Fault-free Hamiltonian cycles in twisted cubes with conditional link faults

Jung-Sheng Fu*
Department of Electronic Engineering, National United University, Miaoli, Taiwan

A R T I CLE INFO

Article history:

Received 25 June 2006
Received in revised form 15 March 2008
Accepted 17 June 2008
Communicated by 0. Watanabe

Keywords:

Conditional edge fault
Twisted cube
Fault-tolerant embedding
Hamiltonian cycle
Hypercube
Interconnection network

Abstract

The n-dimensional twisted cube, denoted by $T Q_{n}$, a variation of the hypercube, possesses some properties superior to the hypercube. In this paper, assuming that each vertex is incident with at least two fault-free links, we show that $T Q_{n}$ can tolerate up to $2 n-5$ edge faults, while retaining a fault-free Hamiltonian cycle. The result is optimal with respect to the number of edge faults tolerated.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The hypercube is a popular interconnection network with many attractive properties such as regularity, symmetry, small diameter, strong connectivity, recursive construction, partition ability, and relatively low link complexity [17]. The twisted cube [12], as one of the important variations of the hypercube, and derived by changing some connections of the hypercube according to specific rules, possesses some desirable features: its diameter, wide diameter, and fault diameter are about half of those of the comparable hypercube [6]. An n-dimensional twisted cube is ($n-3$)-Hamiltonian connected [13] and ($n-2$)-pancyclic [20], whereas the hypercube is not. Moreover, its performance is superior to that of the hypercube [1].

An embedding of one guest graph G into another host graph H is a one-to-one mapping f from the vertex set of G to the vertex set of H [15]. An edge of G corresponds to a path of H under f. Linear arrays and rings, two of the most fundamental networks for parallel and distributed computation, are suitable for designing simple algorithms with low communication costs. Numerous efficient algorithms designed on linear arrays and rings for solving various algebraic problems and graph problems can be found in [2,14]. Linear arrays and rings can also be used as control/data flow structures for distributed computation in arbitrary networks. There is an application of longest paths to a practical problem that was encountered in the on-line optimization of a complex Flexible Manufacturing System (see [3]). These applications motivate the embedding of paths and cycles in networks.

Since processor or link faults may develop in real world networks, it is important to consider faulty networks. The problems of finding the diameter [7], routing [9], multicasting [16], broadcasting [18], gossiping [8], and embedding [19] have been solved on various faulty networks. The fault-tolerant Hamiltonicity [10] measures the performance of the Hamiltonian property in the faulty networks.

It was shown in [5] (respectively, $[4,14]$) that if each vertex of an n-dimensional hypercube (respectively, k-ary n-cube and n-dimensional crossed cube) is incident with at least two fault-free edges, then it contains a fault-free Hamiltonian

[^0]cycle, even if there are $2 n-5$ (respectively, $4 n-5$ and $2 n-5$) edge faults. In this paper, we show that if each vertex of an n-dimensional twisted cube is incident with at least two fault-free edges, then it contains a fault-free Hamiltonian cycle, even if there are $2 n-5$ edge faults. The rest of this paper is organized as follows. In Section 2 , the structure of the twisted cube is elaborated, and some definitions and notations used throughout this paper are introduced. In Section 3, a basic idea is given and some properties of the twisted cube are derived. In Section 4, under the assumption that each vertex is incident with at least two fault-free edges, we show that an n-dimensional twisted cube contains a fault-free Hamiltonian cycle, even if there are up to $2 n-5$ edge faults. Moreover, we also show that this result is optimal. In Section 5, this paper concludes with some remarks.

2. Preliminaries

We usually use a graph to represent the topology of an interconnection network. A graph G is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$, and a relation that associates with each edge two vertices called its endpoints [21]. We use (u, v) to denote an edge whose endpoints are u and v. The degree of vertex v in G, written as $d_{G}(v)$, is the number of edges incident to v. In addition, $\delta(G)=\min \left\{d_{G}(v) \mid v \in V(G)\right\}$.

A path $P_{x_{0} x_{t}}=\left\langle x_{0}, x_{1}, \ldots, x_{t}\right\rangle$, is a sequence of nodes such that two consecutive nodes are adjacent. In addition, $P_{x_{0} x_{t}}$ is a cycle if $x_{0}=x_{t}$. A path $\left\langle x_{0}, x_{1}, \ldots, x_{t}\right\rangle$ may contain other subpath, denoted as $\left\langle x_{0}, x_{1}, \ldots, x_{i}, P_{x_{i} x_{j}}, x_{j}, \ldots x_{t}\right\rangle$, where $P_{x_{i} x_{j}}=\left\langle x_{i}, x_{i+1}, \ldots x_{j-1}, x_{j}\right\rangle$. A path (or cycle) in G is called a Hamiltonian path (or Hamiltonian cycle) if it contains every vertex of G exactly once. G is called Hamiltonian if there is a Hamiltonian cycle in G, and Hamiltonian connected if there is a Hamiltonian path between every two distinct vertices of G. A Hamiltonian network can embed a longest ring with dilation 1, congestion 1, load 1, and expansion 1.

Consider $F \subset G=V(G) \cup E(G)$, i.e., F is the set of edge faults and vertex faults. We say G is k-Hamiltonian (respectively, k-Hamiltonian connected) if $G-F$ is Hamiltonian (respectively, Hamiltonian connected) for arbitrary F with $|F| \leq k$. Note that G cannot be $(\delta(G)-1)$-Hamiltonian when $\delta(G-F)=1$ and $|F|=\delta(G)-1$. However, if $\delta(G-F)>1$ can be assured, then $G-F$ could be Hamiltonian even when $|F|>\delta(G)-1$. Actually, regarding F as the set of edge faults, $\delta(G-F)>1$ means each vertex in $G-F$ is incident with at least two fault-free edges.

The vertex set of the twisted n-cube $T Q_{n}$ is the set of all binary strings of length n, where n is odd. Let $b=b_{n-1} b_{n-2} \ldots b_{0}$ denote one vertex in $T Q_{n}$. For $i \in\{0,1, \ldots, n-1\}$, let the i-th parity function $P_{i}(b)=b_{i} \oplus b_{i-1} \oplus \cdots \oplus b_{0}$, where \oplus denotes the exclusive-or operation. The $T Q_{n}$ can be defined recursively as follows: $T Q_{1}$ is a complete graph with two vertices 0 and 1. Suppose that $n \geq 3$. We can decompose the vertices of $T Q_{n}$ into four sets, $T Q_{n-2}^{0,0}, T Q_{n-2}^{0,1}, T Q_{n-2}^{1,0}$, and $T Q_{n-2}^{1,1}$, where $T Q_{n-2}^{i, j}$ consists of those vertices b with $b_{n-1}=i$ and $b_{n-2}=j$. For each $i j \in\{00,01,10,11\}$, the induced subgraph of $T Q_{n-2}^{i, j}$ in $T Q_{n}$ is isomorphic to $T Q_{n-2}$. Edges that connect these four subtwisted cubes can be described as follows: an $(n-1)-$ edge joins vertices $b=b_{n-1} b_{n-2} \ldots b_{0}$ and $b^{(n-1)}=\overline{b_{n-1}} b_{n-2} \ldots b_{0}$. An ($n-2$)-edge joins vertices b and $b^{(n-2)}$, where $b^{(n-2)}=\overline{b_{n-1}} \overline{b_{n-2}} \ldots b_{0}$ when $P_{n-3}(b)=0$, and $b^{(n-2)}=b_{n-1} \overline{b_{n-2}} \ldots b_{0}$ when $P_{n-3}(b)=1$. Note that $(n-1)$-edges connect $T Q_{n-2}^{0, i}$ and $T Q_{n-2}^{1, i}$ and ($n-2$)-edges connect $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$ and $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$, where $i=0$ or 1 . Fig. 1 depicts $T Q_{5}$, containing four sets, $T Q_{3}^{0,0}, T Q_{3}^{0,1}, T Q_{3}^{1,0}$, and $T Q_{3}^{1,1}$. Formally, $T Q_{n}$ can be defined as follows.
Definition 1. The vertex set of $T Q_{n}$ is $\left\{b_{n-1} b_{n-2} \ldots b_{0} \mid b_{i} \in\{0,1\}\right.$ for all $\left.0 \leq i \leq n-1\right\}$, where n is odd. Vertex $b=b_{n-1} b_{n-2} \ldots b_{0}$ is adjacent to vertex b^{d}, for all $0 \leq d \leq n-1$, where $b^{d}=b_{n-1} b_{n-2} \ldots \overline{b_{d}} \ldots b_{0}$ if (1) d is even or (2) d is odd and $P_{d-1}(b)=1$, and $b^{d}=b_{n-1} b_{n-2} \ldots \overline{b_{d+1}} \overline{b_{d}} \ldots b_{0}$ if d is odd and $P_{d-1}(b)=0$. The edge joining b and b^{d} is referred to as a d-edge.

Furthermore, we use $b^{i j}$ to denote $\left(b^{i}\right)^{j}$. Note it is possible that $b^{i j} \neq b^{i i}$. The following lemma shown in [13] will be used often.
Lemma 1 ([13]). For $n \geq 3, T Q_{n}$ (respectively, $T Q_{n}^{0, i} \cup T Q_{n}^{1, i}$ for $i \in\{0,1\}$) is ($n-2$)-Hamiltonian (respectively, $(n-1)$ Hamiltonian) and ($n-3$)-Hamiltonian connected (respectively, $(n-2)$-Hamiltonian connected).

3. Basic idea and some properties

Our method is based on a recursive construction. We will partition $T Q_{n}$ into $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$ and $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$ (Then $T Q_{n-2}^{0, i} \cup T Q_{n-2}^{1, i}$ can be partitioned into $T Q_{n-2}^{0, i}$ and $T Q_{n-2}^{1, i}$, for $\left.i \in\{0,1\}\right)$. Let $F \subset E\left(T Q_{n}\right), F_{0}=F \cap E\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$, and $F_{1}=F \cap E\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$, where $|F|=2 n-5$. A simple idea is to construct a Hamiltonian path for $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}$ and a Hamiltonian path for $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$, and then to combine these two paths into a Hamiltonian cycle in $T Q_{n}-F$. In addition, without loss of generality, we can assume $\left|F_{0}\right| \geq\left|F_{1}\right|$. In general, we will first construct a Hamiltonian cycle C in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}$, and select an edge, says (x, y) in C. Then, we construct a Hamiltonian path $P_{y^{(n-2)} x^{(n-2)}}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$. As a result, we can construct a Hamiltonian cycle in $T Q_{n}-F$ by combining $C-\{(x, y)\}, P_{y^{(n-2)}} x^{(n-2)}$, $\left(x, x^{(n-2)}\right)$, and $\left(y, y^{(n-2)}\right)$ (see Fig. 2(a)). When $F=F_{0}$, it is possible that the Hamiltonian cycle in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-$ F_{0} cannot be constructed. However, we can select two edges in F_{0}, says (u, v) and (x, y), and construct a Hamiltonian

Fig. 1. $T Q_{5}$ (contains $T Q_{3}^{0,0}, T Q_{3}^{0,1}, T Q_{3}^{1,0}$, and $T Q_{3}^{1,1}$).

Fig. 2. Construction of a Hamiltonian cycle in $T Q_{n}-F$.
cycle C in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(u, v),(x, y)\}\right)$. Moreover, we can use following lemma to construct two disjoint paths $P_{u^{(n-2)}, v^{(n-2)}}$ and $P_{x^{(n-2)}, y^{(n-2)}}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$. Then we can construct a Hamiltonian cycle in $T Q_{n}-F$ by combining $C-\{(u, v),(x, y)\}, P_{u^{(n-2)}, v^{(n-2)}}, P_{x^{(n-2)}, y^{(n-2)}},\left(x, x^{(n-2)}\right),\left(y, y^{(n-2)}\right),\left(u, u^{(n-2)}\right)$, and $\left(v, v^{(n-2)}\right)$ into a Hamiltonian cycle in $T Q_{n}$ (see Fig. 2(b)).
Lemma 2. Let x, y, u, and v be four distinct vertices in $T Q_{n}$ (respectively, $T Q_{n-2}^{0, i} \cup T Q_{n-2}^{1, i}$ for $i \in\{0,1\}$), where $n \geq 5$ is an odd integer. There exist $P_{u v}$ and $P_{x y}$ such that $V\left(P_{u v}\right) \cap V\left(P_{x y}\right)=\emptyset$ and $V\left(P_{u v}\right) \cup V\left(P_{x y}\right)=V\left(T Q_{n}\right)\left(\right.$ respectively,$\left.=V\left(T Q_{n-2}^{0, i} \cup T Q_{n-2}^{1, i}\right)\right)$.
Proof. We proceed by induction on n. The lemma holds for $T Q_{3}^{0, i} \cup T Q_{3}^{1, i}$ with $i \in\{0,1\}$ (i.e., $n=5$), which can be verified by a computer exhausted search program [11]. Two steps can complete the proof. First, for all odd integers $n \geq 5$, we show that if the lemma holds for $T Q_{n-2}^{0, i} \cup T Q_{n-2}^{1, i}$ then the lemma holds for $T Q_{n}$, where $i \in\{0,1\}$. Secondly, for all odd integers $n \geq 5$, we show that if the lemma holds for $T Q_{n}$ then the lemma holds for $T Q_{n}^{0, i} \cup T Q_{n}^{1, i}$, where $i \in\{0,1\}$. However, since the proof of the second step is easier than and similar to that of first step, we only show the first step. That is, for all odd integers $n \geq 5$, we assume that there exist $P_{u^{\prime} v^{\prime}}$ and $P_{x^{\prime} y^{\prime}}$ such that $V\left(P_{u^{\prime} v^{\prime}}\right) \cap V\left(P_{x^{\prime} y^{\prime}}\right)=\emptyset$ and $V\left(P_{u^{\prime} v^{\prime}}\right) \cup V\left(P_{x^{\prime} y^{\prime}}\right)=V\left(T Q_{n-2}^{0, i} \cup T Q_{n-2}^{1, i}\right)$, where $x^{\prime}, y^{\prime}, u^{\prime}$, and v^{\prime} are four arbitrary distinct vertices in $T Q_{n-2}^{0, i} \cup T Q_{n-2}^{1, i}$ and $i \in\{0,1\}$. We want to show that there exist

Fig. 3. Construction of $P_{u v}$ and $P_{x y}$ (Lemma 2).
$P_{u v}$ and $P_{x y}$ such that $V\left(P_{u v}\right) \cap V\left(P_{x y}\right)=\emptyset$ and $V\left(P_{u v}\right) \cup V\left(P_{x y}\right)=V\left(T Q_{n}\right)$, where x, y, u, and v are four arbitrary distinct vertices in $T Q_{n}$. Four cases are considered:
Case 1. $u \in V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$ and $x \in V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. Four cases are further considered:
Case 1.1. $v \in V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$ and $y \in V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. By Lemma 1, there is a Hamiltonian path $P_{u v}$ in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$ and another Hamiltonian path $P_{x y}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$, which are the desired $P_{u v}$ and $P_{x y}$, respectively.
Case 1.2. $v \in V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$ and $y \in V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$. By Lemma 1, there is a Hamiltonian path $P_{u y}$ in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$. An edge (s, t) in $P_{u y}$ with $s^{(n-2)}, t^{(n-2)} \notin\{x, v\}$ can be found. Let $P_{u s}$ and $P_{t y}$ denote two subpaths of $P_{u y}$. In addition, by the induction hypothesis; there exist $P_{s^{(n-2)} v}$ and $P_{x t}{ }^{(n-2)}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$ such that $V\left(P_{s^{(n-2)} v}\right) \cap V\left(P_{x t}{ }^{(n-2)}\right)=\emptyset$ and $V\left(P_{s^{(n-2)} v}\right) \cup$ $V\left(P_{x t}{ }^{(n-2)}\right)=V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. The desired $P_{u v}$ and the desired $P_{x y}$ can be constructed as $\left\langle u, P_{u s}, s, s^{(n-2)}, P_{s^{(n-2)}}, v\right\rangle$ and $\left\langle x, P_{x t^{(n-2)}}, t^{(n-2)}, t, P_{t y}, y\right\rangle$, respectively (see Fig. 3(a)).
Case 1.3. $v, y \in V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$. We select a vertex s in $V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)-\{u, v, y\}$ such that $s^{(n-2)} \neq x$. By the induction hypothesis, there are $P_{u v}$ and $P_{s y}$ in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$ such that $V\left(P_{u v}\right) \cap V\left(P_{s y}\right)=\emptyset, V\left(P_{u v}\right) \cup V\left(P_{y s}\right)=V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$. In addition, by Lemma 1, there exists a Hamiltonian path $P_{x s^{(n-2)}}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$. The $P_{u v}$ in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$ is the desired $P_{u v}$. The desired $P_{x y}$ can be constructed as $\left\langle x, P_{x s^{(n-2)}}, s^{(n-2)}, s, P_{s y}, y\right\rangle$ (see Fig. 3(b)).
Case 1.4. v, $y \in V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. The construction of the desired $P_{u v}$ and $P_{x y}$ is similar to that of Case 1.3.
Case 2. $x \in V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$ and $u \in V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. The construction is similar to that of Case 1.
Case 3. $u, x \in V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$. If $v \in V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$ and $y \in V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$ or $v \in V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$ and $y \in V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$, the construction is similar to that of Case 1.3.

If $v, y \in V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$, then by the induction hypothesis, there exist $P_{u v}^{\prime}$ and $P_{x y}$ in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$ such that $V\left(P_{u v}^{\prime}\right) \cap$ $V\left(P_{x y}\right)=\emptyset$ and $V\left(P_{u v}^{\prime}\right) \cup V\left(P_{x y}\right)=V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$. The $P_{x y}$ in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$ is the desired $P_{x y}$. We arbitrarily select an edge (s, t) in $P_{u v}^{\prime}$ and let $P_{u s}$ and $P_{t v}$ be two subpaths of $P_{u v}^{\prime}$. By Lemma 1, there exist a Hamiltonian path $P_{s^{(n-2)} t^{(n-2)}}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$. The desired $P_{u v}$ can be constructed as $\left\langle u, P_{u s}, s, s^{(n-2)}, P_{s^{(n-2)} t^{(n-2)}}, t^{(n-2)}, t, P_{t v}, v\right\rangle$ (see Fig. 3(c)).

If $v, y \in V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$, then select two vertices s, t from $V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)-\{x, u\}$ such that $s^{(n-2)}, t^{(n-2)} \notin\{v, y\}$. By the induction hypothesis, there exist $P_{u s}$ and $P_{x t}$ in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$ such that $V\left(P_{u s}\right) \cap V\left(P_{x t}\right)=\emptyset$ and $V\left(P_{u s}\right) \cup$ $V\left(P_{x t}\right)=V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$. Also, by the induction hypothesis, there exist $P_{t^{(n-2)} y}$ and $P_{s^{(n-2)}}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$ such that $V\left(P_{t^{(n-2)} y}\right) \cap V\left(P_{s^{(n-2)} v}\right)=\emptyset$ and $V\left(P_{t^{(n-2) y}}\right) \cup V\left(P_{s^{(n-2)} v}\right)=V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. The desired $P_{u v}$ and the desired $P_{x y}$ can be constructed as $\left\langle u, P_{u s}, s, s^{(n-2)}, P_{s^{(n-2)} v}, v\right\rangle$ and $\left\langle x, P_{x t}, t, t^{(n-2)}, P_{t^{(n-2)} y}, y\right\rangle$, respectively (see Fig. 3(d)).

Case 4. $u, x \in V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. The construction of the desired $P_{u v}$ and $P_{x y}$ is similar to that of Case 3.
Remember that when we use the method of Fig. 2(a), we need to construct a Hamiltonian path $P_{y^{(n-2)} x^{(n-2)}}$ in $T Q_{n-2}^{0,1} \cup$ $T Q_{n-2}^{1,1}-F_{1}$. We can certainly construct $P_{y^{(n-2)} x^{(n-2)}}$ when $\left|F_{1}\right| \leq n-4$ because $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$ is $(n-4)$-Hamiltonian connected (by Lemma 1). However it is possible that $\left|F_{1}\right|=n-3$ and Lemma 1 can not be used. It is impossible that $\left|F_{1}\right| \geq n-2$ since $2 n+5 \geq|F| \geq\left|F_{0}\right|+\left|F_{1}\right|$ and $\left|F_{0}\right| \geq\left|F_{1}\right|$. Lemmas 3-5 are needed to construct $P_{y^{(n-2)} x^{(n-2)}}$ when $\left|F_{1}\right|=n-3$.
Lemma 3. Let C be a Hamiltonian cycle in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$ (respectively, $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$). There exist two edges (x, y) and (u,v) in C such that $\left(x^{(n-2)}, y^{(n-2)}\right)$ and $\left(u^{(n-2)}, v^{(n-2)}\right)$ are also two edges in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$ (respectively, $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$), where vertices x, y, u, and v are distinct.
Proof. Suppose that C is a Hamiltonian cycle in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$, there are at least two edges (x, y) and (u, v) in C such that $x, u \in T Q_{n-2}^{0,0}$ and $y, v \in T Q_{n-2}^{1,0}$. Let $x=00 a_{n-3} a_{n-4} \ldots a_{0}, y=10 a_{n-3} a_{n-4} \ldots a_{0}, u=00 b_{n-3} b_{n-4} \ldots b_{0}$ and $v=10 b_{n-3} b_{n-4} \ldots b_{0}$. Clearly, we have $P_{n-3}(x)=P_{n-3}(y)$ and $P_{n-3}(u)=P_{n-3}(v)$. If $P_{n-3}(x)=0$, then according to the Definition 1, we have $x^{(n-2)}=11 a_{n-3} a_{n-4} \ldots a_{0}$ and $y^{(n-2)}=01 a_{n-3} a_{n-4} \ldots a_{0}$. Additionally, if $P_{n-3}(x)=1$, then $x^{(n-2)}=01 a_{n-3} a_{n-4} \ldots a_{0}$ and $y^{(n-2)}=11 a_{n-3} a_{n-4} \ldots a_{0}$. Therefore, $\left(x^{(n-2)}, y^{(n-2)}\right)$ is an edge in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$. We can show that $\left(u^{(n-2)}, v^{(n-2)}\right)$ is an edge in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$ by similar discussion. In addition, the discussion is similar when C is in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$.
Lemma 4. Let (x, y) be an arbitrary edge in $T Q_{n}$ (respectively, $T Q_{n}^{0, i} \cup T Q_{n}^{1, i}$ for $i \in\{0,1\}$) and let $F \subset E\left(T Q_{n}\right)$ with $|F| \leq n-2$ (respectively, $F^{\prime} \subset E\left(T Q_{n}^{0, i} \cup T Q_{n}^{1, i}\right)$ with $\left|F^{\prime}\right| \leq n-1$), where $n \geq 3$ is odd. Then, there exists a Hamiltonian path $P_{x y}$ in $T Q_{n}-F$ (respectively, $T Q_{n}^{0, i} \cup T Q_{n}^{1, i}-F^{\prime}$).
Proof. We proceed by induction on n. It is not difficult to check that the lemma holds for $T Q_{3}$. Two steps can complete the proof. First, for all odd integers $n \geq 3$, we show that if the lemma holds for $T Q_{n}$, then the lemma holds for $T Q_{n}^{0, i} \cup T Q_{n}^{1, i}$, where $i \in\{0,1\}$. Secondly, for all odd integers $n \geq 5$, we show that if the lemma holds for $T Q_{n-2}^{0, i} \cup T Q_{n-2}^{1, i}$, then the lemma holds for $T Q_{n}$, where $i \in\{0,1\}$. In addition, since the proof of the first step is easier than and similar to that of the second step, we only show the second step. That is, for all odd integers $n \geq 5$, we assume that there is a Hamiltonian path $P_{x^{\prime} y^{\prime}}$ in $T Q_{n-2}^{0, i} \cup T Q_{n-2}^{1, i}-F^{\prime}$ if $F^{\prime} \subset E\left(T Q_{n-2}^{0, i} \cup T Q_{n-2}^{1, i}\right)$ and $\left|F^{\prime}\right| \leq n-3$ where $\left(x^{\prime}, y^{\prime}\right) \in E\left(T Q_{n-2}^{0, i} \cup T Q_{n-2}^{1, i}\right)$ and $i \in\{0,1\}$. We will show that there is a Hamiltonian path $P_{x y}$ in $T Q_{n}-F$ if $F \subset E\left(T Q_{n}\right)$ and $|F| \leq n-2$, where $(x, y) \in E\left(T Q_{n}\right)$.

Let $F_{0}=F \cap E\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right), F_{1}=F \cap E\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$, and $F_{c}=F \cap\left\{\left(u, u^{(n-2)}\right) \mid u \in T Q_{n}\right\}$. Additionally, let $f_{0}=\left|F_{0}\right|, f_{1}=\left|F_{1}\right|, f_{c}=\left|F_{c}\right|$. Without loss of generality, we assume $f_{0} \geq f_{1}$. Two cases are considered:
Case 1. $f_{0} \leq n-3$. Note that $f_{1} \leq n-4$ since $f_{0} \geq f_{1}, f_{0}+f_{1} \leq n-2$ and $n-4 \geq\lfloor(n-2) / 2\rfloor$ (remember that $n \geq 5$). Three cases are further considered:
Case 1.1. $x \in V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$ and $y \in V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$; that is, $y=x^{(n-2)}$. Since $f_{c} \leq n-2$ and there are $n-1$ vertices in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$ adjacent to x, we can find a vertex $s \in V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$ such that s is a neighbor of x and $\left(s, s^{(n-2)}\right) \notin F_{c}$. By the induction hypothesis (since $f_{0} \leq n-3$), there is a Hamiltonian path $P_{x s}$ in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}$. Additionally, by Lemma 1 (since $f_{1} \leq n-4$), there exists a Hamiltonian path $P_{s^{(n-2)}}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$. The desired $P_{x y}$ can be constructed as $\left\langle x, P_{x s}, s, s^{(n-2)}, P_{s^{(n-2)}}, y\right\rangle$ (see Fig. 4(a)).
Case 1.2. $x, y \in V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$. By the induction hypothesis (since $f_{0} \leq n-3$), there is a Hamiltonian path $P_{x y}^{\prime}$ in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}$. Moreover, there exists an edge (u, v) in $P_{x y}^{\prime}$ such that $\left(u, u^{(n-2)}\right),\left(v, v^{(n-2)}\right) \notin F_{c}$ since there are $2^{n-1}-1$ edges in $P_{x y}^{\prime}$ and $2^{n-1}-1>2(n-2) \geq 2 f_{c}$. (This is because an edge in F_{c} eliminates two choices in $P_{x y}^{\prime}$.) Additionally, by Lemma 1 (since $f_{1} \leq n-4$), there is a Hamiltonian path $P_{u^{(n-2)} v^{(n-2)}}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$. Let $P_{x u}$ and $P_{v y}$ be two subpaths

Case 1.3. $x, y \in V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. When $f_{0} \leq n-4$, the construction is similar to that of Case 1.2. When $f_{0}=n-3$, then $f_{1}+f_{c}=1$. If $f_{c}=0$, then by the induction hypothesis (since $f_{1}=1$), there is a Hamiltonian path $P_{x y}^{\prime}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$. Clearly, $P_{x y}^{\prime} \cup\{(x, y)\}$ is a Hamiltonian cycle in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$. By Lemma 3, there exists an edge (u, v) in $P_{x y}^{\prime}$ such that $\left(u^{(n-2)}, v^{(n-2)}\right)$ is also an edge in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$, where vertices x, y, u, and v are distinct. By the induction hypothesis (since $f_{0}=n-3$), there is a Hamiltonian path $P_{u^{(n-2)} v^{(n-2)}}$ in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}$. Let $P_{x u}$ and $P_{v y}$ be two subpaths of $P_{x y}^{\prime}$. The desired $P_{x y}$ can be constructed as $\left\langle x, P_{x u}, u, u^{(n-2)}, P_{u^{(n-2)} v^{(n-2)}}, v^{(n-2)}, v, P_{v y}, y\right\rangle$.

If $f_{1}=0$, then we have $f_{c}=1$. Let (u, v) be an edge in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$ such that $u^{(n-2)}, v^{(n-2)} \notin\{x, y\}$ and $\left(x, x^{(n-2)}\right),\left(x, x^{(n-2)}\right) \notin F_{c}$. By Lemma 2, there exist two paths $P_{x u^{(n-2)}}$ and $P_{v^{(n-2)} y}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$ such that $V\left(P_{x u^{(n-2)}}\right) \cap V\left(P_{v^{(n-2)} y}\right)=\emptyset$ and $V\left(P_{x u^{(n-2)}}\right) \cup V\left(P_{v^{(n-2)} y}\right)=V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. In addition, by the induction hypothesis (since $f_{0}=n-3$), there is a Hamiltonian path $P_{u v}$ in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}$. The desired $P_{x y}$ can be constructed as $\left\langle x, P_{x u^{(n-2)}}, u^{(n-2)}, u, P_{u v}, v, v^{(n-2)}, P_{v^{(n-2)}}, y\right\rangle$ (see Fig. 4(c)).

Fig. 4. Construction of $P_{x y}$ in $T Q_{n}-F$ (Lemma 4).

Case 2. $f_{0}=n-2$. We have $f_{1}=f_{c}=0$. Three cases are further considered:
Case 2.1. $x \in V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$ and $y \in V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. Suppose that $(u, v) \in F_{0}$. If $x \in\{u, v\}$ (suppose that $(x, s)=(u, v)$), then $\left|F_{0}-\{(x, s)\}\right|=n-3$ and the construction is similar to that of Case 1.1. In the rest of the proof, we assume $x \notin\{u, v\}$. Let $s \in V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)-\{u, v\}$ and s is a neighbor of x. Since $\left|F_{0}-\{(u, v)\}\right|=n-3$, by the induction hypothesis, there exists a Hamiltonian path $P_{x S}$ in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(u, v)\}\right)$. If $P_{x S}$ contains (u, v), then by Lemma 2, there exist two paths $P_{s^{(n-2)} \text { y }}$ and $P_{u^{(n-2)} v^{(n-2)}}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$ such that $V\left(P_{s^{(n-2)}}\right) \cap V\left(P_{u^{(n-2)} v^{(n-2)}}\right)=\emptyset$ and $V\left(P_{s^{(n-2)}}\right) \cup V\left(P_{u^{(n-2)} v^{(n-2)}}\right)=V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. The desired $P_{x y}$ can be constructed as $\left\langle x, P_{x u}, u, u^{(n-2)}, P_{u^{(n-2)} v^{(n-2)}}, v^{(n-2)}, v, P_{v s}, s^{(n-2)}, P_{s^{(n-2)}}, y\right\rangle$ (see Fig. 4(d)). If $P_{x s}$ does not contain (u, v), the construction is similar to that of Case 1.1.
Case 2.2. $x, y \in V\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right)$. Let $(u, v) \in F_{0}$. Since $\left|F_{0}-\{(u, v)\}\right|=n-3$, by the induction hypothesis, there exists a Hamiltonian path $P_{x y}^{\prime}$ of $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(u, v)\}\right)$. If $P_{x y}^{\prime}$ contains (u, v), then let $P_{x u}$ and $P_{v v}$ be two subpaths of $P_{x y}^{\prime}$. By Lemma 1, there is a Hamiltonian path $P_{u^{(n-2)} v^{(n-2)}}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$. The desired $P_{x y}$ can be constructed as $\left\langle x, P_{x u}, u, u^{(n-2)}, P_{u^{(n-2)} v^{(n-2)}}, v^{(n-2)}, v, P_{v y}, y\right\rangle$ (see Fig. 4(b)). If $P_{x y}^{\prime}$ does not contain (u, v), then select arbitrary edge (r, z) in $P_{x y}^{\prime}$. Let $P_{x r}$ and $P_{z y}$ be two subpaths of $P_{x y}^{\prime}$. By Lemma 1, there is a Hamiltonian path $P_{r^{(n-2)} z^{(n-2)}}$ in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$. The desired $P_{x y}$ can be constructed as $\left\langle x, P_{x r}, r, r^{(n-2)}, P_{r^{(n-2)} z^{(n-2)}}, z^{(n-2)}, z, P_{z y}, y\right\rangle$.
Case 2.3. $x, y \in V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. Let $(u, v) \in F_{0}$ and $\{u, v\} \neq\left\{x^{(n-2) I}, y^{(n-2)}\right\}$. If $x^{(n-2)} \in\{u, v\}$, then $y^{(n-2)} \notin\{u$, $v\}$. Let $\left(x^{(n-2)}, s\right)=(u, v)$. Then $\left|F_{0}-\left\{\left(x^{(n-2)}, s\right)\right\}\right|=n-3$ is obtained. By the induction hypothesis, there is a Hamiltonian path $P_{x^{(n-2)}}$ in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\left\{\left(x^{(n-2)}, s\right)\right\}\right)$. In addition, by Lemma 1, there is a Hamiltonian path $P_{s^{(n-2)} y}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-\{x\}$ (since $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$ is $(n-4)$-Hamiltonian connected and $n-4 \geq 1$). The desired $P_{x y}$ can be constructed as $\left\langle x, x^{(n-2)}, P_{x^{(n-2)} s}, s, s^{(n-2)}, P_{s^{(n-2)}}, y\right\rangle$ (see Fig. $\left.4(\mathrm{e})\right)$. If $y^{(n-2)} \in\{u, v\}$, then $x^{(n-2)} \notin\{u, v\}$ and the construction is similar.

If $x^{(n-2)}, y^{(n-2)} \notin\{u, v\}$, then by Lemma 2, there exist two paths $P_{x u}{ }^{(n-2)}$ and $P_{v^{(n-2)} y}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$ such that $V\left(P_{x u^{(n-2)}}\right) \cap V\left(P_{v^{(n-2)} y}\right)=\emptyset$ and $V\left(P_{x u}{ }^{(n-2)}\right) \cup V\left(P_{v^{(n-2)}}\right)=V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. In addition, since $\left|F_{0}-\{(u, v)\}\right|=n-3$, by the induction hypothesis, there is a Hamiltonian path $P_{u v}$ in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(u, v)\}\right)$. The desired $P_{x y}$ can be constructed as $\left\langle x, P_{x u}{ }^{(n-2)}, u^{(n-2)}, u, P_{u v}, v, v^{(n-2)}, P_{v^{(n-2)}}, y\right\rangle$ (see Fig. 4(c)).

Lemma 5. Let $F \subset E\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$ with $|F| \leq n-3$ and let u be an arbitrary vertex in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}$, where $n \geq 7$ is odd. There exists an integer $d \in\{0,1,2, \ldots, n-3\}$ such that there is a Hamiltonian path $P_{u^{(n-2)} u^{d(n-2)}}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F$.

Fig. 5. Construction of $P_{u^{(n-2)} u^{d(n-2)}}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F$ (Lemma 5).
Proof. Clearly, a d-edge joins $u^{(n-2)}$ and $u^{(n-2) d}$, where $d \in\{0,1,2, \ldots, n-3\}$. We claim that $u^{(n-2) d}=u^{d(n-2)}$ or an ($n-1$)edge joins $u^{(n-2) d}$ and $u^{d(n-2)}$. (The claim proof is placed after the main proof). If there exists an integer $d \in\{0,1,2, \ldots, n-3\}$ such that $u^{(n-2) d}=u^{d(n-2)}$, then $u^{(n-2)}$ and $u^{d(n-2)}$ are adjacent. By Lemma 4, the lemma holds. In the rest of the proof, we assume that an $(n-1)$-edge joins $u^{(n-2) i}$ and $u^{i(n-2)}$ for all $i \in\{0,1,2, \ldots, n-3\}$. Let $F_{0}=F \cap E\left(T Q_{n-2}^{0,1}\right), F_{1}=F \cap E\left(T Q_{n-2}^{1,1}\right)$, and $F_{c}=F \cap\left\{\left(v, v^{(n-1)}\right) \mid v \in V\left(T Q_{n-2}^{0,1}\right)\right\}$. Additionally, let $f_{0}=\left|F_{0}\right|, f_{1}=\left|F_{1}\right|, f_{c}=\left|F_{c}\right|$. Without loss of generality, assume that $u^{(n-2)} \in T Q_{n-2}^{0,1}$. Therefore, we have $u^{(n-2) i} \in T Q_{n-2}^{0,1}$ and $u^{i(n-2)} \in T Q_{n-2}^{1,1}$, for all $i \in\{0,1,2, \ldots, n-3\}$ (because an ($n-1$)-edge joins $u^{(n-2) i}$ and $u^{i(n-2)}$). Five cases are considered:
Case 1. $f_{0}=n-3$. Thus, $f_{1}+f_{c}=0$. First, suppose that $\left(u^{(n-2)}, u^{(n-2) d^{\prime}}\right) \in F_{0}$ for some $d^{\prime} \in\{0,1,2, \ldots, n-3\}$. Since $\mid F_{0}-$ $\left\{\left(u^{(n-2)}, u^{(n-2) d^{\prime}}\right)\right\} \mid=n-4$, by Lemma 4, there exists a Hamiltonian path $P_{u^{(n-2)} u^{(n-2) d^{\prime}}}$ in $T Q_{n-2}^{0,1}-\left(F_{0}-\left\{\left(u^{(n-2)}, u^{(n-2) d^{\prime}}\right)\right\}\right)$. Select an integer d from $\{0,1,2, \ldots, n-3\}-\left\{d^{\prime}\right\}$. By Lemma 1, there is a Hamiltonian path $P_{u^{d^{\prime}(n-2)} u^{d(n-2)}}$ in $T Q_{n-2}^{1,1}$. Remember that an $(n-1)$-edge joins $u^{(n-2) i}$ and $u^{i(n-2)}$ for all $i \in\{0,1,2, \ldots, n-3\}$. The desired Hamiltonian path can be constructed as $\left\langle u^{(n-2)}, P_{u^{(n-2)} u^{(n-2) d^{\prime}}}, u^{(n-2) d^{\prime}}, u^{d^{\prime}(n-2)}, P_{u^{d^{\prime}(n-2)} u^{d(n-2)}}, u^{d(n-2)}\right\rangle$ (see Fig. 5(a)).

Then, suppose that $\left(u^{(n-2)}, u^{(n-2) i}\right) \notin F_{0}$, for all $i \in\{0,1,2, \ldots, n-3\}$. Let $(x, y) \in F_{0}$. Since $n \geq 7$, we can select an integer d^{\prime} from $\{0,1,2, \ldots, n-3\}$ such that $u^{(n-2) d^{\prime}} \notin\{x, y\}$. Since $\left|F_{0}-\{(x, y)\}\right|=n-4$, by Lemma 4, there exists a Hamiltonian path $P_{u^{(n-2)} u^{(n-2) d^{\prime}}}$ in $T Q_{n-2}^{0,1}-\left(F_{0}-\{(x, y)\}\right)$. Also, since $n \geq 7$, we can select an integer d from $\{0,1,2, \ldots, n-3\}-\left\{d^{\prime}\right\}$ such that $u^{d(n-2)} \notin\left\{x^{(n-1)}, y^{(n-1)}\right\}$. If $P_{u^{(n-2)} u^{(n-2) d^{\prime}}}$ does not contain (x, y), then by Lemma 1, there is a Hamiltonian path $P_{u^{d^{\prime}(n-2)} u^{d(n-2)}}$ in $T Q_{n-2}^{1,1}$. The desired Hamiltonian path can be constructed as
$\left\langle u^{(n-2)}, P_{u^{(n-2)} u^{(n-2) d^{\prime}}}, u^{(n-2) d^{\prime}}, u^{d^{\prime}(n-2)}, P_{u^{d^{\prime}(n-2)} u^{d(n-2)}}, u^{d(n-2)}\right\rangle$ (see Fig. 5(a)). If $P_{u^{(n-2)} u^{(n-2) d^{\prime}}}$ contains (x, y), then let $P_{u^{(n-2)} x}$ and $P_{y u^{(n-2) d^{\prime}}}$ be two subpaths of $P_{u^{(n-2)} u^{(n-2) d^{\prime}}}$. By Lemma 2, there exist $P_{u^{d^{\prime}(n-2)} u^{d(n-2)}}$ and $P_{x^{(n-1)} y^{(n-1)}}$ in $T Q_{n-2}^{1,1}$ such that $V\left(P_{u^{d^{\prime}(n-2)} u^{d(n-2)}}\right) \cap V\left(P_{x^{(n-1)} y^{(n-1)}}\right)=\emptyset$ and $V\left(P_{u^{d^{\prime}(n-2)} u^{d(n-2)}}\right) \cup V\left(P_{x^{(n-1)} y^{(n-1)}}\right)=V\left(T Q_{n-2}^{1,1}\right)$. The desired Hamiltonian path can be constructed as $\left\langle u^{(n-2)}, P_{u^{(n-2)}}, x, x^{(n-1)}, P_{x^{(n-1)}} y^{(n-1)}, y^{(n-1)}, y, P_{y u^{(n-2) d^{\prime}}}, u^{(n-2) d^{\prime}}, u^{d^{\prime}(n-2)}, P_{u^{d^{\prime}(n-2)} u^{d(n-2)}}, u^{d(n-2)}\right\rangle$ (see Fig. 5(b)).
Case 2. $f_{0}=n-4$. Thus, $f_{1}+f_{c}=1$. Since $f_{c} \leq 1$, we can select an integer d^{\prime} from $\{0,1,2, \ldots, n-3\}$ such that $\left(u^{d^{\prime}(n-2)}, u^{(n-2) d^{\prime}}\right) \notin F_{c}$. Since $f_{0}=n-4$, by Lemma 4, there exists a Hamiltonian path $P_{u^{(n-2)} u^{(n-2) d^{\prime}}}$ in $T Q_{n-2}^{0,1}-F_{0}$. Then, we select an integer d from $\{0,1,2, \ldots, n-3\}-\left\{d^{\prime}\right\}$. Since $f_{1} \leq 1$, by Lemma 1 , there is a Hamiltonian path $P_{u^{d^{\prime}(n-2)} u^{d(n-2)}}$ for $T Q_{n-2}^{1,1}$. The desired Hamiltonian path can be constructed as $\left\langle u^{(n-2)}, P_{u^{(n-2)} u^{(n-2) d^{\prime}}}, u^{(n-2) d^{\prime}}, u^{d^{\prime}(n-2)}, P_{u^{d^{\prime}(n-2)} u^{d(n-2)}}, u^{d(n-2)}\right\rangle$ (see Fig. 5(a)).
Case 3. $f_{0} \leq n-5$ and $f_{1} \leq n-5$. Select a vertex $y \in T Q_{n-2}^{0,1}-\left\{u^{(n-2)}\right\}$ such that $\left(y, y^{(n-1)}\right) \notin F_{c}$. Then, select an integer d from $\{0,1,2, \ldots, n-3\}$ such that $u^{d(n-2)} \neq y^{(n-1)}$. By Lemma 1 , there is a Hamiltonian path $P_{u^{(n-2)} y}$ (respectively, $P_{y^{(n-1)} u^{d(n-2)}}$) in $T Q_{n-2}^{0,1}-F_{0}$ (respectively, $T Q_{n-2}^{1,1}-F_{1}$). The desired Hamiltonian path can be constructed as $\left\langle u^{(n-2)}, P_{u^{(n-2)} y}, y, y^{(n-1)}, P_{y^{(n-1)}} u^{d(n-2)}, u^{d(n-2)}\right\rangle$ (see Fig. 5(c)).
Case 4. $f_{1}=n-4$. Thus, $f_{0}+f_{c}=1$. Since $f_{c} \leq 1$, we can select an integer d^{\prime} from $\{0,1,2, \ldots, n-3\}$ such that $\left(u^{d^{\prime}(n-2)}, u^{(n-2) d^{\prime}}\right) \notin F_{c}$. Since $f_{0} \leq 1$, by Lemma 4, there exists a Hamiltonian path $P_{u^{(n-2)} u^{(n-2) d^{\prime}}}$ in $T Q_{n-2}^{0,1}-F_{0}$. Then we select an integer d from $\{0,1,2, \ldots, n-3\}-\left\{d^{\prime}\right\}$. Since $f_{1}=n-4$, by Lemma 1, there is a Hamiltonian path $P_{u^{d^{\prime}(n-2)} u^{d(n-2)}}$ for $T Q_{n-2}^{1,1}$. The desired Hamiltonian path can be constructed as $\left\langle u^{(n-2)}, P_{u^{(n-2)} u^{(n-2) d^{\prime}}}, u^{(n-2) d^{\prime}}, u^{d^{\prime}(n-2)}, P_{u^{d^{\prime}(n-2)} u^{d(n-2)}}, u^{d(n-2)}\right\rangle$ (see Fig. 5(a)).
Case 5. $f_{1}=n-3$. Thus, $f_{0}+f_{c}=0$. First, suppose that there exists an edge $(x, y) \in F_{1}$ such that $u^{(n-2)(n-1)} \notin\{x, y\}$. We can choose an edge $\left(u^{d(n-2)}, s\right)$ in $T Q_{n-2}^{1,1}$ such that $u^{d(n-2)}, s \notin\left\{x, y, u^{(n-2)(n-1)}\right\}$, where $d \in\{0,1,2, \ldots, n-3\}$. (We can first select $u^{d(n-2)}$, which has at least $(n-2)-3 \geq 2$ choices, and then, we have $(n-2)-3 \geq 2$ ways to select s, which is the neighbor of $u^{d(n-2)}$.) Since $\left|F_{1}-\{(x, y)\}\right|=n-4$, by Lemma 4, there exists a Hamiltonian path $P_{s u^{d(n-2)}}$ in $T Q_{n-2}^{1,1}-\left(F_{1}-\{(x, y)\}\right)$. If $P_{s u^{d(n-2)}}$ does not contain (x, y), then by Lemma 1, there is a Hamiltonian path $P_{u^{(n-2)} s^{(n-1)}}$ in $T Q_{n-2}^{0,1}$. The desired Hamiltonian path can be constructed as $\left\langle u^{(n-2)}, P_{u^{(n-2)} s^{(n-1)}}, s^{(n-1)}, s, P_{s u^{d(n-2)}}, u^{d(n-2)}\right\rangle$. If $P_{s u^{d(n-2)}}$ contains (x, y), then let $P_{S X}$ and $P_{y u^{d(n-2)}}$ be two subpaths of $P_{s u^{d(n-2)}}$. In addition, by Lemma 2, there exist $P_{u^{(n-2)} s^{(n-1)}}$ and $P_{x^{(n-1)} y^{(n-1)}}$ in $T Q_{n-2}^{0,1}$ such that $V\left(P_{u^{(n-2)} s^{(n-1)}}\right) \cap V\left(P_{x^{(n-1)} y^{(n-1)}}\right)=\emptyset$ and $V\left(P_{u^{(n-2)} s^{(n-1)}}\right) \cup V\left(P_{x^{(n-1)} y^{(n-1)}}\right)=V\left(T Q_{n-2}^{0,1}\right)$. The desired Hamiltonian path can be constructed as $\left\langle u^{(n-2)}, P_{u^{(n-2)} s^{(n-1)}}, s^{(n-1)}, s, P_{s X}, x, x^{(n-1)}, P_{x^{(n-1)} y^{(n-1)}}, y^{(n-1)}, y, P_{y u^{d(n-2)}}, u^{d(n-2)}\right\rangle$ (see Fig. 5(d)).

Then, suppose that there is no edge $\left(x^{\prime}, y^{\prime}\right) \in F_{1}$ such that $u^{(n-2)(n-1)} \notin\left\{x^{\prime}, y^{\prime}\right\}$. That is, $F_{1} \subseteq\left\{\left(u^{(n-2)(n-1)}, u^{(n-2)(n-1) i}\right) \mid i \in\right.$ $\{0,1,2, \ldots, n-3\}\}$. Since $f_{1}=n-3$, and $\left|\left\{\left(u^{(n-2)(n-1)}, u^{(n-2)(n-1) i}\right) \mid i \in\{0,1,2, \ldots, n-3\}\right\}\right|=n-2$, we have $\left(u^{(n-2)(n-1)}, u^{(n-2)(n-1) d^{\prime}}\right) \notin F_{1}$ for some $d^{\prime} \in\{0,1,2, \ldots, n-3\}$. Let $y=u^{(n-2)(n-1) d^{\prime}}$. In addition, let $u^{d(n-2)} \in V\left(T Q_{n-2}^{1,1}\right)-\left\{y, u^{(n-2)(n-1)}\right\}$ for some $d \in\{0,1,2, \ldots, n-3\}$ and let $s \in V\left(T Q_{n-2}^{1,1}\right)-\left\{y, u^{(n-2)(n-1)}, u^{d(n-2)}\right\}$. By Lemma 1, there are a Hamiltonian path $P_{y^{(n-1)} s^{(n-1)}}$ in $T Q_{n-2}^{0,1}-\left\{u^{(n-2)}\right\}$ and a Hamiltonian path $P_{s u^{d(n-2)}}$ in $T Q_{n-2}^{1,1}-\left\{y, u^{(n-2)(n-1)}\right\}$ (since $T Q_{n-2}$ is $(n-5)$-Hamiltonian connected and $n-5 \geq 2$). Moreover, since $F_{1} \subseteq$ $\left\{\left(u^{(n-2)(n-1)}, u^{(n-2)(n-1) i}\right) \mid i \in\{0,1,2, \ldots, n-3\}\right\}$, we have $P_{s u^{d(n-2)}} \cap F_{1}=\emptyset$. The desired Hamiltonian path can be constructed as $\left\langle u^{(n-2)}, u^{(n-2)(n-1)}, y, y^{(n-1)}, P_{y^{(n-1)} s^{(n-1)}}, s^{(n-1)}, s, P_{s u^{d(n-2)}}, u^{d(n-2)}\right\rangle$ (see Fig. 5(e)).

Claim Proof. Suppose that $u=u_{n-1} u_{n-2} \ldots u_{0}$. When $P_{n-3}(u)=0$, according to Definition 1, we have $u^{(n-2)}=$ $\overline{u_{n-1}} \overline{u_{n-2}} u_{n-3} \ldots u_{0}$. If d is odd and $P_{d-1}(u)=0$, then $u^{d}=u_{n-1} u_{n-2} \ldots \overline{u_{d+1}} \overline{u_{d}} \ldots u_{0}$. Hence, $P_{n-3}\left(u^{d}\right)=P_{n-3}(u)=$ 0 . As a result, $u^{d(n-2)}=\overline{u_{n-1}} \overline{u_{n-2}} u_{n-3} \ldots \overline{u_{d+1}} \overline{u_{d}} \ldots u_{0}$. Additionally, since $P_{d-1}\left(u^{(n-2)}\right)=P_{d-1}(u)=0$, we have $u^{(n-2) d}=\overline{u_{n-1}} \overline{u_{n-2}} u_{n-3} \ldots \overline{u_{d+1}} \overline{u_{d}} \ldots u_{0}=u^{d(n-2)}$. If (1) d is even or (2) d is odd and $P_{d-1}(u)=1$, then $u^{d}=$ $u_{n-1} u_{n-2} \ldots \overline{u_{d}} \ldots u_{0}$. Hence, $P_{n-3}\left(u^{d}\right)=1$. As a result, $u^{d(n-2)}=u_{n-1} \overline{u_{n-2}} u_{n-3} \ldots u_{d+1} \overline{u_{d}} \ldots u_{0}$. Additionally, we have $u^{(n-2) d}=\overline{u_{n-1}} \overline{u_{n-2}} u_{n-3} \ldots u_{d+1} \overline{u_{d}} \ldots u_{0}$ since (1) d is even or (2) d is odd and $P_{d-1}\left(u^{(n-2)}\right)=P_{d-1}(u)=1$. Clearly, $u^{(n-2) d}$ is connected to $u^{d(n-2)}$ by an $(n-1)$-edge.

When $P_{n-3}(u)=1$, according to Definition 1, we have $u^{(n-2)}=u_{n-1} \overline{u_{n-2}} u_{n-3} \ldots u_{0}$. If d is odd and $P_{d-1}(u)=0$, then $u^{d}=u_{n-1} u_{n-2} \ldots \overline{u_{d+1}} \overline{u_{d}} \ldots u_{0}$. Hence, $P_{n-3}\left(u^{d}\right)=P_{n-3}(u)=1$. As a result, $u^{d(n-2)}=u_{n-1} \overline{u_{n-2}} u_{n-3} \ldots \overline{u_{d+1}} \overline{u_{d}} \ldots u_{0}$. Additionally, since $P_{d-1}\left(u^{(n-2)}\right)=P_{d-1}(u)=0$, we have $u^{(n-2) d}=u_{n-1} \overline{u_{n-2}} u_{n-3} \ldots \overline{u_{d+1}} \overline{u_{d}} \ldots u_{0}=u^{d(n-2)}$. If (1) d is even or (2) d is odd and $P_{d-1}(u)=1$, then $u^{d}=u_{n-1} u_{n-2} \ldots \overline{u_{d}} \ldots u_{0}$. Hence, $P_{n-3}\left(u^{d}\right)=0$. As a result, $u^{d(n-2)}=$ $\overline{u_{n-1}} \overline{u_{n-2}} u_{n-3} \ldots u_{d+1} \overline{u_{d}} \ldots u_{0}$. Additionally, we have $u^{(n-2) d}=u_{n-1} \overline{u_{n-2}} u_{n-3} \ldots u_{d+1} \overline{u_{d}} \ldots u_{0}$ since (1) d is even or (2) d is odd and $P_{d-1}\left(u^{(n-2)}\right)=P_{d-1}(u)=1$. Clearly, $u^{(n-2) d}$ is connected to $u^{d(n-2)}$ by an ($n-1$)-edge.

4. Longest fault-free cycles with edge faults

In this section, we will show that if each vertex of $T Q_{n}$ is incident with at least two fault-free edges, then it contains a fault-free Hamiltonian cycle, even if there are $2 n-5$ edge faults. Regard F as the set of edge faults; $T Q_{n}-F$ represents a
faulty $T Q_{n}$, and $\delta\left(T Q_{n}-F\right) \geq 2$ means that each vertex in $T Q_{n}-F$ is incident with at least two fault-free edges. Hence, we format the main theorem as follows.
Theorem 1. If $F \subset E\left(T Q_{n}\right)$ (respectively, $F^{\prime} \subset E\left(T Q_{n}^{0, i} \cup T Q_{n}^{1, i}\right)$ for $i \in\{0,1\}$) with $|F| \leq 2 n-5$ (respectively, $\left|F^{\prime}\right| \leq 2 n-3$) and $\delta\left(T Q_{n}-F\right) \geq 2\left(\right.$ respectively, $\delta\left(T Q_{n}^{0, i} \cup T Q_{n}^{1, i}-F^{\prime}\right) \geq 2$), then $T Q_{n}-F$ (respectively, $\left.T Q_{n}^{0, i} \cup T Q_{n}^{1, i}-F^{\prime}\right)$ is Hamiltonian, where $n \geq 3$ is an odd integer.
Proof. We proceed by induction on n. By Lemma 1, the theorem holds for $T Q_{3}$ since $2 n-5=n-2$ when $n=3$. In addition, the theorem holds for $T Q_{3}^{0, i} \cup T Q_{3}^{1, i}$, which can be verified by a computer exhausted search program [11]. Two steps can complete the proof. First, for all odd integers $n \geq 3$, we show that if the theorem holds for $T Q_{n}$, then the theorem holds for $T Q_{n}^{0, i} \cup T Q_{n}^{1, i}$. Secondly, for all odd integers $n \geq 5$, we show that if the theorem holds for $T Q_{n-2}^{0, i} \cup T Q_{n-2}^{1, i}$ then the theorem holds for $T Q_{n}$. However, since the proof of the first step is easier than and similar to that of second step, we only show the second step. That is, we assume that $T Q_{n-2}^{0, i} \cup T Q_{n-2}^{1, i}-F^{\prime}$ is Hamiltonian if $F^{\prime} \subset E\left(T Q_{n-2}^{0, i} \cup T Q_{n-2}^{1, i}\right), \delta\left(T Q_{n-2}^{0, i} \cup T Q_{n-2}^{1, i}-F^{\prime}\right) \geq 2$, and $\left|F^{\prime}\right| \leq 2 n-7$, where $i \in\{0,1\}$ and $n \geq 5$. We will show that $T Q_{n}-F$ is Hamiltonian if $F \subset E\left(T Q_{n}\right), \delta\left(T Q_{n}-F\right) \geq 2$, and $|F| \leq 2 n-5$. Let $F_{0}=F \cap E\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}\right), F_{1}=F \cap E\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$, and $F_{c}=F \cap\left\{\left(u, u^{(n-2)}\right) \mid u \in V\left(T Q_{n}\right)\right\}$. Additionally, let $f_{0}=\left|F_{0}\right|, f_{1}=\left|F_{1}\right|, f_{c}=\left|F_{c}\right|$. Without loss of generality, we assume $f_{0} \geq f_{1}$. Therefore, we have $f_{1} \leq\lfloor(2 n-5) / 2\rfloor=n-3$. Three cases are considered:
Case 1. $f_{0} \leq 2 n-7$. There is at most one vertex with degree one in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}$, for otherwise $f_{0} \geq 2 n-5$, which is a contradiction. Two cases are further considered:
Case 1.1. $\delta\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}\right) \geq 2$. By the induction hypothesis, there exists a Hamiltonian cycle C in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}$.
If $f_{1}=n-3$, then $f_{c} \leq 2 n-5-2(n-3)=1$. By Lemma 3, there exist two edges (x, y) and (u, v) in C such that $\left(x^{(n-2)}, y^{(n-2)}\right)$ and $\left(u^{(n-2)}, v^{(n-2)}\right.$) are also two edges in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$, where x, y, u, v are distinct. Clearly, at most one of $\left(x, x^{(n-2)}\right),\left(y, y^{(n-2)}\right),\left(u, u^{(n-2)}\right)$, and $\left(v, v^{(n-2)}\right)$ is in F_{c}. Without loss of generality, we assume $\left(x, x^{(n-2)}\right),\left(y, y^{(n-2)}\right) \notin F_{c}$. Let $P_{y x}=C-\{(x, y)\}$. In addition, by Lemma 4 (since $f_{1} \leq n-3$), there exists a Hamiltonian path $P_{x^{(n-2)} y^{(n-2)}}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$. The desired fault-free Hamiltonian cycle can be constructed as $\left\langle x, x^{(n-2)}, P_{\left.x^{(n-2)} y^{(n-2)}, y^{(n-2)}, y, P_{y x}, x\right\rangle}\right.$ (refer to Fig. 2(a)).

If $f_{1} \leq n-4$, then there exists an edge (x, y) in C such that $\left(x, x^{(n-2)}\right)$ and $\left(y, y^{(n-2)}\right) \notin F_{c}$ since there are 2^{n-1} edges in C and $2^{n-1}>2(2 n-5) \geq 2|F| \geq 2 f_{c}$. (This is because an edge in F_{c} eliminates two choices in C.) Let $P_{y x}=C-\{(x, y)\}$. In addition, by Lemma 1, there exists a Hamiltonian path $P_{x^{(n-2)} y^{(n-2)}}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$. The desired fault-free Hamiltonian cycle can be constructed as $\left\langle x, x^{(n-2)}, P_{x^{(n-2)} y^{(n-2)},} y^{(n-2)}, y, P_{y x}, x\right\rangle$ (refer to Fig. 2(a)).
Case 1.2. $\delta\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}\right)=1$. Recall that there is at most one vertex with degree one in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}$, let x be such a vertex. Hence, $f_{0} \geq n-2$ (thus $f_{1}+f_{c} \leq n-3$) and ($\left.x, x^{(n-2)}\right) \notin F_{c}$.

First, suppose that $f_{1}=n-3$ (then $f_{c}=0$ and $f_{0}=n-2$). When ($x, x^{(n-1)}$) $\in F_{0}$, let $y=x^{(n-1)}$. We claim that $\left(x^{(n-2)}, y^{(n-2)}\right)$ is an edge in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$. (The claim proof is placed after the main proof). Since $f_{1}=n-3$, by Lemma 4, there exists a Hamiltonian path $P_{x^{(n-2)} y^{(n-2)}}$ in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$. Moreover, since $\delta\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y)\}\right)\right)=2$, by the induction hypothesis, there is a Hamiltonian cycle C in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y)\}\right)$. Additionally, since (x, y) is one of the two edges incident with x in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y)\}\right)$, it is not difficult to see that C contains (x, y). Let $P_{y x}=C-\{(x, y)\}$. The desired Hamiltonian cycle can be constructed as $\left\langle x, x^{(n-2)}, P_{x^{(n-2)} y^{(n-2)}}, y^{(n-2)}, y, P_{y x}, x\right\rangle$ (refer to Fig. 2(a)).

When $\left(x, x^{(n-1)}\right) \notin F_{0}$, we have $\left(x, x^{i}\right) \in F_{0}$ for all $i \in\{0,1,2, \ldots, n-3\}$. If $n=5$, the desired Hamiltonian cycles are constructed by using a computer program [11]. If $n \geq 7$, then by Lemma 5 , there exists an integer $d \in\{0,1,2, \ldots, n-3\}$ such that there is a Hamiltonian path $P_{x^{(n-2)} y^{(n-2)}}$ for $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$, where $y=x^{d}$. Moreover, since $\delta\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\right.$ $\left.\left(F_{0}-\{(x, y)\}\right)\right)=2$, by the induction hypothesis, there is a Hamiltonian cycle C in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y)\}\right)$. Additionally, since (x, y) is one of the two edges incident with x in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y)\}\right)$, it is not difficult to see that C contains (x, y). Let $P_{y x}=C-\{(x, y)\}$. The desired Hamiltonian cycle can be constructed as $\left\langle x, x^{(n-2)}, P_{\left.x^{(n-2)} y^{(n-2)}, y^{(n-2)}, y, P_{y x}, x\right\rangle}\right.$ (refer to Fig. 2(a)).

Now, suppose that $f_{1} \leq n-4$. Since $f_{c} \leq n-3$ and $\left|\left\{\left(x, x^{i}\right) \mid i \in\{0,1,2, \ldots, n-3, n-1\}\right\} \cap F_{0}\right|=n-2$, we have $\left(x, x^{d}\right) \in F_{0}$ with $\left(x^{d}, x^{d(n-2)}\right) \notin F_{c}$, for some $d \in\{0,1,2, \ldots, n-3, n-1\}$. Let $y=x^{d}$. By Lemma 1 , there exists a Hamiltonian path $P_{x^{(n-2)} y^{(n-2)}}$ for $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$. In addition, by the induction hypothesis, there is a Hamiltonian cycle C in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y)\}\right)$. Additionally, since (x, y) is one of the two edges incident with x in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y)\}\right)$, it is not difficult to see that C contains (x, y). Let $P_{y x}=C-\{(x, y)\}$. The desired Hamiltonian cycle can be constructed as $\left\langle x, x^{(n-2)}, P_{x^{(n-2)} y^{(n-2)}}, y^{(n-2)}, y, P_{y x}, x\right\rangle$ (refer to Fig. 2(a)).
Case 2. $f_{0}=2 n-6$. We have $f_{1}+f_{c} \leq 1$. Similarly, there is at most one vertex with degree one in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}$.
First, suppose that $\delta\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}\right) \geq 2$. Select an edge $(x, y) \in F_{0}$ such that $\left(x, x^{(n-2)}\right),\left(y, y^{(n-2)}\right) \notin F_{c}$. Since $\left|F_{0}-\{(x, y)\}\right|=2 n-7$, by the induction hypothesis, there exists a Hamiltonian cycle C for $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y)\}\right)$. If C contains (x, y), then let $P_{y x}=C-\{(x, y)\}$. In addition, since $f_{1} \leq 1$, by Lemma 1 , there is a Hamiltonian path
$P_{x^{(n-2)} y^{(n-2)}}$ for $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$. The desired Hamiltonian cycle can be constructed as $\left\langle x, x^{(n-2)}, P_{x^{(n-2)} y^{(n-2)}}, y^{(n-2)}, y, P_{y x}, x\right\rangle$ (refer to Fig. 2(a)). If C does not contain (x, y), then select an edge $\left(x^{\prime}, y^{\prime}\right)$ in C such that $\left(x^{\prime}, x^{(n-2)}\right),\left(y^{\prime}, y^{(n-2)}\right) \notin F_{c}$. Let $P_{y^{\prime} x^{\prime}}=C-\left\{\left(x^{\prime}, y^{\prime}\right)\right\}$. By Lemma 1, there is a Hamiltonian path $P_{x^{\prime(n-2)} y^{\prime(n-2)}}$ for $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$. The desired Hamiltonian cycle can be constructed as $\left\langle x^{\prime}, x^{\prime(n-2)}, P_{x^{\prime}(n-2)} y^{\prime(n-2)}, y^{\prime(n-2)}, y^{\prime}, P_{y^{\prime} x^{\prime}}, x^{\prime}\right\rangle$.

Then, suppose that $\delta\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}\right)=1$. Let x be the vertex with degree one in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}$. Select an edge $(x, y) \in F_{0}$ such that $\left(y, y^{(n-2)}\right) \notin F_{c}$. Since $\left|F_{0}-\{(x, y)\}\right|=2 n-7$ and $\delta\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y)\}\right)\right)=2$, by the induction hypothesis, there exists a Hamiltonian cycle C for $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y)\}\right.$. Since (x, y) is one of the two edges incident with x in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y)\}\right), C$ contains (x, y). Let $P_{y x}=C-\{(x, y)\}$. In addition, by Lemma 1, there is a Hamiltonian path $P_{x^{(n-2)} y^{(n-2)}}$ for $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$. The desired Hamiltonian cycle can be constructed as $\left\langle x, x^{(n-2)}, P_{x^{(n-2)} y^{(n-2)}}, y^{(n-2)}, y, P_{y x}, x\right\rangle$ (refer to Fig. 2(a)).
Case 3. $f_{0}=2 n-5$. We have $f_{1}=f_{c}=0$. Clearly, there are at most two vertices with degree one in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}$. Three cases are further considered:
Case 3.1. There are no vertices with degree one in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}$. Clearly, there exist two edges (x, y) and (u, v) in F_{0} such that $\{x, y\} \cap\{u, v\}=\emptyset$. Apparently, $\left|F_{0}-\{(x, y),(u, v)\}\right|=2 n-7$. By the induction hypothesis, there exists a Hamiltonian cycle C for $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y),(u, v)\}\right)$. If C contains both (x, y) and (u, v), then let $P_{x u}$ and $P_{v y}$ be two subpaths of C. In addition, by Lemma 2, there exist two paths $P_{y^{(n-2)} x^{(n-2)}}$ and $P_{u^{(n-2)} v^{(n-2)}}$ with $V\left(P_{y^{(n-2)} x^{(n-2)}}\right) \cap V\left(P_{u^{(n-2)} v^{(n-2)}}\right)=\emptyset$ and $V\left(P_{y^{(n-2)} x^{(n-2)}}\right) \cup V\left(P_{u^{(n-2)} v^{(n-2)}}\right)=V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. The desired Hamiltonian cycle can be constructed as $\left\langle x, P_{x u}, u, u^{(n-2)}, P_{u^{(n-2)} v^{(n-2)}}, v^{(n-2)}, v, P_{v y}, y, y^{(n-2)}, P_{y^{(n-2)} x^{(n-2)}}, x^{(n-2)}, x\right\rangle$ (refer to Fig. 2(b)). If C contains only one of them, say (x, y), then let $P_{y x}=C-\{(x, y)\}$. In addition, by Lemma 1 , there is a Hamiltonian path $P_{x^{(n-2)} y^{(n-2)}}$ for $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$. The desired Hamiltonian cycle can be constructed as $\left\langle x, x^{(n-2)}, P_{x^{(n-2)} y^{(n-2)}}, y^{(n-2)}, y, P_{y x}, x\right\rangle$ (refer to Fig. 2(a)). If C contains none of them, then select an edge (x^{\prime}, y^{\prime}) in C. Let $P_{y^{\prime} x^{\prime}}=C-\left\{\left(x^{\prime}, y^{\prime}\right)\right\}$. By Lemma 1, there is a Hamiltonian path $P_{x^{\prime(n-2)} y^{\prime(n-2)}}$ for $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$. The desired Hamiltonian cycle can be constructed as $\left\langle x^{\prime}, x^{\prime(n-2)}, P_{x^{\prime(n-2)} y^{\prime(n-2)}}, y^{\prime(n-2)}, y^{\prime}, P_{y^{\prime} x^{\prime}}, x^{\prime}\right\rangle$.
Case 3.2. There is only one vertex x with degree one in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}$. Let $(u, v),(x, y) \in F_{0}$ such that $\{u, v\} \cap\{x, y\}=\emptyset$. In addition, we have $\left|F_{0}-\{(x, y),(u, v)\}\right|=2 n-7$ and $\delta\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y),(u, v)\}\right)=2\right.$. By the induction hypothesis, there exists a Hamiltonian cycle C for $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y),(u, v)\}\right)$. Since (x, y) is one of the two edges incident with x in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y),(u, v)\}\right)$, it is not difficult to see that C contains (x, y). If C contains (u, v), then let $P_{x u}$ and $P_{v y}$ be two subpaths of C. In addition, by Lemma 2, there exist two paths $P_{y^{(n-2)} x^{(n-2)}}$ and $P_{u^{(n-2)} v^{(n-2)}}$ with $V\left(P_{y^{(n-2)} x^{(n-2)}}\right) \cap V\left(P_{u^{(n-2)} v^{(n-2)}}\right)=\emptyset$ and $V\left(P_{y^{(n-2)} x^{(n-2)}}\right) \cup V\left(P_{u^{(n-2)} v^{(n-2)}}\right)=V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. The desired Hamiltonian cycle can be constructed as $\left\langle x, P_{x u}, u, u^{(n-2)}, P_{u^{(n-2)} v^{(n-2)}}, v^{(n-2)}, v, P_{v y}, y, y^{(n-2)}, P_{y^{(n-2)} x^{(n-2)}}, x^{(n-2)}, x\right\rangle$ (refer to Fig. 2(b)). If C does not contain (u, v), then let $P_{y x}=C-\{(x, y)\}$. In addition, by Lemma 1, there is a Hamiltonian path $P_{x^{(n-2)} y^{(n-2)}}$ for $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}-F_{1}$. The desired Hamiltonian cycle can be constructed as $\left\langle x, x^{(n-2)}, P_{x^{(n-2)} y^{(n-2)}}, y^{(n-2)}, y, P_{y x}, x\right\rangle$ (refer to Fig. 2(a)).
Case 3.3. There are two vertices x and u with degree one in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-F_{0}$. Notice that $(x, u) \in F_{0}$, for otherwise it will have $f_{0} \geq 2 n-4$, which is a contradiction. Let $(u, v),(x, y) \in F_{0}$ such that $\{u, v\} \cap\{x, y\}=\emptyset$. In addition, we have $\left|F_{0}-\{(x, y),(u, v)\}\right|=2 n-7$ and $\delta\left(T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y)\},\{u, v\}\right)\right)=2$. By the induction hypothesis, there exists a Hamiltonian cycle C for $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y),(u, v)\}\right)$. Since (x, y) is one of the two edges incident with x and (u, v) is one of the two edges incident with u in $T Q_{n-2}^{0,0} \cup T Q_{n-2}^{1,0}-\left(F_{0}-\{(x, y),(u, v)\}\right)$, it is not difficult to see that C contains both (x, y) and (u, v). Let $P_{x u}$ and $P_{v y}$ be two subpaths of C. In addition, by Lemma 2, there exist two paths $P_{y^{(n-2)} x^{(n-2)}}$ and $P_{u^{(n-2)} v^{(n-2)}}$ with $V\left(P_{y^{(n-2)} x^{(n-2)}}\right) \cap V\left(P_{u^{(n-2)} v^{(n-2)}}\right)=\emptyset$ and $V\left(P_{y^{(n-2)} x^{(n-2)}}\right) \cup V\left(P_{u^{(n-2)} v^{(n-2)}}\right)=V\left(T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}\right)$. The desired Hamiltonian cycle can be constructed as $\left\langle x, P_{x u}, u, u^{(n-2)}, P_{u^{(n-2)} v^{(n-2)}}, v^{(n-2)}, v, P_{v y}, y, y^{(n-2)}, P_{y^{(n-2)} x^{(n-2)}}, x^{(n-2)}, x\right\rangle$ (refer to Fig. 2(b)).

Claim Proof. Suppose that $x=x_{n-1} x_{n-2} \ldots x_{0}$ (therefore $y=\overline{x_{n-1}} x_{n-2} \ldots x_{0}$). If $P_{n-3}(x)=0$ (therefore $P_{n-3}(y)=0$), then $x^{(n-2)}=\overline{x_{n-1}} \overline{x_{n-2}} \ldots x_{0}$ and $y^{(n-2)}=x_{n-1} \overline{x_{n-2}} \ldots x_{0}$. If $P_{n-3}(x)=1$ (therefore $P_{n-3}(y)=1$), then $x^{(n-2)}=x_{n-1} \overline{x_{n-2}} \ldots x_{0}$ and $y^{(n-2)}=\overline{x_{n-1}} \overline{x_{n-2}} \ldots x_{0}$. As a result, $\left(x^{(n-2)}, y^{(n-2)}\right)$ is an edge in $T Q_{n-2}^{0,1} \cup T Q_{n-2}^{1,1}$.

Our result is optimal with respect to the number of edge faults tolerated since there are distributions of $2 n-4$ edge faults over a $T Q_{n}$ such that no fault-free Hamiltonian cycle can be found in the faulty $T Q_{n}$. Consider that two vertices $u=0^{n}$ (n consecutive 0 's) and $v=0^{n-3} 101$ of $T Q_{n}$. Suppose that (u, u^{d}) and (v, v^{d}) are fault-free if $d \in\{0,2\}$, and are faulty if $d \in\{1,3,4, \ldots, n-1\}$. Refer to Fig. 6, any fault-free cycle containing nodes 0^{n} and $0^{n-3} 101$ must contain edges ($0^{n}, 0^{n-1} 1$), $\left(0^{n}, 0^{n-3} 10^{2}\right),\left(0^{n-3} 101,0^{n-1} 1\right)$, and $\left(0^{n-3} 101,0^{n-3} 10^{2}\right)$. This is because edges $\left(0^{n}, 0^{n-1} 1\right)$ and $\left(0^{n}, 0^{n-3} 10^{2}\right)$ (respectively, $\left(0^{n-3} 101,0^{n-1} 1\right)$ and $\left(0^{n-3} 101,0^{n-3} 10^{2}\right)$) are the only two fault-free edges incident with 0^{n} (respectively, $0^{n-3} 101$). Since $\left\langle 0^{n}, 0^{n-1} 1,0^{n-3} 101,0^{n-3} 10^{2}, 0^{n}\right\rangle$ is a cycle, it is easy to see that no fault-free Hamiltonian cycle exists in faulty $T Q_{n}$.

Fig. 6. A distribution of $2 n-4$ edge faults in $T Q_{n}$.

5. Discussion and conclusion

In this paper, with the assumption of at least two fault-free edges incident with each vertex, we have shown that there exists a fault-free Hamiltonian cycle in an n-dimensional twisted cube $\left(T Q_{n}\right)$ with up to $2 n-5$ edge faults. A recursive algorithm for constructing the fault-free Hamiltonian cycle can easily result from the proof of Theorem 1.

With the same discussion in [14], we can verify that the assumption is practically meaningful by evaluating its probability of occurrence, which is very close to one, even if n is small.

Many properties of $T Q_{3}^{0, i} \cup T Q_{3}^{1, i}$ are hard to derive. Therefore, it seems that using an exhaustive algorithm to justify these properties is necessary. It just took several seconds to run the program by a personal computer with a 2.7 GHz CPU . Additionally, for the same reason, we still need to use a program to construct fault-free Hamiltonian cycles in a faulty $T Q_{5}$ when one specific situation is confronted (refer to Case 1.2 in the proof of Theorem 1). There are 32 nodes in $T Q_{5}$ and the degree of each node is five, thus, the size of the search tree is about $4^{32}=1.84467441 \times 10^{19}$. In this situation, it needs to traverse $16 \times\binom{ 32}{2}=7936$ search trees. It took about six hours to run the program. If we construct fault-free Hamiltonian cycles in a faulty $T Q_{5}$ in all cases, we need to traverse $\binom{80}{5}=24040016$ search trees. As a result, it will need about $(24040016 / 7936) \times 6=18175 \mathrm{~h}$ to run this program.

In addition, exploration of the conditional fault-tolerant Hamiltonicity of other networks such as arrangement graphs, star graphs, and pancake graphs are our topics for further research.

Acknowledgments

The author would like to express his gratitude to the anonymous reviewers for their valuable comments and suggestions that improved the paper a lot. The author is also grateful to the National Science Council of the Republic of China, Taiwan for financially supporting this research under Contract No. NSC 94-2213-E-239-014.

References

[1] S. Abraham, K. Padmanabhan, The twisted cube topology for multiprocessors: A study in network asymmetry, Journal of Parallel and Distributed Computing 13 (1991) 104-110.
[2] S.G. Akl, Parallel Computation: Models and Methods, Prentice Hall, NJ, 1997.
[3] N. Ascheuer, Hamiltonian path problems in the on-line optimization of flexible manufacturing systems, Ph.D. Thesis, University of Technology, Berlin, Germany, 1995. Also available at: ftp://ftp.zib.de/pub/zib-publications/reports/TR-96-03.ps.
[4] Y.A. Ashir, I.A. Stewart, Fault-tolerant embedding of Hamiltonian circuits in k-ary n-cube, SIAM Journal on Discrete Mathematics 15 (3)(2002) $317-328$.
[5] M.Y. Chan, S.J. Lee, On the existence of Hamiltonian circuits in faulty hypercubes, SIAM Journal on Discrete Mathematics 4(4) (1991) $511-527$.
[6] C.P. Chang, J.N. Wang, L.H. Hsu, Topological properties of twisted cubes, Information Sciences 113 (1999) 147-167.
[7] K. Day, A.E. Al-Ayyoub, Fault diameter of k-ary n-cube networks, IEEE Transactions on Parallel and Distributed Systems 8 (9) (1997) 903-907.
[8] K. Diks, A. Pele, Efficient gossiping by packets in networks with random faults, SIAM Journal on Discrete Mathematics 9 (1) (1996) 7-18.
[9] A.H. Esfahanian, S.L. Hakimi, Fault-tolerant routing in de Bruijn communication networks, IEEE Transactions on Computers C-34 (9) (1958) $777-788$.
[10] J.S. Fu, Fault-tolerant cycle embedding in the hypercube, Parallel computing 29 (6) (2003) 821-832.
[11] J.S. Fu, The supplements of fault-free Hamiltonian cycles in twisted cubes with conditional link faults, http://web.nuu.edu.tw/~jsfu/TQ_program/ Twisted_cube.htm.
[12] P.A.J. Hibers, M.R.J. Koopman, J.L.A. van de Snepscheut, The twisted cube, in: Proceedings of the Conference on Parallel Architectures and Languages Europe, in: Lecture Notes in Computer Science, Springer, 1987, pp. 152-159.
[13] W.T. Huang, J.M. Tan, C.N. Hung, L.H. Hsu, Fault-tolerant Hamiltonianicity of twisted cubes, Journal of Parallel and Distributed Computing 62 (2002) 591-604.
[14] H.S. Hung, J.S. Fu, G.H. Chen, Fault-free Hamiltonian cycles in crossed cubes with conditional link faults, Information Science 177 (2007) $5664-5674$.
[15] F.T. Leighton, Introduction to Parallel Algorithms and Architecture: Arrays. Trees. Hypercubes, Morgan Kaufman, CA, 1992.
[16] A.C. Liang, S. Bhattacharya, W.T. Tsai, Fault-tolerant multicasting on hypercubes, Journal of Parallel and Distributed Computing 23 (1994) $418-428$.
[17] Y. Saad, M.H. Schultz, Topological properties of hypercubes, IEEE Transactions on Computers 37 (7) (1988) 867-872.
[18] J. Wu, Safety levels - An efficient mechanism for achieving reliable broadcasting in hypercubes, IEEE Transactions on Computers 44 (5) (1995) 702-706.
[19] P.J. Yang, S.B. Tien, C.S. Raghavendra, Embedding of rings and meshes onto faulty hypercubes using free dimensions, IEEE Transactions on Computers 43 (5) (1994) 608-613.
[20] T.K. Li, M.C. Yang, J.M. Tan, L.H. Hsu, On embedding cycle in faulty twisted cubes, Information Sciences 176 (2006) 676-690.
[21] D.B. West, Introduction to Graph Theory, 2nd edition, Prenctice Hall, Upper Saddle River, 2001.

[^0]: * Tel.: +886 37 381527; fax: +886 37362809.

 E-mail address: jsfu@nuu.edu.tw.

