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A B S T R A C T

The dynamic mechanical properties of frozen soil at different temperatures and high strain rates were tested
using a split Hopkinson pressure bar (SHPB), and the variation of the wave impedance of the frozen soil was
analyzed. Viscoelastic theory confirmed that an increase in the wave impedance in frozen soil over short times is
the result of unfrozen water relaxation. Unfrozen water is an important factor that increases the peak stress of
frozen soil under impact loading. Based on the compression failure mechanism of frozen soil, the internal mi-
crocracks were classified as random or vertical microcracks. The mesoscopic parameter (microcrack density) and
the macroscopic physical quantity (wave velocity) were connected by the effective medium theory, and the
longitudinal wave velocity was selected as the damage variable. The effects of the low-frequency parameters in
the ZWT (Zhu–Wang–Tang) model (Wang, 2003) when applied to frozen soil were evaluated. Under impact-
loading conditions, with the initiation and expansion of the internal microcracks in the frozen soil, the Maxwell
element represented by the low-frequency parameters lost its function rather than degenerating into a simple
spring, and thus, it continued to contribute to the macroscopic mechanical properties of the frozen soil. Finally,
damage was introduced into the improved ZWT model to establish a dynamic constitutive model of the frozen
soil. The predicted and experimental results agreed well, which verified the applicability of the model.

1. Introduction

Frozen soil is a complex multiphase medium due to partial water
freezing when the temperature drops to 0 ∘C or below. It is composed
mainly of soil particles, ice, unfrozen water, and air. The permafrost
region of the world accounts for about 24% of the total land area
(French, 2017). Owing to the increase in human activities, a large
number of construction and maintenance projects in cold regions are
facing problems associated with frozen soil. The existence of ice
changes the interlinking characteristics of each phase in frozen soil,
which causes the mechanical properties of frozen soil to differ sig-
nificantly from those of thawed soil. The mechanical behavior of frozen
soil, as a complex multiphase medium, is affected by the coupling be-
tween the permeability field, stress field, temperature field, and ice–-
water phase transition (Ma and Wang, 2012). Damage theory is a
powerful tool for modeling this complex multiphase medium de-
formation problem (Lemaitre, 1990). Miao et al. (1995) studied the
microstructural damage of frozen loess by scanning electron

microscopy (SEM), and a constitutive model of the viscoplastic damage
was presented using the ice content as the damage variable.
He et al. (1999) presented a constitutive model of the viscoelastic–-
plastic damage of frozen soil based on continuum mechanics and
thermodynamic laws. Zhu et al. (2010) presented a constitutive model
of the elastic damage of frozen soil based on the law of mixtures and
stochastic damage theory.

As a carrier in cold region environments, frozen soil is often sub-
jected to various forms of impact loading in practical engineering.
Under impact loading, the duration of the stress wave is usually
100–200 μs, and thus, characterizing the mesoscopic damage para-
meters of the materials quantitatively is difficult. Xie et al. (2016) as-
sumed that the frozen soil was composed of a soil matrix and ice par-
ticles and that the damage behavior of the frozen soil was due to the
debonding of the interface between the soil matrix and ice particles.
They presented a constitutive model for the dynamic damage of frozen
soil. Ma et al. (2017) believed that the damage followed a Weibull
distribution and presented a constitutive model of the dynamic damage
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based on the ZWT (Zhu–Wang–Tang) model. Cao et al. (2018) assumed
that the damage of frozen soil was a viscoplastic deformation process
related to the strain rate. By introducing strain rate strengthening and
temperature softening effects into the constitutive model, a dynamic
damage model was proposed that could describe the strain rate and
temperature effects. In addition, Zhang et al. (2013) and Ma et al.
(2019a, 2019b) explored the dynamic mechanical properties of frozen
soil under a confining pressure and coupled static–dynamic loading,
respectively, using split Hopkinson pressure bar (SHPB) devices. In
many existing dynamic constitutive models, the frozen soil is con-
sidered to be composed primarily of soil and ice. However, unfrozen
water is always present in the negative temperature range (Fortin et al.,
2011; Zhang et al., 2018). Under quasi-static loading, unfrozen water
does not significantly affect the evolution process of cracks. However,
under impact loading, the evolution process of microcracks containing
fluid is influenced by the Stefan effect (Rossi and Toutlemonde, 1996).
Saturated cracks can be considered to be in an undrained state under a
high strain rate (Li, 2014), which significantly influences the strengths
of the materials (Zhou et al., 2019). Therefore, the effect of unfrozen
water on the dynamic mechanical properties of frozen soil is worthy of
study and should be included in the constitutive model.

In this study, the dynamic mechanical properties of frozen soil were
tested using a SHPB at different temperatures (−10 to −20 ∘C) and
high strain rates (400–950 −s 1). The variation of the wave impedance of
the frozen soil was analyzed, and using viscoelastic theory, it was
concluded that the increase in the wave impedance over short times
was the result of unfrozen water relaxation in the frozen soil. The frozen
soil was assumed to be composed of soil, ice, and water. The mesoscopic
parameter (microcrack density) was related to the macroscopic physical
quantity (wave velocity) through the effective medium theory ne-
glecting crack interactions, and the longitudinal wave velocity was
selected as the damage variable. The effects of the low-frequency
parameters in the ZWT model were evaluated when applied to frozen
soil. Under impact-loading conditions, with the initiation and expan-
sion of internal microcracks, the low-frequency parameters lost their
functions rather than degenerating into a spring and continued to
contribute to the macroscopic mechanical properties of the frozen soil.
Finally, a dynamic constitutive model of the frozen soil was established
by including damage in the improved ZWT model. The theoretical
curves obtained using the model were in good agreement with the ex-
perimental curves. The damage variable was physically significant, and
the model could better reveal the damage mechanism of the frozen soil
under impact loading.

2. Experiments and results

2.1. Dynamic uniaxial impact loading experiment of frozen soil

The dry density of the clay used in the experiment was 1.6 g/cm3,
and the granule distribution is shown in Table 1. The mass and moisture
content of each specimen were 26.455 g and 30%, respectively. Each
specimen with dimensions of Ø30 mm × 18 mm was compacted in a
steel mold, after which it was placed into a cryostat cabinet and frozen
for 24 h. It was subsequently quickly transferred to the SHPB device to
complete the dynamic testing (Cao et al., 2018). Owing to the short test
duration (100–200 μs), the behavior of the frozen soil was not affected
by the environmental temperature.

The dynamic compressive deformation of the frozen soil was tested
using a variable cross-section SHPB (Chen et al., 2017, 2018; Ma et al.,

2017). When characterizing the dynamic mechanical response of the
frozen soil at a high strain rate, a certain specimen size of the frozen soil
is required to produce a meaningful representative volume (Chen and
Song, 2010). Therefore, the specimen sizes were selected as
Ø30mm × 18 mm. For the SHPB device to be suitable for the selected
specimen sizes, the incident bar of the SHPB was converted to a variable
cross-section bar. A schematic diagram of the experimental device is
shown in Fig. 1. The device consisted of loading, bar, data acquisition,
and recording systems. The bar material was a 7075-T6 aluminum alloy
with a low wave impedance, and its elastic modulus was 75.8 GPa. The
longitudinal wave velocity was 5200 m/s.

The direct loading of the cylindrical striker generated rectangular
pulses in the bars. For materials with low wave impedances, a rectan-
gular pulse creates two issues. (i) High-frequency oscillations are gen-
erated at the front of the pulse, resulting in oscillations of the actual
stress in the specimen, which is equivalent to small loading and un-
loading values of the specimen. The instantaneous loading and un-
loading increase the strain during the stress oscillation, which is more
significant for frozen soil with a low wave impedance. (ii) The stress
balance during the experiment cannot be guaranteed owing to the low
wave velocity of the frozen soil, and the validity of experimental data is
affected. In a study of rocks (Li et al., 2015), a loading pulse in the form
of a half-sine was used to solve these two issues. In this study, a red
copper cylinder with dimensions of Ø6 mm × 1 mm was used as the
pulse shaper, and the generated half-sine loading pulse is shown in
Fig. 2. A two-wave method was adopted for data processing (Kim et al.,
2019), expressed as follows:
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where Cb is the longitudinal wave velocity of the bar, ɛr and ɛt are the
reflected and transmitted pulses, respectively, ε̇ is the average strain
rate, ɛ and σ are the calculated strain and stress, respectively, A and Eb
are the cross-sectional area and elastic modulus of the bar, respectively,
and ls and As are the length and cross-sectional area of the specimen,
respectively.

The test temperatures were −10, −15, and −20 ∘C, and the strain
rate range was between 400 and 950 s-1. The stress–strain curves at the
different temperatures and strain rates are shown in Fig. 3. The failed
specimens after the testing are shown in Fig. 4.

2.2. Analysis results after impact loading of frozen soil

2.2.1. Effects of temperature and strain rate on peak stress
The experimental stress–strain curves of the frozen soil at the same

strain rate and different temperatures are shown in Fig. 5, and the peak
stresses of the frozen soil at different temperatures and strain rates are
shown in Fig. 6. From Figs. 5 and 6, it was concluded that the
stress–strain curves of the frozen soil under impact loading mainly
showed rate and temperature effects. The ice content of the frozen soil
and the bonding strength between the soil and ice particles increased
with a decrease in temperature, and the elastic modulus of the ice was
more than one order of magnitude larger than that of the soil, leading to
an increased strength of the frozen soil. The damage behavior of the
frozen soil was caused by the many microcracks generated. The mi-
crocracks exhibited a relatively stable growth process at relatively low
strain rates (such as 415 s-1). During the growth process, different mi-
crocracks interacted with each other and finally merged to form the
main crack. The macroscopic manifestation was fracture. At relatively
high strain rates (such as 907 s-1), many microcracks were activated in a
short time. With the rapid propagation of the microcracks, the cracks
did not have sufficient time to merge, and the macroscopic manifesta-
tion was fragmentation, which could bear high stresses.

Table 1
Particle mixture ratios of original soil.

Particle size (mm) 2–0.85 0.85–0.425 0.425–0.18 <0.18

Weight fraction (%) 25.97 26.62 21.21 26.20
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2.2.2. Damage behavior of frozen soil under dynamic impact loading and
influence of fluid on damage behavior

Frozen soil is composed of soil, ice, water, and air, and it contains
many microcracks and other defects. The mechanical properties of
frozen soil are affected by the soil type, temperature, moisture content,
external loading type, and other factors. Because the fracture strength
of the ice was significantly lower than that of the soil particles, during
the deformation process of the frozen soil, microcracks were mainly
generated at the contact point (surface) between the ice and soil par-
ticles or within the ice crystals. As shown in Fig. 4, the failure behaviors
of the frozen soil exhibited characteristics typical of brittle materials.
Brace and Martin III (1968) first proposed a sliding crack model to
describe the failure behaviors of brittle materials under uniaxial
loading. Many scholars have improved this model and applied it to the
study of other brittle materials (Bischoff and Perry, 1991; Nemat-
Nasser and Horii, 1982; Zhang and Zhao, 2014). The sliding crack
model under uniaxial compression is shown in Fig. 7. In this model, the
initial crack surface forms a random angle with the principal stress axis.
With an increase in the loading, the tensile stress is concentrated at the
tip of the crack due to the local shear stress. Once the critical stress level
is reached, the crack begins to propagate. The direction of crack pro-
pagation is first perpendicular to the crack end and is finally parallel to
the principal stress axis.

Under quasi-static loading, the fluid in the crack has sufficient time
to flow into the crack tip. Meanwhile, there is a siphon effect at the
crack tip, which can lubricate the crack contact surface and promote the
crack propagation (Fig. 7). However, under impact loading, resistance
at the stretch zone of the crack tip is generated due to the Stefan effect,
and the saturated crack can be considered to be in an undrained state
(Li, X., 2014). During the Stefan effect, two parallel plates are separated
by a viscous liquid. When the plates are separated at a relative velocity
v, a reaction force F is generated that resists the plate separation
(Freund, 1998) (Fig. 8). The presence of the Stefan effect indicated that

the saturated cracks were incompressible, which improved the strength
of the frozen soil.

3. Constitutive damage model of frozen soil

3.1. Effective medium theory

The concept behind the effective medium theory is that a multi-
phase medium can be considered to be meso-inhomogeneous and
macro-statistically homogeneous and that a representative volume
element (RVE) can sufficiently represent the fine and microscopic
characteristics of the medium (David et al., 1990). Among the many
effective medium methods, the simplest and most effective one is the
non-interactive assumption theory (NIA). In NIA theory, there are no
stress interactions between the cracks and they are statistically com-
plementary. In this study, cracks in the frozen soil were regarded as
saturated coin-shaped cracks (Fig. 9).

In an RVE of frozen soil, cracks are regarded as a source of addi-
tional strain, and the strain of the frozen soil can be represented as
follows (Grechka and Kachanov, 2006):

= = + = +ε S σ S S σ ε ε( Δ ) Δij ijkl kl ijkl ijkl kl ij ij
0 0

(2)

where Sijkl are the effective compliances, Sijkl
0 are the matrix material

(without cracks) compliances, ΔSijkl are the additional compliances
caused by the cracks, and σkl are the applied stresses.

According to NIA theory, the extra compliance for the general case
of nonrandom crack orientation is (Kachanov, 1980)
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where αij and βijkl are the second and fourth rank crack density tensors,
respectively, ρc is a scalar crack density parameter, N is the total
number of cracks in a representative volume element V, and 〈ninj〉 and
〈ninjnknl〉 represent the second and fourth rank moments of the crack
direction distribution function, respectively. The angle brackets re-
present the statistical angular averages in a representative volume
element RVE, defined as follows:
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wheref(θ, ϕ) is the crack direction distribution function.
ψ is related to the parameter δf (Schubnel and Guéguen, 2003) as

follows:

Fig. 1. SHPB device.

Fig. 2. Incident, reflected, and transmitted pulses in a pulse-shaped SHPB ex-
periment.
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Fig. 3. Experimental stress–strain curves: (a) T=−10 ∘C, (b) T=−15 ∘C, and (c) T=−20 ∘C.

Fig. 4. Typical frozen soil specimens after testing: (a) T=−10 ∘C, (b) T=−15 ∘C, and (c) T=−20 ∘C.
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where δf, which depends on the crack aspect ratio ζ, fluid bulk modulus
Kf, and bulk modulus K of the frozen soil matrix, represents the re-
lationship between the stress and fluid pressure.

When the frozen soil is subjected to uniaxial loading, as the stress
increases, cracks are generated by friction sliding of the original cracks,
and the propagation direction of the cracks is eventually parallel to the
loading direction. Using the effective medium theory, cracks in frozen
soil can be divided into two categories: cracks that are present in the
original frozen soil, called random microcracks, and cracks with pro-
pagating directions parallel to the loading direction (z-axis, Fig. 9),
called vertical microcracks. Considering a medium with these two kinds
of cracks, the elastic potential energy can be written as:

= + +f f f fΔ Δi v0 (8)

where f0 is the elastic potential energy generated by matrix deforma-
tion, Δfi , which depends on the random microcrack density ρr and the
crack aspect ratio ζr, is the additional elastic potential energy caused by
random cracks, and Δfv, which depends on the vertical microcrack
density ρv and the crack aspect ratio ζv, is the additional elastic potential
energy due to vertical cracks. According to NIA theory, the effective
compliances of a medium with two cracks under loading can be written
as follows (Fortin et al., 2011):

Fig. 5. Experimental curves of frozen soil at the same strain rate and different temperatures: (a)ε̇=415 s-1 and (b) ε̇=625 s-1.

Fig. 6. Peak stresses of frozen soil.

Fig. 7. Schematic diagram of saturated crack propagation.

Fig. 8. Stefan effect under uniaxial loading.
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Where G is the shear modulus of a frozen soil matrix without cracks,
and ψr and ψv, which can be calculated using Eq. (6), are parameters
related to the random and vertical cracks, respectively.

3.2. Definition of damage variable

Damage refers to the process in which changes of a material's mi-
crostructure gradually accumulate, deteriorate its overall performance,
and finally lead to its destruction under a certain loading and en-
vironment. Many scholars have studied the damage behaviors of frozen
soil. Definitions of the damage variable have included the elastic
modulus, the microscopic CT numbers, the effective ice content, and a
random statistical damage model. We use the damage variable defined
by the longitudinal wave velocity (Lemaitre, 1984; Yin et al., 2018):
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where Vp and Ṽp are the longitudinal wave velocity of the frozen soil in
the non-damaged and damaged states, respectively.

The wave velocity of a damaged medium containing cracks is a
function of its propagation angle (Mavko et al., 2009):
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where =C i j( , 1, 2, 3, ...,6)ij are the elastic constants, calculated by the
relationship = −C S 1, and γ is the angle between the wave propagation
and loading directions.

Fig. 10 shows the variation of VP(γ)/VP(0) with the angle γ based on
Eq. (11). The elastic wave velocity changes most when the propagation
direction is vertical to the loading direction. The elastic wave velocity
in damaged materials is most sensitive to vertical cracks, which are
propagated along the loading direction (Crampin, 1981), and better
reflect the propagation of cracks. In this paper, Ṽp in Eq. (10) is replaced
by VP90, which is the longitudinal wave velocity perpendicular to the
loading direction:
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Substituting Eq. (11) into Eq. (12) yields the following relationship:

= −
′

D C
C

1 11

33 (13)

where the angular index is the stiffness constant after loading.

3.3. Dynamic constitutive model

Frozen soil is a type of rate-dependent material, and its mesoscopic
components have different response characteristics under high strain
rates. According to stress-wave theory (Wang, 2005), the response can
be generally divided into two parts: a time-independent transient re-
sponse and a time-dependent non-transient response, where the non-
transient response is the viscoelastic response caused by the viscous
dissipation force inside the material. Tang et al. proposed the ZWT
model, which is a dynamic constitutive model capable of describing the
nonlinear viscoelastic responses of materials (Fig. 11) (Wang, 2003).
This model has been widely used as the dynamic constitutive model of

Fig. 9. Schematic diagram of saturated coin-shaped cracks, where c is the crack radius, ω is the crack width, and =ζ ω c/ is the crack aspect ratio.

Fig. 10. Variation of VP(γ)/VP(0) with angle γ.

Fig. 11. ZWT nonlinear viscoelastic model.
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many materials (Dong et al., 2018; Zhang et al., 2016). The formulation
of the ZWT model can be expressed as follows:

∫

∫

⎜ ⎟
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The model consists of a nonlinear spring and two Maxwell elements
with different relaxation times. The first three terms describe the
equilibrium response of the nonlinear spring and represent the me-
chanical properties of the materials under quasi-static loading. E0, α,
and β are the corresponding elastic constants. The middle integral term
describes the viscoelastic response under low strain rates. E1 and θ1 are
the elastic constant and relaxation time of the corresponding Maxwell
element, respectively. The final integral term describes the viscoelastic
response under a high strain rate. E2 and θ2 are the elastic constant and
relaxation time of the corresponding Maxwell element, respectively.
Under impact loading, for materials without damage behaviors (such as
polymer materials (Jiang et al., 2016)), the low-frequency Maxwell
element with relaxation time θ1 (100–102 s) will degenerate into a
simple spring because there is not sufficient time for relaxation to
occur. The responses of materials with high strain rates are described by
the high-frequency Maxwell element with relaxation time θ2 (10−6

–10−4 s).
The purpose of this model is to describe the impact deformation

behavior of a material without damage. For frozen soil, the dynamic
parameters of the high- and low-frequency elements in Eq. (14) are
determined by the resonance column method (deformation in the range
of 10−6–10−3%) and the dynamic triaxial method (deformation in the
range of 10−3–10−1%), respectively. In this strain range, the frozen soil
does not exhibit damage behaviors, such as microcrack propagation,
and the bonds between the soil and ice are not damaged. However,
under a large impact deformation (deformation in the range of 3–10%)
of the frozen soil, microcracks are generated within ice crystals and at
the interfaces between the soil and ice (Qi and Ma, 2010). With the
propagation of microcracks, the bonds between the soil and ice within
the frozen soil are destroyed rapidly. The Maxell element with low-
frequency parameters lost its function rather than degenerating into a
simple spring and continues to contribute to the macroscopic me-
chanical properties of the frozen soil. Therefore, the influence of the
first integral term in Eq. (14) can be ignored.

Under quasi-static loading, the elastic section of the uniaxial
stress–strain curve of the frozen soil is linear (Zhu et al., 1992), and the
nonlinear spring in Eq. (14) can be considered to be linear. Thus, the
constitutive equation is simplified to:
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3.4. Random microcrack density ρr

The wave impedance of the frozen soil, calculated by the product of
the density and the longitudinal wave velocity, represents the stress
wave propagation and reflection in the frozen soil. Because the long-
itudinal wave velocity is highly sensitive to the microstructure of the
frozen soil, it reflects the changes of the microcracks. When the strain
value is very small, the change of the density of the frozen soil can be
neglected, and thus, the change of the wave impedance can represent
the propagation of microcracks in the frozen soil.

When the stress wave propagates from one medium to another, due
to a mismatch of the wave impedance properties, the incident pulse
transmits and reflects at the interface of the two media, as shown in
Fig. 12. The left and right regions in Fig. 12 are the incident and

transmission bars of the SHPB experimental device, respectively, where
the wave impedance is ρbCb. The middle region represents the spe-
cimen, where the wave impedance is ρC. A1 represents the contact
surface between the incident bar and the specimen, A2 represents the
contact surface between the specimen and the transmission bar, and σI,
σR, and σT are the incident, reflection, and transmission stresses, re-
spectively.

From Jin et al. (2011), based on one-dimensional stress wave
theory, the wave impedance can be expressed by the incident and
transmitted pulses in the impact process as follows:

⎧

⎨
⎩
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=

− − −ρ C ρC

n t( )

b b
n t n t

n t
σ t
σ t

2 ( ) 2 1 ( )
( )

( )
( )

T
I (16)

where σI and σT, which are calculated using values of the incident and
transmitted pulses within the respective sampling time 0≤ t≤ 2ls/C,
denote the incident and transmitted stresses, respectively. The length of
the specimen was 18 mm, and the longitudinal wave velocity was
2000m/s . Therefore, the time range between 0 and 9 μs was adequate
to detect the entire elastic wave for the selected temperature. Fig. 13
shows the wave impedance variation of the frozen soil calculated using
Eq. (16) when the temperature was -10 ∘C and the strain rate was 936

Fig. 12. Propagation diagram of transmission and reflection on SHPB.

Fig. 13. Variation of wave impedance with time.
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−s 1. The normalized wave impedance κ was introduced to allow di-
mensionless comparative analysis:

=κ
ρC t
ρC

( )
(1) (17)

where ρC(1) is the wave impedance value calculated when t=1 μs.
Fig. 14 shows the variation of the normalized wave impedance κ.

The wave impedance of the frozen soil increased until approximately
3 μs. Jin et al. (2011) analyzed the variation of the wave impedance of
sandstone during impact loading, which increased until approximately
15 μs. They concluded that this phenomenon was caused by the com-
paction of the pores in sandstone. However, the wave impedance in the
frozen soil increased until only approximately 3 μs, and the strain
produced was on the order of 10−5, which could not cause pore com-
paction. Thus, this phenomenon was caused by different mechanisms of
stress wave propagation in the frozen soil.

According to viscoelastic theory, the constitutive equation of the
ZWT model can be written as:

+ = + ∞σ τ σ M ε τM ε˙ ˙0 (18)

where M0, calculated by the sum of E0 and E1, is called the unrelaxed
modulus; M∞, calculated by the sum of E0, E1, and E2, is called the
relaxation modulus; =τ η E/ 2 is the relaxation time; and η is the visc-
osity coefficient of the material.

The stress and strain forms were assumed to be sinusoidal
(Christensen, 2012), =σ σ eiωt

0 and = −ε ε i ωt φ
0

( ), where ω is the circular
frequency. By substituting this form into Eq. (18), we obtain =σ Mε˜ ,
where = +∞

−
+

∞M M˜ M M
iωτ1

0 is the complex modulus of the frequency
dependence. The wave velocity can be obtained from the relation

=V M ρRe[ ˜ ]/ . Whenω→∞, = ∞M M˜ and = ∞V M ρ/ . When ω→ 0,
=M M˜ 0 and =V M ρ/0 .
The dimensionless attenuation factor −Q 1 can be obtained as fol-

lows:

= =
−

+
− ∞

∞
∞ ∞

Q M
M

M M
M M

ωτ

ωτ

Im[ ˜ ]
Re[ ˜ ]

( )

( )M
M

M
M

1 0

0 20 0
(19)

Based on Eq. (19), the dimensionless attenuation factor −Q 1 has a
maximum value when =ωτ 1. Fig. 15 shows the results of the di-
mensionless phase velocity V/V0 and the dimensionless attenuation
factor −Q 1 with respect to ωτ, where E2 is equal to +E E0 1 and

=V M ρ/0 0 .
As shown in Fig. 15, the dimensionless phase velocity changes sig-

nificantly at =ωτ 1. According to Biot theory, a dispersion phenomenon
occurs when an elastic wave propagates in saturated porous media
(Guéguen et al., 2004), which depends on the local flow caused by the
strain frequency received by the medium. When the elastic wave

propagates in the medium, a pressure difference occurs between ad-
jacent cracks. When the frequency is higher than the critical frequency,
it is impossible for the pores of adjacent cracks to reach equilibrium in a
very short time. In other words, there is not significant fluid flow be-
tween the RVE and the adjacent environment. The critical frequency is
defined as =f ζ E η/20c

3 (Le Ravalec and Guéguen, 1996). If the elastic
modulus of the frozen soil is 1 GPa and the viscosity coefficient of the
fluid is 10−3 Pa•s, the calculated critical frequency is 50 kHz. Based on
the relationship between the circular frequency and relaxation time

=ωτ 1, the relaxation time calculated from the critical frequency is
about 3 μs. Under impact-loading conditions, the propagation of the
stress waves in frozen soil is accompanied by the relaxation of unfrozen
water. Thus, there was not significant fluid flow between the micro-
cracks, and the unfrozen water in the microcracks was not squeezed
out. The wave impedance of the frozen soil increased in a very short
time (3 μs), and the dynamic mechanical properties of frozen soil im-
proved. In this paper, random microcracks were assumed to be fluid
saturated, and the random microcrack density can be calculated as the
volume fraction of the unfrozen water.

3.5. Vertical microcrack density ρv

The crack nucleation rate of the impact loading is assumed to follow
the double parameter Weibull function (Taylor et al., 1985):

=N ε kε( ) m (20)

where N is the number of cracks under a strain ɛ, k and m are related to
the material properties. Substitute Eq. (20) into Eq. (4) yields the ver-
tical microcrack density:

=ρ kε cv
m 3 (21)

where c is the average size of the crack, as determined by the expression
(Grady and Kipp, 1980):

⎜ ⎟= ⎛
⎝

⎞
⎠

c K
ρCθ

20
˙

IC

max

2/3

(22)

where KIC is the dynamic fracture toughness of the frozen soil, C is the
longitudinal wave velocity of the material, and θ̇max is the maximum
volumetric strain rate of the material failure.

3.6. Static elastic modulus

In a previous study (Zhu et al., 2010), the law of mixtures was used
to evaluate the quasi-static elastic modulus and the Poisson's ratio of the
frozen soil:

Fig. 14. Variation of normalized wave impedance κ with time. Fig. 15. Variation of the dimensionless phase velocity V/V0and the di-
mensionless attenuation factor −Q 1 with ωτ.
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⎧

⎨
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where fs and fi are the volume fraction of the soil and ice, respectively,
Es and Ei are the elastic moduli of the soil and ice, respectively, and vs
and vi are the Poisson's ratios of the soil and ice, respectively.

Because there is always some unfrozen water in the negative tem-
perature range of artificial polycrystalline ice (Wen et al., 2012), the
response of the unfrozen water should be included in the compression
behavior of the ice under quasi-static loading. Thus, fi in Eq. (23) should
be modified to +f fi w, and Eq. (23) can be rewritten as:

⎧

⎨
⎪

⎩⎪

=

=

− + + − + + + +
+ + −

+ − + + + −
+ − + + + −

E

v

f E v f f E v f E v f f E v
f f E v v

f E v v v f f E v v v
f E v v f f E v v

0
[ (1 2 ) ( ) (1 2 )][ (1 ) ( ) (1 )]

( ) (1 )(1 2 )

0
(1 )(1 2 ) ( ) (1 )(1 2 )
(1 )(1 2 ) ( ) (1 )(1 2 )

s s i i w i s s s i i w i s

i w s i s

s s s i i i w i i s s

s s i i i w i s s (24)

where fw is the volume fraction of the unfrozen water.
The unfrozen water content of the frozen soil at different tempera-

tures was shown to depend on the temperature as follows (Zhang et al.,
2018):

=W ATu
B (25)

where T is the absolute value of the temperature, and A and B, which
are related to soil type, are constants with values of 16.2 and −0.233
(Zhu et al., 2017), respectively. The volume fraction of each phase can
be expressed as follows:

⎧

⎨

⎪
⎪

⎩

⎪
⎪

=

=

=

= + +

−

f

f

f

V V V V

w
AT m

ρ V

i
W AT m

ρ V

s
m
ρ V

s w i

( )

B s

w
B s

i
s

s

0

(26)

where Vs, Vw, and Vi are the volumes of the soil particles, water, and ice
particles, respectively, ρw and ρi are the density of the water and ice,
respectively, ρs is the grain density of the soil, and W0 is the initial
moisture content.

3.7. Coupling coefficient of stress and fluid pressure ψ

The parameter ψ, which represents the relationship between the
stress and fluid pressure in the frozen soil, depends on the Poisson's
ratio v, the bulk modulus of the frozen soil matrix without cracks K, the
bulk modulus of the fluid Kf, and the aspect ratio of the crack ζ. The
crack aspect ratio ζ is 0.01 Li et al., 2004). K and v can be approximated
from the dynamic triaxial tests of the frozen soil. In this strain range
(10−3–10−1%), the microcracks in frozen soil do not propagate sig-
nificantly, and the properties of frozen soil matrix (without cracks) can
be represented approximately. The Poisson's ratio v was set to 0.35, and
the bulk modulus K was approximately the same order of magnitude as
the fluid bulk modulus Kf. Using Eqs. (6) and ((7), we determined that
δf≪ 1 and = −ψ 1r .

During the process of impact loading, the pore saturation in the
microcracks changes with the propagation and nucleation of micro-
cracks, which will affect the fluid bulk modulus Kf. The fluid bulk
modulus Kf is calculated using the following equation (Bear, 1972):

=
+ −

K
K S P

1
1/ (1 )/f

w r a (27)

where Pa is the absolute fluid pressure, which is equal to 150 kPa, and
Sr is the pore saturation. Under impact loading, if the phase transition
process and the compressibility of soil particles, ice particles, and water
are neglected, the pore saturation Sr can be expressed as follows:

= =

=

+ + − + − − −

+ − + +

Sr
V
V

ρ
θ ρ W W ρ W ρ ρ W W ρ

W ρ
θ ρ θ W W ρ θ W ρ

1 /
(1 )(1 / ( ) / / ) 1 / ( ) /

/
/ ( ) / (1 ) /

w
v

w

s u i u w s u i

u w

s u i u w

0 0

0 (28)

where θ is the volume strain, which is equal to − v ε(1 2 )0 , and Vw and Vv

are the unfrozen water volume and microcrack volume, respectively.
Fig. 16 shows the relationship between the axial strain ɛ and the

fluid bulk modulus Kf calculated using Eqs. (24)–(28) for a temperature
of −10 ∘C and moisture content of 30%. The specific values of the
parameters are shown in Table 2. The fluid bulk modulus Kf decreased
rapidly with an increase in the strain. Therefore, using Eqs. (6) and (7),
we determined that Kf≪ E, δf≫ 1, and = − = −ψ 0.175v

v
2

.

4. Verification of constitutive model

The constitutive model proposed in this paper contains 13 para-
meters. The values of the water density ρw, grain density of the soil ρs,
ice density ρi, Poisson's ratio of the soil vs, and Poisson's ratio of the ice
vi are shown in Table 2 in Section 3.7. The longitudinal wave velocity C
and the dynamic fracture toughness KIC of the frozen soil are material
constants that were determined through experiments. The static elastic
modulus E0 can be calculated using Eq. (23). The values of these
parameters are shown in Table 3. Parameters k, m, E2, and θ2 were
determined by least squares fitting of the experimental data. The values
of these parameters are shown in Table 4. A comparison between the
experimental and theoretical curves is shown in Fig. 17.

The contact conditions between the soil particles can be divided into
three types (Hillel, 2012): (i) solid–solid (SS)—direct contact between
soil particles, (ii) solid–liquid–solid (SLS)—soil particles are separated
by water, and (iii) solid–solid–liquid–solid (SSLS)—some soil particles
are in contact and others are separated by water. After freezing, more
complex interfaces are formed. Fig. 19 shows the typical microstructure
of the SLS and SS contact types under freezing conditions. In addition to
the direct contact of the soil particles, cementation between the soil and
ice and adhesion between the ice and water were evident. Moreover,
the frozen soil was composed of soil particles of different sizes, and
thus, the microstructure shown in Fig. 19 is multiscale. When the stress
wave propagates in frozen soil, it is transmitted and reflected at the
interfaces of the microstructure. These characteristics result in complex
relaxation behavior in the frozen soil and lead to the dispersion of the

Fig. 16. Variation of the fluid bulk modulus Kf with the axial strainɛ.

Table 2
Material parameters of frozen soil.

vs vi ρw/(g/(cm)3) ρs/(g/(cm)3) ρi/(g/(cm)3)

0.3 0.33 1.0 2.65 0.92
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frozen soil. Therefore, ranges of the parameters k and θ2 in Table 4 were
used.

As shown in Fig. 17, the theoretical curves calculated by the model
agreed with the experimental curves, and the model could accurately
reflect the temperature and strain rate effects in the frozen soil under
impact loading. Because the damage variable has physical significance,
the model can better reveal the damage and deformation mechanism of
frozen soil under impact loading.

Fig. 18 shows the stress–strain and damage evolution curves of
frozen soil at a temperature of -10 ∘C and the strain rate of 625 −s 1.
Before the stress–strain curve reached the peak stress, the damage value
increased rapidly due to the propagation of internal microcracks as the
strain increased. After the peak stress, due to the propagation of mi-
crocracks, the integrity of the internal microstructure of the frozen soil
continuously deteriorated, which led to a continuous decrease in the

stress in the frozen soil.

5. Conclusion

The dynamic mechanical properties of frozen soil at different tem-
peratures (−10, −15, and −20 ∘C) and high strain rates (400–950 −s 1)
were tested using a split Hopkinson pressure bar (SHPB). Based on the
effective medium theory, the mesoscopic parameters (microcrack den-
sity) and macroscopic physical quantities (wave velocity) were con-
nected. The ZWT model was improved based on the characteristics of
the frozen soil. Finally, a dynamic constitutive model of the frozen soil
with a longitudinal wave velocity as the damage variable was

Table 3
Material parameters in constitutive model.

T/∘C Es/MPa Ei/GPa E0/MPa C/(m/s) K MPa/( · m )IC

−10 40 0.559 277 2019 0.9
−15 40 1.06 507 2320
−20 40 1.32 626 2352

Table 4
Fit parameters of constitutive model.

T/∘C k m E2/GPa θ2/μs

−10 2.32–2.56 × 108 2 1.06 5.6–6.9
−15 2.56–3.12 × 108 2 1.63 3.2–5.5
−20 2.96–3.20 × 108 2 1.92 3.6–6.0

Fig. 17. Experimental and theoretical curves: (a) −10 ∘C, (b) −15 ∘C, and (c) −20 ∘C(cal and exp denote calculated and experimental values, respectively).

Fig. 18. Experimental and damage evolution curve at T=−10 ∘C and
= −ε̇ 625s 1.
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established. The conclusions of the study were as follows.

(1) Rate and temperature effects under impact loading occur in frozen
soil. The peak stress increased with an increase in the strain rate
and decreased with an increase in the temperature. The responses
of the internal micro-defects to the strain rate of the frozen soil at
different temperatures resulted in different macroscopic failure
characteristics. Under low-strain-rate conditions, the microcracks
underwent a relatively stable propagation process. During the
propagation process, cracks interacted with each other and finally
merged to form a main crack, which manifested as a fracture at the
macroscopic scale. Under high-strain-rate conditions, a large
number of microcracks were activated in a short time. With the
rapid growth of these microcracks, the microcracks did not have
sufficient time to merge into a main crack, and the macroscopic
manifestation was fragmentation, which could bear relatively high
stresses.

(2) According to the experimental data, the wave impedance of the
frozen soil increased in a very short time during the loading pro-
cess. This phenomenon was the result of unfrozen water relaxation
in the frozen soil under high strain rates, as revealed through vis-
coelastic theory. Due to the Stefan effect in the process of wing
crack growth under high-strain-rate loading, the fluid-saturated
crack exhibited an “incompressible” characteristic under high strain
rates. Under impact loading, the unfrozen water was one of the
important factors that led to the increase in the peak stress of the
frozen soil.

(3) The ZWT constitutive model revealed that under impact-loading
conditions, low-frequency parameters affected the mechanical be-
havior of the frozen soil only under minimal strain. With the in-
itiation and propagation of internal microcracks in the frozen soil,
the Maxwell element that represented the low-frequency dynamic
response of the material lost its function rather than degenerating
into a simple spring, and thus, it continued to contribute to the
macroscopic mechanical properties of the frozen soil.

(4) A constitutive model for the damage dynamics was proposed based
on the damage variable defined using the longitudinal wave velo-
city. In engineering practice, the damage variable defined by the
longitudinal wave velocity can be measured easily through ultra-
sonic nondestructive testing technology, and thus, it has high en-
gineering application value.
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