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a b s t r a c t

The n-dimensional twisted cube, denoted by TQ n, a variation of the hypercube, possesses
some properties superior to the hypercube. In this paper, assuming that each vertex is
incident with at least two fault-free links, we show that TQ n can tolerate up to 2n− 5 edge
faults, while retaining a fault-free Hamiltonian cycle. The result is optimal with respect to
the number of edge faults tolerated.
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1. Introduction

The hypercube is a popular interconnection networkwithmany attractive properties such as regularity, symmetry, small
diameter, strong connectivity, recursive construction, partition ability, and relatively low link complexity [17]. The twisted
cube [12], as one of the important variations of the hypercube, and derived by changing some connections of the hypercube
according to specific rules, possesses some desirable features: its diameter, wide diameter, and fault diameter are about
half of those of the comparable hypercube [6]. An n-dimensional twisted cube is (n − 3)-Hamiltonian connected [13] and
(n− 2)-pancyclic [20], whereas the hypercube is not. Moreover, its performance is superior to that of the hypercube [1].
An embedding of one guest graph G into another host graph H is a one-to-one mapping f from the vertex set of G to the

vertex set of H [15]. An edge of G corresponds to a path of H under f . Linear arrays and rings, two of the most fundamental
networks for parallel and distributed computation, are suitable for designing simple algorithms with low communication
costs. Numerous efficient algorithms designed on linear arrays and rings for solving various algebraic problems and graph
problems can be found in [2,14]. Linear arrays and rings can also be used as control/data flow structures for distributed
computation in arbitrary networks. There is an application of longest paths to a practical problem that was encountered in
the on-line optimization of a complex Flexible Manufacturing System (see [3]). These applications motivate the embedding
of paths and cycles in networks.
Since processor or link faults may develop in real world networks, it is important to consider faulty networks. The

problems of finding the diameter [7], routing [9], multicasting [16], broadcasting [18], gossiping [8], and embedding [19]
have been solved on various faulty networks. The fault-tolerant Hamiltonicity [10] measures the performance of the
Hamiltonian property in the faulty networks.
It was shown in [5] (respectively, [4,14]) that if each vertex of an n-dimensional hypercube (respectively, k-ary n-cube

and n-dimensional crossed cube) is incident with at least two fault-free edges, then it contains a fault-free Hamiltonian
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cycle, even if there are 2n − 5 (respectively, 4n − 5 and 2n − 5) edge faults. In this paper, we show that if each vertex of
an n-dimensional twisted cube is incident with at least two fault-free edges, then it contains a fault-free Hamiltonian cycle,
even if there are 2n− 5 edge faults. The rest of this paper is organized as follows. In Section 2, the structure of the twisted
cube is elaborated, and some definitions and notations used throughout this paper are introduced. In Section 3, a basic idea
is given and some properties of the twisted cube are derived. In Section 4, under the assumption that each vertex is incident
with at least two fault-free edges, we show that an n-dimensional twisted cube contains a fault-free Hamiltonian cycle, even
if there are up to 2n − 5 edge faults. Moreover, we also show that this result is optimal. In Section 5, this paper concludes
with some remarks.

2. Preliminaries

We usually use a graph to represent the topology of an interconnection network. A graph G is a triple consisting of a
vertex set V (G), an edge set E(G), and a relation that associates with each edge two vertices called its endpoints [21]. We
use (u, v) to denote an edge whose endpoints are u and v. The degree of vertex v in G, written as dG(v), is the number of
edges incident to v. In addition, δ(G) = min{dG(v)|v ∈ V (G)}.
A path Px0xt = 〈x0, x1, . . . , xt〉, is a sequence of nodes such that two consecutive nodes are adjacent. In addition, Px0xt

is a cycle if x0 = xt . A path 〈x0, x1, . . . , xt〉 may contain other subpath, denoted as 〈x0, x1, . . . , xi, Pxixj , xj, . . . xt〉, where
Pxixj = 〈xi, xi+1, . . . xj−1, xj〉. A path (or cycle) in G is called a Hamiltonian path (or Hamiltonian cycle) if it contains every
vertex of G exactly once. G is called Hamiltonian if there is a Hamiltonian cycle in G, and Hamiltonian connected if there is a
Hamiltonian path between every two distinct vertices of G. A Hamiltonian network can embed a longest ring with dilation
1, congestion 1, load 1, and expansion 1.
Consider F ⊂ G = V (G)∪ E(G), i.e., F is the set of edge faults and vertex faults. We say G is k-Hamiltonian (respectively,

k-Hamiltonian connected) if G− F is Hamiltonian (respectively, Hamiltonian connected) for arbitrary F with |F | ≤ k. Note
that G cannot be (δ(G)− 1)-Hamiltonian when δ(G− F) = 1 and |F | = δ(G)− 1. However, if δ(G− F) > 1 can be assured,
then G − F could be Hamiltonian even when |F | > δ(G) − 1. Actually, regarding F as the set of edge faults, δ(G − F) > 1
means each vertex in G− F is incident with at least two fault-free edges.
The vertex set of the twisted n-cube TQ n is the set of all binary strings of length n, where n is odd. Let b = bn−1bn−2 . . . b0

denote one vertex in TQ n. For i ∈ {0, 1, . . . , n− 1}, let the i-th parity function Pi(b) = bi⊕ bi−1⊕· · ·⊕ b0, where⊕ denotes
the exclusive-or operation. The TQ n can be defined recursively as follows: TQ 1 is a complete graph with two vertices 0 and
1. Suppose that n ≥ 3. We can decompose the vertices of TQ n into four sets, TQ

0,0
n−2, TQ

0,1
n−2, TQ

1,0
n−2, and TQ

1,1
n−2, where TQ

i,j
n−2

consists of those vertices b with bn−1 = i and bn−2 = j. For each ij ∈ {00, 01, 10, 11}, the induced subgraph of TQ
i,j
n−2

in TQ n is isomorphic to TQ n−2. Edges that connect these four subtwisted cubes can be described as follows: an (n − 1)-
edge joins vertices b = bn−1bn−2 . . . b0 and b(n−1) = bn−1bn−2 . . . b0. An (n − 2)-edge joins vertices b and b(n−2), where
b(n−2) = bn−1 bn−2 . . . b0 when Pn−3(b) = 0, and b(n−2) = bn−1bn−2 . . . b0 when Pn−3(b) = 1. Note that (n − 1)-edges
connect TQ 0,in−2 and TQ

1,i
n−2 and (n− 2)-edges connect TQ

0,0
n−2 ∪ TQ

1,0
n−2 and TQ

0,1
n−2 ∪ TQ

1,1
n−2, where i = 0 or 1. Fig. 1 depicts TQ 5,

containing four sets, TQ 0,03 , TQ 0,13 , TQ 1,03 , and TQ
1,1
3 . Formally, TQ n can be defined as follows.

Definition 1. The vertex set of TQ n is {bn−1bn−2 . . . b0|bi ∈ {0, 1} for all 0 ≤ i ≤ n − 1}, where n is odd. Vertex
b = bn−1bn−2 . . . b0 is adjacent to vertex bd, for all 0 ≤ d ≤ n − 1, where bd = bn−1bn−2 . . . bd . . . b0 if (1) d is even or
(2) d is odd and Pd−1(b) = 1, and bd = bn−1bn−2 . . . bd+1 bd . . . b0 if d is odd and Pd−1(b) = 0. The edge joining b and bd is
referred to as a d-edge.

Furthermore, we use bij to denote (bi)j. Note it is possible that bij 6= bji. The following lemma shown in [13] will be used
often.

Lemma 1 ([13]). For n ≥ 3, TQ n (respectively, TQ 0,in ∪ TQ
1,i
n for i ∈ {0, 1}) is (n − 2)-Hamiltonian (respectively, (n − 1)-

Hamiltonian) and (n− 3)-Hamiltonian connected (respectively, (n− 2)-Hamiltonian connected).

3. Basic idea and some properties

Our method is based on a recursive construction. We will partition TQ n into TQ
0,1
n−2 ∪ TQ

1,1
n−2 and TQ

0,0
n−2 ∪ TQ

1,0
n−2 (Then

TQ 0,in−2 ∪ TQ
1,i
n−2 can be partitioned into TQ

0,i
n−2 and TQ

1,i
n−2, for i ∈ {0, 1}). Let F ⊂ E(TQ n), F0 = F ∩ E(TQ

0,0
n−2 ∪ TQ

1,0
n−2), and

F1 = F ∩ E(TQ
0,1
n−2∪ TQ

1,1
n−2), where |F | = 2n−5. A simple idea is to construct a Hamiltonian path for TQ

0,0
n−2∪ TQ

1,0
n−2− F0 and

a Hamiltonian path for TQ 0,1n−2 ∪ TQ
1,1
n−2 − F1, and then to combine these two paths into a Hamiltonian cycle in TQ n − F .

In addition, without loss of generality, we can assume |F0| ≥ |F1|. In general, we will first construct a Hamiltonian
cycle C in TQ 0,0n−2 ∪ TQ

1,0
n−2 − F0, and select an edge, says (x, y) in C . Then, we construct a Hamiltonian path Py(n−2)x(n−2) in

TQ 0,1n−2 ∪ TQ
1,1
n−2 − F1. As a result, we can construct a Hamiltonian cycle in TQ n − F by combining C − {(x, y)}, Py(n−2)x(n−2) ,

(x, x(n−2)), and (y, y(n−2)) (see Fig. 2(a)). When F = F0, it is possible that the Hamiltonian cycle in TQ
0,0
n−2 ∪ TQ

1,0
n−2−

F0 cannot be constructed. However, we can select two edges in F0, says (u, v) and (x, y), and construct a Hamiltonian
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Fig. 1. TQ 5 (contains TQ
0,0
3 , TQ 0,13 , TQ 1,03 , and TQ

1,1
3 ).

Fig. 2. Construction of a Hamiltonian cycle in TQ n − F .

cycle C in TQ 0,0n−2 ∪ TQ
1,0
n−2 − (F0− {(u, v), (x, y)}). Moreover, we can use following lemma to construct two disjoint paths

Pu(n−2),v(n−2) and Px(n−2),y(n−2) in TQ
0,1
n−2 ∪ TQ

1,1
n−2. Then we can construct a Hamiltonian cycle in TQ n − F by combining

C − {(u, v), (x, y)}, Pu(n−2),v(n−2) , Px(n−2),y(n−2) , (x, x
(n−2)), (y, y(n−2)), (u, u(n−2)), and (v, v(n−2)) into a Hamiltonian cycle in

TQ n (see Fig. 2(b)).

Lemma 2. Let x, y, u, and v be four distinct vertices in TQ n (respectively, TQ
0,i
n−2 ∪ TQ

1,i
n−2 for i ∈ {0, 1}), where n ≥ 5 is an odd

integer. There exist Puv and Pxy such that V (Puv)∩V (Pxy) = ∅ and V (Puv)∪V (Pxy) = V (TQ n) (respectively,= V (TQ
0,i
n−2∪TQ

1,i
n−2)).

Proof. We proceed by induction on n. The lemma holds for TQ 0,i3 ∪ TQ
1,i
3 with i ∈ {0, 1} (i.e., n = 5), which can be verified

by a computer exhausted search program [11]. Two steps can complete the proof. First, for all odd integers n ≥ 5, we show
that if the lemma holds for TQ 0,in−2 ∪ TQ

1,i
n−2 then the lemma holds for TQ n, , where i ∈ {0, 1}. Secondly, for all odd integers

n ≥ 5, we show that if the lemma holds for TQ n then the lemma holds for TQ 0,in ∪ TQ
1,i
n , where i ∈ {0, 1}. However, since the

proof of the second step is easier than and similar to that of first step, we only show the first step. That is, for all odd integers
n ≥ 5, we assume that there exist Pu′v′ and Px′y′ such that V (Pu′v′)∩V (Px′y′) = ∅ and V (Pu′v′)∪V (Px′y′) = V (TQ

0,i
n−2∪TQ

1,i
n−2),

where x′, y′, u′, and v′ are four arbitrary distinct vertices in TQ 0,in−2 ∪ TQ
1,i
n−2 and i ∈ {0, 1}. We want to show that there exist
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Fig. 3. Construction of Puv and Pxy (Lemma 2).

Puv and Pxy such that V (Puv) ∩ V (Pxy) = ∅ and V (Puv) ∪ V (Pxy) = V (TQ n), where x, y, u, and v are four arbitrary distinct
vertices in TQ n. Four cases are considered:
Case 1. u ∈ V (TQ 0,0n−2 ∪ TQ

1,0
n−2) and x ∈ V (TQ

0,1
n−2 ∪ TQ

1,1
n−2). Four cases are further considered:

Case 1.1. v ∈ V (TQ 0,0n−2 ∪ TQ
1,0
n−2) and y ∈ V (TQ

0,1
n−2 ∪ TQ

1,1
n−2). By Lemma 1, there is a Hamiltonian path Puv in TQ

0,0
n−2 ∪ TQ

1,0
n−2

and another Hamiltonian path Pxy in TQ
0,1
n−2 ∪ TQ

1,1
n−2, which are the desired Puv and Pxy, respectively.

Case 1.2. v ∈ V (TQ 0,1n−2 ∪ TQ
1,1
n−2) and y ∈ V (TQ

0,0
n−2 ∪ TQ

1,0
n−2). By Lemma 1, there is a Hamiltonian pathPuy in TQ

0,0
n−2 ∪ TQ

1,0
n−2.

An edge (s, t) in Puy with s(n−2), t(n−2) /∈ {x, v} can be found. Let Pus and Pty denote two subpaths of Puy. In addition, by the
induction hypothesis; there exist Ps(n−2)v and Pxt(n−2) in TQ

0,1
n−2∪TQ

1,1
n−2 such that V (Ps(n−2)v)∩V (Pxt(n−2)) = ∅ and V (Ps(n−2)v)∪

V (Pxt(n−2)) = V (TQ
0,1
n−2 ∪ TQ

1,1
n−2). The desired Puv and the desired Pxy can be constructed as 〈u, Pus, s, s

(n−2), Ps(n−2)v, v〉 and
〈x, Pxt(n−2) , t

(n−2), t, Pty, y〉, respectively (see Fig. 3(a)).
Case 1.3. v, y ∈ V (TQ 0,0n−2 ∪ TQ

1,0
n−2). We select a vertex s in V (TQ

0,0
n−2 ∪ TQ

1,0
n−2) - {u, v, y} such that s

(n−2)
6= x. By the induction

hypothesis, there are Puv and Psy in TQ
0,0
n−2 ∪ TQ

1,0
n−2 such that V (Puv) ∩ V (Psy) = ∅, V (Puv) ∪ V (Pys) = V (TQ

0,0
n−2 ∪ TQ

1,0
n−2). In

addition, by Lemma 1, there exists a Hamiltonian path Pxs(n−2) in TQ
0,1
n−2 ∪ TQ

1,1
n−2. The Puv in TQ

0,0
n−2 ∪ TQ

1,0
n−2 is the desired Puv .

The desired Pxy can be constructed as 〈x, Pxs(n−2) , s
(n−2), s, Psy, y〉 (see Fig. 3(b)).

Case 1.4. v, y ∈ V (TQ 0,1n−2 ∪ TQ
1,1
n−2). The construction of the desired Puv and Pxy is similar to that of Case 1.3.

Case 2. x ∈ V (TQ 0,0n−2 ∪ TQ
1,0
n−2) and u ∈ V (TQ

0,1
n−2 ∪ TQ

1,1
n−2). The construction is similar to that of Case 1.

Case 3. u, x ∈ V (TQ 0,0n−2 ∪ TQ
1,0
n−2). If v ∈ V (TQ

0,0
n−2 ∪ TQ

1,0
n−2) and y ∈ V (TQ

0,1
n−2 ∪ TQ

1,1
n−2) or v ∈ V (TQ

0,1
n−2 ∪ TQ

1,1
n−2) and

y ∈ V (TQ 0,0n−2 ∪ TQ
1,0
n−2), the construction is similar to that of Case 1.3.

If v, y ∈ V (TQ 0,0n−2 ∪ TQ
1,0
n−2), then by the induction hypothesis, there exist P

′
uv and Pxy in TQ

0,0
n−2 ∪ TQ

1,0
n−2 such that V (P

′
uv)∩

V (Pxy) = ∅ and V (P ′uv) ∪ V (Pxy) = V (TQ
0,0
n−2 ∪ TQ

1,0
n−2). The Pxy in TQ

0,0
n−2 ∪ TQ

1,0
n−2 is the desired Pxy. We arbitrarily select

an edge (s, t) in P ′uv and let Pus and Ptv be two subpaths of P
′
uv . By Lemma 1, there exist a Hamiltonian path Ps(n−2)t(n−2) in

TQ 0,1n−2 ∪ TQ
1,1
n−2. The desired Puv can be constructed as 〈u, Pus, s, s

(n−2), Ps(n−2)t(n−2) , t
(n−2), t, Ptv, v〉 (see Fig. 3(c)).

If v, y ∈ V (TQ 0,1n−2 ∪ TQ
1,1
n−2), then select two vertices s, t from V (TQ

0,0
n−2 ∪ TQ

1,0
n−2)− {x, u} such that s

(n−2), t(n−2) /∈ {v, y}.
By the induction hypothesis, there exist Pus and Pxt in TQ

0,0
n−2 ∪ TQ

1,0
n−2 such that V (Pus) ∩ V (Pxt) = ∅ and V (Pus) ∪

V (Pxt) = V (TQ
0,0
n−2 ∪ TQ

1,0
n−2). Also, by the induction hypothesis, there exist Pt(n−2)y and Ps(n−2)v in TQ

0,1
n−2 ∪ TQ

1,1
n−2 such that

V (Pt(n−2)y) ∩ V (Ps(n−2)v) = ∅ and V (Pt(n−2)y) ∪ V (Ps(n−2)v) = V (TQ
0,1
n−2 ∪ TQ

1,1
n−2). The desired Puv and the desired Pxy can be

constructed as 〈u, Pus, s, s(n−2), Ps(n−2)v, v〉 and 〈x, Pxt , t, t
(n−2), Pt(n−2)y, y〉, respectively (see Fig. 3(d)).
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Case 4. u, x ∈ V (TQ 0,1n−2 ∪ TQ
1,1
n−2). The construction of the desired Puv and Pxy is similar to that of Case 3. �

Remember that when we use the method of Fig. 2(a), we need to construct a Hamiltonian path Py(n−2)x(n−2) in TQ
0,1
n−2 ∪

TQ 1,1n−2−F1.We can certainly construct Py(n−2)x(n−2) when |F1| ≤ n−4 because TQ
0,1
n−2∪TQ

1,1
n−2 is (n−4)-Hamiltonian connected

(by Lemma 1). However it is possible that |F1| = n− 3 and Lemma 1 can not be used. It is impossible that |F1| ≥ n− 2 since
2n+ 5 ≥ |F | ≥ |F0| + |F1| and |F0| ≥ |F1|. Lemmas 3–5 are needed to construct Py(n−2)x(n−2) when |F1| = n− 3.

Lemma 3. Let C be a Hamiltonian cycle in TQ 0,0n−2 ∪ TQ
1,0
n−2 (respectively, TQ

0,1
n−2 ∪ TQ

1,1
n−2). There exist two edges (x, y) and (u, v)

in C such that (x(n−2), y(n−2)) and (u(n−2), v(n−2)) are also two edges in TQ 0,1n−2 ∪ TQ
1,1
n−2 (respectively, TQ

0,0
n−2 ∪ TQ

1,0
n−2), where

vertices x, y, u, and v are distinct.

Proof. Suppose that C is a Hamiltonian cycle in TQ 0,0n−2 ∪ TQ
1,0
n−2, there are at least two edges (x, y) and (u, v) in C such

that x, u ∈ TQ 0,0n−2 and y, v ∈ TQ
1,0
n−2. Let x = 00an−3an−4 . . . a0, y = 10an−3an−4 . . . a0, u = 00bn−3bn−4 . . . b0 and

v = 10bn−3bn−4 . . . b0. Clearly, we have Pn−3(x) = Pn−3(y) and Pn−3(u) = Pn−3(v). If Pn−3(x) = 0, then according to
the Definition 1, we have x(n−2) = 11an−3an−4 . . . a0 and y(n−2) = 01an−3an−4 . . . a0. Additionally, if Pn−3(x) = 1, then
x(n−2) = 01an−3an−4 . . . a0 and y(n−2) = 11an−3an−4 . . . a0. Therefore, (x(n−2), y(n−2)) is an edge in TQ

0,1
n−2 ∪ TQ

1,1
n−2. We can

show that (u(n−2), v(n−2)) is an edge in TQ 0,1n−2 ∪ TQ
1,1
n−2 by similar discussion. In addition, the discussion is similar when C is

in TQ 0,1n−2 ∪ TQ
1,1
n−2. �

Lemma 4. Let (x, y) be an arbitrary edge in TQ n (respectively, TQ 0,in ∪ TQ
1,i
n for i ∈ {0, 1}) and let F ⊂ E(TQ n)with |F | ≤ n− 2

(respectively, F ′ ⊂ E(TQ 0,in ∪ TQ
1,i
n )with |F

′
| ≤ n− 1), where n ≥ 3 is odd. Then, there exists a Hamiltonian path Pxy in TQ n− F

(respectively, TQ 0,in ∪ TQ
1,i
n − F

′).

Proof. We proceed by induction on n. It is not difficult to check that the lemma holds for TQ 3. Two steps can complete the
proof. First, for all odd integers n ≥ 3, we show that if the lemma holds for TQ n, then the lemma holds for TQ 0,in ∪ TQ

1,i
n ,

where i ∈ {0, 1}. Secondly, for all odd integers n ≥ 5, we show that if the lemma holds for TQ 0,in−2 ∪ TQ
1,i
n−2, then the lemma

holds for TQ n, where i ∈ {0, 1}. In addition, since the proof of the first step is easier than and similar to that of the second
step, we only show the second step. That is, for all odd integers n ≥ 5, we assume that there is a Hamiltonian path Px′y′ in
TQ 0,in−2 ∪ TQ

1,i
n−2 − F

′ if F ′ ⊂ E(TQ 0,in−2 ∪ TQ
1,i
n−2) and |F

′
| ≤ n − 3 where (x′, y′) ∈ E(TQ 0,in−2 ∪ TQ

1,i
n−2) and i ∈ {0, 1}. We will

show that there is a Hamiltonian path Pxy in TQ n − F if F ⊂ E(TQ n) and |F | ≤ n− 2, where (x, y) ∈ E(TQ n).
Let F0 = F ∩ E(TQ

0,0
n−2 ∪ TQ

1,0
n−2), F1 = F ∩ E(TQ

0,1
n−2 ∪ TQ

1,1
n−2), and Fc = F ∩ {(u, u

(n−2))|u ∈ TQ n}. Additionally, let
f0 = |F0|, f1 = |F1|, fc = |Fc |. Without loss of generality, we assume f0 ≥ f1. Two cases are considered:
Case 1. f0 ≤ n− 3. Note that f1 ≤ n− 4 since f0 ≥ f1, f0+ f1 ≤ n− 2 and n− 4 ≥ b(n− 2)/2c (remember that n ≥ 5). Three
cases are further considered:
Case 1.1. x ∈ V (TQ 0,0n−2∪ TQ

1,0
n−2) and y ∈ V (TQ

0,1
n−2∪ TQ

1,1
n−2); that is, y = x

(n−2). Since fc ≤ n−2 and there are n−1 vertices in
TQ 0,0n−2 ∪ TQ

1,0
n−2 adjacent to x, we can find a vertex s ∈ V (TQ

0,0
n−2 ∪ TQ

1,0
n−2) such that s is a neighbor of x and (s, s

(n−2)) /∈ Fc . By
the induction hypothesis (since f0 ≤ n− 3), there is a Hamiltonian path Pxs in TQ

0,0
n−2 ∪ TQ

1,0
n−2− F0. Additionally, by Lemma 1

(since f1 ≤ n − 4), there exists a Hamiltonian path Ps(n−2)y in TQ
0,1
n−2 ∪ TQ

1,1
n−2 − F1. The desired Pxy can be constructed as

〈x, Pxs, s, s(n−2), Ps(n−2)y, y〉 (see Fig. 4(a)).
Case 1.2. x, y ∈ V (TQ 0,0n−2 ∪ TQ

1,0
n−2). By the induction hypothesis (since f0 ≤ n − 3), there is a Hamiltonian path P

′
xy in

TQ 0,0n−2∪TQ
1,0
n−2− F0. Moreover, there exists an edge (u, v) in P

′
xy such that (u, u

(n−2)), (v, v(n−2)) /∈ Fc since there are 2n−1−1
edges in P ′xy and 2

n−1
− 1 > 2(n − 2) ≥ 2fc . (This is because an edge in Fc eliminates two choices in P ′xy.) Additionally, by

Lemma 1 (since f1 ≤ n− 4), there is a Hamiltonian path Pu(n−2)v(n−2) in TQ
0,1
n−2 ∪ TQ

1,1
n−2 − F1. Let Pxu and Pvy be two subpaths

of P ′xy. The desired Pxy can be constructed as 〈x, Pxu, u, u
(n−2), Pu(n−2)v(n−2) , v

(n−2), v, Pvy, y〉 (see Fig. 4(b)).
Case 1.3. x, y ∈ V (TQ 0,1n−2 ∪ TQ

1,1
n−2). When f0 ≤ n − 4, the construction is similar to that of Case 1.2. When f0 = n − 3, then

f1 + fc = 1. If fc =0, then by the induction hypothesis (since f1 = 1), there is a Hamiltonian path P ′xy in TQ
0,1
n−2 ∪ TQ

1,1
n−2 − F1.

Clearly, P ′xy ∪ {(x, y)} is a Hamiltonian cycle in TQ
0,1
n−2 ∪ TQ

1,1
n−2 − F1. By Lemma 3, there exists an edge (u, v) in P

′
xy such that

(u(n−2), v(n−2)) is also an edge in TQ 0,0n−2 ∪ TQ
1,0
n−2, where vertices x, y, u, and v are distinct. By the induction hypothesis (since

f0 = n−3), there is a Hamiltonian path Pu(n−2)v(n−2) in TQ
0,0
n−2∪TQ

1,0
n−2− F0. Let Pxu and Pvy be two subpaths of P

′
xy. The desired

Pxy can be constructed as 〈x, Pxu, u, u(n−2), Pu(n−2)v(n−2) , v
(n−2), v, Pvy, y〉.

If f1 = 0, then we have fc = 1. Let (u, v) be an edge in TQ 0,0n−2 ∪ TQ
1,0
n−2 such that u

(n−2), v(n−2) /∈ {x, y}
and (x, x(n−2)), (x, x(n−2)) /∈ Fc . By Lemma 2, there exist two paths Pxu(n−2) and Pv(n−2)y in TQ

0,1
n−2 ∪ TQ

1,1
n−2 such that

V (Pxu(n−2)) ∩ V (Pv(n−2)y) = ∅ and V (Pxu(n−2)) ∪ V (Pv(n−2)y) = V (TQ
0,1
n−2 ∪ TQ

1,1
n−2). In addition, by the induction hypothesis

(since f0 = n − 3), there is a Hamiltonian path Puv in TQ
0,0
n−2 ∪ TQ

1,0
n−2 − F0. The desired Pxy can be constructed as

〈x, Pxu(n−2) , u
(n−2), u, Puv, v, v(n−2), Pv(n−2)y, y〉 (see Fig. 4(c)).
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Fig. 4. Construction of Pxy in TQ n − F (Lemma 4).

Case 2. f0 = n− 2. We have f1 = fc = 0. Three cases are further considered:
Case 2.1. x ∈ V (TQ 0,0n−2∪TQ

1,0
n−2) and y ∈ V (TQ

0,1
n−2∪TQ

1,1
n−2). Suppose that (u, v) ∈ F0. If x ∈ {u, v} (suppose that (x, s) = (u, v)),

then |F0−{(x, s)}| = n−3 and the construction is similar to that of Case 1.1. In the rest of the proof, we assume x /∈ {u, v}. Let
s ∈ V (TQ 0,0n−2∪TQ

1,0
n−2)−{u, v} and s is a neighbor of x. Since |F0−{(u, v)}| = n−3, by the induction hypothesis, there exists a

Hamiltonianpath Pxs in TQ
0,0
n−2∪TQ

1,0
n−2−(F0−{(u, v)}). If Pxs contains (u, v), thenby Lemma2, there exist twopaths Ps(n−2)y and

Pu(n−2)v(n−2) in TQ
0,1
n−2∪TQ

1,1
n−2 such that V (Ps(n−2)y)∩V (Pu(n−2)v(n−2)) = ∅ and V (Ps(n−2)y)∪V (Pu(n−2)v(n−2)) = V (TQ

0,1
n−2∪TQ

1,1
n−2).

The desired Pxy can be constructed as 〈x, Pxu, u, u(n−2), Pu(n−2)v(n−2) , v
(n−2), v, Pvs, s(n−2), Ps(n−2)y, y〉 (see Fig. 4(d)). If Pxs does

not contain (u, v), the construction is similar to that of Case 1.1.
Case 2.2. x, y ∈ V (TQ 0,0n−2 ∪ TQ

1,0
n−2). Let (u, v) ∈ F0. Since |F0 − {(u, v)}| = n − 3, by the induction hypothesis, there

exists a Hamiltonian path P ′xy of TQ
0,0
n−2 ∪ TQ

1,0
n−2 − (F0 − {(u, v)}). If P

′
xy contains (u, v), then let Pxu and Pvv be two subpaths

of P ′xy. By Lemma 1, there is a Hamiltonian path Pu(n−2)v(n−2) in TQ
0,1
n−2 ∪ TQ

1,1
n−2. The desired Pxy can be constructed as

〈x, Pxu, u, u(n−2), Pu(n−2)v(n−2) , v
(n−2), v, Pvy, y〉 (see Fig. 4(b)). If P ′xy does not contain (u, v), then select arbitrary edge (r, z) in

P ′xy. Let Pxr and Pzy be two subpaths of P
′
xy. By Lemma 1, there is a Hamiltonian path Pr(n−2)z(n−2) in TQ

0,0
n−2 ∪ TQ

1,0
n−2. The desired

Pxy can be constructed as 〈x, Pxr , r, r (n−2), Pr(n−2)z(n−2) , z
(n−2), z, Pzy, y〉.

Case 2.3. x, y ∈ V (TQ 0,1n−2 ∪ TQ
1,1
n−2). Let (u, v) ∈ F0 and {u, v} 6= {x

(n−2)I , y(n−2)}. If x(n−2) ∈ {u, v}, then y(n−2) /∈ {u, v}. Let
(x(n−2), s) = (u, v). Then |F0 − {(x(n−2), s)}| = n − 3 is obtained. By the induction hypothesis, there is a Hamiltonian
path Px(n−2)s in TQ

0,0
n−2 ∪ TQ

1,0
n−2 − (F0 − {(x(n−2), s)}). In addition, by Lemma 1, there is a Hamiltonian path Ps(n−2)y in

TQ 0,1n−2∪TQ
1,1
n−2−{x} (since TQ

0,1
n−2∪TQ

1,1
n−2 is (n−4)-Hamiltonian connected and n−4 ≥ 1). The desired Pxy can be constructed

as 〈x, x(n−2), Px(n−2)s, s, s
(n−2), Ps(n−2)y, y〉 (see Fig. 4(e)). If y

(n−2)
∈ {u, v}, then x(n−2) /∈ {u, v} and the construction is similar.

If x(n−2), y(n−2) /∈ {u, v}, then by Lemma 2, there exist two paths Pxu(n−2) and Pv(n−2)y in TQ
0,1
n−2 ∪ TQ

1,1
n−2 such that

V (Pxu(n−2)) ∩ V (Pv(n−2)y) = ∅ and V (Pxu(n−2)) ∪ V (Pv(n−2)y) = V (TQ
0,1
n−2 ∪ TQ

1,1
n−2). In addition, since |F0 − {(u, v)}| = n − 3,

by the induction hypothesis, there is a Hamiltonian path Puv in TQ
0,0
n−2 ∪ TQ

1,0
n−2 − (F0 − {(u, v)}). The desired Pxy can be

constructed as 〈x, Pxu(n−2) , u
(n−2), u, Puv, v, v(n−2), Pv(n−2)y, y〉 (see Fig. 4(c)). �

Lemma 5. Let F ⊂ E(TQ 0,1n−2 ∪ TQ
1,1
n−2) with |F | ≤ n− 3 and let u be an arbitrary vertex in TQ

0,0
n−2 ∪ TQ

1,0
n−2, where n ≥ 7 is odd.

There exists an integer d ∈ {0, 1, 2, . . . , n− 3} such that there is a Hamiltonian path Pu(n−2)ud(n−2) in TQ
0,1
n−2 ∪ TQ

1,1
n−2 − F .
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Fig. 5. Construction of Pu(n−2)ud(n−2) in TQ
0,1
n−2 ∪ TQ

1,1
n−2 − F (Lemma 5).

Proof. Clearly, a d-edge joins u(n−2) and u(n−2)d, where d ∈ {0, 1, 2, . . . , n−3}. We claim that u(n−2)d = ud(n−2) or an (n−1)-
edge joinsu(n−2)d andud(n−2). (The claimproof is placed after themain proof). If there exists an integer d ∈ {0, 1, 2, . . . , n−3}
such that u(n−2)d = ud(n−2), then u(n−2) and ud(n−2) are adjacent. By Lemma 4, the lemma holds. In the rest of the proof, we
assume that an (n−1)-edge joins u(n−2)i and ui(n−2) for all i ∈ {0, 1, 2, . . . , n−3}. Let F0 = F ∩E(TQ

0,1
n−2), F1 = F ∩E(TQ

1,1
n−2),

and Fc = F ∩ {(v, v(n−1))|v ∈ V (TQ
0,1
n−2)}. Additionally, let f0 = |F0|, f1 = |F1|, fc = |Fc |. Without loss of generality, assume

that u(n−2) ∈ TQ 0,1n−2. Therefore, we have u
(n−2)i

∈ TQ 0,1n−2 and u
i(n−2)

∈ TQ 1,1n−2, for all i ∈ {0, 1, 2, . . . , n − 3} (because an
(n− 1)-edge joins u(n−2)i and ui(n−2)). Five cases are considered:
Case 1. f0 = n− 3. Thus, f1 + fc = 0. First, suppose that (u(n−2), u(n−2)d

′

) ∈ F0 for some d′ ∈ {0, 1, 2, . . . , n− 3}. Since |F0 −
{(u(n−2), u(n−2)d

′

)}| = n− 4, by Lemma 4, there exists a Hamiltonian path Pu(n−2)u(n−2)d′ in TQ
0,1
n−2− (F0−{(u

(n−2), u(n−2)d
′

)}).
Select an integer d from {0, 1, 2, . . . , n−3}−{d′}. By Lemma1, there is aHamiltonian path Pud′(n−2)ud(n−2) in TQ

1,1
n−2. Remember

that an (n−1)-edge joins u(n−2)i and ui(n−2) for all i ∈ {0, 1, 2, . . . , n−3}. The desired Hamiltonian path can be constructed
as 〈u(n−2), Pu(n−2)u(n−2)d′ , u

(n−2)d′ , ud
′(n−2), Pud′(n−2)ud(n−2) , u

d(n−2)
〉 (see Fig. 5(a)).

Then, suppose that (u(n−2), u(n−2)i) /∈ F0, for all i ∈ {0, 1, 2, . . . , n − 3}. Let (x, y) ∈ F0. Since n ≥ 7, we can
select an integer d′ from {0, 1, 2, . . . , n − 3} such that u(n−2)d

′

/∈ {x, y}. Since |F0 − {(x, y)}| = n − 4, by Lemma 4,
there exists a Hamiltonian path Pu(n−2)u(n−2)d′ in TQ

0,1
n−2 − (F0 − {(x, y)}). Also, since n ≥ 7, we can select an integer

d from {0, 1, 2, . . . , n − 3} − {d′} such that ud(n−2) /∈ {x(n−1), y(n−1)}. If Pu(n−2)u(n−2)d′ does not contain (x, y), then
by Lemma 1, there is a Hamiltonian path Pud′(n−2)ud(n−2) in TQ

1,1
n−2. The desired Hamiltonian path can be constructed as
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〈u(n−2), Pu(n−2)u(n−2)d′ , u
(n−2)d′ , ud

′(n−2), Pud′(n−2)ud(n−2) , u
d(n−2)
〉 (see Fig. 5(a)). If Pu(n−2)u(n−2)d′ contains (x, y), then let Pu(n−2)x

and Pyu(n−2)d′ be two subpaths of Pu(n−2)u(n−2)d′ . By Lemma 2, there exist Pud′(n−2)ud(n−2) and Px(n−1)y(n−1) in TQ
1,1
n−2 such that

V (Pud′(n−2)ud(n−2)) ∩ V (Px(n−1)y(n−1)) = ∅ and V (Pud′(n−2)ud(n−2))∪ V (Px(n−1)y(n−1)) = V (TQ
1,1
n−2). The desired Hamiltonian path

can be constructed as 〈u(n−2), Pu(n−2)x, x, x
(n−1), Px(n−1)y(n−1) , y

(n−1), y, Pyu(n−2)d′ , u
(n−2)d′ , ud

′(n−2), Pud′(n−2)ud(n−2) , u
d(n−2)
〉 (see

Fig. 5(b)).
Case 2. f0 = n − 4. Thus, f1 + fc = 1. Since fc ≤ 1, we can select an integer d′ from {0, 1, 2, . . . , n − 3} such that
(ud
′(n−2), u(n−2)d

′

) /∈ Fc . Since f0 = n − 4, by Lemma 4, there exists a Hamiltonian path Pu(n−2)u(n−2)d′ in TQ
0,1
n−2 − F0. Then,

we select an integer d from {0, 1, 2, . . . , n− 3} − {d′}. Since f1 ≤ 1, by Lemma 1, there is a Hamiltonian path Pud′(n−2)ud(n−2)
for TQ 1,1n−2. The desired Hamiltonian path can be constructed as 〈u

(n−2), Pu(n−2)u(n−2)d′ , u
(n−2)d′ , ud

′(n−2), Pud′(n−2)ud(n−2) , u
d(n−2)
〉

(see Fig. 5(a)).
Case 3. f0 ≤ n − 5 and f1 ≤ n − 5. Select a vertex y ∈ TQ 0,1n−2 − {u

(n−2)
} such that (y, y(n−1)) /∈ Fc . Then, select

an integer d from {0, 1, 2, . . . , n − 3} such that ud(n−2) 6= y(n−1). By Lemma 1, there is a Hamiltonian path Pu(n−2)y
(respectively, Py(n−1)ud(n−2) ) in TQ

0,1
n−2 − F0 (respectively, TQ

1,1
n−2 − F1). The desired Hamiltonian path can be constructed as

〈u(n−2), Pu(n−2)y, y, y
(n−1), Py(n−1)ud(n−2) , u

d(n−2)
〉 (see Fig. 5(c)).

Case 4. f1 = n − 4. Thus, f0 + fc = 1. Since fc ≤ 1, we can select an integer d′ from {0, 1, 2, . . . , n − 3} such that
(ud
′(n−2), u(n−2)d

′

) /∈ Fc . Since f0 ≤ 1, by Lemma 4, there exists a Hamiltonian path Pu(n−2)u(n−2)d′ in TQ
0,1
n−2 − F0. Then we

select an integer d from {0, 1, 2, . . . , n− 3} − {d′}. Since f1 = n− 4, by Lemma 1, there is a Hamiltonian path Pud′(n−2)ud(n−2)
for TQ 1,1n−2. The desired Hamiltonian path can be constructed as 〈u

(n−2), Pu(n−2)u(n−2)d′ , u
(n−2)d′ , ud

′(n−2), Pud′(n−2)ud(n−2) , u
d(n−2)
〉

(see Fig. 5(a)).
Case 5. f1 = n − 3. Thus, f0 + fc = 0. First, suppose that there exists an edge (x, y) ∈ F1 such that u(n−2)(n−1) /∈ {x, y}.
We can choose an edge (ud(n−2), s) in TQ 1,1n−2 such that u

d(n−2), s /∈ {x, y, u(n−2)(n−1)}, where d ∈ {0, 1, 2, . . . , n − 3}. (We
can first select ud(n−2), which has at least (n − 2) − 3 ≥ 2 choices, and then, we have (n − 2) − 3 ≥ 2 ways to select s,
which is the neighbor of ud(n−2).) Since |F1 − {(x, y)}| = n − 4, by Lemma 4, there exists a Hamiltonian path Psud(n−2) in
TQ 1,1n−2− (F1−{(x, y)}). If Psud(n−2) does not contain (x, y), then by Lemma 1, there is a Hamiltonian path Pu(n−2)s(n−1) in TQ

0,1
n−2.

The desired Hamiltonian path can be constructed as 〈u(n−2), Pu(n−2)s(n−1) , s
(n−1), s, Psud(n−2) , u

d(n−2)
〉. If Psud(n−2) contains (x, y),

then let Psx and Pyud(n−2) be two subpaths of Psud(n−2) . In addition, by Lemma 2, there exist Pu(n−2)s(n−1) and Px(n−1)y(n−1) in TQ
0,1
n−2

such that V (Pu(n−2)s(n−1)) ∩ V (Px(n−1)y(n−1)) = ∅ and V (Pu(n−2)s(n−1)) ∪ V (Px(n−1)y(n−1)) = V (TQ
0,1
n−2). The desired Hamiltonian

path can be constructed as 〈u(n−2), Pu(n−2)s(n−1) , s
(n−1), s, Psx, x, x(n−1), Px(n−1)y(n−1) , y

(n−1), y, Pyud(n−2) , u
d(n−2)
〉 (see Fig. 5(d)).

Then, suppose that there is no edge (x′, y′) ∈ F1 such that u(n−2)(n−1) /∈ {x′, y′}. That is, F1 ⊆ {(u(n−2)(n−1), u(n−2)(n−1)i)|i ∈
{0, 1, 2, . . . , n − 3}}. Since f1 = n − 3, and |{(u(n−2)(n−1), u(n−2)(n−1)i)|i ∈ {0, 1, 2, . . . , n − 3}}| = n − 2, we
have (u(n−2)(n−1), u(n−2)(n−1)d

′

) /∈ F1 for some d′ ∈ {0, 1, 2, . . . , n − 3}. Let y = u(n−2)(n−1)d
′

. In addition, let
ud(n−2) ∈ V (TQ 1,1n−2) − {y, u

(n−2)(n−1)
} for some d ∈ {0, 1, 2, . . . , n − 3} and let s ∈ V (TQ 1,1n−2) − {y, u

(n−2)(n−1), ud(n−2)}.
By Lemma 1, there are a Hamiltonian path Py(n−1)s(n−1) in TQ

0,1
n−2 − {u

(n−2)
} and a Hamiltonian path Psud(n−2) in

TQ 1,1n−2 − {y, u
(n−2)(n−1)

} (since TQ n−2 is (n − 5)-Hamiltonian connected and n − 5 ≥ 2). Moreover, since F1 ⊆
{(u(n−2)(n−1), u(n−2)(n−1)i)|i ∈ {0, 1, 2, . . . , n − 3}}, we have Psud(n−2) ∩ F1 = ∅. The desired Hamiltonian path can be
constructed as 〈u(n−2), u(n−2)(n−1), y, y(n−1), Py(n−1)s(n−1) , s

(n−1), s, Psud(n−2) , u
d(n−2)
〉 (see Fig. 5(e)).

Claim Proof. Suppose that u = un−1un−2 . . . u0. When Pn−3(u) = 0, according to Definition 1, we have u(n−2) =
un−1 un−2un−3 . . . u0. If d is odd and Pd−1(u) = 0, then ud = un−1un−2 . . . ud+1 ud . . . u0. Hence, Pn−3(ud) = Pn−3(u) =
0. As a result, ud(n−2) = un−1 un−2un−3 . . . ud+1 ud . . . u0. Additionally, since Pd−1(u(n−2)) = Pd−1(u) = 0, we have
u(n−2)d = un−1 un−2un−3 . . . ud+1 ud . . . u0 = ud(n−2). If (1) d is even or (2) d is odd and Pd−1(u) = 1, then ud =
un−1un−2 . . . ud . . . u0. Hence, Pn−3(ud) = 1. As a result, ud(n−2) = un−1un−2un−3 . . . ud+1ud . . . u0. Additionally, we have
u(n−2)d = un−1 un−2un−3 . . . ud+1ud . . . u0 since (1) d is even or (2) d is odd and Pd−1(u(n−2)) = Pd−1(u) = 1. Clearly, u(n−2)d
is connected to ud(n−2) by an (n− 1)-edge.
When Pn−3(u) = 1, according to Definition 1, we have u(n−2) = un−1un−2un−3 . . . u0. If d is odd and Pd−1(u) = 0, then

ud = un−1un−2 . . . ud+1 ud . . . u0. Hence, Pn−3(ud) = Pn−3(u) = 1. As a result, ud(n−2) = un−1un−2un−3 . . . ud+1 ud . . . u0.
Additionally, since Pd−1(u(n−2)) = Pd−1(u) = 0, we have u(n−2)d = un−1un−2un−3 . . . ud+1 ud . . . u0 = ud(n−2). If (1) d
is even or (2) d is odd and Pd−1(u) = 1, then ud = un−1un−2 . . . ud . . . u0. Hence, Pn−3(ud) = 0. As a result, ud(n−2) =
un−1 un−2un−3 . . . ud+1ud . . . u0. Additionally, we have u(n−2)d = un−1un−2un−3 . . . ud+1ud . . . u0 since (1) d is even or (2) d is
odd and Pd−1(u(n−2)) = Pd−1(u) = 1. Clearly, u(n−2)d is connected to ud(n−2) by an (n− 1)-edge. �

4. Longest fault-free cycles with edge faults

In this section, we will show that if each vertex of TQ n is incident with at least two fault-free edges, then it contains a
fault-free Hamiltonian cycle, even if there are 2n − 5 edge faults. Regard F as the set of edge faults; TQ n − F represents a
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faulty TQ n, and δ(TQ n − F) ≥ 2 means that each vertex in TQ n − F is incident with at least two fault-free edges. Hence, we
format the main theorem as follows.

Theorem 1. If F ⊂ E(TQ n) (respectively, F ′ ⊂ E(TQ 0,in ∪ TQ
1,i
n ) for i ∈ {0, 1}) with |F | ≤ 2n− 5 (respectively, |F

′
| ≤ 2n− 3)

and δ(TQ n − F) ≥ 2 (respectively, δ(TQ 0,in ∪ TQ
1,i
n − F

′) ≥ 2), then TQ n − F (respectively, TQ 0,in ∪ TQ
1,i
n − F

′) is Hamiltonian,
where n ≥ 3 is an odd integer.

Proof. We proceed by induction on n. By Lemma 1, the theorem holds for TQ 3 since 2n−5 = n−2when n = 3. In addition,
the theorem holds for TQ 0,i3 ∪ TQ

1,i
3 , which can be verified by a computer exhausted search program [11]. Two steps can

complete the proof. First, for all odd integers n ≥ 3, we show that if the theorem holds for TQ n, then the theorem holds for
TQ 0,in ∪ TQ

1,i
n . Secondly, for all odd integers n ≥ 5, we show that if the theorem holds for TQ

0,i
n−2 ∪ TQ

1,i
n−2 then the theorem

holds for TQ n. However, since the proof of the first step is easier than and similar to that of second step, we only show the
second step. That is, we assume that TQ 0,in−2∪TQ

1,i
n−2−F

′ is Hamiltonian if F ′ ⊂ E(TQ 0,in−2∪TQ
1,i
n−2), δ(TQ

0,i
n−2∪TQ

1,i
n−2−F

′) ≥ 2,
and |F ′| ≤ 2n−7, where i ∈ {0, 1} and n ≥ 5.Wewill show that TQ n−F is Hamiltonian if F ⊂ E(TQ n), δ(TQ n−F) ≥ 2, and
|F | ≤ 2n−5. Let F0 = F ∩E(TQ

0,0
n−2∪TQ

1,0
n−2), F1 = F ∩E(TQ

0,1
n−2∪TQ

1,1
n−2), and Fc = F ∩{(u, u

(n−2))|u ∈ V (TQ n)}. Additionally,
let f0 = |F0|, f1 = |F1|, fc = |Fc |.Without loss of generality, we assume f0 ≥ f1. Therefore, we have f1 ≤ b(2n−5)/2c = n−3.
Three cases are considered:
Case 1. f0 ≤ 2n− 7. There is at most one vertex with degree one in TQ

0,0
n−2 ∪ TQ

1,0
n−2 − F0, for otherwise f0 ≥ 2n− 5, which is

a contradiction. Two cases are further considered:
Case 1.1. δ(TQ 0,0n−2 ∪ TQ

1,0
n−2 − F0) ≥ 2. By the induction hypothesis, there exists a Hamiltonian cycle C in TQ

0,0
n−2 ∪ TQ

1,0
n−2 − F0.

If f1 = n − 3, then fc ≤ 2n − 5 − 2(n − 3) = 1. By Lemma 3, there exist two edges (x, y) and (u, v) in C such that
(x(n−2), y(n−2)) and (u(n−2), v(n−2)) are also two edges in TQ 0,1n−2 ∪ TQ

1,1
n−2, where x, y, u, v are distinct. Clearly, at most one of

(x, x(n−2)), (y, y(n−2)), (u, u(n−2)), and (v, v(n−2)) is in Fc . Without loss of generality, we assume (x, x(n−2)), (y, y(n−2)) /∈ Fc .
Let Pyx = C − {(x, y)}. In addition, by Lemma 4 (since f1 ≤ n − 3), there exists a Hamiltonian path Px(n−2)y(n−2) in
TQ 0,1n−2 ∪ TQ

1,1
n−2 − F1. The desired fault-free Hamiltonian cycle can be constructed as 〈x, x

(n−2), Px(n−2)y(n−2) , y
(n−2), y, Pyx, x〉

(refer to Fig. 2(a)).
If f1 ≤ n − 4, then there exists an edge (x, y) in C such that (x, x(n−2)) and (y, y(n−2)) /∈ Fc since there are 2n−1 edges in

C and 2n−1 > 2(2n− 5) ≥ 2|F | ≥ 2fc . (This is because an edge in Fc eliminates two choices in C .) Let Pyx = C − {(x, y)}. In
addition, by Lemma 1, there exists a Hamiltonian path Px(n−2)y(n−2) in TQ

0,1
n−2 ∪ TQ

1,1
n−2− F1. The desired fault-free Hamiltonian

cycle can be constructed as 〈x, x(n−2), Px(n−2)y(n−2) , y
(n−2), y, Pyx, x〉 (refer to Fig. 2(a)).

Case 1.2. δ(TQ 0,0n−2 ∪ TQ
1,0
n−2 − F0) = 1. Recall that there is at most one vertex with degree one in TQ

0,0
n−2 ∪ TQ

1,0
n−2 − F0, let x be

such a vertex. Hence, f0 ≥ n− 2 (thus f1 + fc ≤ n− 3) and (x, x(n−2)) /∈ Fc .
First, suppose that f1 = n − 3 (then fc = 0 and f0 = n − 2). When (x, x(n−1)) ∈ F0, let y = x(n−1). We claim that

(x(n−2), y(n−2)) is an edge in TQ 0,1n−2 ∪ TQ
1,1
n−2. (The claim proof is placed after the main proof). Since f1 = n− 3, by Lemma 4,

there exists a Hamiltonian path Px(n−2)y(n−2) in TQ
0,1
n−2 ∪ TQ

1,1
n−2 − F1. Moreover, since δ(TQ

0,0
n−2 ∪ TQ

1,0
n−2 − (F0 − {(x, y)})) = 2,

by the induction hypothesis, there is a Hamiltonian cycle C in TQ 0,0n−2 ∪ TQ
1,0
n−2 − (F0 − {(x, y)}). Additionally, since (x, y)

is one of the two edges incident with x in TQ 0,0n−2 ∪ TQ
1,0
n−2 − (F0 − {(x, y)}), it is not difficult to see that C contains (x, y).

Let Pyx = C − {(x, y)}. The desired Hamiltonian cycle can be constructed as 〈x, x(n−2), Px(n−2)y(n−2) , y
(n−2), y, Pyx, x〉 (refer to

Fig. 2(a)).
When (x, x(n−1)) /∈ F0, we have (x, xi) ∈ F0 for all i ∈ {0, 1, 2, . . . , n − 3}. If n = 5, the desired Hamiltonian cycles are

constructed by using a computer program [11]. If n ≥ 7, then by Lemma 5, there exists an integer d ∈ {0, 1, 2, . . . , n − 3}
such that there is a Hamiltonian path Px(n−2)y(n−2) for TQ

0,1
n−2 ∪ TQ

1,1
n−2 − F1, where y = x

d. Moreover, since δ(TQ 0,0n−2 ∪ TQ
1,0
n−2 −

(F0−{(x, y)})) = 2, by the induction hypothesis, there is aHamiltonian cycle C in TQ
0,0
n−2∪TQ

1,0
n−2−(F0−{(x, y)}). Additionally,

since (x, y) is one of the two edges incident with x in TQ 0,0n−2 ∪ TQ
1,0
n−2− (F0− {(x, y)}), it is not difficult to see that C contains

(x, y). Let Pyx = C − {(x, y)}. The desired Hamiltonian cycle can be constructed as 〈x, x(n−2), Px(n−2)y(n−2) , y
(n−2), y, Pyx, x〉

(refer to Fig. 2(a)).
Now, suppose that f1 ≤ n − 4. Since fc ≤ n − 3 and |{(x, xi)|i ∈ {0, 1, 2, . . . , n− 3, n − 1}} ∩ F0| = n − 2,

we have (x, xd) ∈ F0 with (xd, xd(n−2)) /∈ Fc , for some d ∈ {0, 1, 2, . . . , n − 3, n − 1}. Let y = xd. By Lemma 1,
there exists a Hamiltonian path Px(n−2)y(n−2) for TQ

0,1
n−2 ∪ TQ

1,1
n−2 − F1. In addition, by the induction hypothesis, there is a

Hamiltonian cycle C in TQ 0,0n−2 ∪ TQ
1,0
n−2 − (F0 − {(x, y)}). Additionally, since (x, y) is one of the two edges incident with x in

TQ 0,0n−2∪ TQ
1,0
n−2− (F0−{(x, y)}), it is not difficult to see that C contains (x, y). Let Pyx = C−{(x, y)}. The desired Hamiltonian

cycle can be constructed as 〈x, x(n−2), Px(n−2)y(n−2) , y
(n−2), y, Pyx, x〉 (refer to Fig. 2(a)).

Case 2. f0 = 2n− 6. We have f1 + fc ≤ 1. Similarly, there is at most one vertex with degree one in TQ
0,0
n−2 ∪ TQ

1,0
n−2 − F0.

First, suppose that δ(TQ 0,0n−2 ∪ TQ
1,0
n−2 − F0) ≥ 2. Select an edge (x, y) ∈ F0 such that (x, x

(n−2)), (y, y(n−2)) /∈ Fc . Since
|F0−{(x, y)}| = 2n− 7, by the induction hypothesis, there exists a Hamiltonian cycle C for TQ

0,0
n−2 ∪ TQ

1,0
n−2− (F0−{(x, y)}).

If C contains (x, y), then let Pyx = C − {(x, y)}. In addition, since f1 ≤ 1, by Lemma 1, there is a Hamiltonian path
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Px(n−2)y(n−2) for TQ
0,1
n−2∪TQ

1,1
n−2−F1. The desiredHamiltonian cycle can be constructed as 〈x, x

(n−2), Px(n−2)y(n−2) , y
(n−2), y, Pyx, x〉

(refer to Fig. 2(a)). If C does not contain (x, y), then select an edge (x′, y′) in C such that (x′, x′(n−2)), (y′, y′(n−2)) /∈ Fc . Let
Py′x′ = C − {(x′, y′)}. By Lemma 1, there is a Hamiltonian path Px′(n−2)y′(n−2) for TQ

0,1
n−2 ∪ TQ

1,1
n−2 − F1. The desired Hamiltonian

cycle can be constructed as 〈x′, x′(n−2), Px′(n−2)y′(n−2) , y
′(n−2), y′, Py′x′ , x′〉.

Then, suppose that δ(TQ 0,0n−2 ∪ TQ
1,0
n−2 − F0) = 1. Let x be the vertex with degree one in TQ

0,0
n−2 ∪ TQ

1,0
n−2 − F0. Select an

edge (x, y) ∈ F0 such that (y, y(n−2)) /∈ Fc . Since |F0 − {(x, y)}| = 2n − 7 and δ(TQ
0,0
n−2 ∪ TQ

1,0
n−2 − (F0 − {(x, y)})) = 2,

by the induction hypothesis, there exists a Hamiltonian cycle C for TQ 0,0n−2 ∪ TQ
1,0
n−2 − (F0 − {(x, y)}. Since (x, y) is one of

the two edges incident with x in TQ 0,0n−2 ∪ TQ
1,0
n−2 − (F0 − {(x, y)}), C contains (x, y). Let Pyx = C − {(x, y)}. In addition, by

Lemma 1, there is a Hamiltonian path Px(n−2)y(n−2) for TQ
0,1
n−2 ∪ TQ

1,1
n−2 − F1. The desired Hamiltonian cycle can be constructed

as 〈x, x(n−2), Px(n−2)y(n−2) , y
(n−2), y, Pyx, x〉 (refer to Fig. 2(a)).

Case 3. f0 = 2n − 5. We have f1 = fc = 0. Clearly, there are at most two vertices with degree one in TQ
0,0
n−2 ∪ TQ

1,0
n−2 − F0.

Three cases are further considered:
Case 3.1. There are no vertices with degree one in TQ 0,0n−2 ∪ TQ

1,0
n−2 − F0. Clearly, there exist two edges (x, y) and (u, v)

in F0 such that {x, y} ∩ {u, v} = ∅. Apparently, |F0 − {(x, y), (u, v)}| = 2n − 7. By the induction hypothesis, there
exists a Hamiltonian cycle C for TQ 0,0n−2 ∪ TQ

1,0
n−2 − (F0 − {(x, y), (u, v)}). If C contains both (x, y) and (u, v), then let

Pxu and Pvy be two subpaths of C . In addition, by Lemma 2, there exist two paths Py(n−2)x(n−2) and Pu(n−2)v(n−2) with
V (Py(n−2)x(n−2)) ∩ V (Pu(n−2)v(n−2)) = ∅ and V (Py(n−2)x(n−2)) ∪ V (Pu(n−2)v(n−2)) = V (TQ

0,1
n−2 ∪ TQ

1,1
n−2). The desired Hamiltonian

cycle can be constructed as 〈x, Pxu, u, u(n−2), Pu(n−2)v(n−2) , v
(n−2), v, Pvy, y, y(n−2), Py(n−2)x(n−2) , x

(n−2), x〉 (refer to Fig. 2(b)). If
C contains only one of them, say (x, y), then let Pyx = C − {(x, y)}. In addition, by Lemma 1, there is a Hamiltonian path
Px(n−2)y(n−2) for TQ

0,1
n−2∪TQ

1,1
n−2−F1. The desiredHamiltonian cycle can be constructed as 〈x, x

(n−2), Px(n−2)y(n−2) , y
(n−2), y, Pyx, x〉

(refer to Fig. 2(a)). If C contains none of them, then select an edge (x′, y′) in C . Let Py′x′ = C − {(x′, y′)}. By Lemma 1,
there is a Hamiltonian path Px′(n−2)y′(n−2) for TQ

0,1
n−2 ∪ TQ

1,1
n−2 − F1. The desired Hamiltonian cycle can be constructed as

〈x′, x′(n−2), Px′(n−2)y′(n−2) , y
′(n−2), y′, Py′x′ , x′〉.

Case 3.2. There is only one vertex xwith degree one in TQ 0,0n−2∪TQ
1,0
n−2− F0. Let (u, v), (x, y) ∈ F0 such that {u, v}∩ {x, y} = ∅.

In addition, we have |F0 − {(x, y), (u, v)}| = 2n − 7 and δ(TQ
0,0
n−2 ∪ TQ

1,0
n−2 − (F0 − {(x, y), (u, v)}) = 2. By the induction

hypothesis, there exists a Hamiltonian cycle C for TQ 0,0n−2 ∪ TQ
1,0
n−2− (F0−{(x, y), (u, v)}). Since (x, y) is one of the two edges

incident with x in TQ 0,0n−2 ∪ TQ
1,0
n−2 − (F0 − {(x, y), (u, v)}), it is not difficult to see that C contains (x, y). If C contains (u, v),

then let Pxu and Pvy be two subpaths of C . In addition, by Lemma 2, there exist two paths Py(n−2)x(n−2) and Pu(n−2)v(n−2) with
V (Py(n−2)x(n−2)) ∩ V (Pu(n−2)v(n−2)) = ∅ and V (Py(n−2)x(n−2)) ∪ V (Pu(n−2)v(n−2)) = V (TQ

0,1
n−2 ∪ TQ

1,1
n−2). The desired Hamiltonian

cycle can be constructed as 〈x, Pxu, u, u(n−2), Pu(n−2)v(n−2) , v
(n−2), v, Pvy, y, y(n−2), Py(n−2)x(n−2) , x

(n−2), x〉 (refer to Fig. 2(b)). If
C does not contain (u, v), then let Pyx = C − {(x, y)}. In addition, by Lemma 1, there is a Hamiltonian path Px(n−2)y(n−2) for
TQ 0,1n−2 ∪ TQ

1,1
n−2 − F1. The desired Hamiltonian cycle can be constructed as 〈x, x

(n−2), Px(n−2)y(n−2) , y
(n−2), y, Pyx, x〉 (refer to

Fig. 2(a)).
Case 3.3. There are two vertices x and u with degree one in TQ 0,0n−2 ∪ TQ

1,0
n−2 − F0. Notice that (x, u) ∈ F0, for otherwise it

will have f0 ≥ 2n − 4, which is a contradiction. Let (u, v), (x, y) ∈ F0 such that {u, v} ∩ {x, y} = ∅. In addition, we have
|F0− {(x, y), (u, v)}| = 2n− 7 and δ(TQ

0,0
n−2 ∪ TQ

1,0
n−2− (F0− {(x, y)}, {u, v})) = 2. By the induction hypothesis, there exists

a Hamiltonian cycle C for TQ 0,0n−2 ∪ TQ
1,0
n−2 − (F0 − {(x, y), (u, v)}). Since (x, y) is one of the two edges incident with x and

(u, v) is one of the two edges incident with u in TQ 0,0n−2∪TQ
1,0
n−2− (F0−{(x, y), (u, v)}), it is not difficult to see that C contains

both (x, y) and (u, v). Let Pxu and Pvy be two subpaths of C . In addition, by Lemma 2, there exist two paths Py(n−2)x(n−2) and
Pu(n−2)v(n−2) with V (Py(n−2)x(n−2))∩ V (Pu(n−2)v(n−2)) = ∅ and V (Py(n−2)x(n−2))∪ V (Pu(n−2)v(n−2)) = V (TQ

0,1
n−2 ∪ TQ

1,1
n−2). The desired

Hamiltonian cycle can be constructed as 〈x, Pxu, u, u(n−2), Pu(n−2)v(n−2) , v
(n−2), v, Pvy, y, y(n−2), Py(n−2)x(n−2) , x

(n−2), x〉 (refer to
Fig. 2(b)).

Claim Proof. Suppose that x = xn−1xn−2 . . . x0 (therefore y = xn−1xn−2 . . . x0). If Pn−3(x) = 0 (therefore Pn−3(y) = 0), then
x(n−2) = xn−1 xn−2 . . . x0 and y(n−2) = xn−1xn−2 . . . x0. If Pn−3(x) = 1 (therefore Pn−3(y) = 1), then x(n−2) = xn−1xn−2 . . . x0
and y(n−2) = xn−1 xn−2 . . . x0. As a result, (x(n−2), y(n−2)) is an edge in TQ

0,1
n−2 ∪ TQ

1,1
n−2. �

Our result is optimal with respect to the number of edge faults tolerated since there are distributions of 2n − 4 edge
faults over a TQ n such that no fault-free Hamiltonian cycle can be found in the faulty TQ n. Consider that two vertices u = 0n
(n consecutive 0’s) and v = 0n−3101 of TQ n. Suppose that (u, ud) and (v, vd) are fault-free if d ∈ {0, 2}, and are faulty if
d ∈ {1, 3, 4, . . . , n−1}. Refer to Fig. 6, any fault-free cycle containing nodes 0n and 0n−3101must contain edges (0n, 0n−11),
(0n, 0n−3102), (0n−3101, 0n−11), and (0n−3101, 0n−3102). This is because edges (0n, 0n−11) and (0n, 0n−3102) (respectively,
(0n−3101, 0n−11) and (0n−3101, 0n−3102)) are the only two fault-free edges incident with 0n (respectively, 0n−3101). Since
〈0n, 0n−11, 0n−3101, 0n−3102, 0n〉 is a cycle, it is easy to see that no fault-free Hamiltonian cycle exists in faulty TQ n.
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Fig. 6. A distribution of 2n− 4 edge faults in TQ n .

5. Discussion and conclusion

In this paper, with the assumption of at least two fault-free edges incident with each vertex, we have shown that there
exists a fault-free Hamiltonian cycle in an n-dimensional twisted cube (TQ n) with up to 2n − 5 edge faults. A recursive
algorithm for constructing the fault-free Hamiltonian cycle can easily result from the proof of Theorem 1.
With the same discussion in [14], we can verify that the assumption is practicallymeaningful by evaluating its probability

of occurrence, which is very close to one, even if n is small.
Many properties of TQ 0,i3 ∪ TQ

1,i
3 are hard to derive. Therefore, it seems that using an exhaustive algorithm to justify

these properties is necessary. It just took several seconds to run the program by a personal computer with a 2.7 GHz CPU.
Additionally, for the same reason, we still need to use a program to construct fault-free Hamiltonian cycles in a faulty TQ 5
when one specific situation is confronted (refer to Case 1.2 in the proof of Theorem 1). There are 32 nodes in TQ 5 and the
degree of each node is five, thus, the size of the search tree is about 432 = 1.84467441× 1019. In this situation, it needs to

traverse 16×
(
32
2

)
= 7936 search trees. It took about six hours to run the program. If we construct fault-free Hamiltonian

cycles in a faulty TQ 5 in all cases, we need to traverse
(
80
5

)
= 24 040 016 search trees. As a result, it will need about

(24 040 016/7936)× 6 = 18175 h to run this program.
In addition, exploration of the conditional fault-tolerant Hamiltonicity of other networks such as arrangement graphs,

star graphs, and pancake graphs are our topics for further research.
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