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A B S T R A C T

Hydrogen (H) atoms in the metallic crystalline lattice interact with the pre-existing dislocations and then re-
markably affect the plastic deformation of metals. Thereby quantitatively characterizing the H-dislocation in-
teraction is of great importance for understanding H-induced plasticity and failure. Most of the previous studies
have focused on the long-range interaction between hydrogen and dislocation, but rarely considered the short-
range interaction, especially the hydrogen effect on the dislocation core structure. Here, with the aid of the H-
affected γ-surface calculated from atomistic modeling, an atomistically-informed generalized Peierls–Nabarro
model is employed to study the hydrogen effect on the core structure of dislocation, the recombination energy of
the extended screw dislocation, and the Peierls stress in nickel. Our results show that, on the one hand, hydrogen
can decrease the stable stacking fault energy, leading to the increase of the stacking fault width for both ex-
tended edge and screw dislocations. Consequently, the recombination energy of extended screw dislocation is
increased, indicating that hydrogen can suppress the cross-slip of screw dislocation and facilitate the slip pla-
narity observed frequently in experiments. On the other hand, hydrogen can increase the unstable stacking fault
energy, implying that hydrogen can inhibit the nucleation of partial dislocations. Moreover, hydrogen in the
dislocation core increases the Peierls stress and thus increases dislocation slip resistance. Finally, quantitative
relations between the Peierls stress and hydrogen concentration are given. These results are of great significance
for understanding the H-affected dislocation plasticity mechanisms, and can be used for quantifying the hy-
drogen effect on dislocation dynamics.

1. Introduction

Hydrogen, as a clean and renewable energy, can offer an effective
pathway to decarbonize the energy system and to mitigate the energy
crisis (Sharma and Ghoshal, 2015). However, the production, trans-
portation and utilization of hydrogen suffer from hydrogen embrittle-
ment (HE) threat, which is one of the most common failure modes due
to extreme environment (Barrera et al., 2018; Robertson et al., 2015).
The detrimental effects of hydrogen on the mechanical properties of
metals were first reported in 1875 by Johnson (Johnson, 1875). Since
then, enormous studies on HE have been made and several mechanisms
have been proposed, including hydride formation and cleavage (HFC)
(Gahr et al., 1977; von Pezold et al., 2011), hydrogen-enhanced deco-
hesion (HEDE) (Nagao et al., 2018; Oriani and Josephic, 1974), hy-
drogen-enhanced localized plasticity (HELP) (Ferreira et al., 1998;
Robertson, 1999), hydrogen-enhanced strain-induced vacancy forma-
tion (HESIV) (Nagumo and Takai, 2019) and so on, trying to explain the

HE phenomenon. Among these mechanisms, the operative ones depend
not only on the intrinsic microstructure of metals, but also on the
loading type, hydrogen concentration and other external conditions.
Thereby the exact mechanism of the premature failure due to the pre-
sence of hydrogen is still in debate, since the underlying atomic pro-
cesses remain unclear. The micro- even nano-scaled details are in ur-
gent to figure out the role that hydrogen plays during the deformation
and failure processes. With the development of SEM/TEM technique,
the observations in micro- and nano-scales make it possible to in-
vestigate the HE mechanism more precisely. During many years, HE has
been considered to relate insignificantly to the plastic deformation.
However, the recent TEM observations show that there exist extensive
dislocation substructures beneath the intergranular fracture surfaces in
Ni and iron deformed in H environment (Martin et al., 2012;
Wang et al., 2014). Since dislocation is the main carrier of plastic de-
formation in metals, how hydrogen affects dislocation motion is
therefore a key scientific question in understanding the H-induced
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failure mechanisms and depicting the H-affected dislocation evolution.
Due to the complexity of the H-dislocation interaction, the effect of

hydrogen on the dislocation mobility remains in debate. On the one
hand, Robertson et al. reported that hydrogen can enhance the dis-
location mobility based on their TEM observation (Ferreira et al., 1998;
Robertson, 1999). In order to explain this experimental phenomenon,
some scholars suggested that hydrogen atmospheres formed around
dislocations could shield the elastic interactions between dislocations
and various defects (Cai et al., 2014; Sofronis, 1995; Song et al., 2019).
Due to strong shield effect by the H atmospheres, the interactions be-
tween dislocations and between dislocations and other defects become
weak and the dislocation mobility increases. In general, the shielding
effect becomes noticeable only at very high background H concentra-
tion (Song et al., 2019; von Pezold et al., 2011). On the other hand,
based on the atomic calculations, Song and Curtin (Song and
Curtin, 2014) reported that the H atmospheres could reduce rather than
enhance the mobility of edge dislocations in α-Fe, which is consistent
with the solute drag theory (Cottrell and Bilby, 1949). Recently,
Xie et al. (2016) conducted in-situ environmental TEM tests and also
observed that the mobile dislocations in Al became immobile under
hydrogen environment, which was attributed to the interaction be-
tween mobile dislocations and hydrogen-vacancy complexes (Li et al.,
2015; Zhu et al., 2017). In fact, hydrogen has two effects on dislocation
motion. One is the long-range effect and the other is the short-range
effect. Those H atoms trapped by dislocation stress field govern the
long-range effect, which is responsible for the shielding effect men-
tioned above and is usually used to explain HELP mechanism. However,
those H atoms lying within the dislocation core govern the short-range
effect, which is a key intrinsic factor and is responsible for dislocation
motion, dislocation nucleation, and dislocation emission and so on. To
our knowledge, in previous studies, more attention has been paid to the
long-range effect of H on dislocation motion but less to the short-range
effect. In reality, dislocation motion and evolution in the H-charged
metals depend not only on the long-range effect but also on the short-
range effect.

As we know, H atoms in metals can stay in lattices and can also be
trapped by various defects (Oriani, 1970). It is difficult to observe ex-
perimentally the details of the short-range interaction between dis-
locations and H atoms, so atomistic simulation is usually adopted al-
though it cannot capture hydrogen diffusion in metals due to time scale
limitation. Lu et al. (2001) conducted ab initio calculations and found
that hydrogen could enhance dislocation mobility but suppress the
cross-slip of dislocation in Al. Similar effect of hydrogen on the cross-
slip process of an extended screw dislocation in Ni was also found by
using the nudged elastic band (NEB) method (Wen et al., 2004). First
principle study of the screw dislocation in BCC iron showed that hy-
drogen could decrease the kink nucleation enthalpy while increase the
kink migration enthalpy, implying that hydrogen either enhances or
reduces the screw dislocation mobility, depending strongly on the hy-
drogen concentration (Itakura et al., 2013). Atomic-scale investigation
of hydrogen atmospheres on the edge dislocation mobility in α-Fe
showed that the hydrogen atmosphere could hinder the motion of edge
dislocation (Song and Curtin, 2014). To study the effect of the H-defect
complexes on dislocation motion, the short-range interactions between
dislocation and H-defect complexes were modeled using molecular
dynamic (MD) method, showing that the hydrogen-vacancy complex
could serve as an obstacle to pin the edge dislocation in α-Fe (Li et al.,
2015; Zhu et al., 2017). Although atomistic simulation can catch some
details of the H-dislocation interactions, the reliability of the compu-
tational results has been questionable due to the limitation of temporal
and spatial scales. Some new methods and models should be developed
to study them.

Hydrogen atoms can be trapped by dislocation, which can heavily
change dislocation core structure. Therefore, how to characterize the
effect of hydrogen on dislocation core structure is of great significance
for quantitatively studying the short-range H-dislocation interaction. To

address it, a suitable dislocation model is needed. Due to singularity of
the Volterra dislocation model (Hirth and Lothe, 1992), it is difficult to
characterize quantitatively the effect of hydrogen on the dislocation
core structure. In this paper, the Peierls–Nabarro (P–N) dislocation
model with nonsingular core is adopted to study the hydrogen effect on
dislocation core structure and its mobility. The original P-N model is
based on the balance between the elastic stress field due to distribu-
tional Burgers vector and the restoring stress field due to the atomic
misfit (Nabarro, 1947; Peierls, 1940). However, it is only valid for very
wide dislocation core and for the pure edge or screw dislocations. These
restrictions can be eliminated by considering the dislocation energy as a
functional of the misfit function (Schoeck, 2005). The total energy of
the P-N model includes the elastic energy which can be obtained ana-
lytically, and the misfit energy which can be evaluated numerically
with generalized stacking fault energy (GSFE), i.e. the γ-surface
(Vítek, 1968). The γ-surface can be determined accurately from ab in-
itio calculation or MD simulation. Therefore, the generalized P–N
model has the virtue of incorporating atomistic interactions into con-
tinuum models. By minimizing the total energy with respect to the
misfit function, the dislocation core structure, the recombination en-
ergy for cross-slip and the Peierls stress can be obtained through the
generalized P-N model, straightforwardly (Bulatov and Cai, 2006;
Szajewski et al., 2017).

The manuscript is organized as follows: the illustration of the dis-
sociated dislocation, the framework of the generalized P–N model, the
computational details of the H-affected γ-surface, the recombination
energy and the Peierls stress are given in Section 2; some numerical
results are then presented in Section 3; at last, the paper ends with some
main conclusions in Section 4.

2. Theory and implementation

2.1. Shockley partial dislocation and stacking fault in FCC crystals

A perfect dislocation with Burgers vector of = ab /2 [1̄01] on the
(111) slip plane in FCC crystals prefers to dissociate into two Shockley
partial dislocations separated by an intrinsic stacking fault (SF) be-
tween them, as illustrated in Fig. 1. The orthogonal coordinate system is
adopted with the X-axis along the [12̄1] direction, the Z-axis along the
[1̄01] direction (i.e. the direction of the Burgers vector b) and the Y-axis
along [111] direction (i.e. the slip plane normal). A perfect edge dis-
location with line direction parallel to the X-axis dissociates into two
60° mixed partial dislocations as shown in Fig. 1(a), while a perfect
screw dislocation with line direction parallel to Z-axis dissociates into
two 30° mixed partial dislocations as shown in Fig. 1(b). The dis-
sociation equation for both edge and screw dislocations can be ex-
pressed as:

⎧
⎨⎩

= + +
= + +

b b b SF
[1̄01] [1̄1̄2] [2̄11] SFa a a

p1 p2

2 6 6 (1)

Since the Burgers vectors bp1 and bp2of the two partial dislocations
are angled at 60° from each other, they repel each other due to their
elastic interaction. On the other hand, there is a stable SF with energy
γssf per unit area between the two partial dislocations, providing an
attractive force trying to pull the two partial dislocations together.
When repulsion and attraction are in balance, the equilibrium separa-
tion can be obtained by (Hirth and Lothe, 1992)

= ⎡

⎣
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−
−
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⎦
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d μ ν
πγ ν
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24 (1 )

1 2 cos(2 )
2

eq

ssf (2)

where μ is shear modulus, ν the Poisson's ratio, and θ the intersection
angle between dislocation line and the Burgers vector direction (0° for
the screw dislocation or 90° for the edge dislocation). The isotropic
elastic constants μ and ν can be calculated by three cubic elastic
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constants, with = =C C246.4 MPa, 147.3 MPa11 12 and
=C 124.8 MPa44 for Ni (Angelo et al., 1995). In order to consider the

anisotropy of FCC crystals, Szajewski et al. (2018) suggested taking
Hill's average elastic constants, which can describe the dislocation core
for both edge and screw dislocations reasonably. Unless otherwise
stated, the elastic constants used for further calculations are all de-
termined by Hill's method.

2.2. The generalized Peierls–Nabarro model

For a straight screw dislocation with its line along the Z-axis, its core
structure can be described by a two dimensional misfit function

=x u x u xu( ) { ( ), ( )}x z (for an edge dislocation, the misfit function
should be =z u z u zu( ) { ( ), ( )}x z ), which can be computed by the relative
displacements of atoms just above and below the slip plane, as illu-
strated in Fig. 1. In order to keep conservation of the Burgers vector, the
misfit function must satisfy the following boundary conditions:

⎧
⎨⎩

+∞ = −∞ =
+∞ − −∞ =

u u
u u b

( ) ( ) 0
( ) ( )

x x

z z (3)

where =b a/ 2 is the magnitude of the Burgers vector. Then, we can
calculate the misfit density =ρ x d x dxu( ) ( )/ , which describes the dis-
tribution of the Burgers vector on the slip plane (Eshelby, 1949).

In the classical Peierls-Nabarro (P–N) model (Nabarro, 1947;
Peierls, 1940), the misfit function can be determined by the balance
between the elastic stress due to the distribution of the Burgers vector
and the restoring stress due to the atomic misfit. When the misfit vector
is limited to have only one non-zero component uz along the Burgers
vector direction and the restoring force is assumed to be sinusoidal, the
misfit function and misfit density are given by (Hirth and Lothe, 1992)

⎧

⎨
⎩

= −

= =
+

( )u x

ρ x

( ) arctan

( )

z
b
π

x
w

b

z
du
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b
π

w
x w

2

z
2 2 (4)

where w denotes the dislocation core width.
When considering an extended dislocation whose misfit vector has

both ux and uz components, the misfit function should be varied. Taking
an extended screw dislocation for example, it has both edge and screw
components of the Burgers vector, which are denoted by =b b3 /6e
and =b b/2s , respectively. Motivated by the original P–N model, the
extended screw dislocation can be represented by superposition of the
P–N type dislocations as (Bulatov and Cai, 2006):
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(5)

In the above equations, xe
i( ) and xs

i( ) are the positions of the edge and
screw components of each partial dislocation =i( 1, 2), respectively,
with we and ws being the corresponding partial dislocation core widths.
The superscript represents the two partial dislocations, while the sub-
script denotes either edge or screw components. The equilibrium se-
parations for the edge ( = −d x xe e e

(1) (2)) and screw ( = −d x xs s s
(1) (2))

components should be the same, so we can take either of the two se-
parations as the equilibrium spacing (deq) between the two partial
dislocations. In addition, the center of the dislocation is determined by

= +x x x( )/2e
c

e e
(1) (2) for the edge components and = +x x x( )/2s

c
s s
(1) (2) for

the screw components, respectively. The extended dislocation de-
termined by Eq. (5) yields shear stresses on the slip plane due to its edge
and screw components of the Burgers vector, which can be expressed as
follows (Hirth and Lothe, 1992):
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For an extended edge dislocation, the misfit function should be re-
placed by u(z) and the shear stresses can be deduced similarly.

The total energy of the extended dislocation is a functional of the
misfit function u, which comprises of an elastic strain energy Eelastic due
to the distribution of the Burgers vector, a misfit potential Emisfit due to
the relative displacements of atoms immediately adjacent to the slip
plane, and the work Eapplied due to the externally applied stress
(Bulatov and Cai, 2006):

= + +E E E Etotal elastic misfit applied (7)

In the generalized P–N model, the whole crystal, excluding the two
lattice planes just above and below the slip plane, is treated as a linear
elastic medium. Applying the displacement field of Eq. (5) to the sur-
faces of the continua yields an elastic deformation. Then, the elastic
strain energy can be integrated along the slip plane by using Eqs. (5)
and (6):

Fig. 1. Diagram of a perfect a/2 [1̄01] dislocation splitting into two Shockley partial dislocations separated by a stacking fault ribbon on the (111) slip plane in FCC
crystals. (a) The edge dislocation line is parallel to the X-axis while (b) the screw dislocation line is parallel to the Z-axis. The misfit functions for both edge and screw
dislocations are also illustrated.
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where R is the outer cut-off radius, being over 5000b in our calculations
to achieve numerical convergence (Bulatov and Cai, 2006).

Imaging that a perfect FCC crystal is divided by its slip plane, the
upper half is sheared rigidly with respect to the lower one by a two
dimensional uniform misfit vectoru. Such procedure doesn't produce
elastic energy, because there is no elastic deformation from the per-
spective of continuum scale. However, it indeed changes the relative
positions of real atoms immediately adjacent the slip plane, inducing
surplus energy per unit area of the cut plane. This energy is the so-
called generalized stacking fault energy (GSFE) γ, i.e. the γ-surface
(Vítek, 1968). Since the misfit only occurs at the actual atomic rows, the
misfit potential should be summed discretely only at the positions of the
atoms just above and below the slip plane (Bulatov and Cai, 2006;
Bulatov and Kaxiras, 1997). Therefore, we can write the misfit energy
as:

∑=
=−

E γ u na u na a( ( ), ( ))
n N

N

x p z p pmisfit
(9)

where ap is the lattice period along the dislocation line normal, which is
b/2 for an edge dislocation and b3 /2 for a screw dislocation, and

=N R a/ p denotes the half number of atomic rows used in our calcu-
lations. The construction of the GSFE surface γ(u) is depicted below in
Section 2.3.

Two external shear stresses on the glide plane are considered. One is
parallel to the Burgers vector, i.e. the glide stress τyz, which can drive
the dislocation to glide on the slip plane. The other is perpendicular to
the Burgers vector, i.e. the Escaig stress τyx, which can change the
equilibrium separation between the partial dislocations. Thus, the work
done by the two externally applied stresses can be described by

∑ ∑= − −
=− =−

E τ u na a τ u na a( ) ( )yx
n N

N

x p p yz
n N

N

z p papplied
(10)

The equilibrium dislocation geometry under certain externally ap-
plied stresses can be determined by minimizing the total energy in
Eq. (7) with respect to the six unknown parameters in the misfit

Fig. 2. The H-affected GSFE curves on the (111) slip plane along (a) the [12̄1]
and (b) the [1̄01] directions, respectively, which are obtained by atomic simu-
lations.

Fig. 3. (a) The fitted γ-surface at the H concentration of 1.0 (at.%), where the
red circles represent the GSFE curves calculated by atomistic modellings. (b)
The corresponding contour of GSFE.
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function of Eq. (5), i.e. the positions of the edge (xe
i( )) and screw (xs

i( ))
components of each partial dislocation =i( 1, 2), and the corresponding
partial dislocation core widths (we and ws).

There are several assumptions and simplifications needed to be
pointed out. First, when the generalized P–N model is used to obtain
dislocation core structure, it is assumed that H atoms can move with the
dislocation core simultaneously. This assumption should be true in two
cases: one is that the dislocation velocity is low and the other is that H
atoms can diffuse very fast. Second, the H distribution in the P–N model
is assumed the same as the calculation of GSFE to simplify our calcu-
lation, as will be discussed below in Section 2.3. In this way, the H
atoms mainly lie within the two atomic fault layers immediately ad-
jacent the dislocation slip plane, which is a reasonable approximation
due to the large atomic misfit around the dislocation core. Finally, the
long-range H-dislocation interaction is neglected, since the H con-
centration within the dislocation core should be much higher than that
outside the core, implying that H atoms inside the core may influence
the dislocation mobility more heavily by short-range effect than those
remote H atoms outside the core by long-range effect. In addition, the

long-range interaction only operates at very high bulk H concentration
and mainly affects the dislocation motion through the Peach–Kohler
force. Therefore, only the short-range interaction is studied here, with
an especial attention to the H effect on dislocation core structure.

2.3. The construction of H-affected γ-surfaces

As mentioned above, the misfit energy strongly depends on the γ-
surface. The accuracy of the γ-surface under hydrogen circumstance is
essential to the study of the H-affected dislocation core structure and
the Peierls stress. To construct the γ-surface, it is necessary to calculate
the stacking fault energies in the < 112> and <110> directions,
firstly. In the previous calculation of the stacking fault energies
(Vítek, 1968), the simulation domain was divided into two halves by
one {111} crystallographic plane. Then, the atoms in one half were
shifted rigidly with respect to the other by a given fault vector in the
<112> or <110> slip direction, following which the energy
minimization was performed with all atoms allowed to relax only in the
direction normal to the slip plane. However, in our computation, all

Fig. 4. The calculated misfit functions (a, b) and misfit densities (c, d) for the edge dislocation and screw dislocations at different bulk H concentrations C0 without
external stress applied, respectively. The dashed lines and the solid lines denote the components along the X-axis and the Z-axis, respectively.
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atoms are also relaxed in the directions perpendicular to the shear di-
rection, which doesn't influence the computational result of GSFE.

In previous studies, how the solute hydrogen affects GSFE is still in
debate (Song et al., 2010; Tang and El-Awady, 2012). The main reason
is that the migration and distribution of hydrogen atoms are dealt
with in different ways in these stacking fault energy calculations. In-
spired by Tang's method (Tang and El-Awady, 2012), the hydrogen
migration is reasonably considered by investigating the stable inter-
stitial sites of hydrogen atoms during the formation process of the
stacking fault. In addition to the hydrogen atoms located within the two
atomic stacking fault layers, those interstitial hydrogen atoms some
distance away from the stacking fault layers, which also affect the
stacking fault energy markedly, are considered as well. In order to
connect the hydrogen distribution with the bulk hydrogen concentra-
tion C0, the solute segregation model, which can effectively account for
the hydrogen trapping, is adopted to introduce hydrogen atoms around
the atomic fault layers (Zhu et al., 2018). When hydrogen atoms are

introduced, they are allowed to move freely during the formation
process of the stacking fault in order to move to the energy favorable
interstitial sites. In this way, the stacking fault energy curves in the
<112> and <110> directions with different bulk H concentra-
tions can be obtained via a well-established EAM potential
(Angelo et al., 1995). The details of the stacking fault energy calcula-
tion can be found in our another paper (Zhu et al., 2019).

With the computationally obtained stacking fault energy curves in
the < 112> and <110> directions, the γ-surface can be con-
structed by the Fourier series approximation = ∑ =γ c fu u( ) ( )n n n0

6

(Schoeck, 2001), considering the rotational symmetry of the FCC lattice
in {111} slip planes. In this way, the γ-surfaces with different bulk H
concentrations are obtained as shown below.

2.4. The Peierls stress

As a straight dislocation glides on its slip plane, its core structure
changes periodically due to the crystal lattice. As a result, the total
energy of the dislocation also varies with its position. The position with
the minimum total energy is a local stable site and is called the Peierls
valley. The minimum energy needed to move this dislocation from one
stable site to the next one is namely the Peierls barrier and the corre-
sponding minimum resolved shear stress is called the Peierls stress, τp.

The Peierls stress can be readily calculated from the P–N model in
the following way: the glide stress that increases with an increment of
0.5 MPa is applied to the screw dislocation (or 0.01MPa for the edge
dislocation), and then the equilibrium core structure can be determined
by minimizing the total energy of Eq. (7) with respect to the misfit
functions of Eq. (5). With increasing glide stress, the equilibrium po-
sition of the dislocation changes as a result. A remarkable translation of
the dislocation center occurs when the glide stress exceeds a critical
value, implying that the Peierls barrier is overcome under this applied
stress. Thus, this critical value can be identified as the Peierls stress.

2.5. The recombination energy

Dislocation cross-slip plays an important role in plastic deformation
in metals (Püschl, 2002). In FCC crystals, a perfect screw dislocation
does not have a definitive slip plane. It can easily glide from one slip
plane to another. However, for an extended screw dislocation with edge
components, cross-slip becomes difficult. In order to cross slip, it first
recombines into a perfect screw dislocation on its original slip plane
and then re-dissociates onto the cross-slip plane. The Escaig stress τyx
can assist this process if it causes the partial dislocations to approach
each other. At a critical value of the Escaig stress τyx

c , the edge com-
ponents annihilate with each other, and thus the two partial disloca-
tions recombine into a perfect screw dislocation. Then, we can define
the recombination energy as the difference between the total disloca-
tion energy of Eq. (7) at the critical Escaig stress and zero stress, which
can be regarded as an energy barrier for cross-slip of an extended screw
dislocation (Szajewski et al., 2017):

= −E E τ EΔ ( ) (0)yx
c

total total (11)

where E τ( )yx
c

total is the total energy under recombined state, and Etotal(0)
the total energy under extended state.

3. Main results

3.1. Effect of interstitial hydrogen on generalized stacking fault energy

In order to examine the effect of interstitial H on GSFE in Ni, we
choose five different bulk H concentrations C0 (in atomic ratio, at.%): 0,
0.1, 0.5, 1.0 and 2.0. Figs. 2(a) and (b) show the atomistic modeling
results of GSFE along the < 112> and <110> directions for the Ni-
H system, respectively.

The GSFE profile along the <112> direction has three

Fig. 5. The equilibrium separations between the dissociated two partials vs. the
stable SFE. The dashed line and the dotted line denote the equilibrium se-
parations for the edge dislocation and the screw one predicted by Eq. (2), re-
spectively.

Fig. 6. The core width of an individual partial dislocation vs. the bulk H con-
centration. The circles and squares represent the numerical values, and the
dashed line and dotted line denote the fitted curves, respectively.
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characteristic values, which are the unstable stacking fault energy (SFE)
γusf that determines the energy barrier for nucleation of partial dis-
locations (Andric and Curtin, 2017; Rice, 1992), the stable SFE γssf that
is associated with the SFW (Hirth and Lothe, 1992), and the maximum
unstable SFE γmx, respectively. With the increase of H concentration
from 0 to 2.0 (at.%), the stable SFE decreases from 87mJ/m2 to 2mJ/
m2, while the unstable SFE increases from 212mJ/m2 to 259mJ/m2.
Thus, both the energy barriers for nucleation of the leading partial (γusf)
and the trailing partial ( −γ γusf ssf ) are enhanced in the presence of H
(Andric and Curtin, 2017; Rice, 1992). In addition, the maximum un-
stable SFE in both <112>and <110> directions decreases with
increasing H concentration, as seen from Figs. 2(a) and (b).

In order to use the generalized P–N model to study the effect of
interstitial H on the dislocation core structure quantitatively, we need
first fit the γ-surfaces from the GSFE curves obtained above by atomic
modeling. By using the Fourier series approximation (Schoeck, 2001),
the γ-surfaces are fitted by the least-squares method. The fitted γ-sur-
face at the hydrogen concentration of 1.0 (at.%) is plotted in Fig. 3(a),
where the red circles represent GSFE curves calculated from atomistic
modeling. As can be seen, the fitted result is satisfactory. Thus, the H-

affected γ-surfaces obtained by this method can be used by the P–N
model to quantify the effect of H on dislocation core structure. Fig. 3(b)
shows the contour of GSFE with the illustration of the dissociation
process of a perfect dislocation into two partial dislocations, where the
red arrow denotes the perfect Burgers vector and the green arrows
denote the Burgers vectors of partial dislocations, respectively.

3.2. Effect of interstitial hydrogen on the dislocation core structure

In order to demonstrate the validity of the generalized P–N model,
we first calculate the equilibrium core structures for both edge and
screw dislocations in the absence of H. The core structures are de-
termined under zero applied stress. The equilibrium spacing between
two partial dislocations can be obtained from the misfit function of
Eq. (5) directly. From our calculated results, the equilibrium separation
between partial dislocations of an extended edge dislocation is 9.56b
(23.80 Å), which is in reasonable agreement with atomistic calculation
of 24.90 Å (Wen et al., 2005) and the predicted value of 10.63b by
Eq. (2). For an extended screw dislocation, the equilibrium spacing
between the two partial dislocations is 5.17b (12.87 Å), which is also

Fig. 7. The elastic stress field of τyx
0 and τyz

0 on the slip plane due to (a, b) the extended edge dislocation and (c, d) the extended screw dislocation at different bulk H
concentrations.
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close to atomistic calculation of 14.50 Å (Wen et al., 2005) and the
predicted value of 5.18b by Eq. (2). Thus, the generalized P–N model is
suitable for the straight dislocations.

With the help of the H-affected γ-surfaces, the misfit energy can be
obtained by Eq. (9). By minimizing energy of Eq. (7) without external
force, the misfit function and its derivative (the misfit density) that
characterize the core structure of a straight dislocation can then be
determined in the presence of H. The long-range elastic interaction
between dislocation and H is neglected, since the highest bulk H con-
centration in our calculation is 2.0 (at.%), which is still a low con-
centration for the operating of H shielding mechanism (Song et al.,
2019; von Pezold et al., 2011). Moreover, the long-range interaction
mainly affects the dislocation motion through the Peach-Koehler force
rather than through changing the dislocation core (Cai et al., 2014;
Sofronis, 1995).

Fig. 4(a) and (b) are the resultant misfit functions of edge and screw
dislocations at different bulk H concentrations without external stress,
while Fig. 4(c) and (d) are the corresponding misfit densities. The da-
shed lines denote the components along the X-axis and the solid lines

Fig. 8. (a) The recombination energy of the extended screw dislocation vs. bulk
hydrogen concentration, and (b) the recombination energy vs. the equilibrium
separation between partial dislocations.

Fig. 9. The Peierls barrier of edge dislocation and screw dislocation vs. the bulk
H concentration.

Fig. 10. The Peierls stress vs. the core width of the individual partial disloca-
tion of (a) the extended edge dislocation and (b) the extended screw disloca-
tion, respectively.
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denote the components along the Z-axis, respectively. There are two
characteristic lengths that can be used to describe the core structures of
an extended dislocation. One is the equilibrium spacing between the
two partial dislocations, deq, which is intimately related to the activa-
tion energy for cross-slip (Püschl, 2002). The other is the peak value of
the misfit density, which determines the energy barrier for nucleating a
partial dislocation (Andric and Curtin, 2017; Rice, 1992). It is clear
from Fig. 4 that H can enhance the equilibrium separations deq for both
extended edge and screw dislocations, which can be mainly attributed
to the decrease of the stable SFE. As shown in Fig. 4(c) and (d), the peak
values in the misfit density profile increase with increasing H con-
centration, which are mainly due to the increase of the unstable SFE. As
some researchers pointed out, increasing peak values indicate that the
nucleation of partial dislocations becomes difficult (Andric and
Curtin, 2017; Rice, 1992). Therefore, H could inhibit the nucleation of
partial dislocation, which is consistent with the recent experimental
observations in Ag (Yin et al., 2019).

Fig. 5 shows the equilibrium spacing of extended edge and screw
dislocations vs. the stable SFE. When the stable SFE is higher than
40mJ/m2, the equilibrium spacing calculated by the P–N model is close

to the predictions of Eq. (2). However, when the stable SFE approaches
zero, the equilibrium spacing predicted by Eq. (2) deviates seriously
from that by the P–N model. That is, the Volterra model seems not
suitable for predicting the equilibrium spacing of dislocation in the H-
charged Ni with low stable SFE. The underlying reason is that the
equilibrium spacing also depends on the unstable SFE besides the stable
SFE (Kibey et al., 2006), of which both are included in our P–N model.
It should be pointed out, although the equilibrium spacing increases
with increasing H concentration, the core width of each individual
partial dislocation decreases almost linearly with the increase of H
concentration, as shown in Fig. 6. The increase of the core width of
partial dislocations can strongly affect its glide resistance as discussed
below.

As indicated by Eq. (6), the dislocation stress field depends closely
on its core structure, so the H-affected dislocation core structure can
affect the dislocation stress field indirectly. Once the core structure is
obtained, the P–N model gives the elastic stress field of an extended
screw dislocation by Eq. (6). The elastic stress field of an extended edge
dislocation can also be deduced with minor changes, i.e. the misfit
function u(x) should be replaced by u(z) due to the change of dis-
location line direction. Fig. 7 shows the elastic stress field of both ex-
tended edge and screw dislocations on their slip plane at different bulk
H concentrations. The stress field at the H concentration of 0.1 (at.%)
almost coincides with that in the absence of H, due to their similar core
structures. As shown in Fig. 7, hydrogen mainly affects the stress field
within the core region, due to the strong interaction between disloca-
tion core and hydrogen. Outside the core region, the stress field can be
well described by the solution of the Volterra dislocation (Hirth and
Lothe, 1992), which are shown by the dashed curves in Fig. 7.

3.3. Effect of interstitial hydrogen on dislocation cross-slip

Many experimental results indicated that the solute hydrogen had
strong effect on the screw dislocation motion, inhibiting its cross-slip
behavior and resulting in the slip planarity (Robertson, 1999;
Wen et al., 2004). By considering the hydrogen effect on the re-
combination energy of an extended screw dislocation, the cross-slip
behavior of screw dislocation in the H-charged Ni is quantitatively
studied here. Utilizing the generalized P–N model, the critical Escaig
stress (τyx

c ), at which the extended screw dislocation can be recombined
by annihilating the edge components of partial dislocations with each
other ( =u 0x ), can be determined. Then, the recombination energy can
be calculated by Eq. (11) as the difference in dislocation energy be-
tween recombined state and extended state, which can be regarded as
the energy barrier for cross-slip. As shown in Fig. 8(a), with the increase
of H concentration, the recombination energy for the extended screw
dislocation increases, indicating that H can suppress screw dislocation
cross-slip and thus facilitate slip planarity. This result is consistent with
experiments (Robertson, 1999) and atomistic calculations (Wen et al.,
2004). As shown in Fig. 8(b), the recombination energy increases al-
most linearly with the equilibrium separations between partial dis-
locations of the extended screw dislocation. One explanation is that the
reduction of the stable SFE due to interstitial H results in wider equi-
librium spacing between partial dislocations and thus increases the
difficulty of the recombination process.

On the other hand, to further investigate the role of H in cross-slip,
we calculate the so-called binding energy of H to dislocation as the
difference of dislocation energy with and without H following Lu et al
(2001):

= + − +− −E E E E E( ) ( )bind elastic
H

misfit
H

elastic
no H

misfit
no H

(12)

This so-called binding energy is slightly different from the binding
energy in common sense, because the constant energy term of hydrogen
in bulk is neglected. However, it can still reflect the strength of hy-
drogen bound to dislocation.

Fig. 11. The Peierls stress vs. the bulk H concentration for (a) the edge dis-
location and (b) the screw dislocation, respectively.
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For an extended screw dislocation, each of the two partial disloca-
tions is a mixed dislocation. Since the binding energy of H to dislocation
relates to the dislocation character, it can influence the recombination
of the screw dislocation directly. Our calculations show that H can re-
duce the dislocation energy due to negative binding energy of H to
dislocation. Taking the case of H concentration of 1.0 (at.%) for ex-
ample, the binding energies are -0.064 eV/Å for the edge dislocation
and − 0.022 eV/Å for the screw dislocation, respectively. Obviously, the
binding energy of H to the edge dislocation is approximately three
times larger than that to the screw dislocation, which indicates that
hydrogen can stabilize the edge components of an extended screw
dislocation. Since cross-slip of an extended screw dislocation involves
its edge components annihilation with each other, the cross-slip be-
comes difficult in H environment (Wen et al., 2004). It seems that the
hydrogen-enhanced slip planarity is a coaction of the stable SFE and H-
dislocation binding energy.

3.4. Effect of interstitial hydrogen on the Peierls stress

By using the generalized P–N model, the equilibrium core structures
of a straight dislocation at different positions can be obtained. Due to
the periodicity of the lattice, the total energy of a straight dislocation is
a periodic function of its position. The Peierls barrier is defined as the
difference between the maximum dislocation energy and the minimum
one when changing the dislocation position. In the absence of H, the
Peierls barriers are 5.11× 107eV/Å for the edge dislocation and
7.76×104eV/Å for the screw dislocation, which are on the same order
as Wen's full-scale atomistic simulation results, i.e. 1.30× 106eV/Å for
the edge dislocation and 1.62×104eV/Å for the screw dislocation
(Wen et al., 2005). As shown in Fig. 9, the Peierls barriers for both edge
and screw dislocations increase with increasing H concentration, in-
dicating that H can hinder the dislocation motion on its slip plane to
some extent.

The Peierls stress, corresponding to the minimum shear stress to
move a straight dislocation rigidly at zero temperature, can be obtained
as mentioned in Section 2.4. In the absence of H, the Peierls stress
calculated from the generalized P–N model is 0.15MPa for the edge
dislocation, which is close to the atomistic modeling value of 0.21MPa
(Wen et al., 2005). For the screw dislocation, the calculated Peierls
stress is 50MPa, which is approximately three times larger than the
atomistic calculation of 15MPa (Wen et al., 2005). The large difference
may come from the non-local atomic interactions in the core region,
which are neglected in the P–N model for simplicity (Liu et al., 2017).
Since we mainly focus on the interaction between dislocation and in-
terstitial hydrogen, the non-local atomic interaction should not re-
markably affect the overall results.

For a perfect straight edge dislocation with sinusoidal misfit energy,
the Peierls stress is usually described as (Joós and Duesbery, 1997)

=
−

⎛
⎝

− ⎞
⎠

τ
μ

v
πw
b1

exp 2
p (13)

where w is core width of the dislocation. For the case of screw dis-
locations, the term (1−v) in Eq. (13) should be replaced by unity. In
Eq. (13), we see the Peierls stress decreases with the increase of the core
width. For an extended dislocation, if the two partial dislocations are
well separated, each of them only needs to overcome its own Peierls
barrier during glide (Schoeck and Püschl, 1994). In other words, the
Peierls stress of an extended dislocation is just the Peierls stress of each
partial. For an extended dislocation in Ni, the equilibrium separation of
the two partial dislocations is large enough to satisfy the above as-
sumption. Fig. 10 shows the variation of the Peierls stress with the core
width of the partial dislocation. The Peierls stress decreases with the
increase of the core width of an individual partial dislocation. Moti-
vated by Eq. (13), it is fitted by the equation as:

=
−

⎛
⎝

− ⎞
⎠

τ
μ

v
w

b1
exp A

p (14)

where A is a fitting parameter. Similarly, the term (1-v) in Eq. (14)
should be set to unity for screw dislocations. From our calculations, A is
13.80 for the edge dislocations and 8.73 for the screw dislocations,
respectively.

As mentioned in Section 3.2, the core width of the partial disloca-
tion decreases with the increase of H concentration as shown in Fig. 6,
indicating that the Peierls stress increases with the increases of H
concentration. The Peierls stress vs. H concentration is plotted in
Fig. 11. From the curves, the calculated Peierls stress indeed increases
with increasing H concentration for both extended edge and screw
dislocations. That is to say, H acts as an obstacle to dislocation motion
along its slip plane. This result is contrary to that of Lu et al. (2001),
where a H effect on the unstable SFE contrary to Tang et al.’s and our
calculations (Tang and El-Awady, 2012). To be pointed out, the inter-
action between dislocations and hydrogen in the present P–N model is
short-range, which is clearly different from the long-range interaction
that interstitial H could shield the elastic interaction between disloca-
tions and obstacles (Cai et al., 2014; Sofronis, 1995; Song et al., 2019).
Using the linear dependence of the core width of partial dislocations on
the H concentration shown in Fig. 6, the Peierls stress vs. the H con-
centration can be fitted by the following formula:

=
−

+τ
μ

v
pC q

1
exp( )p 0 (15)

where p and q are fitting parameters. For the edge dislocations, =p 1.58
and = −q 13.6. For the screw dislocations, =p 0.77and =q 6.75. These
fitting relations may be used for the discrete dislocation dynamics
(DDD) simulation and dislocation-density based crystal plasticity (CP)
modeling (Hou et al., 2008; Huang and Li, 2015; Yuan et al., 2019).

4. Conclusions and discussions

In this work, an atomistically-informed generalized P–N model is
employed to study the effects of interstitial H on the dislocation core
structure, the recombination energy of extended screw dislocation and
the Peierls stress in Ni. The main conclusions are summarized as follow:

• The unstable SFE increases with increasing H concentration, re-
sulting in the increase of maximum misfit density. The increase of
maximum misfit density, which is a key quantity describing the
energy barrier for nucleation of a partial dislocation, implies that H
can inhibit partial dislocation nucleation.

• The P–N model predicts that H can enhance the SFW of an extended
dislocation but decease the core width of each partial dislocation.
The SFW of the extended dislocation strongly depends on the H-
affected stable SFE. The core width of each partial dislocation
changes almost linearly with the H concentration. Thereby the dis-
location stress fields are changed indirectly by solute H.

• The recombination energy of the extended screw dislocation in-
creases with increasing H concentration, due to the coaction of the
stable SFE and the H-dislocation binding energy. As a result, H can
suppress the cross-slip of an extended screw dislocation and facil-
itate its slip planarity.

• The Peierls stress increases with increasing H concentration, im-
plying those H atoms trapped at dislocation core can serve as ob-
stacles to dislocation motion. This can be ascribed to a reduction in
the core width of each partial dislocation due to the solute H. The H-
affected Peierls stress can be obtained by a modified classical Peierls
stress formula, which can be used for the DDD simulations and CP
modeling.

What needs to be pointed out in particular is that only the short-
range H-dislocation interaction is studied here, with an especial
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attention to the H effect on dislocation core structure. A basic conclu-
sion is that H hinders dislocation motion to some extent by changing
dislocation core structure. It is contrary to the hydrogen shielding effect
on dislocation due to the long-range H-dislocation interaction. In
practice, both long-range and short-range interactions exist simulta-
neously, which of them dominate depends on several factors, such as H
concentration, dislocation type, GSFE, and so on. In the H-affected DDD
simulations, these two interactions should be appropriately considered.
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