing the interval-hierarchy
over T shown in Fig. 1. Time edges and policy edges are represented by dashed and solid lines, respectively.
Once the graph G′ = (V ′, E ′) has been obtained, we can use any hierarchical key assignment scheme without temporal

constraints. In the following we recall two constructions recently proposed in [15] which will be used as building blocks of
our constructions.

The Broadcast Encryption Based Construction (BEBC). A provably-secure hierarchical key assignment scheme can be obtained
by using as a building block a secure public-key broadcast encryption scheme. In particular, if the underlying public-key
broadcast encryption scheme is semantically secure, then the resulting hierarchical key assignment scheme is secure in
the sense of IND-ST. Boneh et al. [10] showed how to construct a semantically secure broadcast encryption scheme for a
set of n users, assuming the intractability of the n-Bilinear Decisional Diffie-Hellman Exponent (n-BDDHE) problem. The use
of such a broadcast encryption scheme, based on pairings, allows to obtain a hierarchical key assignment scheme where
public information consists of 4|V | + 1 group elements, whereas, private information has a constant size. Moreover, key
derivation requires a single (complex) decryption operation, which involves at most |V | − 2 group operations. The BEBC
supports dynamic changes to the hierarchy without requiring re-distribution of private information to the classes affected
by such changes.
By using the BEBC based on pairings we obtain a time-bound hierarchical key assignment scheme where the number of

data to bemade public is 4|V ′|+1 = O(|V | · |T |2), whereas, key derivation requires a single (complex) decryption operation,
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Fig. 2. An example of the graph G′ (on the right) corresponding to the graph G (on the left) and the graph HT depicted in Fig. 1. Time edges and policy edges
are represented by dashed and solid lines, respectively.

involving at most |V ′|−2 group operations. Moreover, each user belonging to a certain class for a time sequence has to store
a single secret value. The parameters of the scheme described above are summarized in row 3 of Fig. 10.

The Encryption Based Construction (EBC). A different construction to obtain a provably-secure hierarchical key assignment
scheme uses as a building block a secure symmetric encryption scheme Π = (K, E,D). In particular, if the underlying
encryption scheme is secure in the sense of IND-P1-C0, i.e., with respect to a non-adaptive chosen plaintext attack, then
the resulting hierarchical key assignment scheme is secure in the sense ofIND-ST. The idea is the following: each class u ∈ V
is assigned a private information su, an encryption key ku, and a public information p(u,u) = Esu(ku), which is the encryption
of the key ku with the private information su; moreover, for each edge (u, v) ∈ E, there is a public value p(u,v) = Esu(sv),
which allows class u to compute the private information sv held by class v. The scheme requires |E| + |V | public values; on
the other hand, each class has to store a single secret value, corresponding to its private information. As for key derivation,
in the EBC a class u ∈ V which wants to compute the key held by a class v ∈ Au is required to perform distG(u, v) + 1
decryptions, where distG(u, v) denotes the length of the shortest path between u and v in G. The EBC as described above
supports insertions, but not deletions, of classes and edges in the hierarchy without re-distributing private information to
the classes affected by such changes. However, in [15] a simplemodification of the scheme, which avoids the re-distribution
of private informationwhen deletions of classes or edges occur, has been proposed. Themodified scheme requires |E|+2|V |
public values, whereas, each class has to store a single secret value. Moreover, the number of decryptions needed by class u
to compute the key of class v ∈ Au is distG(u, v)+ 2.
A scheme also based on encryption schemes and offering similar features has been proposed by Atallah et al. [4]. Their

scheme requires 2|E|+ |V | public values,1 whereas, each class has to store a single secret value. In order to compute the key
held by a class v ∈ Au, users in class u have to perform distG(u, v) decryptions and distG(u, v) + 1 pseudorandom function
evaluations. However, the security of their scheme is based on two different computational assumptions (the existence
of pseudorandom function families and of symmetric encryption schemes secure against chosen ciphertext attacks). Thus,
compared with the scheme in [4], the EBC is simpler and more efficient.
In the following we evaluate the time-bound hierarchical key assignment scheme obtained by using as a building block

the first version of the EBC, i.e., the one which does not support deletions of classes or edges in the hierarchy. By using
such a scheme, we obtain a time-bound hierarchical key assignment schemewhere the number of data to be made public is
|V ′|+|E ′| = O(|E|·|T |+|V |·|T |2). However, the number of steps required to performkeyderivation canbequite large. Indeed,
consider a user assigned to a class v ∈ V for a time sequence λ. In order to compute the key held by class u ∈ Av at time
period t ∈ λ, the user is required to perform distG′(uλ, vt)+ 1 decryptions, where distG′(uλ, vt) = distG(u, v)+ distHT (λ, t).
Therefore, the number of decryption operations required to perform key derivation is upper bounded by the sum of the
diameters of the two graphs HT and G, where the diameter of a directed graph is defined as the maximum distance between
a pair of vertices in the graph connected by a path. In Section 3.1 we consider the problem of improving the efficiency of
key derivation by using some techniques, described in [15], which allow a reduction in the diameter of a directed graph.
In particular, we restrict our attention to the graph HT , because the diameter of the graph G, denoted in the following by
diam(G), could have already been reduced by employing similar techniques.

1 For each edge in the hierarchy, the scheme in [4] publishes the encryption of the concatenation of two values, which, in terms of space requirements,
is equivalent to two encryptions on a single value.
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Fig. 3. The two linear extensions of the hierarchy of time sequences in Fig. 1.

3.1. A tradeoff between public storage and key derivation time

In this section we show how to use two techniques described in [15], which we refer to as the Shortcutting Technique and
the Improved Shortcutting and Point-Inserting Technique, respectively, in order to reduce key derivation time in the schemes
obtained by the EBC. Such techniques, applied to a directed graph, allow to obtain a new graph, having a smaller diameter
than the previous graph, such that there exists a path between two vertices in the previous graph if and only if there exists
a path between them in the new one.

The Shortcutting Technique (ST). The Shortcutting Technique applied to a directed graph H = (VH , EH ) consists of adding to
EH additional edges, called shortcut edges and belonging to the transitive closure of EH . The goal is to obtain another directed
graph, called a shortcut graph, and denoted by H+ = (VH , E

+

H
), having a smaller diameter than H . Thorup [28] showed

that, given a rooted acyclic planar directed graph H = (VH , EH ), by adding at most |EH | shortcut edges we obtain a shortcut
graph having diameter O((log |VH |) · α(|VH |, |VH |)), by adding at most |EH | shortcut edges, where α denotes the inverse of
the Ackermann’s function defined by Tarjan [27]. The function α(p, p) is very slowly-growing; in particular, it grows even
slower than the iterated logarithmic function log∗ p, which, for all values of p less than 265,536, corresponding to much more
than the number of atoms in the universe, does not exceed 5. The iterated logarithm function log∗ p is defined to be the
number of times the logarithm function must be applied in succession, starting with argument p, before the result is less
than or equal to 1, i.e., log∗ p = min{i ≥ 0 : log(i) p ≤ 1}, where

log(i) p =


p if i = 0,
log(log(i−1) p) if i > 0 and log(i−1) p > 0,
undefined if i > 0 and log(i−1) p ≤ 0 or log(i−1) p is undefined.

Since the graph HT = (P , EP ), representing the interval-hierarchy over T , is a rooted acyclic planar graph, we can apply
Thorup’s technique in order to obtain a shortcut graph H+

T
= (P , E+

P
), having diameter O(log |T | · α(|T |2, |T |2)), by adding

at most |EP | = O(|T |
2) shortcut edges. Thus, by using the IHBT starting on the graphs G = (V , E) and H+

T
= (P , E+

P
) and by

applying the EBC on the output of the IHBT, we obtain a time-bound hierarchical key assignment schemewhere the amount
of public information is O(|E| · |T | + |V | · |T |2), whereas, the number of decryption operations needed for key derivation is
O(log |T | · log∗ |T | + diam(G)). The parameters of the scheme described above are summarized in row 3 of Fig. 9.

The Improved Shortcutting and Point Inserting Technique (ISPIT). The Improved Shortcutting and Point Inserting Technique
applied to the directed graph H = (VH , EH ), representing a partially ordered hierarchy, consists of inserting additional edges
in EH , as well as new vertices in VH , in order to obtain a graph H

++ having a smaller diameter than H . Such a technique,
described in [15], makes use of the concept of dimension of a poset. Let� and � be two binary relations that partially order
the elements of a finite set X . The poset (X,�) is called an extension of (X,�) if x � y implies x � y, for any x, y ∈ X . If (X,�)
is a totally ordered set, i.e., if for any x, y ∈ X either x� y or y� x, then (X,�) is also said to be a linear extension of (X,�). The
problem of counting the number of linear extensions of a poset has been shown to be #P-complete [11]. The dimension of
a poset (X,�), originally defined by Dushnik and Miller [16], is the minimum number of linear extensions of (X,�)whose
intersection is (X,�). It can also be seen as the smallest nonnegative integer d for which each x ∈ X can be represented
by a d-vector (x1, . . . , xd) of integers such that x � y if and only if xi ≤ yi, for any i = 1, . . . , d, and any x, y ∈ X . There
are efficient algorithms to test if a poset has dimension 1 or 2, but the problem of determining if a poset has dimension 3 is
NP-complete [31]. A poset has dimension one if and only if it is a total order.
It is easy to see that, given the interval set P over a sequence T of time periods, the interval-hierarchy represented by

the graph HT = (P , EP ) has dimension two. Indeed, the two linear extensions can be constructed as follows: given two
sequences λ, γ ∈ P , where λ = (ta, . . . , tb) and γ = (tc, . . . , td), in the first linear extension λ follows γ if either a > c or
a = c and b ≤ d; whereas, in the second linear extension λ follows γ if either d > b or b = d and c ≤ a. Fig. 3 shows the
two linear extensions of the interval-hierarchy represented by the graph HT in Fig. 1.
Given a partially ordered hierarchywith dimension d on a set of p vertices, the ISPIT proposed in [15] allows one to reduce

the diameter of the graph representing it to log∗ p, by adding O(p · d · (3 log p)d−1) new edges and vertices. Therefore, by
using such a technique on the graph HT , which as said above has dimension two, we obtain a graph H

++

T
having diameter

O(log∗ |T |), by adding O(|T |2 · log |T |) new edges and vertices. Thus, by using the IHBT starting on the graphs G and H++
T
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and by applying the EBC on the resulting graph, we obtain a time-bound hierarchical key assignment scheme where the
amount of public information is O(|E| · |T | + |V | · |T |2 · log |T |), whereas, the number of decryption operations needed for
key derivation is O(log∗ |T | + diam(G)). The parameters of the scheme described above are summarized in row 4 of Fig. 9.
On the other hand, the ISPIT in [15] can be also used to reduce the diameter of the graph representing the partially ordered

hierarchy to three, by adding O(p ·d · (3 log p)d−1 · log log p) new edges and vertices. Therefore, by using such a technique on
the graphHT weobtain a graphH

++

T
having diameter three, by addingO(|T |2·log |T |·log log |T |)newedges and vertices. Thus,

by using the IHBT starting on the graphs G andH++
T
and by applying the EBC on the resulting graph, we obtain a time-bound

hierarchical key assignment scheme where the amount of public information is O(|E| · |T | + |V | · |T |2 · log |T | · log log |T |),
whereas, the number of decryption operations needed for key derivation is O(diam(G)). The parameters of the scheme
described above are summarized in row 5 of Fig. 9.

4. A tradeoff among key derivation time, public, and private storage

The techniques described in Section 3.1 allow us to obtain a tradeoff between the amount of public information and the
complexity of key derivation. In this section we show how to obtain a further tradeoff, also involving the amount of secret
information held by each user. Let ` ≥ 1 and assumewe have a method to decompose the sequence T of time periods into a
set of subsequencesP` ⊆ P , called an `-covering set for T , in such a way that any contiguous subsequence of T is the union
of at most ` elements of P`. This would allows us to construct a time-bound hierarchical key assignment scheme Σ ′, on
input a graph G and the interval-setP , using as a building block any time-bound hierarchical key assignment schemeΣ , on
input G and P`. For each class u ∈ V , the private information assigned byΣ ′ to u for any time sequence λ ∈ P` is the same
as the one assigned by Σ; whereas, the private information assigned to u for any time sequence γ ∈ P \ P` consists of a
sequence of at most ` private information assigned byΣ to u. More precisely, let γ1, . . . , γh ∈ P` be h ≤ ` sequences whose
union gives the sequence γ . Then, the private information assigned by Σ ′ to u for time sequence γ consists of the private
information assigned byΣ to u for the time sequences γ1, . . . , γh. As regards as the amount of public information required
by the schemeΣ ′, it depends on the number of elements of the `-covering set P`. In the following we show that the larger
the cardinality ofP`, the smaller the value of `, thus establishing a tradeoff between the size of the private information held
by each user, the amount of public information required by the scheme, and the complexity of key derivation.
Given a sequence T of n elements and an integer ` ≥ 1, Alon and Schieber [3] in 1987 established upper and lower

bounds on the minimum possible cardinality of an `-covering set for T . In particular, they considered the problem in a quite
different context, where the n elements of T belong to a given semigroup (S, ◦) and one is interested in answering queries
of the form ‘‘what is the value of ti ◦ ti+1 ◦ · · · ◦ tj−1 ◦ tj?’’ for any 1 ≤ i ≤ j ≤ n. Their construction is essentially the same
proposed by Yao [32] in 1982 and further analyzed by Bodlaender et al. [8] in 1994. Translating the results in [3] to our
scenario, we can construct an `-covering setP`, for a sequence T of n elements, as described in the following. We first show
a construction which is optimal for constant `, i.e., resulting in an `-covering set with the minimum possible cardinality.
Afterwards, we consider the cases ` = O(log n) and ` = O(log∗ n).

4.1. A construction optimal for constant `

The following construction results in an `-covering set whose cardinality is denoted by C(`, n). We will see later that
such a construction is the best possible when ` is a constant. Notice that, the following construction adds a subsequence in
the `-covering setP` only one time. Thus, we assume that a value is actually inserted inP` only if it is not already added by
previous steps.

• Case ` = 1: Set P1 = P . Clearly, C(1, n) = O(n2).
• Case ` = 2: The algorithm to construct P2 works as follows:

1. For i = 1, . . . , n, insert the subsequence (ti) into P2;
2. If n ≥ 3, then
(a) Partition T in two consecutive sequences T1 = (t1, . . . , tdn/2e) and T2 = (tdn/2e+1, . . . , tn);
(b)For j = 1, . . . , dn/2e − 1, insert the subsequence (tj, . . . , tdn/2e) into P2;
(c) For h = dn/2e + 2, . . . n, insert the subsequence (tdn/2e+1, . . . , th) into P2;
(d)Apply the construction recursively to the subsequences T1 and T2.

The construction results in a set P2 whose cardinality is given by the recurrence

C(2, n) =
{
n if n ≤ 2;
C(2, dn/2e)+ C(2, bn/2c)+ O(n) otherwise,

whose solution is C(2, n) = O(n · log n).
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Example 4.1. For n = 16 and ` = 2, by using the above construction, we obtain the covering setP2 for T = (t1, . . . , t16),
whose elements are the following:

(t1), (t2), (t3), (t4),
(t5), (t6), (t7), (t8),
(t9), (t10), (t11), (t12),
(t13), (t14), (t15), (t16),
(t1, . . . , t8), (t2, . . . , t8), (t3, . . . , t8), (t4, . . . , t8),
(t5, . . . , t8), (t6, t7, t8), (t7, t8), (t9, t10),
(t9, t10, t11), (t9, . . . , t12), (t9, . . . , t13), (t9, . . . , t14),
(t9, . . . , t15), (t9, . . . , t16), (t1, . . . , t4), (t2, t3, t4),
(t3, t4) (t5, t6), (t5, t6, t7), (t1, t2),
(t10, t11, t12), (t11, t12), (t13, t14), (t13, t14, t15),
(t13, . . . , t16) (t15, t16).

• Case ` ≥ 3: Before describing the construction, we need to define two very rapidly growing functions A(i, j) and B(i, j),
related to the Ackermann’s function (see [27]):

A(0, j) = 2j, for j ≥ 1,
A(i, 0) = 1, for i ≥ 1,
A(i, j) = A(i− 1, A(i, j− 1)) for i, j ≥ 1,

and

B(0, j) = j2, for j ≥ 1,
B(i, 0) = 2, for i ≥ 1,
B(i, j) = B(i− 1, B(i, j− 1)) for i, j ≥ 1.

For i ≥ 0, let w(2i, n) = min{j : A(i, j) ≥ n} and w(2i + 1, n) = min{j : B(i, j) ≥ n}. The first five values of w(·, n) are
the following:

w(0, n) = dn/2e, w(1, n) = d
√
ne,

w(2, n) = dlog ne, w(3, n) = dlogdlog nee,
w(4, n) = log∗ n,

whereas other values can be computed according to the following equation w(i, n) = min{j : w(j)(i − 2, n) ≤ 1}, for
i ≥ 2, wherew(1)(i, n) = w(i, n) andw(j)(i, n) = w(i, w(j−1)(i, n)), for j ≥ 2. The functionw(·, n) satisfies the following
property (see [21]):

w(2i, n) ≤ w(2j,m), for any i ≥ j and anym ≥ n. (1)

The construction for ` ≥ 3 works as follows:

1. For i = 1, . . . , n, insert the subsequence (ti) into P`;
2. If n ≥ `+ 1, then
(a) Let k = w(`− 2, n) and partition T into f = dn/ke ≥ 2 consecutive subsequences T1, . . . , Tf of k elements each,
where the last subsequence can contain less than k elements. For i = 1, . . . , f −1, let Ti = (t(i−1)k+1, . . . , tik) and
let Tf = (t(f−1)k+1, . . . , tn);

(b)For any i = 1, . . . , f − 1, and any t ∈ Ti, insert in P` the subsequences (t(i−1)k+1, . . . , t) and (t, . . . , tik). For any
t ∈ Tf , insert in P` the subsequences (t(f−1)k+1, . . . , t) and (t, . . . , tn);

(c) Apply the construction recursively to each subsequence T1, . . . , Tf .
(d)Apply the construction for `−2 to the sequence T ′whose elements are T1, . . . , Tf . LetP ′`−2 be the (`−2)-covering
set constructed by the recursive call on T ′. For each element (Ti, . . . , Tj) ∈ P ′`−2, insert (t(i−1)k+1, . . . , tjk), i.e., the
sequence constituted by the elements of Ti, . . . , Tj, in P`.

The above construction results in a set P` whose cardinality is given by the recurrence

C(`, n) =
{
n if n ≤ `;
dn/ke · C(`, k)+ C(`− 2, dn/ke)+ O(n) otherwise,

whose solution is C(`, n) = O(n · ` · w(`, n)). For example, C(3, n) = O(n · log log n) and C(4, n) = O(n · log∗ n).
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Example 4.2. For n = 16 and ` = 4, by using the above construction, we obtain the covering setP4 for T = (t1, . . . , t16),
whose elements are the following:

(t1), (t2), (t3), (t4),
(t5), (t6), (t7), (t8),
(t9), (t10), (t11), (t12),
(t13), (t14), (t15), (t16),
(t1, t2), (t1, t2, t3), (t1, . . . , t4), (t2, t3, t4),
(t3, t4), (t5, t6), (t5, t6, t7), (t5, . . . , t8),
(t6, t7, t8), (t7, t8), (t9, t10), (t9, t10, t11),
(t9, . . . , t12), (t10, t11, t12), (t11, t12), (t13, t14),
(t13, t14, t15), (t13, . . . , t16), (t14, t15, t16), (t15, t16),
(t1, . . . , t8), (t9, . . . , t16).

Notice that the first sixteen elements are inserted in step 1, whereas, the last two are inserted in step 2(d). All other
elements are inserted in step 2(b) (including recursive calls in step 2(c)).

For constant ` ≥ 2, the above construction is optimal. Indeed, Alon and Schieber [3] showed that the minimum possible
cardinality of an `-covering set for T , denoted by Cmin(`, n), isΩ(n ·w(`, n)). Moreover, they showed that, in order to obtain
an `-covering set for T containing O(n) elements, the value of ` isΩ(log∗ n).

4.2. An optimal construction for ` = O(log∗ n)

Alon and Schieber [3] also showed an optimal construction for the case ` = 2 log∗ n + 2. Their construction uses as a
building block the following construction for ` = 2dlog ne.

A tree construction for ` = 2dlog ne. Construct a balanced binary tree whose leaves correspond to the n elements of T and
such that each internal node corresponds to the sequence whose elements are associated to the leaves in the subtree rooted
at that node. An `-covering set P` for T can be obtained by considering the sequences corresponding to the nodes of the
tree. Indeed, any contiguous subsequence of T can be obtained as the union of at most 2dlog ne elements of P`. Since the
number of nodes in the tree is 2n− 1, it follows that the cardinality of P` is O(n).

A construction for ` = 2 log∗ n + 2. The tree construction, as well as the one of Section 4.1, can be used to construct an
`-covering set for T , where ` = 2 log∗ n + 2, containing O(n) elements. The new construction is shown in the following.
Notice that, such a construction adds a subsequence in the `-covering setP` only one time. Thus, we assume that a value is
actually inserted in P` only if it is not already added by previous steps.

1. Let h = 2(log∗ n)2 and partition T into f = dn/he consecutive subsequences T1, . . . , Tf of h elements each, where the
last sequence can contain less elements;

2. For any i = 1, . . . , f and any sequence Ti, apply the tree construction for `′ = 2dlog he to the sequence Ti. For any
i = 1, . . . , f , insert into P` all the elements of the resulting `′-covering set for Ti;

3. Apply the construction of Section 4.1 for `−2 = 2 log∗ n to the sequence T ′whose elements are T1, . . . , Tf . LetP ′`−2 be the
(`−2)-covering set constructed by the recursive call on T ′. For each element (Ti, . . . , Tj) ∈ P ′`−2, insert (t(i−1)h+1, . . . , tjh),
i.e., the sequence constituted by the elements of Ti, . . . , Tj, in P`.

The above construction results in a set P` containing O(n) elements. Indeed, step 2 inserts 2h − 1 elements in P` for each
sequence Ti, for a total of dn/he · (2h − 1) elements, whereas, step 3 inserts C(2 log∗ n, dn/he) = O(dn/he · 2 log∗ n ·
w(2 log∗ n, dn/he)) elements. Therefore

|P`| = dn/he · (2h− 1)+ O(dn/he · 2 log∗ n · w(2 log∗ n, dn/he)).

Since from inequality (1) it holds that w(2 log∗ n, dn/he) ≤ w(2 log∗ n, n) and w(2 log∗ n, n) ≤ w(4, n) = log∗ n for any
n ≥ 4, and since h = 2(log∗ n)2, it follows that |P`| = O(n).
The above construction is optimal. Indeed, any `-covering set for T has to contain at least the n elements of T .

4.3. A graph transformation using an `-covering set

In this section we show how to use an `-covering set in order to construct a time-bound hierarchical key assignment
scheme. We first need to represent the `-covering set as a directed acyclic graph. We consider the following two
representations:

• The minimal edge representation H(1)
T ,`
= (P`, E(1)P`

) is the minimal representation of the subgraph of H∗
T
= (P , E∗

P
)

induced byP`. Figs. 4 and 5 show the graphs H(1)T ,2
and H(1)

T ,4
representing the 2-covering setP2 and the 4-covering setP4,

respectively, where the node corresponding to each sequence (ti, . . . , tj) is denoted by [i, j].



A. De Santis et al. / Theoretical Computer Science 407 (2008) 213–230 223

Fig. 4. The graph H(1)
T ,2
representing the 2-covering set P2 for T = (t1, . . . , t16).

Fig. 5. The graph H(1)
T ,4
representing the 4-covering set P4 for T = (t1, . . . , t16).

Fig. 6. The graph H(2)
T ,4
representing the 4-covering set P4 for T = (t1, . . . , t16).

• The minimal diameter representation H(2)
T ,`
= (P`, E(2)P`

) is defined as follows: for any λ ∈ P` containing at least two

elements and any t ∈ λ, there is an edge between λ and (t) in H(2)
T ,`
. Fig. 6 shows the graph H(2)

T ,4
representing the

4-covering set P4, where the node corresponding to each sequence (ti, . . . , tj) is denoted by [i, j].

In order to obtain a time-bound hierarchical key assignment scheme, we define a graph transformation, called the (`, j)-
Covering Set Based Transformation (CSBT), making use of an `-covering set for T . Such a transformation, on input the graphs
G = (V , E) and H(j)

T ,`
= (P`, E(j)P`

), where j ∈ {1, 2}, constructs a new graph G′′ = (V ′′, E ′′), as follows:

• For each class u ∈ V and each time sequence λ ∈ P`, we place a class uλ ∈ V ′′.
• For each class u ∈ V and each pair of time sequences λ, γ ∈ P` connected by an edge in E(j)P`

, we place and edge between
uλ and uγ in G′′, i.e., (uλ, uγ ) ∈ E ′′. Such edges are called decomposition time edges.
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Fig. 7. The graph G′′ (on the right) corresponding to the graph G (on the left) and the graph H(1)T ,2 .

• For each pair of classes u and v connected by an edge in E and each time period t ∈ T , we place an edge between ut and
vt in G′′, i.e., (ut , vt) ∈ E ′′. Such edges are called policy edges.

The right hand side of Fig. 7 shows the graph G′′ obtained by the (2, 1)-CSBT starting from the graph G shown on the left
hand side of Fig. 7 and from the graph H(1)

T ,2
representing the 2-covering set P2 = {(t1), (t2), (t3), (t4), (t1, t2), (t3, t4)} for

T = (t1, . . . , t4). Decomposition time edges and policy edges are represented by dashed and solid lines, respectively.
It is easy to see that |V ′′| = |V | · |P`| and |E ′′| = |V | · |E(j)P`

| + |E| · |T |. Indeed, E ′′ contains |V | · |E(j)
P`
| decomposition time

edges and |E| · |T | policy edges.
Once the graph G′′ = (V ′′, E ′′) has been obtained, we can use any hierarchical key assignment scheme. For example, the

BEBC based on pairings requires 4|V ′′| + 1 = O(|V | · |P`|) public values, whereas, each user is required to hold at most `
secret values. In particular, the amount of public information is

• O(|V | · |T | · log |T |) if ` = 2;
• O(|V | · |T | · log log |T |) if ` = 3;
• O(|V | · |T | · log∗ |T |) if ` = 4;
• O(|V | · |T |) if ` = 2 log∗ |T | + 2.

The parameters of the above schemes are summarized in rows 4, 5, 6, and 7 of Fig. 10. Notice that since for all values of
|T | less than 265,536, corresponding to much more than the number of atoms in the universe, log∗ |T | does not exceed 5, the
amount of private information held by each user when ` = 2 log∗ |T | + 2 may be considered to be a constant.
On the other hand, the EBC requires |V ′′|+|E ′′| = O(|E| · |T |+|V | · |E(j)

P`
|) public values, whereas, each user holds atmost `

secret values. Moreover, the number of decryption operations needed to perform key derivation is O(diam(H(j)
T ,`
)+diam(G)).

Therefore, in order to evaluate the resulting scheme, we need to compute the number of edges and the diameter of both
graphs H(1)

T ,`
and H(2)

T ,`
.

The minimal edge representation. In the following we evaluate the schemes obtained by the EBC when the minimal edge
representation of the `-covering set is considered. We first show that the minimal edge representation of an `-covering set
for T satisfies an interesting property, called the Graph Composition Property, then we compute both the number of edges
and the diameter of such a graph.

Graph composition property: For any ` ≥ 3, the minimal edge representation of the `-covering set for T , obtained by the
constructions in Sections 4.1 and 4.2, can be seen as the composition of two graphs, called the bottom and the top graph,
respectively.

Indeed, consider the construction of Section 4.1 and let T1, . . . Tdn/ke be the subsequences of T obtained in step 2 (a) of
the algorithm. The nodes of the bottom graph are the successors of the nodes corresponding to the sequences T1, . . . Tdn/ke,
whereas, those in the top graph are the predecessor of such nodes. In particular, the nodes of the bottom graph correspond
to sequences inserted inP` in step 2 (b), including recursive calls in step 2(c), whereas, the nodes of the top graph are those
corresponding to the sequences inserted in step 2(d).
As regards as the construction of Section 4.2 for ` = 2 log∗ n + 2, let T1, . . . Tdn/he be the subsequences of T obtained

in step 1 of the algorithm. The nodes of the bottom graph are the successors of the nodes corresponding to the sequences
T1, . . . , Tdn/he, whereas, those in the top graph are the predecessors of such nodes. In particular, the nodes of the bottom
graph correspond to sequences inserted inP` in step 2, whereas, the nodes of the top graph are those corresponding to the
sequences inserted in step 3.

Now we are ready to compute the number of edges of the minimal edge representation of the `-covering set obtained
by the construction of Section 4.1.

Lemma 4.3. Let ` ≥ 1 and letP` be the `-covering set for a sequence T of n elements obtained by the construction in Section 4.1.
The number of edges in the minimal edge representation of P` is 2(|P`| − |T |).
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Proof. We prove that each node in P`, with the exception of sink nodes, has exactly two outgoing edges in H(1)T ,`
. The proof

is by induction on `. Clearly, the lemma holds for ` = 1, since P1 = P and |E(1)
P1
| = |EP | = 2(|P | − |T |).

Let ` = 2 and let (ti, . . . , tj) be a sequence inserted in P2 in step 2(b) of the algorithm. Notice that also (ti+1, . . . , tj) has
been inserted inP2 in step 2(b). Let hmax = max{i ≤ h < j : (ti, . . . , th) ∈ P2}. Hence, in theminimal edge representation of
P2, the node (ti, . . . , tj) is connected both to (ti, . . . , thmax) and to (ti+1, . . . , tj). It is easy to see that all other subsequences
of (ti, . . . , tj) inserted in P2 are subsequences of either (ti, . . . , thmax) or (ti+1, . . . , tj), thus the node (ti, . . . , tj) has only
two outgoing edges in the minimal edge representation of P2. Similarly, we can show that each node corresponding to a
sequence inserted in P2 in step 2(c) of the algorithm has exactly two outgoing edges.
Assume by inductive hypothesis that for any 1 ≤ `′ < `, each node in P`′ , with the exception of sink nodes, has exactly

two outgoing edges in the minimal edge representation of P`′ .
By the Graph Composition Property, the minimal edge representation of the `-covering set P` can be seen as the

composition of the bottom graph and the top graph. Since the top graph corresponds to the minimal edge representation of
the (`−2)-covering set constructed in step 2(d) of the algorithm, by the inductive hypothesis it follows that the nodes in the
top graph have exactly two outgoing edges. Thus, we only have to consider the nodes in the bottom graph, corresponding to
sequences inserted inP` in step 2(b). Let (ti, . . . , tj) be a sequence inserted inP` in step 2(b) of the algorithm. It is easy to see
that at least one sequence between (ti, . . . , tj−1) and (ti+1, . . . , tj) has been inserted inP`. W.l.o.g., assume that (ti+1, . . . , tj)
has been inserted in P`. Let hmax = max{i ≤ h < j : (ti, . . . , th) ∈ P2}. Hence, in the minimal edge representation of P`,
the node (ti, . . . , tj) is connected both to (ti, . . . , thmax) and to (ti+1, . . . , tj). It is easy to see that all other subsequences of
(ti, . . . , tj) inserted in P` are subsequences of either (ti, . . . , thmax) or (ti+1, . . . , tj), thus the node (ti, . . . , tj) has only two
outgoing edges in the minimal edge representation of P`. �

In the following, we compute the diameter of the minimal edge representation of the `-covering set P` obtained by the
construction in Section 4.1.

Lemma 4.4. Let ` ≥ 1 and letP` be the `-covering set for a sequence T of n elements obtained by the construction in Section 4.1.
If n ≥ `+ 1, the diameter D(`, n) of the minimal edge representation of P` satisfies

D(`, n) =

{n− 1 if ` = 1;
dn/2e − 1 if ` = 2;
k− 1+ D(`− 2, dn/ke) if ` ≥ 3,

where k = w(`− 2, n), whereas, D(`, n) = 0 if n ≤ `.

Proof. The case ` = 1 is trivial. For the case ` = 2, notice that the largest sequence in P2 is (t1, . . . , tdn/2e), which has
been inserted in step 2(b) of the algorithm. Since, for any j = 2, . . . , dn/2e − 1, the sequence (tj, . . . , tdn/2e) has also been
inserted in P2 in step 2(b), there is an edge connecting the nodes (tj−1, . . . , tdn/2e) and (tj, . . . , tdn/2e) in the minimal edge
representation of P2. Similarly, since the sequence (tdn/2e) has been inserted in P2 in step 1., there is an edge connecting
(tdn/2e−1, tdn/2e) and (tdn/2e). By the above discussion it follows that there is a path of length dn/2e−1 between (t1, . . . , tdn/2e)
and (tdn/2e), thus the diameter of the minimal edge representation of P2 is dn/2e − 1.
For the case ` ≥ 3, recall that by theGraph Composition Property, theminimal edge representation ofP` can be seen as the

composition of the bottom graph and the top graph. Therefore, the diameter D(`, n) of the minimal edge representation of
P` is the sumof the diameters of such two graphs. Since the top graph corresponds to theminimal edge representation of the
(`−2)-covering set for a sequence of dn/ke elements, constructed in step2(d) of the algorithm, its diameter isD(`−2, dn/ke).
Thus, we only need to compute the diameter of the bottom graph, whose nodes correspond to the sequences inserted inP`

in step 2(b) of the algorithm. To this aim, notice that the largest sequence inserted inP` in step 2(b) contains k = w(`−2, n)
elements. Without loss of generality, let (t1, . . . , tk) be one of the largest sequences. Since, for any j = 2, . . . , k − 1, the
sequence (tj, . . . , tk) has also been inserted in P` in step 2(b), there is an edge connecting the nodes (tj−1, . . . , tk) and
(tj, . . . , tk) in the minimal edge representation of P`. Similarly, since the sequence (tk) has been inserted in P` in step 1,
there is an edge connecting (tk−1, tk) and (tk). By the above discussion it follows that there is a path of length k− 1 between
(t1, . . . , tk) and (tk), therefore, the diameter of the bottom graph is k− 1. Thus, the lemma follows. �

By the above lemma it follows that

D(3, n) = 2d
√
ne − 2,

D(4, n) = dlog ne + dn/d2 log nee − 2,

and

D(6, n) = log∗ n+ dlogdn/ log∗ nee +

⌈
n

2 log∗ n · dlogd n
log∗ nee

⌉
− 3.

By Lemmas 4.3 and 4.4 it follows that the schemes obtained by the EBC on the graph G′′ = (V ′′, E ′′) resulting from the
(`, 1)-CSBT have the following parameters:
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• If ` = 2, then the amount of public information is O(|E| · |T | + |V | · |T | log |T |), whereas, key derivation requires
O(|T | + diam(G)) decryptions;
• If ` = 3, then the amount of public information is O(|E| · |T | + |V | · |T | · log log |T |), whereas, key derivation requires
O(
√
|T | + diam(G)) decryptions;

• If ` = 4, then the amount of public information is O(|E| · |T | + |V | · |T | · log∗ |T |), whereas, key derivation requires
O(|T |/ log |T | + diam(G)) decryptions.

The parameters of the above schemes are summarized in rows 6, 7, and 8 of Fig. 9.
In order to evaluate the schemes obtained by the EBC on the graph G′′ resulting from the (`, 1)-CSBT when ` =

2 log∗ |T | + 2, we need to consider the construction of Section 4.2.

Lemma 4.5. Let T be a sequence of n elements, let ` = 2 log∗ n + 2 and let P` be the `-covering set for T obtained by the
construction in Section 4.2. The number of edges in the minimal edge representation of P` is 2(|P`| − |T |).

Proof. We prove that each node in P`, with the exception of sink nodes, has exactly two outgoing edges in H(1)T ,`
.

Let (ti, . . . , tj) be a sequence inserted inP` in step 2 of the algorithm. Thus, it corresponds to either an internal node or a
leaf of a balanced binary tree. In the first case, the node has exactly two outgoing edges in H(1)

T ,`
, whereas, in the second case,

it corresponds to a sink node.
Let (ti, . . . , tj) be a sequence inserted in P` in step 3 of the algorithm. By Lemma 4.3 it follows that the corresponding

node in P` has exactly two outgoing edges in H(1)T ,`
. �

Lemma 4.6. Let T be a sequence of n elements, let ` = 2 log∗ n + 2 and let P` be the `-covering set for T obtained by the
construction in Section 4.2. The diameter of the minimal edge representation of P` is

diam(H(1)
T ,`
) = O

(
n

(log∗ n)3 · log n

)
.

Proof. Recall that by the Graph Composition Property, the minimal edge representation ofP` can be seen as the composition
of the bottom graph and the top graph. Therefore, the diameter of the minimal edge representation of P` is the sum of the
diameters of such two graphs. Since the bottom graph is the binary tree obtained by the tree construction for `′ = 2dlog he,
where h = 2(log∗ n)2, its diameter is dlog he = O(log∗ n). On the other hand, the diameter of the bottom graph, which
corresponds to the minimal representation of the (2 log∗ n)-covering set for the sequence of dn/he elements constructed in
step 3 of the algorithm, is D

(
2 log∗ n,

⌈ n
h

⌉)
. By iterative applications of Lemma 4.4 and from inequality (1), it follows that

D
(
2 log∗ n,

⌈n
h

⌉)
≤

log∗ n−1∑
i=3

w(2i, dn/he)+ D(6, dn/he).

The last term can be bounded as follows

D(6, dn/he) ≤ log∗dn/he + dlogdn/(h · log∗dn/he)ee +

⌈
n

2h · log∗dn/he · dlogd n
h·log∗dn/heee

⌉

≤ log∗ n+ dlog ne +
⌈

n
2(log∗ n)3 · dlog ne

⌉
.

Sincew(2i, dn/he) ≤ w(2i, n) andw(2i, n) ≤ log∗ n, for any i ≥ 2, it follows that

D
(
2 log∗ n,

⌈n
h

⌉)
≤ (log∗ n)2 + log∗ n+ dlog ne +

⌈
n

2(log∗ n)3 · dlog ne

⌉
.

Therefore, the diameter of the minimal edge representation of P` is O
(

n
(log∗ n)3·log n

)
. �

By Lemmas 4.5 and 4.6 it follows that the amount of public information in the scheme obtained by the EBC on the graph
G′′ = (V ′′, E ′′), resulting from the (`, 1)-CSBT when ` = 2 log∗ |T | + 2, is O(|E| · |T |), whereas, key derivation requires
O
(

|T |
(log∗ |T |)3·log |T |

+ diam(G)
)
decryptions. The parameters of the above scheme are summarized in row 9 of Fig. 9.

Shortcutting the minimal edge representation. The number of decryption operations required for key derivation in the above
schemes could be reduced by using the techniques of Section 3.1. on the minimal edge representation of the `-covering
set for T . First, notice that such a graph is a rooted acyclic planar graph. Thus, by applying Thorup’s shortcutting technique
we obtain a shortcut graph having diameter O(log |T | · log∗ |T |), by adding at most O(|T | · w(`, |T |)) shortcut edges. The
parameters of the resulting schemes are summarized in rows 10, 11, and 12 of Fig. 9. On the other hand, by using the
ISPIT on the minimal edge representation of P`, which has dimension two, we obtain either a graph having diameter
O(log∗ |T |), by adding O(|T | · log |T | · w(`, |T |)) new edges and vertices, or a graph having diameter three by adding at
most O(|T | · log |T | · log log |T | ·w(`, |T |)). The parameters of the resulting schemes are summarized in rows from 13 to 18
of Fig. 9.
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The minimal diameter representation. In the following we compute the number of edges F(`, n) in the minimal diameter
representation of the `-covering set for a sequence T of n elements obtained by the construction in Section 4.1 for ` ≥ 1.
Notice that for each node in P` corresponding to a sequence λ, with the exception of sink nodes, there are |λ| edges in the
minimal diameter representation of P`, thus F(`, n) =

∑
λ∈P`
|λ|.

First, consider the case ` = 1. It is easy to see that F(1, n) =
∑n
i=1 i = O(n

2). As regards as the case ` = 2 and n ≥ 3,
since there are 2(dn/2e − 1) sequences inserted in P2 in steps 2(b) and 2(c), each having length at most dn/2e, it follows
that the sum of the lengths of such sequences is n · (dn/2e − 1) = O(n2). Therefore,

F(2, n) ≤ 2 · F(2, dn/2e)+ O(n2),

whereas, F(2, n) = 0 if n ≤ 2. It is easy to see that F(2, n) = O(n2 · log n).
Now, consider the case ` ≥ 3 and n ≥ `+ 1. Since there are 2(k− 1) · dn/ke sequences inserted in P` in step 2(b), each

having length atmost k = w(`−2, n), it follows that the sumof the lengths of such sequences is 2(k−1)·dn/ke·k = O(n·k).
Therefore,

F(`, n) ≤ dn/ke · F(`, k)+ F(`− 2, dn/ke)+ O(n · k),

whereas, F(`, n) = 0 if n ≤ `. It is easy to compute F(`, n) for ` = 3, 4, 5. Indeed we have that

• F(3, n) ≤ d
√
ne · F(3, d

√
ne)+ F(1, d

√
ne)+ O(n ·

√
n), whose solution is F(3, n) = O(n ·

√
n · log log n);

• F(4, n) ≤ dn/dlog nee · F(4, dlog ne)+ F (2, dn/dlog nee)+ O(n · log n), whose solution is F(4, n) = O(n2/ log n);
• F(5, n) ≤ n/dlogdlog nee · F(5, dlogdlog nee) + F(3, n/dlogdlog nee) + O(ndlogdlog nee), whose solution is F(5, n) =
O(n ·
√
n/
√
log log n).

For the general case, where ` ≥ 6, we can easily prove that

F(`, n) = O(n · ` · w(`, n) · log∗ n).

As regards as the diameter of H(2)
T ,`
, clearly, diam(H(2)

T ,`
) = 1.

Therefore, it follows that in the schemes obtained by the EBC on the graph G′′ = (V ′′, E ′′) resulting from the (`, 2)-CSBT
the amount of public information is

• O(|E| · |T | + |V | · |T |2 log |T |) if ` = 2;
• O(|E| · |T | + |V | · |T | ·

√
|T | · log log |T |) if ` = 3;

• O(|E| · |T | + |V | · |T |2/ log |T |) if ` = 4.

On the other hand, all the above schemes require O(diam(G)) decryptions for key derivation. The parameters of the above
schemes are summarized in rows 19, 20, and 21 of Fig. 9.

In order to evaluate the schemes obtained by the EBC on the graph G′′ resulting from the (`, 2)-CSBT when ` =
2 log∗ |T | + 2, we need to compute the number of edges in the minimal diameter representation of the `-covering set
obtained by the construction of Section 4.2.

Lemma 4.7. Let T be a sequence of n elements, let ` = 2 log∗ n + 2 and let P` be the `-covering set for T obtained by the
construction in Section 4.2. The number of edges of the minimal diameter representation of P` is O(n · (log∗ n)3).

Proof. First notice that for each node in P` corresponding to a sequence λ, with the exception of sink nodes, there are |λ|
edges in theminimal diameter representation ofP`. We distinguish between sequences inserted inP` in steps 2 and 3 of the
algorithm. As regards as the former ones, corresponding to nodes of the bottomgraph, it is easy to see that there are n·dlog he
edges connecting nodes corresponding to such sequences to leaf nodes. As regards as the latter ones, corresponding to nodes
of the top graph, there are h · F(2 log∗ n, dn/he) edges connecting nodes corresponding to such sequences to leaf nodes.
Indeed, F(2 log∗ n, dn/he) = O(n/h · (log∗ n)2 ·w(2 log∗ n, dn/he)) = O(n ·w(2 log∗ n, dn/he)) denotes the number of edges
connecting the nodes corresponding to sequences inserted in step 3 to those corresponding to the sequences T1, . . . , Tdn/he,
which have h elements each. It follows that the number of edges of the minimal diameter representation of P` is

n · dlog he + O(h · n · w(2 log∗ n, dn/he)).

From inequality (1) we have that w(2 log∗ n, dn/he) ≤ w(2 log∗ n, n) and w(2 log∗ n, n) ≤ w(4, n) = log∗ n for any n ≥ 4.
Since h = 2(log∗ n)2, it follows that the number of edges of the minimal diameter representation of P` is

O(n · log h+ h · n · log∗ n) = O(n · (log∗ n)3). �

By Lemma 4.7 it follows that the amount of public information in the scheme obtained by the EBC on the graph
G′′ = (V ′′, E ′′), resulting from the (`, 2)-CSBT when ` = 2 log∗ |T | + 2, is O(|E| · |T | + |V | · |T | · (log∗ |T |)3), whereas,
key derivation requires O(diam(G)) decryptions. The parameters of the above scheme are summarized in row 22 of Fig. 9.
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BEBC Broadcast Encryption Based Construction [15]
CSBT Covering Set Based Transformation (Section 4)
EBC Encryption Based Construction [15]
IHBT Interval Hierarchy Based Transformation (Section 3)
ISPIT Improved Shortcutting and Point-Inserting Technique [15]
ST Shortcutting Technique [28]
TLEBC Two-Level Encryption Based Construction [7]
TLPBC Two-Level Pairing Based Construction [7]

Fig. 8. List of acronyms used in the paper.

5. Summary of the results and comparisons

In this paper we have proposed new constructions for time-bound hierarchical key assignment schemes which are
provably-secure with respect to key indistinguishability. Our constructions use as a building block any provably-secure
hierarchical key assignment scheme without temporal constraints and result in time-bound hierarchical key assignment
schemes whose parameters depend on those of the underlying schemes. In particular, by using two schemes recently
proposed in [15], we obtain different constructions which exhibit a tradeoff among the amount of private information held
by each class, the amount of public data, the complexity of key derivation, and the computational assumption on which
their security is based. Moreover, the proposed schemes support updates to the access hierarchy with local changes to
public information and without requiring any private information to be re-distributed. Clearly, starting from constructions
for hierarchical key assignment schemes without time constraints, other than the EBC and the BEBC, our technique allows
one to obtain time-bound schemes with possible new parameters.
Fig. 8 contains a list of the acronyms used in the paper, whereas, Figs. 9 and 10 show a comparison between our schemes

and related works also offering security with respect to key indistinguishability. In particular, all schemes in Fig. 9 are based
on a standard computational assumption regarding the existence of IND-P1-C0 secure symmetric encryption schemes,
whereas, the schemes in Fig. 10 are based on two different assumptions on pairings, the BDDH and the n-BDDHE. It is worth
to notice that while the BDDH is considered a standard assumption, the n-BDDHE, first introduced in [9], is quite new.
The schemes in both figures are evaluated with respect to several parameters, such as the amount of public information,

the amount of private information held by each class, and the number of operations required to perform key derivation.
Notice that in the schemes obtained by the `-CSBT the greater the value of `, the smaller the amount of public information
required by the resulting scheme. In particular, the amount of public information of the scheme resulting by the (3, 1)-CSBT
using the BEBC as a building block is O(|V | · |T | · log log |T |), whereas that of the scheme resulting by the (4, 1)-CSBT is
O(|V | · |T | · log∗ |T |). Since log∗ |T | is a very slowly growing function andwe are not interested in functions which grow even
slower than log∗ |T |, we did not show in Figs. 9 and 10 the parameters of the schemes obtained when constants ` ≥ 5 are
considered. However, in order to obtain a scheme whose public information is O(|V | · |T |), we have used the (`, 2)-CSBT
with ` = 2 log∗ |T | + 2.
We remark that no scheme in Figs. 9 and 10 is superior to the others with respect to all parameters. An open problem

would be to find a time-bound hierarchical key assignment scheme which optimizes all parameters at the same time.
However, it isworth noticing that our techniques allowone to obtain schemes offering better performancewhenever further
constraints on the temporal access control policy occur. For example, if the access control policy requires each user to be
assigned to a certain class for a sequence of at least log∗ |T | contiguous time periods, then by using the (4, 1)-CSBT alongwith
the EBC,weobtain a schemewhose amount of public information isO(|E|·|T |) instead ofO(|E|·|T |+|V |·|T |·log∗ |T |), whereas
the amount of private information and the complexity of key derivation stay the same. Similarly, by using the (4, 1)-CSBT
alongwith the BEBC, we obtain a schemewhose amount of public information isO(|V |·|T |) instead thanO(|V |·|T |· log∗ |T |).
Recently, Atallah et al. proposed a method to construct time-bound key assignment schemes where each user needs to

store at most three private information and the amount of public information is inversely proportional to the complexity
of the key derivation [6]. Such a method uses as a building block any key assignment scheme without temporal constraints.
They also constructed twonoteworthy time-bound key assignment schemes by using theirmethod upon the key assignment
scheme secure against key recovery proposed in [4]. Both schemes are provably-secure against key recovery, in particular
their security is based on the existence of pseudorandom function families. The former scheme requires O(|E| · |T | + |V | ·
|T | · log∗ |T | · log log |T |) public information while key derivation involves O(diam(G)) pseudorandom function evaluations.
The latter requires O(|E| · |T | + |V | · |T | · log log |T |) public values while the key derivation involves O(log∗ |T | · diam(G))
pseudorandom function evaluations. Such schemes exhibit a similar performance compared to our schemes at lines 17
and 14 of Fig. 9, respectively. More in detail, while the schemes in [6] require a smaller amount of public information the
schemes showed in Fig. 9 provide security with respect to a stronger notion, i.e., the key indistinguishability. In [6], Atallah
et al. noticed that time-bound key assignment schemes that achieve security with respect to such a stronger notion can
be constructed by using their method upon the scheme secure with respect to key indistinguishability proposed in [4].
The resulting schemes require the use of pseudorandom function families as well as the use of a symmetric encryption
scheme secure against chosen-ciphertext attacks. Unfortunately, such constructions achieve security with respect to key
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Scheme Public Private Key
information information derivation

1 TLEBC [7] O(|E∗| · |T |3) One One
decryption

2 Naive + O(|E| · |T |) O(|T |) O(diam(G))
EBC [15] decryptions

3 ST + IHBT + O(|E| · |T | + |V | · |T |2) One O(log |T | · log∗ |T | + diam(G))
EBC decryptions

4 ISPIT + IHBT + O(|E| · |T | + |V | · |T |2 · log |T |) One O(log∗ |T | + diam(G))
EBC decryptions

5 ISPIT + IHBT + O(|E| · |T | + |V | · |T |2 · log |T | · log log |T |) One O(diam(G))
EBC decryptions

6 (2, 1)-CSBT + O(|E| · |T | + |V | · |T | · log |T |) Two O(|T | + diam(G))
EBC (at most) decryptions

7 (3, 1)-CSBT + O(|E| · |T | + |V | · |T | · log log |T |) Three O(
√
|T | + diam(G))

EBC (at most) decryptions
8 (4, 1)-CSBT + O(|E| · |T | + |V | · |T | · log∗ |T |) Four O(|T |/ log |T | + diam(G))

EBC (at most) decryptions

9 (2 log∗ |T | + 2, 1)-CSBT + O(|E| · |T |) O(log∗ |T |) O
(

|T |
(log∗ |T |)3·log |T |

+ diam(G)
)

EBC decryptions
10 ST + (2, 1)-CSBT + O(|E| · |T | + |V | · |T | · log |T |) Two O(log |T | · log∗ |T | + diam(G))

EBC (at most) decryptions
11 ST + (3, 1)-CSBT + O(|E| · |T | + |V | · |T | · log log |T |) Three O(log |T | · log∗ |T | + diam(G))

EBC (at most) decryptions
12 ST + (4, 1)-CSBT + O(|E| · |T | + |V | · |T | · log∗ |T |) Four O(log |T | · log∗ |T | + diam(G))

EBC (at most) decryptions
13 ISPIT + (2, 1)-CSBT + O(|E| · |T | + |V | · |T | · (log |T |)2) Two O(log∗ |T | + diam(G))

EBC (at most) decryptions
14 ISPIT + (3, 1)-CSBT + O(|E| · |T | + |V | · |T | · log |T | · log log |T |) Three O(log∗ |T | + diam(G))

EBC (at most) decryptions
15 ISPIT + (4, 1)-CSBT + O(|E| · |T | + |V | · |T | · log |T | · log∗ |T |) Four O(log∗ |T | + diam(G))

EBC (at most) decryptions
16 ISPIT + (2, 1)-CSBT + O(|E| · |T | + |V | · |T | · (log |T |)2 log log |T |) Two O(diam(G))

EBC (at most) decryptions
17 ISPIT + (3, 1)-CSBT + O(|E| · |T | + |V | · |T | · log |T | · (log log |T |)2) Three O(diam(G))

EBC (at most) decryptions
18 ISPIT + (4, 1)-CSBT + O(|E| · |T | + |V | · |T | · log |T | · log log |T | · log∗ |T |) Four O(diam(G))

EBC (at most) decryptions
19 (2, 2)-CSBT+ O(|E| · |T | + |V | · |T |2 · log |T |) Two O(diam(G))

EBC (at most) decryptions
20 (3, 2)-CSBT + O(|E| · |T | + |V | · |T | ·

√
|T | · log log |T |) Three O(diam(G))

EBC (at most) decryptions
21 (4, 2)-CSBT + O(|E| · |T | + |V | · |T |2/ log |T |) Four O(diam(G))

EBC (at most) decryptions
22 (2 log∗ |T | + 2, 2)-CSBT + O(|E| · |T | + |V | · |T | · (log∗ |T |)3) O(log∗ |T |) O(diam(G))

EBC decryptions

Fig. 9. Comparison between encryption-based time-bound hierarchical key assignment schemes which are provably secure in the sense of IND-ST. The
computational assumption for all the schemes is the existence of IND-P1-C0 symmetric encryption schemes.

Scheme Public Private Key Computational
information information derivation assumption

1 TLPBC [7] O(|E∗|) O(|T |) One BDDH
decryption

2 Naive + O(|V | · |T |) O(|T |) One (complex) |V |-BDDHE
BEBC decryption

3 IHBT + O(|V | · |T |2) One One (complex) |V |-BDDHE
BEBC decryption

4 (2, 1)-CSBT + O(|V | · |T | · log |T |) Two One (complex) |V |-BDDHE
BEBC (at most) decryption

5 (3, 1)-CSBT + O(|V | · |T | · log log |T |) Three One (complex) |V |-BDDHE
BEBC (at most) decryption

6 (4, 1)-CSBT + O(|V | · |T | · log∗ |T |) Four One (complex) |V |-BDDHE
BEBC (at most) decryption

7 (2 log∗ |T | + 2, 1)-CSBT + O(|V | · |T |) log∗ |T | One (Complex) |V |-BDDHE
BEBC (at most) decryption

Fig. 10. Comparison between pairing-based time-bound hierarchical key assignment schemeswhich are provably secure in the sense of IND-ST. A complex
decryption involves at most as many group operations as the amount of public information.

indistinguishability at the expense of an increasing in the complexity of key derivation. Indeed, the key derivation procedure
involves as many decryption operations as pseudorandom function evaluations. Finally, we notice that the key assignment
scheme secure with respect to key indistinguishability proposed in [15] along with the method shown by Atallah et al. [6]
yields time-bound key assignment schemes that exhibit the same performance of the solutions proposed in [6] in terms
of either the amount of private and public information and the complexity of key derivation while providing security with
respect to key indistinguishability.
Regarding the schemes proposed by Wang and Laih [36] and Tzeng [30], it is not clear under which assumptions such

schemes can be considered to be provably-secure. However, we recall that both schemes require |V | · |T | public values,
whereas, each user has to store a single secret value. Finally, key derivation involves one modular exponentiation and
O(|V | · |T |) operations.
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