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A B S T R A C T

If the mathematical operations are correct, uniaxial low stress, steady state high homologous temperature creep
and steady state structural Superplasticity phenomena can be well described by a ‘power law’ that relates the
applied stress to the strain rate of deformation (Padmanabhan et al., 2015). Isothermal dislocation creep, which
exhibits no grain size dependence, displays a linear log strain rate – log stress relationship till there is a change in
the rate controlling mechanism. In contrast, during grain-size dependent, isothermal steady state structural
superplastic flow, even within narrow strain rate ranges the slope changes, notwithstanding the presence of the
same rate controlling mechanism. In both the phenomena the stress exponent, n, decreases with increasing
temperature even for a constant rate controlling mechanism (Padmanabhan, 1973). Four analytical methods,
differing in details, are based on the power law equation, viz., a procedure used by experimental scientists, its
improved variant, a method in vogue in rheology and a procedure due to Padmanabhan et al., 2015. By ex-
amining experimental data pertaining to many systems, it is demonstrated that the method of rheology does not
follow the tenets of Dimensional Analysis and that the scatter in the predictions is the maximum for this case.
The method of experimental scientists ignores the temperature dependence of the stress exponent and this leads
to significant discrepancies between the measured and predicted properties. When mathematics is correct and
the relevant physical situation is taken into account, the other two methods, i.e. the improved method of the
experimental scientists and that of Padmanabhan et al., 2015, lead to similar results, but the latter analysis is
more accurate because of its better normalizing procedure. It is also simpler. A missing detail in the earlier paper
(Padmanabhan et al., 2015), viz., estimation of the grain-size exponent of the strain rate predicted for iso-
thermal, steady state structural superplastic flow in terms of the Buckingham Pi Theorem is also furnished here.

1. Introduction

Research on the phenomenology of creep started quite a while ago
(National Standards Body, 1948). Creep response constitutes the most
important design constraint for components subjected to low to
medium mechanical stresses and high temperatures, e.g. as found in
modern power generation units, aero-engines (Smith et al., 1965–66).

Many components, e.g. superheater, reheater tubing, power plant
boilers, have long design life, sometimes more than 250,000 h.
Therefore, accelerated tests to determine the residual life of parts in
service have been developed. Such investigations should ensure, in
principle, industrial safety by predicting the remnant life of components
in service accurately (Evans and Wilshire, 1993).

Superplastic1 forming, in contrast, is a niche production technology,
used, for example, in aerospace, automotive, architectural and sports
goods industries. Steady state, isotropic superplasticity is observed
within a narrow strain rate – grain size - temperature domain. For ef-
ficient superplastic forming a constitutive equation that relates accu-
rately the rate of deformation to the stress, temperature and grain size is
essential (Padmanabhan et al., 2015).

For isostructural, low stress, high homologous temperature creep
and steady state superplasticity experimental scientists use an equation
(Garofalo, 1965; Mukherjee et al., 1969; Raj and Langdon, 1989)

= A
G

Q
kT

exp
n
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where in generalA1′ and n depend on material, temperature, and grain
size (which is often kept constant). This formulation is consistent with
the tenets of dimensional analysis for constant n (independent of both σ
and T), as σ and T are presented dimensionless. An alternative equation
is also extensively used (Eqn 2), viz.

= A G
T G

Q
kT

exp
n

2 (2)

Here A2 is another constant. This equation also is dimensionally
correct for constant n, if the dimension of A2 is chosen appropriately.

If the structure terms are lumped into an average grain size L,
Eq. (1) becomes (Eqn 1a)

= A b
L G

Q
kT

exp
p n

1 (1a)

where A1″ and p are constants and b is the Burgers vector.
The above generic equations are assumed to describe all physical

mechanisms of high temperature deformation, with different numerical
values assigned to the constants for different physical mechanisms.

However, experimental results reveal that during steady state iso-
thermal superplastic flow, n is not independent of stress/ strain rate
even within a narrow range of strain rate where the same mechanism is
rate controlling and that in both creep and superplasticity n is not
temperature- independent (Padmanabhan et al., 2015; Padmanabhan,
1973).

For normalization of stress, in place of the shear modulus,
Padmanabhan et al. (2015) have suggested the use of a carefully se-
lected reference stress, e.g. room temperature, uniaxial tensile (or
compressive) yield stress of material. This ensures complete tempera-
ture independence, which cannot be guaranteed in the method of ex-
perimental scientists because the temperature dependences of the flow
stress and the shear modulus are different. Moreover, experimental
determination of room temperature yield stress is considerably easier
than the measurement of shear modulus at different temperatures. In
case of superplasticity, the reference stress corresponds to the stress at
which =n 1 in the normalised stress-strain rate space and the method
of calculating the same is explained in (Padmanabhan, 1977;
Padmanabhan et al., 2015). In addition, these authors advocate the
normalization of grain size with respect to a sufficiently large value of
grain size, L0, instead of the Burgers vector, which is relevant only to
dislocation mechanisms, i.e. ( )L

L
p

0
is used in the latter method. Conse-

quently, as strain rate and grain size are inversely related, p will be a
negative constant.

2. The analysis

2.1. The method of experimental scientists

Apart from the problems concerning the method of experimental
scientists mentioned in the previous section, the way in which the value
ofG, the shear modulus, of a material is determined in this procedure is
rather crude. The room temperature values of G of individual elements
that constitute the alloy are selected and combined using the rule of
mixtures to get the value for the alloy and this is followed by an ad hoc
extrapolation to a temperature of choice. However, by far the best
empirical method of knowing the G value of a material at any given
temperature is to use the regression equations presented by Frost and
Ashby (Frost and Ashby, 1982) by analysing a large volume of experi-
mental data. Use of these regression equations is suggested as a way of
improving the analysis of experimental scientists.

2.2. Possible improvements in the method of experimental scientists

As the shear modulus has a temperature dependence different from
that of the applied stress, n the stress exponent, is not temperature-in-
dependent. Ignoring this fact leads to an erroneous value for the real
activation energy for the rate controlling process (Padmanabhan et al.,
2015). Therefore, in the rate equation the temperature dependence of n
should be taken into account in addition to determining the value of
shear modulus using the regression equations given by Frost and Ashby
(Frost and Ashby, 1982), as discussed in the previous section. It is
pertinent to note that so far no one has evaluated quantitatively the
improvement in the accuracy of predictions that will result by adopting
these changes.

2.3. The method of rheology

The method of rheology is discussed in Appendixes C and D of
Padmanabhan et al., 2015 for high temperature creep and steady state
structural superplasticity respectively. In this method the power law
equation is handled without stress normalization, which makes it in-
consistent with the tenets of Dimensional Analysis. But, in this method
n is treated correctly as a function of stress/ strain rate and tempera-
ture. Then,Q, the real activation energy for the rate controlling process,
is obtained from the apparent activation energy values determined at
constant stress,Qσ (Eqn 4) and/ or constant strain rate, Q (Eqn 5) with
the help of the following equations.

High temperature creep
When = 1 and = kT h( / ),
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By plotting experimental ln against (1/T) at constant pre-selected
stress, σ1 the value of Q 1is determined. In Eqn. (3), the temperature, T
corresponds to Tmean (= +T T( )/21 2 ) and =T T T T( )/1 1. In this case all
values other thanQ, the real activation energy, are known and this
value can be obtained by the method of least squares from the apparent
activation energy values determined at various constant stress levels.
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A reliable value for the real activation energy, Q can be obtained
from Eqs. (3)(6). If the Q values obtained from the different equations
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given above are close, then the method can be regarded as robust.

Steady state, isotropic superplasticity

Apparent and real activation energies for steady state superplasticity
The necessary equations for determining the real activation energy

for the rate controlling mechanism in case of optimal structural su-
perplasticity are reproduced below from Appendix D of
Padmanabhan et al., 2015.

When = kT h( / ),

Fig. 1. Graphical representations in the method of experimental scientists where the stress is normalised with respect to the shear modulus, G of the material
calculated in an approximate way (see text). Full lines are based on the equations and symbols represent the experimental points for 4 systems chosen as examples: (a)
NiAl-9Mo (Weili et al., 2004), (b) Ti-H alloy (Senkov and Jonas, 1996), (c) Ti-6Al-4 V alloy (Lavinia et al., 2014), and (d) in situ TiB+ La2O3 alloy (Lv et al., 2009).

Table 1
High temperature creep: Real activation energy for the rate controlling deformation mechanism in case of the 6 systems analysed for both = kT h( / ) or

= s1013 1 using the method of experimental scientists.

Systems Method of Experimental scientists
(mean values within parenthesis)

Q, [KJ/mol.]
= kT h( / )

Q, [KJ/mol.]
= s(10 )13 1

NiAl-9Mo (Weili et al., 2004) 1123 - 1223 K 346.7 – 401 (373.8) 357.1 - 411.4 (384.2)
Ti-H alloy 12at.% H (Senkov and Jonas, 1996) 146 - 209.2 (177.6) 156.4 - 218.4 (187.4)
Ti-6Al-4 V (Lavinia et al., 2014) 723 – 873K 233.4 – 319 (276.2) 243.8 - 325.77 (284.7)
TiB+La2O3 (Lv Xiao et al., 2009) 1123 - 1223 K 332.7 – 416 (374.3) 343.1 - 422.82 (382.9)
ZM21 Mg alloy (El Mehtedi et al., 2009) 373 - 423 K 119.4 – 170 (144.7) 129.8 - 176.31 (153.5)
2.25Cr-1.6W Steel (Whittaker and Wilshire, 2010) 773 - 923 K 331.8 - 435.2 (383.5) 342.2 - 441.62 (391.9)

Table 2
Activation energy for the rate controlling deformation mechanism for a Ti-6Al-
4 V alloy (Lavinia et al., 2014) for both = kT h( / ) and = s1013 1 at different
constant values of (σ/G).

Constant σ/G value Q, [KJ/mol.] = kT h( / ) Q, [KJ/mol.] = s1013 1

5.40E-03 318.2 323.4
5.76E-03 291.4 303.2
6.05E-03 275.9 286.4
6.37E-03 262.7 261.6
6.80E-03 241.5 256.4
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In the above equations, the suffix ′i′ denotes that the value

corresponds to temperature, Ti and stress, σ2i corresponds to strain rate
2 at temperature Ti. Here, p0 is equal to n( 1) as σ tends to zero in the
power law stress-strain relation (Padmanabhan, 1977;
Padmanabhan et al., 2015).
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In the above equations the temperature Ti stands for the mean
temperature = +T ,mean

T T
2

1 2 where T1 and T2 are the lower and the
upper temperature limits within which the experiments are performed.

2.4. Method of Padmanabhan et al. (2015): case of constant microstructure

For this case the following equations are valid.

Table 3
High temperature creep: Computation of real activation energy calculated for
both = =kT h and s( / ) (10) 13 1 based on an improved procedure based on
the method of experimental scientists.

Systems Improved Method of Experimental scientists
(mean values within parenthesis)

At constant ( )T
G T

n T( )
( )

( )

Q, [KJ/mol.]
= kT h( / )

Q, [KJ/mol.]
= s(10 )13 1

NiAl-9Mo (Weili et al., 2004) 1123
- 1223 K

311.1 - 320.6
(315.8)

320.9 - 330.4 (325.6)

Ti-H alloy 12at.% H (Senkov and
Jonas, 1996)

131.6 - 140.6
(136.1)

141.4 - 159.3 (150.3)

Ti-6Al-4 V (Lavinia et al., 2014)
723 – 873K

246.3 - 254.3
(250.3)

256.1 - 261.4 (258.7)

TiB+La2O3 (Lv Xiao et al., 2009)
1123 - 1223 K

327.4 - 337.6
(332.5)

337.2 - 344.7 (340.9)

ZM21 Mg alloy (El Mehtedi et al.,
2009) 373 - 423 K

151.2 - 162.3
(156.7)

161 - 173.5 (167.2)

2.25Cr-1.6W Steel (Whittaker and
Wilshire, 2010) 773 - 923 K

294.5 - 304.2
(299.3)

304.3 - 315.9 (310.1)

Fig. 2. (a) Plot of ln vs (1/T) at constant T
G T

n T( )
( )

( )
, (b) Plot of + T vs T(ln ln ) (1/ ) at constant ( )T

G T

n T( )
( )

( )
for the system NiAl-9Mo (Weili et al., 2004).

Table 4
Value of Q as a function of the magnitude of ( )T

G T
n T( )

( )
( ) that is kept constant.

System NiAl-9Mo (Weili et al., 2004).

Constant value( )T
G T

n T( )
( )

( ) Activation Energy

Strainrate, Q, [KJ/mol.]
= kT h( / )

Q, [KJ/mol.]
= s(10 )13 1

1.18E-03 1.76E-07 320.6 330.4
1.07E-03 9.67E-07 318.2 328
5.27E-04 2.60E-06 315.5 325.3

A.A. Ayubali, et al. Mechanics of Materials 140 (2020) 103224

4



= =A Q
kT

kT
h

* exp ; ,3
n

(11a)

= =A
T

Q
kT

s* exp ; 10 ,4 13 1
n

(11b)

Here, =* ( )e c
is the dimensionless stress, e is the base of the

natural logarithms and the reference stress σ c is greater than σ. For
soundness of procedure and experimental convenience, for creep σc is
taken as equal to the room temperature uniaxial, tensile/ compressive
yield stress of the material. σc is the stress at which =n 1 in the di-
mensionless strain rate – stress space ( * space) in case of super-
plasticity (Padmanabhan, 1977). Therefore, the condition 0≤ σ*≤ 1 is
always satisfied and a problem of convergence that could arise if the
stress function were expanded in a power series is eliminated.

The constantsA3 andA4 are independent of σ and T and
=A A(10 . )h

k4
13

3 . Here, h is the Planck constant and k is the Boltzmann
constant.

Determination of n for low-stress uniaxial steady-state high-homologous
temperature creep

From Appendix A, Eq. (A5) of Padmanabhan et al. (2015) it follows
that, = = + = + =n p p n(( ln )/( ln )) (1 ) (1 ) constant ( )0 0 : p0≥ 1.
Then from Eqs. 11,

= +ln ln C T n T ln( ) ( )1 0
·

(12)

From Eqn. (12), n0 and ln C1 as functions only of temperature (as
required theoretically) are obtained.

Real activation energy, Q for high temperature creep. In view of Eq. (11a)
for = kT h( ( / )), ln vs (1/T) is plotted at constant n (ln ln )r0

(σr is the reference stress which is taken to be the maximum stress
employed in the experiments in the absence of knowledge about the
room temperature yield stress of the industrial alloys used in the
analysis). If the analysis is correct, the plot would be a straight line and
the slope would equal Q k/ , where Q is the real activation energy for
the rate controlling process, which should be independent of the
magnitude of n (ln ln )r0 that is kept constant. When one starts
with Eq. (11b) = s( 10 )13 1 , a plot of + T vs T(ln ln ) (1/ ) at
constant n (ln ln )r0 , again would result in a linear plot and the
slope would be equal to Q k/ . Here also the value of Q should be
independent of the magnitude of n (ln ln )r0 that is kept constant.

Determination of n for steady state structural superplasticity
During steady state superplastic deformation, the stress exponent, n

is strongly dependent on both stress and temperature
(Padmanabhan et al., 2018). The solution, originally from
Padmanabhan, 1977, is given as Eqn. (A4), Appendix A of
Padmanabhan et al., 2015. For this case one obtains,

= = + =n p
p

B Cln
ln

(1 )
c

0
0

(13)

Since both p0 and σc are positive (Padmanabhan, 1977;
Padmanabhan et al., 2015), it is predicted that n decreases linearly with
increasing stress during steady state superplastic flow.

Real activation energy, Q for steady state structural superplasticity. The
real activation energy for steady state superplastic flow is determined
from Eqn. (8) of Padmanabhan et al., 2015, i.e.,

Table 5
High temperature creep:Q, Qσ and Q values obtained for the 6 systems using Eqs. (3)–(6).

System Method of Rheology

Qσ,
[KJ/mol.]

Q, [KJ/mol.]
= kT h( / )

Q, [KJ/mol.]
= s(10 )13 1

Q ,
[KJ/mol.]

Q, [KJ/mol.]
= kT h( / )

Q, [KJ/mol.]
= s(10 )13 1

NiAl-9Mo (Weili et al., 2004) 1123 - 1223 K 360.1 –376.5 369.7–386.1 372.9 –397.9 70.2 –77.5 367.4 –383.7 375.9 –391.6
Ti-H alloy 12at.% H (Senkov and Jonas, 1996) 175.7 –193.9 195.7 –198.7 196.6 –203.1 37.2 –39.1 189.3 –194.5 195.7 –201.2
Ti-6Al-4 V (Lavinia et al., 2014) 723 – 873K 264.7 –277.6 270.9 –284.8 272.1 –292.5 60.2 –63.8 274.3 –286.4 281 –293.2
TiB+La2O3 (Lv Xiao et al., 2009) 1123 - 1223 K 370.9 –375.5 378.6 –383.3 387.9 –391.1 71.9 –73.1 380.1 –384.2 386.3 –389.5
ZM21 Mg alloy (El Mehtedi et al., 2009) 373 - 423 K 147.2 – 170.6 149.9 –173.4 168.5 –187.8 12.2 –15.4 154.2 –175.4 160.3 –182.1
2.25Cr-1.6W Steel (Whittaker and Wilshire, 2010) 773 - 923 K 338.7 – 377.3 335.7 – 376.5 342.9 –383.0 44.2 –51.3 334.6 – 375.3 340.2 –381.6

Table 6
Q , and Q relationships and Q values for the NiAl-9Mo alloy (Weili et al., 2004) calculated using Eqs.(3)–(6).

σ [MPa] Qσ, [KJ/mol.] Q, [KJ/mol.]
= kT h( / )

Q, [KJ/mol.]
= s(10 )13 1

, s 1 Q , [KJ/mol.] Q, [KJ/mol.]

= ( )kT
h

Q, [KJ/mol.]
= s(10 )13 1

52.20 376.5 386.1 397.9 1.74E-06 77.5 383.8 391.6
58.77 374.5 384.1 392.4 2.62E-06 75.2 380.7 387.6
62.97 370.7 380.3 386.2 4.28E-06 73.2 376.8 383.3
74.28 363.7 373.3 379.4 5.51E-06 72.3 370.1 378.6
77.78 360.1 369.7 372.9 8.45E-06 70.2 367.2 375.9

Table 7
Q , and Q relationships and Q values for the Ti-6Al-4 V alloy (Lavinia et al., 2014) calculated using Eqs.(3)–(6).

σ [MPa] Qσ, [KJ/mol.] Q, [KJ/mol.]
= kT h( / )

Q, [KJ/mol.]
= s(10 )13 1

, s 1 Q , [KJ/mol.] Q, [KJ/mol.]
= kT h( / )

Q, [KJ/mol.]
= s(10 )13 1

226.82 277.6 284.0 292.5 6.90E-08 63.8 286.4 293.2
242.10 277.6 284.8 292.3 8.82E-08 62.6 286.5 295.1
254.11 269.1 275.5 282.8 1.17E-07 61.7 279.8 287.6
267.33 264.5 271.2 279.4 1.64E-07 60.7 276.4 284
285.67 264.8 270.9 272.1 2.23E-07 60.2 274.3 281
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= + + +ln ln A p p ln e p Q
kT

2 (1 ) ( / )c
c

·
3 0 0 0 (14)

or

+ = + + +ln ln T ln A p p ln e p Q
kT

( ) 2 (1 ) ( / ) ( ) ( )c
c

4 0 0 0

(14a)

The above equations correspond to the cases = kT h( / ) and

= s1013 1respectively.
When = kT h( / ), a plot of ln

·
vs (1/T) at a constant value

of + +p p e p[2 (1 ) ln( /( )) ( / )]c c0 0 0 is prepared, the slope of
which is equal to Q k( / ). The value ofQ thus obtained is independent
of the magnitude of + +p p p[2 (1 )ln( ) ( )],e0 0 0c c

which is kept
constant. Similarly, when = s1013 1, the slope of a plot of

+ T(ln ln ) vs (1/T) at a constant value
of + +p p e p[2 (1 ) ln( /( )) ( / )]c c0 0 0 is equal to Q k( / ). The
value ofQ thus obtained is independent of the magnitude of

Fig. 3. (a) Double logarithmic plot of stress vs. strain rate data for in situ TiB+ La2O3 (Lv et al., 2009), (b) ln T1/ relation at defined constant stresses to
determine the apparent activation energyQσ, (c) Tln 1/ relations for different constant strain rates to calculateQ , (d) n0 as a function of T′, (e) Qσ as a function of
stress from which Q is determined, and (f)Q as a function of strain rate from which Q is determined. The values of constant stress/strain rate were chosen to cover
the full range of stresses and strain rates employed in the experiments.
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+ +p p e p[2 (1 ) ln( /( )) ( / )]c c0 0 0 that is kept constant.

2.5. An omission in the validation procedure adopted in
Padmanabhan et al. (2015): grain size exponent for steady state
superplastic flow

This missing aspect is examined here by analysing the experimental
data pertaining to 4 systems.

In addition, in this paper, the method of experimental scientists, the
improved procedure of experimental scientists explained above, the
method of rheology and the method of Padmanabhan et al. (2015) are
compared using experimental data pertaining to many systems with a
view to recommending the most reliable method. An automated com-
puter procedure has been developed. It is emphasized that when four
methods are there, it is essential that one has a sound knowledge of the
accuracy obtainable in each one of them. This is being done

Fig. 4. (a) Double logarithmic plot of stress vs. strain rate data for 2.25Cr-1.6W steel (Whittaker and Wilshire, 2010), (b) ln T1/ relation at defined constant
stresses to determine the apparent activation energy Qσ, (c) Tln 1/ relation for different constant strain rates to calculateQ , (d) n0 as a function of T′, (e) Qσ as a
function of stress from which the value of Q is determined, and (f) Q as a function of strain rate from which the value of Q is determined. The values for constant
stresses/strain rates were chosen to cover the full range of stresses and strain rates employed in the experiments.
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quantitatively for the first time in this paper.

3. Data analysis

3.1. High temperature creep

6 systems were analysed: NiAl-9Mo (Weili et al., 2004), Ti-H alloy
12at.% H (Senkov and Jonas, 1996), Ti-6Al-4 V (Lavinia et al., 2014),
TiB+La2O3 (Lv et al., 2009), ZM21 wrought Mg alloy (El Mehtedi et al.,
2009) and 2.25Cr-1.6W Steel (Whittaker and Wilshire, 2010). The
values of temperature T, stress, σ and strain rate, were digitized from
the respective experimental plots.

Table 8
High temperature creep: Real activation energy for the rate controlling deformation mechanism in case of the 6 systems analysed for both = (kT/h) and = 10 s .13 1

Systems Method of Padmanabhan et al., 2015 (mean values within parenthesis)

Q, [KJ/mol.]
= kT h( / )

Q, [KJ/mol.]
= s(10 )13 1

NiAl-9Mo (Weili et al., 2004) 1123 - 1223 K 340.5 - 341.6 (341) 350.3 - 351.4 (350.8)
Ti-H alloy 12at.% H (Senkov and Jonas, 1996) 153.5 - 154.4 (153.9) 162.8 - 163.7 (163.2)
Ti-6Al-4 V (Lavinia et al., 2014) 723 – 873K 266.4 - 267.4 (266.9) 272.8 - 273.8 (273.3)
TiB+La2O3 (Lv et al., 2009) 1123 - 1223 K 353.7 - 354.9 (354.3) 361.4 - 362.6 (362)
ZM21 Mg alloy (El Mehtedi et al., 2009) 373 - 423 K 148.2 - 149.9 (149) 166.8 - 168.5 (167.6)
2.25Cr-1.6W Steel (Whittaker and Wilshire, 2010) 773–923 K 337.1 - 338.7 (337.9) 344 - 345.6 (344.8)

Fig. 5. Double logarithmic plot of stress vs. strain rate curves. The symbols represent the experimental points and the full lines are based on the predicted values for
the four analysed systems. (a)Ti-6Al-4 V alloy (Lavinia et al., 2014), (b) in situ TiB+La2O3 alloy (Lv et al., 2009), (c) ZM21 Wrought Mg alloy (El Mehtedi et al.,
2009), and (d) 2.25Cr-1.6W Steels (Whittaker and Wilshire, 2010).

Table 9
Calculation for the value of Q which should be independent of the magnitude of
n (ln ln )r0 that is kept constant for the system Ti-H alloy 12at.% H
(Senkov and Jonas, 1996).

Constant
n (ln ln )r0 value

Activation Energy, Q

ln· Q, [KJ/mol.]
= kT h( / )

Q, [KJ/mol.]
= s(10 )13 1

13.46 −6.85 154.4 161.3
12.73 −6.21 153.9 160.8
11.76 −5.46 153.6 160.6
9.51 −4.45 153.5 160.5
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High temperature creep: method of experimental scientists
Here the stress is normalised with respect to the shear modulus,G of

the material, whose value is obtained by the rule of mixtures starting
from the values at room temperature of the constituent elements. The
effect of change in the value of n with temperature is ignored and a

mean value is taken for the whole range of temperature involved. The
graphical representations are given in Fig. 1 and the real activation
energy,Q values were calculated for both = kT h( / ) and = s1013 1

- Table 1. The values within brackets are the mean values of the real
activation energy.

Fig. 6. (a) Plot of ln vs (1/T) at constant n (ln ln ),r0 (b) plot of + T vs T(ln ln ) (1/ ) at constant n (ln ln ),r0 for the system Ti-H alloy 12at.% H (Senkov and
Jonas, 1996).

Table 10
Comparison of the real activation energy for the rate controlling process at different constant stress levels for the different methods.

Systems Different Constant
Stress level

Method of Experimental
scientists

Improved Method of
Experimental scientists

Method of
Rheology

Method of Padmanabhan et al.,
2015

[MPa] Q,
[KJ/mol.]

Q,
[KJ/mol.]

Q,
[KJ/mol.]

Q,
[KJ/mol.]

NiAl-9Mo (Weili et al., 2004) 1123 - 1223
K

52.20 401 320.6 386.1 341.6
58.77 389.2 318.2 384.1 341.4
62.97 362.4 315.5 380.3 341.1
74.28 346.7 311.1 373.3 340.5

Ti-H alloy 12at.% H (Senkov and
Jonas, 1996)

18.62 209.2 140.6 198.7 154.4
20.64 183.4 134.5 192.8 153.9
23.16 168.2 132.6 186.4 153.6
26.24 146 131.6 183.3 153.5

Ti-6Al-4 V (Lavinia et al., 2014) 723 –
873K

226.8 319 254.3 284.0 267.4
242.1 286.9 251.2 284.8 267.3
254.1 267.2 249.3 275.5 266.9
267.3 233.4 246.3 271.2 266.4

TiB+La2O3 (Lv Xiao et al., 2009) 1123 -
1223 K

169.5 416 337.6 383.9 354.9
177.1 382.4 334.7 382.7 354.3
186.2 365.3 331.6 379.9 354.1
191.7 332.7 327.4 379.9 353.7

ZM21 wrought Mg alloy (El Mehtedi et al.,
2009)373–423K

108.6 170 162.3 173.4 149.9
113.4 158.2 156.4 166.7 149.4
119.7 134.9 153.4 159.4 149.1
124.6 119.4 151.2 156.3 148.2

2.25Cr - 1.6W Steels (Whittaker and
Wilshire, 2010) 773 - 923 K

123.2 435.2 304.2 376.5 338.7
128.3 382.4 301.3 362.9 338.2
141.5 365.8 299.4 348.1 337.9
152.7 331.8 294.5 340.7 337.1

Table 11
Error (in%) analysis of the scatter in the values of Q for high temperature creep for the four methods.

Systems Method of Experimental scientists Improved Method of Experimental scientists Method of Rheology Method of Padmanabhan et al., 2015

NiAl-9Mo 14.4 3.0 3.3 0.3
Ti-H alloy 12at.% H 35.7 6.6 8.0 0.6
Ti-6Al-4 V 30.9 3.1 4.5 0.4
TiB+La2O3 22.2 3.0 1.0 0.3
ZM21 Mg alloy 34.7 7.1 10.4 1.1
2.25Cr-1.6W Steels 27.2 3.2 10.0 0.5
Average (%) 27.6 4.4 6.3 0.5
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In this analysis n is assumed to be independent of temperature,
which is not the case (see Fig. 1(c), (d)). As pointed out earlier, the
values of G used are less accurate than those obtainable using the re-
gression equations due to Frost and Ashby (Frost and Ashby, 1982). The
real activation energy values for the rate controlling process for one
alloy, determined at different constant values of ( ),G is shown in Table 2
as an example. It is clear that contrary to the requirement of Arrhenius
kinetics, the real activation energy values are not constant, but decrease
significantly with increasing stress level that is kept constant.

High temperature creep: improved method of experimental scientists
In this method the temperature dependence of n is taken into ac-

count (the value of n is calculated as a linear function of T' using the

method of least squares) and G is calculated using the equations sug-
gested by Frost and Ashby (Frost and Ashby, 1982). When = kT h( / ),
the real activation energy is obtained at constant ( )T

G T
n T( )

( )
( )from a plot

of ln vs (1/T) (Eq. (11a)), whose slope equals ( )Q
k . If the analysis

were robust, the value of Q obtained should be independent of the
magnitude of ( )T

G T
n T( )

( )
( ) which is kept constant. When = s1013 1, the

relation + T vs T(ln ln ) (1/ ) at constant ( )T
G T

n T( )
( )

( ) should be linear

and the slope should again be equal to ( )Q
k (Eq. (11b)). The computed

values of the real activation energy,Q for the different systems are
presented in Table 3.

Value of Q as a function of the value of ( )T
G T

n T( )
( )

( )kept constant for NiAl-9Mo
(Weili et al., 2004)

The alloy NiAl-9Mo (Weili et al., 2004) is considered. The stress is
normalised by the shear modulus, G (evaluated using the Frost-Ashby
(Frost and Ashby, 1982) equations), n is expressed as a function of T'
and the corresponding values of strain rates were digitized.

When = kT h( / ), a plot of ln vs (1/T) at constant ( )T
G T

n T( )
( )

( )

(Fig. 2) has a slope of ( )Q
k from which one obtains the values ofQ at

different values of ( )T
G T

n T( )
( )

( ), which are shown in Table 4. Similarly,
when using the relation = s1013 1, a plot of + T vs T(ln ln ) (1/ ) at
constant ( )T

G T
n T( )

( )
( ) is made, the slope of which gives the value of ( )Q

k .

Table 12
Steady state superplasticity: Real activation energy for the rate controlling deformation mechanism in case of the 6 systems analysed for both = kT h( / )
and = s10 .13 1

Systems Method of Experimental scientists (mean values within parenthesis)

Q, [KJ/mol.]
= kT h( / )

Q, [KJ/mol.]
= s(10 )13 1

Al–Mg–Sc–Zr alloy (Mengjia et al., 2017) 723–798 K 93.4 – 163 (128.2) 100.8 - 169.68 (134.8)
Ti-2.5Al-1.8Mn (Mikhaylovskaya et al., 2017) 1088 - 1163K 112.5 – 188 (150.2) 119.5 - 195.05 (157.3)
Ti-6Al-4 V (Alabort et al., 2016) 1023 - 1173 K 254.2 - 317.5 (285.8) 261.2 - 324.56 (192.9)
Mg alloy WE43 (Sahithya et al., 2017) 623 – 673 K 153.2 - 213.4 (183.3) 159.7 - 219.91 (189.8)
TA15 alloy (Sun and Wang, 2014) 1053–1173 K 243.2 – 324 (283.6) 250.2 - 331.06 (290.6)
High Pb ternary alloy (Harry and Junghyun, 2016) 333 – 423 K 59.4 – 82 (62.7) 65.44 – 88.04 (76.9)

Table 13
Steady state structural superplasticity: Real activation energy was calculated for both = =kT h and s( / ) (10) 13 1 at constant ( ) .T

G T
n T( )

( )
( )

Systems Improved Method of Experimental scientists (mean values within parenthesis)

Q, [KJ/mol.]
= kT h( / )

Q, [KJ/mol.]
= s(10 )13 1

Al–Mg–Sc–Zr alloy (Mengjia Li et al., 2017) 723 −798 K 105.3 - 111.3 (108.3) 111.6 - 117.6 (114.6)
Ti-2.5Al-1.8Mn (Mikhaylovskaya et al., 2017) 1088 - 1163K 145.1 - 152.4 (148.7) 157.4 - 164.7 (161.5)
Ti-6Al-4 V (Alabort et al., 2016) 1023 - 1173 K 273.2 - 280.8 (277) 282.3 – 289.9 (286.1)
Magnesium alloy WE43 (Sahithya et al., 2017) 623 – 673 K 170.2 - 177.8 (174) 175.6 - 183.2 (179.4)
TA15 alloy (Sun and Wang, 2014)1053 - 1173 K 216.8 - 226.1 (221.4) 226.4 - 235.7 (231.5)
High Pb ternary alloy (Harry and Junghyun, 2016) 333 – 423 K 72.3 - 80.2 (76.2) 78.8 - 86.7 (82.7)

Table 14
Steady state structural superplasticity: Calculation ofQ for different systems from the apparent activation energy values at constant stress,Qσ using Eqs. (7)–(10).

Systems Method of Rheology

Qσ,
[KJ/mol.]

Q, [KJ/mol.]
= kT h( / )

Q, [KJ/mol.]
= s(10 )13 1

Al–Mg–Sc–Zr alloy (Mengjia Li et al., 2017) 723–798 K 157.3 – 218.5 115.3 – 125.8 121.5 – 131.5
Ti-2.5Al-1.8Mn (A.V. Mikhaylovskaya et al., 2017) 1088 - 1163K 166.5 – 196.8 166.5 – 176.2 175.9 – 182.6
Ti-6Al-4 V (E. Alabort et al., 2016) 1023 - 1173 K 311.1 – 356.5 312.9 – 329.4 322.0 – 331.5
Magnesium alloy WE43 (Sahithya et al., 2017) 623 – 673 K 156.1 – 180.5 158.8 – 167.8 164.2 – 173.7
TA15 alloy (Sun and Wang, 2014)1053–1173 K 209.7 – 302.2 218.8 – 225.2 228.1 – 234.5
High Pb ternary alloy (Harry and Junghyun, 2016) 333 – 423 K 87.9 – 107.3 88.3 – 92.2 91.5 – 98.5

Table 15
Q relationship and Q values for Ti-2.5Al-1.8Mn alloy
(Mikhaylovskaya et al., 2017) obtained using Eqs. (7) and ((9).

Stress,
σ[MPa]

Qσ,[KJ/
mol.]

Q, [KJ/mol.] = kT h( / ) Q, [KJ/mol.] = s1013 1

9.12 196.8 197.2 206.6
11.36 188.2 188.6 197.9
15.11 179.9 180.1 189.5
17.79 178.6 178.7 188.1
21.81 166.5 166.5 175.9
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It is seen that the scatter in the values of Q in this method at different
values of ( )T

G T
n T( )

( )
( ) is much smaller than in the previous method.

High temperature creep: the method of rheology
In the method of rheology the value of Q is obtained from the ap-

parent activation energies determined at constant stress, Qσ and con-
stant strain rate Q (McKelvey, 1962). Stress is not normalized in this
procedure. The values of Q Q and Q, for the 6 systems were de-
termined using Equations ((3) - (6). The findings are reported in
Table 5.

Detailed results of Q , and Q relationships and Q values
computed at different stress levels by the method of rheology for Ti-6Al-
4 V (Lavinia et al., 2014) and NiAl-9Mo (Weili et al., 2004) are pre-
sented in Tables 6 and 7. In addition, graphical representation of the
estimations for two other materials (in situ TiB2+ La2O3 and 2.25Cr –
1.6W Steels) are shown in Figs. 3(a)–(f) and 4(a)–(f).

Scatter in the predictions in this method is quite large.

High temperature creep: method of Padmanabhan et al. (2015)
Using Eqs. (11a) and (11b) ( = kT h( / ) and

= s10 respectively)13 1 , the values of the real activation energy for the
6 systems were calculated and the results are presented in Table 8.

As in the earlier paper (Padmanabhan et al., 2015), the values of ln
·

were predicted at different stresses for both = kT h( / ) and
= s1013 1

. The results for the stress versus the predicted and ex-
perimental strain rates for 4 systems are presented in Fig. 5. The results
are very consistent. Similarly, the values obtained for the real activation

energy,Q are practically independent of the values of the stress at
which they are obtained and these are reported in Table 9.

The value of Q is nearly independent of the different values of
n (ln ln )r0 that is kept constant: Ti-H alloy 12at.% H (Senkov and
Jonas, 1996) (see Table. 9).

From Padmanabhan et al. (2015) as well as the summary presented
above it follows that

= =n n n(ln ln ) (ln ln ) (ln ln )r r r01 1 0 2 03 32

Here σr is the reference stress which is taken as the maximum stress
employed in the experiment, =i e MPa. . , 45.11r for this system. The
numerical suffixes denote different temperatures.

When, = kT h( / ) a plot of ln vs (1/T) at constant n (ln ln )r0
(Fig. 6) is plotted, the slope of which equals ( ),Q

k from which Q ran-
ging from 153.3 to 154.4KJ/mol. is obtained at different levels of
constant n ln ln( )r0 values. That is, the value of Q is practically
independent of the magnitude of n (ln ln )r0 that is kept constant.
Similarly, when = s1013 1, a plot of + T vs T(ln ln ) (1/ ) at constant
n (ln ln )r0 is plotted, the slope of which, once again, is equal to
( )Q

k . In this method the value of Q ranges from KJ mol160.5 161.3 / . ,
i.e., it is practically independent of the magnitude of n (ln ln ).r0

3.2. Effect of grain size on power law creep

It has been reported in several studies that when dislocation pro-
cesses dominate, grain size practically has no effect on creep

Fig. 7. Plots pertaining to the system Al-Mg-Sc-Zr (Mengjia et al., 2017) and the determination of real activation energy value from Qσ andQ values obtained using
Eqs. (7)–(10).
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deformation, e.g. Mannan and Rodriguez, 1983. For example, the creep
rate for grain sizes of 0.040mm and 0.650mm in AISI type 316 stain-
less steel was investigated at 873 and 973 K at different stresses. Power
law creep was observed and the effect of grain size on the creep rate
was negligible (Mannan and Rodriguez, 1983). In another study of
flexural creep response at 1200° and 1300 °C of alumina reinforced with
10 vol.% SiC whiskers, wherein the grain size was varied from 1.2 to
8.0 μm, it was found that the creep rate was insensitive to grain size
(Lin et al., 1996).

3.3. Comparison of results obtained by different methods for high
temperature creep

The values of Q ( =for kT h/ ) at different constant stress levels
obtained for all systems considered using the different methods are
compared in Table 10.

3.4. Error analysis: high temperature creep

Table 10 presents an analysis of the scatter present in the values of
the real activation energy predicted by the four methods.

From the values given in Table 10, the error for every method is
analysed using the relation given in Eq. (15) and the values are reported
in Table 11.

= ×Error Highest value Lowest value
Mean value

100%
(15)

From the above analysis it is clear that an average error of± 0.5%
(maximum error of 1.1%) is present in the method of
Padmanabhan et al. (2015), which is the lowest value and thus this
analytical procedure is seen to be the most accurate. The improved
method of experimental scientists (average error 4.4%; maximum error
7.1%) is the second most accurate. The percentage error of the method
of experimental scientists is rather high and its usage could be avoided
in the interest of precision.

3.5. Steady state structural superplasticity

In case of steady state structural Superplasticity data concerning 6
more systems were analysed. The chosen systems are: Al–Mg–Sc–Zr
alloy of 4.4 μm grain size (Mengjia et al., 2017), Ti-2.5Al-1.8Mn alloy of
7.2 μm grain size (Mikhaylovskaya et al., 2017), Ti-6Al-4 V alloy of
grain size 6.1 μm (Alabort et al., 2016), Magnesium alloy WE43 of 2 μm
grain size (Sahithya et al., 2017), TA15 alloy of grain size 2 μm (Sun and
Wang, 2014) and High Pb ternary alloy of 4.2 μm grain size (Harry and
Junghyun, 2016) (Fig. 8). As before, an analysis was carried out using
the four methods.

Steady state structural superplasticity: the method of experimental scientists
The real activation energy for the rate controlling process,Q for the

systems was calculated using Eq. (1), treating m to be independent of T
and / . The results are presented in Table 12.

Fig. 8. Plots of strain rate vs. stress relationship. The plots correspond to the data digitized. The above four plots correspond to (a) Al–Mg–Sc–Zr alloy of 4.4 µm grain
size (Mengjia et al., 2017), (b) Ti-2.5Al-1.8Mn alloy of 7.2 µm grain size (Mikhaylovskaya et al., 2017), (c) Ti-6Al-4 V alloy of grain size 6.1 µm (Alabort et al., 2016),
(d) TA15 alloy of grain size 2 µm (Sun and Wang, 2014).
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Steady state structural superplasticity: the improved method of experimental
scientists

The values of real activation energy was calculated keeping
( )T

G T
n T( )

( )
( ) as constant. G was calculated as a linear function of tem-

perature using the Frost-Ashby equations (Frost and Ashby, 1982). The
activation energy values calculated by the improved method of ex-
perimental scientists for the 6 systems are reported in Table. 13.

Steady state structural superplasticity: the method of rheology
Using Eqs. (7)–(10) the value of real activation energy,Q was cal-

culated from theQσvalues for every system. The results are reported in
Table 14. As an example, in Table 15 the calculated values ofQ from the
apparent activation energy values determined at different constant
stresses,Qσ in the temperature range 1088K-1163 K in case of Ti-2.5Al-
1.8Mn alloy (Mikhaylovskaya et al., 2017) are presented. The compu-
tation was repeated with all the alloys considered.

The predictions pertaining to the experimental data of Al–Mg–Sc–Zr
alloy of grain size 4.4 μm at temperatures of 723–798 K are presented in
Fig. 7. The calculations are based on Eqs. (7)–(10). The experimental
points are given as symbols.

Steady state structural superplasticity: the method of
Padmanabhan et al. (2015)

The same 6 systems were analysed using Eqs. (12)–(14). From
Eq. (13) it follows that at a given temperature =p B( 1)0 and

= p C( / )c 0 . The following facts should be noted. (a) For obtaining the

predictive equation for the variation of n as a function of T, the method
of least squares was used, and (b) experimentally, it is known that p0, σc
and n decrease with increasing T. These facts give rise to two con-
straints: i.e., (i) B in Eq. (14)/ (14a) should decrease with increasing T,
and (ii) In Eq. (14) under isothermal conditions (see derivation)

=p C( . )c0 . That is, C C( / )i i 1 should always be equal
to ×p p( / ) ( / )i i c i ci0 0( 1) ( 1) , where the subscripts (i) and i( 1) cor-
respond to two different temperatures Ti and Ti 1; C, p0 and σc values
mentioned along with the subscripts correspond to the values of these
parameters at each of the two temperatures (Padmanabhan et al.,
2015).

In addition, using the experimental values of ln ln digitized for
different temperatures and Eqs. (11) and (11a), the values ofQ,A3
andA4 were determined. With these values, ln values at different
temperatures and stresses are computed for = =kT h and s( / ) 1013 1.
Clearly, the experimental and the computed values agree very well.

The ln values which are calculated for the four systems are com-
pared in a plot with the experimental ln values - see Fig. 9.

Among the four methods considered here a prediction this analysis
alone is capable of making is that during optimal structural
Superplasticity the stress exponent, n decreases linearly with increasing
stress σ (Eq. (13)). This relationship is verified/ validated in Fig. 10 for
four systems chosen randomly as examples.

In addition, the real activation energy,Q for the rate controlling
mechanism was calculated for both = kT h( / ) and = s1013 1. These
values are presented in Table 16.

Fig. 9. Double logarithmic plots of stress vs. strain rate curves. The symbols represent the experimental points and the curves are based on the developed equations.
The four systems considered are: (a) Al–Mg–Sc–Zr alloy of 4.4 µm grain size (Mengjia et al., 2017), (b) Ti-2.5Al-1.8Mn alloy of 7.2 µm grain size
(Mikhaylovskaya et al., 2017), (c) Ti-6Al-4 V alloy of grain size 6.1 µm (Alabort et al., 2016) and (d) TA 15 alloy of 2 µm grain size (Sun and Wang, 2014).
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It is clear that the entire region of steady state superplasticity can be
accounted for using a single real activation energy value for the rate
controlling mechanism. Importantly, these real activation energy values
are very close to those reported for Grain Boundary Sliding (GBS)
(Padmanabhan and Davies, 1980; Kaibyshev, 1992) and computed
theoretically and verified experimentally by Sripathi and
Padmanabhan (2014).

3.6. Comparison of the four methods for steady state superplasticity
The real activation energy values for the different systems computed

by the four methods are reported in Table 17.

3.7. Error analysis
The scatter in the computed values of the real activation energy as a

function of the stress level maintained constant was analysed and
compared for the four methods. The findings are reported in Table 18.
The computations for the four methods can be carried out for both the
values of ν ( = kT h/ and = s1013 1). (To conserve space, in this
paper, in Tables 10, 11, 17 and 18 the values computed for = kT h/
alone are presented.)

Here again the method of Padmanabhan et al. (2015) is the most
accurate, which is followed by the improved method of experimental
scientists. The levels of accuracy obtainable in the other two methods

Fig. 10. Validation of the prediction that n vs. stress at constant temperature is linear: (a) Al–Mg–Sc–Zr alloy of 4.4 μm grain size (Mengjia et al., 2017), (b) Ti-2.5Al-
1.8Mn alloy of 7.2 μm grain size (Mikhaylovskaya et al., 2017), (c) Ti-6Al-4 V alloy of grain size 6.1 μm (Alabort et al., 2016), (d) High Pb ternary alloy of 4.2 μm grain
size (Harry and Junghyun, 2016).

Table 16
Steady state structural superplasticity: Real activation energy for the rate controlling deformation mechanism in case of the 6 systems for both = kT h( / )
and = s10 .13 1

Systems Padmanabhan et al., 2015
(mean values within parenthesis)

Q, [KJ/mol.]
= kT h( / )

Q, [KJ/mol.]
= s(10 )13 1

Al–Mg–Sc–Zr alloy (Mengjia et al., 2017) 723–798 K 116.2 - 117.5 (116.5) 122.5 - 123.8 (123.1)
Ti-2.5Al-1.8Mn (Mikhaylovskaya et al., 2017) 1088 - 1163K 165.2 - 166.8 (166) 173.5 - 175.1 (174.3)
Ti-6Al-4 V (Alabort et al., 2016) 1023 - 1173 K 292.6 - 293.9 (293.2) 301.9 - 303.2 (302.5)
Mg alloy WE43 (Sahithya et al., 2017) 623 – 673 K 154.9 - 156.1 (155.5) 160.3 - 161.5 (160.9)
TA15 alloy (Sun and Wang, 2014) 1053–1173 K 212.4 - 214.5 (213.4) 221.6 - 223.7 (222.6)
High Pb ternary alloy (Harry and Junghyun, 2016)333 – 423 K 86.7 - 87.9 (87.3) 89.9 - 91.15 (90.5)
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are not satisfactory, particularly in the method of experimental scien-
tists.

3.8. Effect of grain size on steady state superplasticity
Steady state superplastic flow is strongly influenced by grain size

(Padmanabhan and Davies, 1980; Ghosh and Raj, 1981;
Kaibyshev, 1992; Imayev et al., 1997; Li et al., 2017). In the earlier
paper (Padmanabhan et al., 2015) the grain size exponent in terms of
the Buckingham Pi Theorem (White, 2011) [please see Appendix. 1 for
details] was not determined. This task is completed here. Four systems
were analysed using the stress-strain rate relationship corresponding to
different grain sizes at a given temperature. The systems chosen are:
Al–Mg–Sc alloy of 1.6, 2.6 and 2.9 µm grain sizes at temperatures in the
range of 673 – 798 K (Liu and Ma, 2011), Mg-Zn-Y-Zr alloy of 2, 5 and
10 µm grain sizes at temperatures in the range of 573 – 673 K
(Tang et al., 2009), AZ91 alloy of grain sizes 1.2, 3.1 and 7.8 µm at
temperatures in the range of 523 – 648 K (Chai et al., 2013), and Mg-
3Gd-1 Zn alloy of 1.7, 4.9 and 8.2 µm grain sizes at temperatures in the
range of 573 – 723 K (Sarebanzadeh et al., 2015). The reference grain
size chosen for normalizing the grain sizes was 20 µm.

Considering together the 4 alloys examined here the grain size de-
pendence of superplastic strain rate in the method of
Padmanabhan et al. (2015) is (−1.19), with individual values for dif-
ferent systems falling in the range of 1.33 to 0.96. The material-agnostic
maximum scatter in the mean grain size exponent is± 0.37. From
Table 19 it is clear that this is the most accurate of the four methods

examined in this study. The improved method of experimental scientists
with a maximum scatter of± 0.41 is a close second. The scatter in the
method of experimental scientists is rather large and the use of this
technique should be viewed with caution. A final point: In the method
of Padmanabhan et al. (2015) for obtaining normalized grain sizes of
value less than unity, the grain size is divided by a large grain size,
20 μm. As superplastic strain rate is inversely related to the grain size,
the grain size exponent for this method always has a negative value.

The strain rate – grain size relationship at every temperature is
plotted on a log-log scale. From the slope of the resultant straight lines,
the grain size exponent values are determined. Fig. 11 shows, as an
example for a single system, how the strain rate varies with grain size at
different temperatures.

Evidently the temperature dependence of the grain size exponent is
the least for the method of Padmanabhan et al., 2015. The findings for
all the four systems are summarised in Table 19.

4. Concluding remarks

4.1. High temperature creep

The effectiveness and accuracy of prediction possible with the four
methods is now examined material-wise.

(i) Ti – 12 at.% H alloy (Senkov and Jonas, 1996): The system was
tested by the original authors in the temperature range of

Table 17
Consistency analysis for steady state structural superplasticity. Comparison of the real activation energy values for the different systems at various stress levels.

Systems Constant Stress
Levels [MPa]

Method of
Experimental scientists

Improved Method of
Experimental scientists

Method of
Rheology

Method of Padmanabhan et al.,
2015

Q,
[KJ/mol.]

Q,
[KJ/mol.]

Q,
[KJ/mol.]

Q,
[KJ/mol.]

Al–Mg–Sc–Zr alloy (Mengjia et al., 2017)723
−798 K

0.94 163 111.3 125.1 117.5
1.32 139.8 109.4 122.0 117.3
1.70 112.4 107.1 118.9 117.1
2.13 93.4 105.3 118.1 116.2

Ti-2.5Al-1.8Mn (Mikhaylovskaya et al., 2017)
1088 - 1163K

9.12 188 152.4 197.2 166.8
11.32 165.4 150.2 188.6 166.6
15.11 134.8 146.8 180.1 166.1
17.79 112.5 145.1 178.7 165.2

Ti-6Al-4 V (Alabort et al., 2016) 1023 - 1173 K 26.16 317 280.8 359.4 293.9
32.27 287.5 278.3 347.6 293.4
41.48 265.4 276.1 330.9 293
47.62 254.2 273.2 322.0 292.6

Magnesium alloy WE43 (Sahithya et al., 2017)
623 – 673 K

23.90 213.4 177.8 180.8 156.1
26.82 187.9 174.2 173.9 156
29.81 176.3 172 168.6 155.7
34.16 153.2 170.2 163.9 154.9

TA15 alloy (Sun and Wang, 2014)1053 - 1173 K 158.17 324 226.1 310.2 214.5
171.44 298.3 221.4 257.1 214.2
191.35 264.2 219.4 247.8 214
211.37 243.2 216.8 230.1 212.4

High Pb ternary alloy (Harry and
Junghyun, 2016) 333 – 423 K

6.32 82 80.2 107.2 87.9
7.27 64.3 79.2 105.9 87.8
9.24 63.2 76.3 99.7 87.1
10.6 59.4 72.3 94.3 86.7

Table 18
Analysis of scatter (in%) in the values of Q obtained by the four methods.

Systems Method of Experimental scientists Improved Method of Experimental scientists Method of Rheology Method of Padmanabhan et al., 2015

Al–Mg–Sc–Zr alloy 54.7 5.5 5.7 1.1
Ti-2.5Al-1.8Mn 50.2 4.9 9.9 0.9
Ti-6Al-4V 22.3 2.7 11.0 0.4
Magnesium alloy WE43 32.9 4.3 9.8 0.7
TA15 alloy 28.6 4.2 30.6 0.9
High Pb ternary alloy 33.6 10.2 12.6 1.3
Average (%) 22.3 - 54.7 (37.1) 2.7 - 10.2 (5.3) 5.7 - 30.6 (13.4) 0.4 - 1.3 (0.9)
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973–1233 K. Here it is analysed by the three methods of method of
experimental scientists, improved method of experimental scientists
and the analysis due to Padmanabhan et al. (2015). As the method
of rheology leads to a large scatter in the predictions (see earlier
portions) and it is also not consistent with the tenets of the Buck-
ingham Pi Theorem, it is not considered any further.

The activation energy values obtained by the three methods are
shown in Table 20. In the method of experimental scientists, the scatter
in the predicted value is large and the total temperature interval has to
be divided into two sub-domains with two different rate controlling
mechanisms. In this sense this is a less useful method compared with
the other two in which the scatter in the predicted values are of a very
small magnitude and the whole temperature range could be covered by
a single rate controlling mechanism. To decide between the magnitudes
of the activation energy values obtained by the two methods, one will
have to use microstructural and topological evidence to identify the
physical mechanism, which controls the rate of deformation. But even
at this stage it is safe to note that the activation energy values obtained
by the two techniques, viz. improved method of experimental scientists
and the one due to Padmanabhan et al. (2015) are rather close.

(ii) Ti-6Al-4V (Lavinia et al., 2014): The following comments are
significant. The ln ln plots cover a temperature range of 723 –
873 K.

The activation energy values corresponding to the three methods
are presented in Table. 21. All the points made concerning the first
system are valid here also. But in this case the scatter is less in the
improved method of experimental scientists compared with that of
Padmanabhan et al. (2015), even though the scatter is rather small in
both the cases in absolute terms.

For the systems NiAl-9Mo (Weili et al., 2004) in the temperature
range 1123 - 1223 K, TiB+ La2O3 (Lv Xiao et al., 2009) in the range
1123 - 1223 K, ZM21 wrought Mg alloy (El Mehtedi et al., 2009) in the
temperature range 373–423 K, 2.25Cr - 1.6W Steel (Whittaker and

Wilshire, 2010) in the temperature range 773 - 923 K considered in this
paper, the activation energy values obtained by the respective authors
are: 346.7 – 401, 332.7 – 416, 119.4 – 170 and 331.8 – 435.2 KJ mol 1

respectively for the whole range of temperature. These values are si-
milar to the values obtained by the method of experimental scientists in
this paper. By the method of Padmanabhan et al. (2015) an accurate set
of activation energy values of 341, 354.3, 149 and 337.9 KJ mol 1 is
obtained respectively. The activation energy values obtained by the
improved method of experimental scientists (315.8, 332.5, 156.7 and
299.3 KJ mol 1 respectively) are also close to the values obtained using
the procedure of Padmanabhan et al. (2015). The inferences concerning
the analyses of these four alloys are also very similar to those of the first
two alloys discussed earlier.

The numerous analyses of creep data available from the beginning
of creep research (see, for example, Dorn, 1955; Harper and
Dorn, 1957; Mukherjee et al., 1969; Sherby et al., 1957) have mostly
used the method of experimental scientists. They can be rationalized
better and keener insights into the rate controlling mechanisms ob-
tained if one were to use the improved method of experimental scien-
tists or the one advocated by Padmanabhan et al. (2015). As pointed
out by the latter authors, errors in the prediction of observed strain
rates by the improved method of experimental scientists are likely to be
larger compared with those found with the technique of
Padmanabhan et al. (2015) because in the former method the stress is
normalized by the shear modulus, which being more than 1000 times
larger than the flow stress, considerably contracts the total strain rate
range and as a result leads to a loss of accuracy.

4.2. Steady state structural superplasticity

Here also the results of the method of experimental scientists, im-
proved method of experimental scientists and the one due to
Padmanabhan et al. (2015) are discussed.

(i) Al–Mg–Sc–Zr alloy (Mengjia et al., 2017): Temperature range
covered is 723 - 773 K and the authors have used the method of

Table 19
Comparison of grain size exponent for the 4 systems obtained using the 4 methods.

Systems Constant
Stress levels
[MPa]

At different
Temperature [K]

Method of
Experimental
scientists

Improved Method of
Experimental
scientists

Method of
Rheology

Method of
Padmanabhan et al., 2015

(mean values within parenthesis)
Grain size
exponent, a

Grain size
exponent, a

Grain size
exponent, a

Grain size exponent, a

Al–Mg–Sc alloy (F. C. Liu et al., 2011)
673–798 K

25.24 673 1.76 1.53 1.72 −0.89
698 0.77 1.48 1.41 −0.92
723 0.56 1.32 1.28 −0.98
748 0.43 1.17 1.02 −1.08

(0.88) (1.37) (1.35) (−0.96)
Mg–Zn–Y–Zr alloy (W.N. Tang et al.,

2009) 573 - 673K
11.48 573 1.84 1.89 1.13 −1.25

598 0.85 1.84 0.82 −1.29
623 0.24 1.68 0.68 −1.36
673 0.12 1.53 0.42 −1.45

(0.76) (1.73) (0.76) (−1.33)
AZ91 Magnesium alloy (Fang Chai et al.,

2013) 523 - 648 K
36.43 523 1.64 1.73 1.24 −1.16

573 0.76 1.68 0.93 −1.21
623 0.24 1.52 0.80 −1.27
648 0.14 1.37 0.54 −1.36

(0.69) (1.57) (0.87) (−1.25)
Mg-3Gd-1 Zn alloy (M.

Sarebanzadeh et al., 2015) 573 – 723
K

121.5 573 1.98 1.24 1.65 −1.14
623 1.79 1.19 1.34 −1.18
673 1.38 1.04 1.21 −1.25
723 1.26 0.88 0.94 −1.34

(1.65) (1.32) (1.28) (−1.22)
Maximum scatter in the mean value foreach

method if considered in a material-
agnostic sense

± ± ± 0.96 ± 0.41 ± 0.59 ± 0.37
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experimental scientists.
(ii) Ti-2.5Al-1.8Mn alloy (Mikhaylovskaya et al., 2017):

Here also the authors have used the method of experimental sci-
entists.

Clearly, from the values of the activation energy shown in Tables 22
and 23, it is clear that the method of Padmanabhan et al. (2015) and the
improved method of experimental scientists are better than the method
of experimental scientists, which requires two rate controlling me-
chanisms to account for the observations in the whole temperature

Fig. 11. Plot of ln strain rate (s 1) vs ln grain size (μm) for the Al-Mg-Sc alloy of varying grain sizes (1.6 μm, 2.6 μm, 2.9 μm). (a) Method of experimental scientists, (b)
Improved method of experimental scientists, (c) Method of rheology, and (d) Method of Padmanabhan et al., 2015.

Table 20
The activation energy, Q, computed by three different methods for Ti – 12 at.% H alloy.

Method Zone Mechanism Activation Energies
KJ mol[ . ]1

Method of Experimental Scientists (Senkov and
Jonas, 1996)

973 K – 1073 K Bulk diffusion in β titanium 130 - 172
1073 K – 1233 K Self-diffusion and high-temperature deformation of β titanium 190 - 260

Improved Method of Experimental Scientists 973 K – 1233 K Can be explained by a single mechanism as rate controlling in the
whole range of temperature

131 – 140.6

Method of Padmanabhan et al., 2015 973 K – 1233 K Can be explained by a single mechanism as rate controlling in the
whole range of temperature

154.4–163.7

Table 21
The activation energy values computed by the three methods for Ti-6Al-4 V.

Method Zone Mechanism Activation Energies KJ mol[ . ]1

Method of Experimental Scientists (Lavinia et al.,
2014)

723 K – 793 K Ti self-diffusion and Al solute diffusion 251 - 290
793 K – 873 K Controlled by dislocation climb due to lattice diffusion assisted by pipe

diffusion
296 - 326

Improved Method of Experimental scientists 723 K – 873 K Is explained by a single mechanism 256 - 261
Method of Padmanabhan et al., 2015 723 K – 873 K Is explained by a single mechanism 264 – 277.6
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range compared with the first two which require only one (rate con-
trolling mechanism). However, the first method has a smaller scatter in
the predicted activation energy values and has a better stress normal-
ising procedure than the improved method of experimental scientists.

The activation energy values for the four other systems (Ti-6Al-4 V,
Mg alloy WE43, TA15 alloy and High Pb ternary alloy) also show a wide
scatter when the method of experimental scientists is used. The acti-
vation energy values obtained by the improved method of experimental
scientists are very close to those obtained by the method of
Padmanabhan et al. (2015). These activation energy values can be
identified with that for Grain Boundary Sliding (GBS) in the four alloys
(Alabort et al., 2016; Harry and Junghyun, 2016; Sahithya et al., 2017;
Sun and Wang, 2014).

Finally, using the Buckingham Pi Theorem for the first time the
mechanical response of four superplastic alloys were analysed to obtain
a numerical value for the grain size exponent in the superplastic strain
rate equation. The grain size exponent obtained in this fashion is con-
sistent with those reported after extensive searches of literature by
Padmanabhan and Davies (1980) and Padmanabhan et al. (2018).

Novelty statement

A procedure for improving the accuracy of prediction of the method
of materials scientists that analyses creep deformation using the “power
law” by including the variations in the value of the strain-rate sensi-
tivity index, m, with temperature (and also with grain size in case of
Superplasticity) and estimating the shear modulus at any given tem-
perature in terms of the Frost-Ashby equations is presented. It is shown
that this modified method predicts values for the activation energy for

the rate controlling process and the strain rate of deformation that are
almost as accurate as those predicted by the procedure due to
Padmanabhan et al. (2015). It is further shown that the accuracy ob-
tainable by the latter method is better because of its superior way of
normalizing the stress term in the strain rate equation to make it con-
sistent with the Buckingham Pi Theorem. It is demonstrated that both
these methods are consistent with the tenets of Dimensional Analysis. A
power law analysis commonly used in the field of rheology is shown to
be inconsistent with the principles of Dimensional Analysis and the
least accurate among the different methods of handling the power law
strain rate equation for steady state, uniaxial, low stress, high homo-
logous temperature deformation. The above conclusions are verified/
validated by analysing the experimental data pertaining to several
systems.
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Appendix 1

The Buckingham Pi Theorem is based on the ‘method of dimensions’, first proposed by Lord Rayleigh (1877) (Rayleigh, 1877) and is based on the
ideas of matrix algebra and the concept of the ‘rank’ of non-square matrices. The theorem was outlined in 1914 (Buckingham, 1914) using di-
mensionless parameters.

The theorem

Let q1, q2, q3...qn be n dimensional variables that are physically relevant to a given problem and inter-related by a dimensionally homogeneous set
of equations. These can be expressed via a functional relationship of the form,

=F q q q( , , ... ) 0,n1 2 or equivalently =q f q q( , ... )n1 2
If k is the number of fundamental dimensions required to describe the n variables, then there will be k primary variables and the remaining

=j n k( ) variables can be expressed as n k( ) dimensionless and independent quantities or ‘Pi groups’, …, n k1 2 …, n k1 2 . The functional
relationship then reduces to the form:

… = = …( , ) 0, or equivalently ( )n k n k1 2 1 2

This set of dimensionless parameters is not unique. They are, however, independent and form a complete set.

Table 22
The activation energy values computed by the three different methods for Al–Mg–Sc–Zr alloy.

Method Zone Mechanism Activation Energies KJ mol[ . ]1

Method of Experimental scientists (Mengjia et al., 2017) 723 – 773 K Grain boundary self-diffusion of Al 84.4 – 98.4
773 – 798 K Grain boundary sliding 100.8 – 154.2

Improved Method of Experimental scientists 723 – 798 K Can be explained by a single rate controlling mechanism 105.3 – 111.3
Method of Padmanabhan et al., 2015 723 – 798 K Can be explained by a single rate controlling mechanism 116.2 – 117.5

Table 23
The activation energy values computed by the three different methods for Ti-2.5Al-1.8Mn alloy.

Method Zone Mechanism Activation Energies KJ mol[ . ]1

Method of Experimental scientists (Mikhaylovskaya et al., 2017) 1088 – 1138 K Grain boundary self -diffusion 153 - 183
1138 – 1163 K Intragranular diffusion 306 - 317

Improved Method of Experimental scientists 1088 – 1163 K Can be explained by a single rate controlling mechanism 145.1 – 152.4
Method of Padmanabhan et al., 2015 1088 – 1163 K Can be explained by a single rate controlling mechanism 165.2 – 171.5
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The main advantage of using the Buckingham Pi Theorem is that it reduces the number of variables by combining dimensional variables to form
dimensionless parameters. By far the simplest and the most desirable method is that of direct mathematical solution. Therefore, this is one of the
powerful techniques, potentially useful for any experimental study (White, 2011).

This analysis is useful in both analytical and experimental work. Some of the advantages are:

1. Checking the dimensional homogeneity of any equation of a physical model.
2. Deriving equations expressed in terms of dimensionless parameters to show the relative significance of each parameter.
3. Planning tests and presenting experimental results in a systematic manner.

In Padmanabhan et al. (2015), where the Buckingham Pi Theorem is used, each dimensional variable is divided by a larger value of the same
variable, resulting in a dimensionless quantity of magnitude less than unity. Hence the problem of convergence is avoided, if the function were to be
expanded in a power series.

Dimensional analysis/ the Buckingham Pi Theorem finds application in many areas, e.g. fluid mechanics (White, 2011), metrology (Esnault-
Pelterie, 1950), astrophysics (Kurth, 1972), engineering (Nag, 2006), chemical processing (Zlokarnik, 1991), aeronautical engineering
(Branover and Unger, 1998) etc.
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