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A B S T R A C T

This paper studies a mode-III nanocrack at the interface between two bonded dissimilar materials under anti-
plane shear loading. The classical elasticity incorporating surface elasticity is applied to solve a mixed boundary
value problem associated with an anti-plane shear interface crack. The influence of surface elasticity on the
crack-tip field for a nanoscale mode-III crack is analyzed. By use of the Fourier transform, the problem is reduced
to a set of hypersingular integro-differential equations. The displacement and bulk stress jumps are expanded as
the Chebyshev orthogonal polynomials and the Galerkin method is used to approximately determine the singular
elastic field near the interface crack tips. Consideration of surface elasticity does not cause the disappearance of
crack-tip singularity. A usual inverse square-root singularity is derived near the crack tips. The influences of
surface elasticity on the stress intensity factor are examined and displayed graphically. The surface residual
stress does not alter the stress field for a mode-III interface crack.

1. Introduction

With the fast development of nano/microtechnology in recent years,
the mechanical behavior of nanomaterials and nanostructures is parti-
cularly significant for a better understanding of small scale structural
integrity, reliability, and stability (Del Rio et al., 2015). Due to various
causes in fabrication and crystal growth, some defects such as dis-
locations, grain boundaries, cracks, holes, etc. inevitably appear in
materials and structures. These defects often alter the performances of
the materials and structures. In particular, experimental evidence
shows the size-dependent material properties when the dimension of
the structures falls to the nanometer order at least in one direction. A
possible explanation of the size-dependence of material properties is
attributed to high specific surface area for a nano/micro material or
structure. In other words, for nano/micro-scale materials and struc-
tures, not only bulk materials but also surface materials affect overall
material properties. For macro-materials, the effect of surface phases on
the overall properties is so small that it is negligible. For nano-mate-
rials, the effect of surface phases cannot be discarded since the con-
tribution becomes relatively large due to high specific surface area for
nano/micro materials. Gurtin and Murdoch (1975) and
Gurtin et al. (1998) introduced surface/interface elasticity along with
surface residual stress to extend the classical theory of elasticity. Based
on surface elasticity theory, Ru (2010) put forward a simple geome-
trical explanation of the surface elasticity and gave several simplified
constitutive relations for surface phases. Hu et al. (2014) and Yao and

Yun (2012) studied the buckling and vibration of nanowires with the
surface effect. Xiao and Li (2018) analyzed the influence of surface
elasticity on the flutter and divergence instability of rectangular plates
under nonconservative forces. For a circular plate, Yang and Li (2019)
addressed the surface effects on bending deflection and natural fre-
quencies for free vibration of a magnetoelectroelastic plate. In addition
to surface elasticity and surface residual stress, Zhang et al. (2016)
developed an atomistic lattice model to characterize surface relaxation
and further applied the nanobeam model to examine the surface effects
on the natural frequencies of doubly clamped nanobeams. Using surface
elasticity, Dingreville et al. (2005) exploited the surface free energy to
describe its effect on the elastic behavior of nano-materials and derived
an overall prediction of the material properties of elastic bulk material
with nano-sized particles, wires, and films. By means of the complex
potential method, Mogilevskaya et al. (2008) studied the interaction of
elastic fields of multiple circular nano-inhomogeneities or/and nano-
pores in a two-dimensional elastic medium. The free transverse vibra-
tion of nanobeams with a slanted edge crack was investigated and the
influence of the surface phase on the natural frequencies of cracked
nanobeams was presented by Hu et al. (2015). Wu (1999) solved the
effect of surface stresses on the deformation of an elliptical hole and
found the surface stress to change stress intensity factors.
Wang et al. (2008) examined the surface effects on the crack-tip stresses
for both mode-I and mode-III cracks and found that when the curvature
radius of a blunt crack front decreases to nanometers, surface energy
strongly affects the stress intensities near the crack tip. For a mode-II
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nanoscale crack, Fu et al. (2008) analyzed the surface effects on a
mode-II crack-tip field. Utilizing the complex potential method, Kim
et al. investigated the effects of surface elasticity for a classical mode-III
crack embedded in a linearly elastic material or bi-material (Kim et al.,
2010; 2011b) and further extended their results to mode-I and mode-II
(interface) cracks for plane deformation (Kim et al., 2011c; 2011a).
They found that surface elasticity leads to the disappearance of singular
stresses near the crack tip. Later, a careful examination of the end-point
boundary condition of the crack tips shows a logarithmic singularity of
stresses occurring near the crack tips when surface elasticity at the
crack faces is considered (Walton, 2012; Kim et al., 2013). Recently, Li
applied the singular integral equation method to give the asymptotic
stress field and the usual square-root singularity near the mode-III crack
tip was revealed (Li, 2019). Nan and Wang (2012) analyzed that the
effect of crack face residual stress on the fracture of nanoscale mate-
rials. Wang et al. (2013) employed the beam model to address the in-
fluence of surface residual tension on stress intensity factors at the crack
tips. Wang and Wang (2013) used the double cantilever beam speci-
mens to capture the influence of surface residual stress on the fracture
toughness. For a thin plate with a through crack and a rigid inclusion,
the influence of surface elasticity on the full stress field in the plate was
analyzed and the stress intensity factors are found to depend on the
properties of the surface phase (Hu et al., 2018; Hu and Li, 2018).
Duan et al. (2009) commented on some progress of the classical theory
of elasticity incorporating surface elasticity. On the other hand, the
fundamental solution of a concentrated force at the surface of a half-
plane or half-space with consideration of surface stresses as well as
surface elasticity has been obtained (Wang and Feng, 2007; Gao et al.,
2013; 2014), and this solution can be used to treat a class of contact
problems related to surface elasticity.

In this paper, we consider an interface crack between two bonded
dissimilar elastic media with consideration of surface elasticity and an
emphasis is placed on the influence of surface elasticity on the stress
singularity and its intensity factors. When antiplane shear loading is
applied, we employ the Fourier integral transform to reduce the pro-
blem to two coupled hypersingular integro-differential equations. By
use of the Chebyshev polynomial expansion method, the resulting
equations are converted to a linear system of algebraic equations. By
solving the system of finite unknowns, an approximate solution can be
obtained. The interface stresses still exhibit a usual square-root singu-
larity near the crack tips. Surface elasticity strongly affects the singu-
larity intensity of stresses. Numerical results illustrate the strong in-
fluence of surface material properties on stress intensity factors. Finally,
some conclusions are drawn.

2. Statement of the problem

Consider a nanoscale mode-III interface crack, as shown in Fig. 1. It
is assumed that the upper and the lower half-spaces are respectively
occupied by two bonded dissimilar homogeneous isotropic materials
with a through crack of length 2a lying on the interface. For con-
venience, a Cartesian coordinate system is chosen, and the interface
crack is located at < =x a y, 0 on the x-axis. Apart from the crack
segment, two media are perfectly bonded with each other over |x| ≥ a.
In the present study, remote longitudinal shear or antiplane shear
loading is exerted at infinity. Since a nanoscale crack is focused, the
impact of surface elasticity on the crack faces should be taken into
consideration, and this is fundamentally different from the classical
case. That is, for linear bulk materials, the bulk stress-strain relations
are governed by

= + µ2 ,ij ll ij ij (1)

where λ and μ are the Lamé constants, σij Cauchy stress tensor, and εij

the strain tensor. For linear surface materials, the surface stress-strain
relations read (Gurtin and Murdoch, 1975; Murdoch, 1976)

= + + + +µ u( ) 2( ) ,s s s s s s
0 0 0 0 , (2)

= u ,s s
3 0 3, (3)

where λs and μs are the surface Lamé constants that are independent of
the surface residual stress σ0, s the Piola-Kirchhoff surface stress
tensor, s the surface strain tensor, ui (u s) bulk (surface) elastic dis-
placement vector. In the above, δij or δαβ is the Kronecker delta, Latin
subscripts i, j, l take values from 1 to 3, and Greek subscripts α, β, γ
range from 1 to 2, a comma in the subscript denotes differentiation with
respect to the spatial variable following the comma, and the Einstein
convention of summation over repeated lower-case indices has been
used. A quantity with the superscript s implies the one on the surface
phase. In the following analysis, since the surface of zero thickness is
bonded to the bulk phase without any slipping and debonding, it is
appropriate to assume that at a local position, the surface elastic dis-
placements are identical to the bulk elastic displacements, i.e.

=u ux x( ) ( )s for x ∈ S, S being the surface. Besides, the bulk stresses
are related to the surface stresses, and they satisfy the following equi-
librium equation (Chen et al., 2006)

+ =n[[ ]] 0,ij i j
s

, (4)

where = +[[*]] (*) (*) stands for the jump of a quantity across the
surface.

For a nanoscale mode-III interface crack through the medium along
the z-axis, it is sufficient to limit our attention to an arbitrary plane, the
oxy-plane, say. So there is only a unique out-of-plane displacement
component, denoted as w, which only depends on spatial variables x
and y. In view of (1), antiplane stresses in the bulk phase read

= =µ w µ wxz
j

j x
j

yz
j

j y
j( )

,
( ) ( )

,
( )

(5)

where a quantity with the superscript (j) corresponds to the one in the
upper =j( 1) and lower =j( 2) half-planes, μ1, μ2 denote the shear
moduli of the upper and lower half-planes, respectively. Inserting the
constitutive relationships (5) to the equilibrium equation

+ = 0xz x
j

yz y
j

,
( )

,
( ) (6)

yields the well-known governing equation

=w 0j2 ( ) (7)

with ∇2 is the two-dimensional Laplacian operator.
For a mode-III interface crack lying along the x-axis, the subscripts

on the crack faces should take 1 and 3, then from (4) the bulk stresses
and the surface stresses at the crack faces meet the following equation

+ + =[[ ]] 0,xz x
s

zz z
s

yz, , (8)

Fig. 1. Schematic of a mode-III interface crack between two dissimilar mate-
rials with surface elasticity.
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where [[*]] specifies the jump across the surface. By virtue of (2), we
further rewrite Eq. (8) as

= <+ +x q x µ w x x a( , 0 ) ( ) ( , 0 ),yz
s

xx
(1)

1 ,
(1) (9)

at the crack upper face and

= + <x q x µ w x x a( , 0 ) ( ) ( , 0 ),yz
s

xx
(2)

2 ,
(2) (10)

at the crack lower face, where µj
s is the surface shear modulus of the

crack upper and lower faces ( =j 1, 2), and 0
j( )

is the surface residual
stresses of the crack upper and lower faces ( =j 1, 2), q(x) represents
the negative of applied antiplane shear loading at the crack faces. For
instance, the loading q(x) takes for the case of =yz at infinity,
so the crack faces remain traction-free after superposing the disturbed
elastic field induced by the crack to a uniform field in the whole elastic
plane without crack. In principle, the disturbed crack-tip field induced
by the crack is of particular interest in the study of fracture mechanics,
so in the following analysis, we solely analyze the singular elastic field
induced by the interface crack with the surface effects. From the above,
only the surface shear modulus or surface elasticity affects the crack-tip
field and the surface residual stress σ0 does not bring any variation of
the crack-tip field.

3. Derivation of the hypersingular integro-differential equations

Here the Fourier transform technique is applied to convert the as-
sociated boundary value problem under scrutiny to a set of hypersin-
gular integro-differential equations. To achieve this, besides the above-
stated boundary conditions (9) and (10), the continuity conditions on
the interface of two bonded dissimilar materials

= = >w x w x x x x a( , 0) ( , 0), ( , 0) ( , 0), ,yz yz
(1) (2) (1) (2) (11)

are also required.
With the aid of the Fourier transform, we find that appropriate out-

of-plane displacements take the following form

= +w x y A e d y( , ) 1
2

( ) , 0y i x(1)
1 (12)

and

= +w x y A e d y( , ) 1
2

( ) , 0y i x(2)
2 (13)

where =i 1 , =A j( )( 1, 2)j are unknown functions in ξ to be de-
termined from the boundary conditions. With these expressions for the
out-of-plane displacements, using (5) we give the expressions for the
bulk stresses at the crack plane below

= +x y
µ

A e d( , )
2

( ) ,yz
y i x(1) 1

1 (14)

= +x y
µ

A e d( , )
2

( ) .yz
y i x(2) 2

2 (15)

To solve the problem easily, we introduce two new auxiliary func-
tions g(x) and h(x) such that

= =g x w x w x h x x x2 ( ) ( , 0) ( , 0), 2 ( ) ( , 0) ( , 0),yz yz
(1) (2) (1) (2) (16)

where 2g(x) corresponds to the displacement jump across the crack
faces, while 2h(x) corresponds to the bulk Cauchy stress jump across the
crack faces in the bulk material. Because of consideration of surface
stresses, bulk stresses are no longer continuous across the crack faces,
which may be seen from (9) and (10). Nonetheless, if the surface phase
is neglected, there is no stress jump across the crack faces and con-
tinuous bulk stresses are anticipated. It is worth noting that at the
crack-free part of the interface, the elastic displacement and bulk
stresses are both continuous. That is to say

= =g x h x x a( ) 0, ( ) 0, . (17)

Making use of the continuity conditions (11) or (17) one gets

=
>

<A A e d
x a

g x x a
1
2

[ ( ) ( )]
0,

2 ( ),
i x

1 2
(18)

+ =
>

<µ A µ A e d
x a

h x x a
1
2

[ ( ) ( )]
0,

2 ( ), .
i x

1 1 2 2
(19)

Recalling the identity

=e dx 2 ( )ix
(20)

where δ(ξ) is the Dirac delta function, we perform the Fourier transform
to both sides of Eq. (18) and obtain

=A A g s e ds( ) ( ) 2 ( ) .
a

a i s
1 2 (21)

Similarly, from Eq. (19) we have

+ =µ A µ A h s e ds( ) ( ) 2 1 ( ) .
a

a i s
1 1 2 2 (22)

Solving (21) and (22) we can express A1 and A2 in terms of the in-
troduced functions g(x) and h(x)

=
+

A
µ µ

µ g s e ds h s e ds( ) 1 2 ( ) 1 ( ) ,
a

a i s
a

a i s
1

1 2
2 (23)

=
+

+A
µ µ

µ g s e ds h s e ds( ) 1 2 ( ) 1 ( ) .
a

a i s
a

a i s
2

1 2
1 (24)

In order to determine A1 and A2, we need to apply the boundary
conditions (9) and (10). To this end, it is convenient to express

x y w( , ),yz
j

xx
j( )

,
( ) in terms of g(x) and h(x). We substitute (23) into (14),

after some manipulations, to get

=
+

=
+ +

+

+

+

x y
µ

µ µ
iµ g s ds d

ds
e d

h s ds e d

µ
µ µ

µ g s d
ds

s x
s x y

ds

yh s
s x y

ds

( , )
( )

( )

( )

2
( )

( )
( )

( )
( )

yz a

a y i x s

a

a y i x s

a

a

a

a

(1) 1

1 2
2

( )

( )

1

1 2
2 2 2

2 2

(25)

where we have used the following well-known integrals

=
+

y x d x
x y

exp( )sin( ) ,
0 2 2 (26)

=
+

y x d y
x y

exp( )cos( ) .
0 2 2 (27)

If introducing a complex variable = +z x iy, which does not bring any
confusion with the subscript z, we can express (25) in terms of the
complex variable z. Accordingly, one has

=
+

+

+

x y
µ µ

µ µ
g s

s z
g s

s z
ds

iµ
µ µ

h s
s z

h s
s z

ds

( , )
( )

( )
( )

( )
( ¯)

( )
( ) ( )

¯

yz a

a

a

a

(1) 1 2

1 2
2 2

1

1 2 (28)

for y ≥ 0, i.e. Im(z) ≥ 0, where z̄ denotes the conjugate of the complex
variable z.

In a similar manner, the bulk stresses in the lower half-plane can
also be derived, e.g.
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=
+

+

+

x y
µ µ

µ µ
g s

s z
g s

s z
ds

iµ
µ µ

h s
s z

h s
s z

ds

( , )
( )

( )
( )

( )
( ¯)

( )
( ) ( )

¯

yz a

a

a

a

(2) 1 2

1 2
2 2

2

1 2 (29)

for y ≤ 0, i.e. Im(z) ≤ 0.
Taking into account

±
=

+ x i x
i xlim 1 1 ( )

0 (30)

we let z → x, i.e. y → 0 ± , in Eqs. (28)and (29) and find that the in-
terface stress x( , 0)yz

j( ) become

=
+

+
+

+x
µ µ

µ µ
g s

s x
ds

µ
µ µ

h x( , 0 )
2

( )
( )

( )
2

( ),yz a

a(1) 1 2

1 2
2

1

1 2 (31)

=
+ +

x
µ µ

µ µ
g s

s x
ds

µ
µ µ

h x( , 0 )
2

( )
( )

( )
2

( ).yz a

a(2) 1 2

1 2
2

2

1 2 (32)

On the other hand, using the result (20) and (26), from (12) we get

=
+ +

+w x
µ

µ µ
g x

µ µ
h s

s x
ds( , 0 )

2
( ) 2

( )
( )

( )
,xx a

a
,
(1) 2

1 2 1 2
2 (33)

where a prime denotes differentiation with respect to x. An analogous
treatment to w x( , 0)xx,

(2) allows us to arrive at

=
+ +

w x
µ

µ µ
g x

µ µ
h s

s x
ds( , 0 )

2
( ) 2

( )
( )

( )
.xx a

a
,
(2) 1

1 2 1 2
2 (34)

Substituting (31)-(34) into the boundary conditions (9) and (10)
leads to

+

+ = + <

µ g s
s x

ds h x

µ
µ

µ g x h s
s x

ds
µ
µ

q x x a

( )
( )

( )

( ) 1 ( )
( )

1
2

1 ( ), ,

a

a

s

a

a

2
2

1

1
2 2

2

1

(35)

+ + = + <

µ g s
s x

ds h x

µ
µ

µ g x h s
s x

ds
µ
µ

q x x a

( )
( )

( )

( ) 1 ( )
( )

1
2

1 ( ), .

a

a

s

a

a

1
2

2

2
1 2

1

2

(36)

Due to the hypersingular nature of the kernel s x1/( )2 in (35) and
(36), the coupled Eqs. (35) and (36) form a set of hypersingular integro-
differential equations. Here hypersingular integral is understood in the
sense of Hadamard finite-part integral (Kaya and Erdogan, 1987). The
hypersingular integral equation method has been widely used to tackle
crack problems in a 2D plane (Chan et al., 2003; Li et al., 2013). For
certain special cases, the well-known singular integral equations can be
recovered. For example, if neglecting surface elasticity, implying

=µ 0,j
s from (35) and (36) one has

+ = + <h x
µ g s

s x
ds

µ
µ

q x x a( ) ( )
( )

1
2

1 ( ), ,
a

a2
2

2

1 (37)

+ = + <h x
µ g s

s x
ds

µ
µ

q x x a( ) ( )
( )

1
2

1 ( ), .
a

a1
2

1

2 (38)

After multiplying (37) by μ1 and multiplying (38) by μ2, we subtract
(37) from (38) and arrive at =h x( ) 0, which implies

=x x( , 0) ( , 0)yz yz
(1) (2) at the interface, as expected. Each of (37) and (38)

with =h x( ) 0 reduces to the hypersingular integral equation for a
mode-III interface crack of a bi-material derived by Kaya and
Erdogan (1987).

For another special case, if two dissimilar elastic media are iden-
tical, we have = = =µ µ µ µ, , ,s s

1 2 0
(1)

0
(2)

1 2 Eqs. (35) and (36) simplify
to

=h x µ
µ

h s
s x

ds( ) ( )
( )

0
s

a

a
2 (39)

+ =µ g x µ g s
s x

ds q x( ) ( )
( )

( ).s
a

a
2 (40)

Obviously, Eq. (40) retrieves the one for a nanoscale mode-III crack
embedded in an elastic medium (Li, 2019). For Eq. (39), it is easily
found that it has only a trivial solution (Hori and Nemat-Nasser, 1990;
Martin, 1992).

Alternatively, since ± =g a( ) 0 and ± =h a( ) 0 imply the single value
conditions of the out-of-plane displacement and bulk stresses at the
crack tips, after integration by parts for hypersingular terms, we also
rewrite Eqs. (35) and (36) as a set of singular integro-differential
equations

+

+ = +

g s
s x

ds
µ
µ

g x

µ
h x

µ
µ

h s
s x

ds
µ µ

q x

1 ( ) ( )

1 ( ) 1 ( ) 1
2

1 1 ( ),

a

a s

s

a

a

1

1

2

1

1 1 2 (41)

+

= +

g s
s x

ds
µ
µ

g x

µ
h x

µ
µ

h s
s x

ds
µ µ

q x

1 ( ) ( )

1 ( ) 1 ( ) 1
2

1 1 ( ),

a

a s

s

a

a

2

2

1

2

2 1 2 (42)

where |x| < a. In the following, we will solve the hypersingular integro-
differential Eqs. (35) and (36).

4. Solution to the integro-differential equations

In this section, we turn our attention to seeking suitable solutions of
the resulting hypersingular integro-differential equations. For con-
venience of analysis, we introduce the following dimensionless quan-
tities

= = =h x h x g x g x
a

x q x¯ ( ¯) ( ), ¯ ( ¯) ( ) , ( ¯) ( ) ,
0 (43)

= = =x x
a

s s
a

µ
aµ

¯ , ¯ , ,j
j
s

j (44)

where τ0 is the stress reference value.
Since g x¯ ( ¯) and h x¯ ( ¯) stand for the dimensionless out-of-plane dis-

placement jump and bulk stress jumps across the crack faces, it is easy
to find that both of them have the constraint conditions (17), i.e.

± = ± =g h¯ ( 1) 0, ¯ ( 1) 0. (45)

In order to solve the above-resulting hypersingular integro-differ-
ential Eqs. (35) and (36), according to the above-introduced di-
mensionless quantities, it is convenient to rewrite them as a normalized
form

+

+ = +

g x g s
s x

ds

µ
h x h s

s x
ds

µ µ
x

¯ ( ¯) 1 ¯ (¯)
(¯ ¯)

¯

1 ¯ ( ¯)
¯ (¯)

(¯ ¯)
¯ 1

2
1 1 (¯),

1 1

1
2

2

1
1

1
2

1 2
0

(46)

+

= +

g x g s
s x

ds

µ
h x h s

s x
ds

µ µ
x

¯ ( ¯) 1 ¯ (¯)
(¯ ¯)

¯

1 ¯ ( ¯)
¯ (¯)

(¯ ¯)
¯ 1

2
1 1 ( ¯),

2 1

1
2

1

2
1

1
2

1 2
0

(47)

where <x̄ 1.
As pointed out in Li (2019), it seems unlikely to obtain an exact

solution to hypersingular integro-differential Eqs. (46) and (47), even
for the exact singularity near the crack tips. In the following, using the
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Galerkin method, we appeal to the Chebyshev polynomials to approx-
imate the desired solution. First, we rewrite (46) and (47) in the fol-
lowing form

+
+
+

+
+

= +

g s
s x

ds
µ µ

µ µ
g x

µ µ
h s
s x

ds
µ µ

x

1 ¯ (¯)
¯ ¯

¯ ¯ ( ¯)

( )
¯ (¯)

¯ ¯
¯ 1

2
1 1 *( ¯),

1

1 1 2 2 1

1 2

2 1

1 2 1

1
0

1 2 (48)

+
+

+
+

=

µ µ
µ µ

h x h s
s x

ds

µ µ
g s

s x
ds x

¯ ( ¯)
¯ (¯)

(¯ ¯)
¯

( )
¯ (¯)

(¯ ¯)
¯ 1

2
( ) ( ¯),

1 2 2 1

1 2

1 2
1

1
2

2 1

1
1

2
1 1

1

2 2 1 0
(49)

where <x̄ 1. The corresponding details are given in Appendix A.
Furthermore, since the solution g x¯ ( ¯) and h x¯ ( ¯) have asymptotic be-

havior like x1 ¯2 as x̄ is close to 1 (see Appendix B), a suitable so-
lution to Eqs. (48) and (49) can be expanded as Chebyshev polynomials
of the second kind:

= +
=

g x
µ µ

x b U x¯ ( ¯) 1
2

1 1 1 ¯ ( ¯),N
n

N

n n0
1 2

2

0 (50)

=
=

h x x c U x¯ ( ¯) 1
2

1 ¯ ( ¯),N
n

N

n n0
2

0 (51)

where bn and cn are constants to be determined through appropriate
conditions, N is a positive integer, which is chosen so large that g x¯ ( ¯)N
and h x¯ ( ¯)N converge to the desired true solution, T x( ¯)n and U x( ¯)n are
respectively Chebyshev polynomials of the first kind and the second
kind, defined by

= = …T x n x n( ¯) cos[ cos ( ¯)], 0, 1, 2,n
1 (52)

= + = …U x n x
x

n( ¯) sin[( 1)cos ( ¯)]
sin[cos ( ¯)]

, 0, 1, 2,n
1

1 (53)

Recalling some closed-form integral and derivative formulas, we
obtain the following linear algebraic equations for the unknown con-
stants bn and cn = …n N( 0, 1, , ) (the detailed procedure is given in
Appendix C).

+
+

+ +

+
+

=

=

+

=

+

µ µ
µ µ

n a b

µ µ
µ µ

a c f

( 1)
2

( )
( )

n

N

mn mn n

n

N

mn n m

0

1 2 2 1

1 2

1 2 2 1

1 2
2

0
1

(54)

+

+
+
+

+ + =

=

=

n b

µ µ
µ µ

a n c f

( 1)
2

( )

( 1)
2

( )

n

N

mn n

n

N

mn mn n m

0
2 1

0

1 2 2 1

1 2
1 2 2 1 2

(55)

where = …m N0, 1, , δmn denotes the Kronecker symbol, and

= + ±
+ +

±a
m n m n

1 ( 1)
2

1
1 ( )

1
1 ( 2)

,mn
m n

2 2 (56)

= =+f x T x dx x s ds* ( ¯) ( ¯) ¯, * ( ¯) (¯) ¯,m m
x

1 1

1
1 0

¯

(57)

=f x U x x dx( ¯) ( ¯) 1 ¯ ¯.m m2 1

1 2
(58)

Therefore, Eqs. (54) and (55) form a linear system of +N2( 1) al-
gebraic equations with +N2( 1) unknowns. It is straightforward to
solve the above system through a standard method, and the desired
solution can be then determined. Once the coefficients bn and cn are
determined, the entire stress field in the upper and lower half-plane can

be obtained by inserting (50) and (51) into (28) and (29), respectively.
For example, with the help of the following integral results

= +t U t
t

dt1 1 ( ) ( 1 ) ,n n

1

1 2
2 1

(59)

=
+ +

t U t
t

dt
n1 1 ( )

( )
( 1)( 1 )

1
,n

n

1

1 2

2

2 1

2 (60)

where ( 1, 1) is a complex variable, and 12 is understood as a
branch of taking real as ζ is real and larger than unity, we have the
stress σyz(x, y) in the upper and lower half-planes

= + +

+
+

=

+ +

=
+

+ +

x y n b
a

z z a
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z z a
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iµ
µ µ
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( , )
2

( 1) ( ) ( ¯ ¯ )
¯

2
[( ) ( ¯ ¯ ) ].

yz
j

n

N
n

n
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j

n

N
n

n
n n

( ) 0

0

2 2 1

2 2

2 2 1

2 2

0

1 2 0
1

2 2 1 2 2 1

(61)

In particular, of much interest is the stress field at the interface. To
get the interface stress, by setting =z x x a a( [ , ]), one acquires the
interface stress at the crack-free part, e.g.

=

= +

>
=

+

x x

n b x
a

x
a

x
a

x a

( , 0) ( , 0)

( 1) 1 1 ,

.

yz yz

n

N

n

n

(1) (2)

0
0

2 1 2 1

(62)

For <x a, the symmetry allows one to immediately determine the
bulk stress x( , 0)yz

(1) . It is obvious from the above result that bulk stress
still exhibits an inverse square-root singularity. In addition, due to the
influence of the surface stress, in view of (28), (29), and (30), if using

= + <U s s
s x

ds n U x x1 (¯) 1 ¯
(¯ ¯)

¯ ( 1) ( ¯), ¯ 1,n
n1

1 2

2 (63)

one obtains the stresses at the crack faces

= +
+

<
=

x n b
µ x

µ µ
c U x x( ¯, 0) ( 1)

1 ¯
( ¯), | ¯| 1,yz

n

N

n n n
(1)

0
0

1
2

1 2

(64)

= + +
+

<
=

x n b
µ x

µ µ
c U x x( ¯, 0) ( 1)

1 ¯
( ¯), | ¯| 1,yz

n

N

n n n
(2)

0
0

2
2

1 2

(65)

and they are indeed not equal.
From the above analytic expression for the interface stresses at

=y 0, we easily determine stress intensity factor KIII at the crack tip
= ±x a, defined by

=±
+

K x a xlim 2 ( , 0).III
x a

yz
(1)

(66)

Upon the substitution of (62) into (66), one gets

= + = ++

= =
K a n b K a n b( 1) , ( 1)( 1) .III

n

N

n III
n

N
n

n0
0

0
0 (67)

Note that since the unknown constants bn and cn depend on the para-
meters βn, as seen from Eqs. (54) and (55), the stress intensity factors
are affected by both bulk and surface shear moduli, but independent of
surface residual tension. It is interesting to note that Kim et al. (2011b)
applied different assumptions to solve a similar problem based on the
complex variable method and found the nonsingular stresses near the
crack tips.
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5. Numerical results and discussion

This section is devoted to the examination of the influence of surface
elasticity on stress intensity factor and stress distribution through nu-
merical examples. To carry out our calculations, the material properties
of the surface phase must be provided. According to the estimate of
Sharma and Ganti (2004), the surface parameters can be approximately
predicted by the following transformation: =µ µt,s t being the thickness
of about 1~2 lattice spacing and chosen as 5 Å in the present paper, and
the upper half-plane is occupied by Ag with bulk shear modulus

=µ 23.61 GPa and the lower half-plane by Pt with shear modulus
=µ 59.72 GPa (Shenoy, 2005).
The following numerical results are only presented for uniform re-

mote loading, i.e. =q x( ) 0. First, to confirm the convergence of our
method, let us consider a special case of two bonded materials reducing
to identical material. In this case, we have = =µ µ ,1 2 1 2. Using (55),
one gets =c 0n and from (54) one acquires

+ + =
+

= …
=

+n a b
m m

m N(2 1)
2

2
3 4 (1 )

, 0, 1, .
n

N

mn mn n
0

(68)

It is clear that the coefficients bn are dependent on the parameter β
alone. By solving the above linear equations, the bn’s are determined
and the stress intensity factors are given by (67). Table 1gives the nu-
merical results of the normalized stress intensity factor K a/III 0 for
different values of N and β. Since (50) and (51) are expanded as an
orthogonal polynomial with weight, the first N-term coefficients bn and
cn are unchanged when the term number N is raised. The obtained re-
sults are in agreement with those given by Li (2019). From Table 1, one
finds that for = 10 ,8 meaning that surface effect is nearly negligible,
the normalized stress intensity factors are equal to unity. It means when
the crack length arrives at a macro scale such as cm or larger, the value
of β is close to 10 8 and the classical stress intensity factor is recovered.
Moreover, for such β values, the convergence of the numerical results is
very rapid. However, with the crack length decreasing, or β rising, we
find that the surface effect is enhanced, and there is obvious declination
in the normalized stress intensity factors. Moreover, the convergence
rate becomes quite slow for larger values of β. For example, if = 0.1,

=K a/ 0.0115109III 0 if taking =N 100 and 0.00577972 if taking
=N 200. In fact, the exact value should be zero since it only exhibits a

logarithmic singularity, not the inverse square-root singularity (Walton,

2012; Kim et al., 2013).
In the following numerical results, we give the normalized stress

intensity factor ±K a/III 0 for various values of the upper and lower
surface parameters β1 and β2 with Ag occupying the upper half-plane
and Pt occupying the lower half-plane, respectively. For two bonded
dissimilar materials, the normalized stress intensity factors drop with
the increase of β1, as viewed in Table 2. This conclusion is similar to
that for an identical material with a nano crack. Also, the numerical
results converge well for small values such as = 101

8 while the
convergence rate becomes quite slow with the increase of β1. In the
following calculation, =N 200 is chosen unless otherwise stated.

After the coefficients bn and cn are determined by solving the re-
sulting algebraic equations, the out-of-plane displacement jump g x¯ ( ¯)
and bulk stress jump h x¯ ( ¯) across the crack faces can be calculated
through the expansion (50) and (51), and the corresponding profiles at
the crack-face with = 32 1 are plotted in Fig. 2. From Fig. 2, one finds
that the introduction of the surface effect significantly changes the
behavior of the out-of-plane displacement jumps at the crack tips.
However, if β1 is less than 10 ,3 the surface properties have little in-
fluence on the crack-face displacement jump. The influence progres-
sively becomes more sensitive when β1 is greater than 10 3.

For an interfacially cracked bimaterial subjected to tensile loading,
the crack-tip field exhibits oscillatory behavior in the context of linear
elastic fracture mechanics (England, 1965), and oscillatory singularity
does not take place when subjected to compression-shear loading (Li
et al., 2015b; 2015a). For mode-III interface cracks, the stresses are
always continuous across the crack-free interface and show a square-
root singularity near the crack tips. Although a square-root singularity
remains, the bulk stresses are no longer continuous across the crack
faces. Fig. 3 clearly demonstrates the stress jump across the crack faces.
Moreover, the jump magnitude at the crack faces is related to the po-
sition.

Figs. 4 –7 show the variation of the upper and lower bulk stresses
x( , 0)/ ,yz

(1)
0 x( , 0)/yz

(2)
0 as a function of x for = 3 .2 1 From Fig. 4, it is

seen that the bulk stresses nearly take different constants at the upper
and lower crack faces for a bimaterial with = 101

4. However, with β1

rising, the surface effect alters the distribution of the bulk stresses on
the crack faces. For example, for = 10 , 10 ,1

2 1 it is seen from Figs. 6
and 7 that the bulk stresses on the upper and lower crack faces are not
constant, but vary. At the crack-free part, the bulk stress exhibits an
inverse square-root singularity and the crack-tip stress becomes suffi-
ciently large, as shown in Figs. 4–7. Due to two bonded dissimilar
materials, it is anticipated that the anti-plane shear bulk stress com-
ponents are not symmetric on the upper and lower crack faces, but
equal on the crack-free interface thanks to the continuity of stress.

As mentioned before, the stresses near the crack tips and stress in-
tensity factors are always size-dependent. Therefore, to reflect the in-
fluence of the crack length on the stress intensity factors, in what fol-
lows we plot the variation of the stress intensity factors against the
crack half-length a in Fig. 8. For comparison, we also calculate the
corresponding results when two dissimilar materials reduce to an
identical material, and the evaluated results are represented by the
dashed lines in Fig. 8(a,b). From Fig. 8a, for a cracked bimaterial with

Table 1
The normalized stress intensity factor K a/III 0 .

N
β 80 100 200

10 8 0.999916 0.999869 0.999485

10 6 0.991669 0.987129 0.951178

10 4 0.562309 0.462943 0.221235

10 3 0.168227 0.132117 0.0639105

10 2 0.0492867 0.039375 0.0196685

10 1 0.0143603 0.0115109 0.00577972

Table 2
The normalized stress intensity factor ±K a/III 0 with =/ 32 1 .

N
β1 80 100 200 300 400 500

10 8 0.999868 0.999795 0.999192 0.998192 0.996800 0.995018

10 6 0.987007 0.980021 0.926652 0.852469 0.770377 0.689550

10 4 0.483869 0.393025 0.186331 0.119540 0.0879992 0.0696899

10 3 0.141324 0.111268 0.0541122 0.0358423 0.0268168 0.0214290

10 2 0.0410039 0.0327784 0.0163896 0.0109326 0.00820284 0.00656419

10 1 0.0111371 0.00892800 0.00448343 0.00299353 0.00224690 0.00179837
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=µ µ m/ 10 ,s
1 1

10 when the crack half-length is lower than 10μm, the
surface effect comes into play and rapidly decreases the stress intensity
factors. In other words, the load-carrying capacity is effectively en-
hanced with consideration of surface effect (Zhang et al., 2014). In
particular, if neglecting the surface elasticity, we find that the

normalized stress intensity factors are equal to unity. That is, when the
crack half-length increases to the millimeter-order length or more, the
surface effect is nearly invisible and the classical stress intensity factor
is recovered. When the crack length decreases to the micrometer-order
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Fig. 2. Profile of the out-of-plane displacement jump parameter g x¯ ( ¯)/ 0 across
the crack face of a bimaterial with = 32 1.
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Fig. 3. Profile of the out-of-plane stress jump parameter h x¯ ( ¯)/ 0 across the crack
face of a bimaterial with = 32 1.
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length or less, the influence of surface elasticity on the classical stress
intensity factor is pronounced and cannot be neglected. It also shows
that positive surface shear moduli decrease the stress intensity factors,
and then impedes crack advance. This conclusion agrees well with most
experimental observation (Cohen-Tanugi and Grossman, 2014; Yang
et al., 2010). Although the values of µ s

1 and µ s
2 are positive for most

materials, it is worth noting that negative µ s
1 and µ s

2 values are still
possible for some special crystalline directions. Fig. 8b gives the var-
iation of stress intensity factors with µ ,s

1 <µ 0s
2 . From Fig. 8b, negative

surface material parameters may increase the stress intensity factors
and then speed the crack advance, which is opposite to the trend for
positive surface material parameters. Some more complex behaviors
can be observed in Fig. 8(c,d), which illustrates the variation of the
normalized stress intensity factors for other combined cases of a posi-
tive and a negative surface modulus. Through the above analysis, both
the surface parameters µ s

1 and µ s
2 strongly influence the behavior of

stress intensity factors and then affect the effective interface fracture
toughness of a bimaterial.

Fig. 9 shows the variation of the dimensionless stress intensity
factors against the dimensionless surface parameter β1 for different β2

values. From Fig. 9a, it is viewed that when the surface parameters β1

and β2 increase, the stress intensity factors decrease. It also implies a
higher load-carrying capacity when considering surface effects. For
other combined cases of β1 and β2, stress intensity factors as a function
of β1 are displayed in Figs. 9b-d for various values of β2. Their variations
are similar to those in Fig. 8.

6. Conclusions

In this paper, we analyzed a nanoscale mode-III interface crack of
two bonded dissimilar isotropic homogeneous media. The influences of
surface elasticity on the crack-tip field were examined. With the aid of
the Fourier transform, we derived a hypersingular integro-differential
equation for the out-of-plane displacement jump and bulk stress jump
across the crack faces. To employ the Galerkin method to solve the
resulting equation, we used the Chebyshev polynomials to expand the
displacement and stress jumps. The set of resulting hypersingular in-
tegro-differential equations was converted to a set of algebraic equa-
tions with unknown coefficients. The stress intensity factors were
computed and presented for different surface properties. The obtained
results show that for most materials with positive β1 and β2 parameters,
consideration of surface elasticity decreases the stress intensity factor or
the effective fracture toughness is enhanced for materials with nano/
microscale crack. Conversely, negative β1 and β2 values increase the
stress intensity factors or reduce the effective fracture toughness. A
combined case of β1 and β2 causes the stress intensity factors to exhibit
more complex variation.
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Appendix A

A further simplification is achieved by multiplying (46) by μ2 and multiplying (47) by μ1. Then adding them results in

+ + +
+

= + +h s
s x

ds µ µ g x
µ µ g s

s x
ds

µ
µ

µ
µ

x
¯ (¯)

(¯ ¯)
¯ ( ) ¯ ( ¯) ¯ (¯)

(¯ ¯)
¯ 1

2
2 ( ¯).2 1

1

1
2 1 2 2 1

1 2
1

1
2

1

2

2

1
0

(A.1)

To eliminate hypersingular kernels in the above equation, integrating both sides of the above hypersingular integro-differential equation leads to a
singular integro-differential equation with the Cauchy kernel, namely

+
+
+

+
+

= + <g s
s x

ds
µ µ

µ µ
g x

µ µ
h s

s x
ds

µ µ
x x1 ¯ (¯)
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2
1 1 *( ¯), ¯ 1,

1

1 1 2 2 1

1 2

2 1

1 2 1

1
0

1 2 (A.2)

where

=x s ds* ( ¯) (¯) ¯.
x

0

¯

(A.3)

In the above derivation, we have used the condition that an integration constant is taken as zero since g x¯ ( ¯) and h x¯ ( ¯) are even functions, g x¯ ( ¯) is an
odd function. In addition, the singular integral operator h s s x ds¯ (¯)/(¯ ¯) ¯1

1 transforms an even function to an odd function.
On the other hand, from Eqs. (46) and (47) we eliminate g x¯ ( ¯) and, after some manipulations, obtain

+
+

+
+
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µ µ
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ds
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(A.4)
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Appendix B

We rewrite Eq. (A.2) as

+
+

= +
+
+s x
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µ µ

h s ds
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It can be understood as a singular integral equation with the Cauchy kernel of the first kind (Muskhelishvili, 1977). Under the conditions (45) and
with the aid of the well-known solution of singular integral equations with the Cauchy kernel of the first kind, we arrive at the following result
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and
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Similar to the above treatment we also integrate both sides of Eq. (A.4)to obtain
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Likely, we have
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µ µ
g x h x x

µ µ
µ µ s µ µ h t dt

s x s
ds

( )
¯ ( ¯) ¯ ( ¯) 1 ¯

( )
( )( ) * (¯) ( ) ¯ ( )

(¯ ¯) 1 ¯
¯,

s
2 1

1
1

2
1 1 2

2

1 2 1

1
1
2 1 2 2 1 0 1 2 2 1 0

¯

2 (B5)

and

+ +
=

µ µ s µ µ h t dt

s
ds

( )( ) * (¯) ( ) ¯ ( )

1 ¯
¯ 0.

s

1

1
1
2 1 2 2 1 0 1 2 2 1 0

¯

2 (B6)

Appendix C

Recalling the closed-form integral formula

= <+
U s s

s x
ds T x x1 (¯) 1 ¯

¯ ¯
¯ ( ¯), ¯ 1,n

n1

1 2
1 (B1)

and derivative formula

= + +dU x
dx

n U x nU x
x

( ¯)
¯

( 2) ( ¯) ( ¯)
2(1 ¯ )

n n n1 1
2 (B2)

we obtain

= + = ++ +d
dx

U x x n U x U x
x

n T x
x¯

[ ( ¯) 1 ¯ ] ( 1) ( ¯) ( ¯)
2 1 ¯

( 1) ( ¯)
1 ¯

.n
n n n2 1 1

2
1

2 (B3)

Bearing this result in mind, one inserts (50) and (51) into Eq. (A.2), leading to

+
+

+ + +
+

=
=

+
=

+b
µ µ

µ µ
n

x
T x

µ µ
µ µ

c T x x1
1 ¯

1 ( ¯)
( )

( )
( ¯) * ( ¯).

n

N

n n
n

N

n n
0

1 2 2 1

1 2 2 1
1 2 2 1

1 2
2

0
1

(B4)

We multiply both sides of Eq. (C.4) by +T x( ),m 1 and then integrate both sides with respect to x from 1 to 1. Applying the orthogonality of the
Chebyshev polynomials

= = =
=

T x T x
x

dx
m n
m n
m n m

( ¯) ( ¯)
1 ¯

¯
0, ,

, 0,
, , 0,

m n
1

1

2
2 (B5)

and the closed-form integral formula

= + +
+

T x T x dx
m n m n

( ¯) ( ¯) ¯ 1 ( 1)
2

1
1 ( )

1
1 ( )

,m n
m n

1

1
2 2 (B6)

from (C.4) we obtain linear algebraic equations for the unknown constants bn and cn = …n N( 0, 1, , )

+
+

+ + +
+

= = …
=

+

=

+µ µ
µ µ

n a b
µ µ

µ µ
a c f m N( 1)

2
( )

( )
, 0, 1, .

n

N

mn mn n
n

N

mn n m
0

1 2 2 1

1 2

1 2 2 1

1 2
2

0
1

(B7)

Next, we substitute the expansions (50) and (51) into equation (A.4). Recalling the closed-form hypersingular integral formula (63) we obtain
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+
+

+ + + =
= =

c
µ µ

µ µ
x n U x b n U x x1 ¯ ( 1) ( ¯) ( ) ( 1) ( ¯) ( ) ( ¯).

n

N

n n
n

N

n n
0

1 2 2 1

1 2

2
1 2 2 1

0
2 1

(C.8)

After multiplying both sides of Eq. (C.8) by U x x( ¯) 1 ¯m
2 (m ≥ 0) and then integrating both sides with respect to x̄ from 1 to 1, with the aid of the

orthogonality of Chebyshev polynomials of the second kind and closed-form integral result

=x U x U x dx1 ¯ (¯) ( ¯) ¯
2

,m n mn1

1 2
(C.9)

= +
+ +

x U x U x dx
m n m n

(1 ¯ ) ( ¯) ( ¯) ¯ 1 ( 1)
2

1
1 ( )

1
1 ( 2)

.m n
m n

1

1 2
2 2 (C.10)

we obtain linear algebraic equations for the unknown constants bn and cn = …n N( 0, 1, , )

+ +
+
+

+ + = = …
= =

n b
µ µ

µ µ
a n c f m N( 1)

2
( ) ( 1)

2
( ) , 0, 1, .

n

N

mn n
n

N

mn mn n m
0

2 1
0

1 2 2 1

1 2
1 2 2 1 2

(C.11)

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.mechmat.2019.103246.
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