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a b s t r a c t 

Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) of a three-dimensional, temporally 

evolving incompressible plane wake are performed, seeking to evidence differences in stability, transi- 

tion and onset of both coherent and fine-scale structures arisen from random perturbations of different 

amplitudes. The perturbations are generated by the Random-Flow-Generator (RFG) technique, being im- 

posed in the flow as initial conditions. The Navier-Stokes equations are solved in a prismatic domain with 

periodic boundary conditions in all directions, using a Fourier pseudospectral method. The invariants of 

the velocity gradient tensor were evaluated for cases with wakes subjected to random perturbations of 

amplitude 10 −3 , 10 −4 and 10 −5 . Moreover, maps of the second and third invariants of the rate-of-strain 

tensor were analyzed, seeking to evidence the differences in local flow strain and topological character- 

istics of the dissipation of kinetic energy. In order to assess the fine-scale structures, isosurface plots of 

the Q -criterion, as well as vorticity contours were used, allowing visual identification of the coherent 

structures and confirming patterns predicted by the invariant maps. It was found that the characteristic 

teardrop correlation map is well defined for higher disturbance amplitudes. Based on the analysis of the 

simulation results, it can be concluded that the fluid element topology allowed a comparative study of 

the effects of perturbation amplitude on pairing mechanisms. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Over the last decades, the study of free-shear flows is standing

ut among the classical transitional flow research, due to its phys-

cal importance and complexity. This important group of flows is

haracterized by the absence of walls and obstacles, although of-

en their onset is related to the presence of flow past immersed

odies (wakes), expansion in nozzles (jets) and flows with two dif-

erent streamwise velocities (mixing layers). 

In particular, the turbulence in wakes has been widely inves-

igated, both through numerical [1,2] and experimental [3–6] ap-

roaches, seeking for a better understanding of the mechanisms

esponsible for the onset of primary instabilities, and also for its

egeneration into three-dimensional, fine-scale turbulent struc- 

ures. One of the most important studies about the stability of
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urbulent wakes, the work of [3] , provides a set of experimental

esults for a wake generated behind a thin flat plate. Their study

llowed the classification of three different regions in the wake:

 linear region, where the Kelvin-Helmholtz instabilities predom-

nates and the amplitude disturbances grow exponentially; a non-

inear region, where the onset of von Kármán eddies occurs; and

 three-dimensional region, mainly characterized by the presence

f strong three dimensional motions. Since then, this classification

as been used in several works, including the present paper. 

Despite the advances in the understanding and prediction of

otions in the linear wake region, there is still a lack of conclu-

ive theories addressed to explain the stability characteristics of

he nonlinear counterpart. 

In this sense, the present paper proposes the usage of com-

utational simulations to provide both qualitative and quantita-

ive results, in order to scrutinize the mechanisms associated with

he nonlinear and three-dimensional regions in wakes. Thus, this

ork provides a brief analysis on the transition and the onset of

ne scale structures in a temporally evolving, incompressible plane

https://doi.org/10.1016/j.mechrescom.2020.103475
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechrescom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechrescom.2020.103475&domain=pdf
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Fig. 1. Computational domain used in the simulations of the time-developing plane 

wakes, and initial Gaussian streamwise profile, based on [2,3,7] . 

Table 1 

General setup (adopted in all cases). 

Parameter LES and DNS 

Domain ( x, y, z ) 20 b × 20 b × 40 b 

Total simulation time 300[ s ] 

CFL 0.8, 0.4 

Velocity deficit, �w 0.692 

Reference velocity, w o 1.0 

Inflection constant, c 0.69315 

Freestream velocity, W 0 1.0 

Reynolds number, Re 346 

Temporal integration scheme RK46 
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wake at Re = 346 . In order to understand the effects of differ-

ent amplitude perturbations on dissipative scales and early coher-

ent structures, we have undertaken computational simulations by

solving the Navier-Stokes equations using a high-accuracy Fourier

pseudospectral method. 

2. Physical model 

Typically, the development of a flow may occur by two different

ways: under spatial or temporal development. The present work

addresses a wake under temporal development, where the insta-

bilities arise from a process of disturbance amplification, injected

by external sources. Alternatively, it is possible to understand the

temporal development as a Lagrangian framework, following the

spatially-development flow in the streamwise direction. 

The reason for choosing a temporal simulation lies on the fact

that three-dimensional spatially evolving simulations are very ex-

pensive, in terms of computational time and memory, specially

when dealing with DNS simulations. For temporal simulations, it is

possible to choose a smaller domain, in order to capture far turbu-

lence regions. Thus, the temporal simulation stands out as a viable

option, taking advantage the periodicity in all directions, being a

good match for Fourier pseudospectral methods. 

The initial w -velocity profile simulated is shown in Fig. 1 . The

flow is confined in a prismatic region of lengths L x , L y , L z , where x,

y and z are the spanwise, cross-stream and streamwise directions,

respectively. 

Typically, in free-shear flow simulations, the velocity must

be characterized by an inflectional profile, which usually shows

abruptly growth, such as hyperbolic tangents and Gaussian profiles.

The chosen profile was the same used by [1,2] : 

w (x, y, z) | t=0 = w o − �we −cy 2 (1)

with w o , �w and c given by Table 1 . 

The remaining components, u and v , were considered identi-

cally zero for t = 0 . Note that it is possible to decompose the ve-

locity components as follows: 

u (x, y, z) | t=0 = u + a u u 

′ , (2)
 (x, y, z) | t=0 = v + a v v ′ , (3)

 (x, y, z) | t=0 = w + a w 

w 

′ , (4)

here u , v and w denote the mean velocity fields, and a u , a v , a w 

re the amplitudes of the velocity fluctuations u ′ , v ′ , w 

′ . The com-

onents u and v were initially chosen as zero, as well as their

eans u = v = 0 . 

The numerical experiment can only develop if some kind of dis-

urbance is added to the flow. The transition process was shown to

e highly dependent of initial disturbances [8] , in such a manner

hat, if no fluctuation is added, and under conditions of a high-

rder or spectral solver being adopted, it is expected that transi-

ion does not occur. 

In the present work, a recent random noise generator, the RFG

ethod [9] , was used. The main advantage of this model resides

n its straightforward implementation, as well as its lower com-

utational cost, when compared with other digital noise genera-

ors. This method allows the generation of mass conservative ve-

ocity fluctuations, with predetermined characteristic length and

ime scales, allowing one to reproduce experimental fluctuations

n a computational environment. The complete list of features of

he RFG can be found in [9] . 

. Pseudospectral method 

Note that a convolution term is obtained while applying the

roject tensor to transform the Navier-Stokes equations to the

ourier space. The solution of this term is imperative before pro-

eeding with the evaluation of the primitive variables. However,

he numerical solution of the convolution integral is impracticable,

n terms of computational cost and time. An alternative to over-

ome this issue is to use a pseudospectral approach, on which the

roduct is evaluated in the physical space and only after this step

he resulting term is transformed to Fourier space. The main ad-

antage of this approach is that it conserves the high-order and

igh-accuracy of the spectral method, avoiding the direct compu-

ation of the convolution product. 

. Turbulence modeling 

Two different approaches were chosen to model the turbu-

ence. For cases #1, 2 and 3, we performed direct numerical sim-

lations, considering the scales of the problem and following the

olmogorov theory. For the remaining cases (#4, 5 and 6), large-

ddy simulations were performed, using the dynamic Smagorinsky

odel [10] . 

. Cases description 

.1. Direct numerical simulations 

The DNS approach is the most straightforward way to simulate

urbulence. It consists in the attempt of resolving all the scales in

he flow; i.e, from the largest (coherent) scales up to the smallest

dissipative) scales, without making usage of average or filtering

perators in the velocity field. Thus, in order to perform DNS sim-

lations, it is necessary to first estimate the order of magnitude of

he dissipative scales in the flow. For this purpose, is is possible to

efine a local Reynolds number 

For the DNS simulations, a characteristic time t = 1 . 445[ s ] ,

n initial halfwidth of b = 1[ m ] and a Re b = 346 were used.

he required number of Fourier modes can be estimated based

n the domain size. Strictly speaking, for the studied do-

ain (20 b × 20 b × 40 b ), it would be necessary approximately
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Table 2 

Fluctuation amplitudes for each simulation case. 

Case # a u , a v , a w Turbulence model Fourier modes 

1 1 × 10 −3 DNS 256 × 256 × 512 

2 1 × 10 −4 DNS 256 × 256 × 512 

3 1 × 10 −5 DNS 256 × 256 × 512 

4 1 × 10 −3 LES - D. Smag. 128 × 128 × 256 

5 1 × 10 −4 LES - D. Smag. 128 × 128 × 256 

6 1 × 10 −5 LES - D. Smag. 128 × 128 × 256 
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Fig. 2. Isosurfaces of Q , colored by vorticity magnitude | ω| (front) and slice of cen- 

tral YZ plane, showing contours of | ω| (back), for a disturbance amplitude of 10 −3 , 

for (a) t = 135[ s ] , (b) t = 165[ s ] , (c) t = 195[ s ] and (d) t = 270[ s ] . 

Fig. 3. Evidence of primary pairing mechanism, acting in the Kelvin-Helmholtz in- 

stabilities, viewed from the top ( XZ plane), for a disturbance amplitude of 10 −3 , for 

t = 135[ s ] . 
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6

600 × 1600 × 3200 Fourier modes, in order to capture all the

cales in the flow and perform DNS in Kolmogorov theory sense.

his number would make the simulations infeasible. However, the

iterature highlights that the Kolmogorov scales only estimate the

issipative scales [2] . In this sense, for cases #1, 2 and 3, the do-

ain was divided in 256 × 256 × 512 Fourier modes, resulting in

 characteristic length approximately 6 times coarser than the Kol-

ogorov scales. 

.2. Large-eddy simulations 

The large-eddy simulations were performed using the dy-

amic Smagorinsky subgrid model [11] , allowing quantitative com-

arisons with the DNS simulations. In the dynamic model, the

magorinsky constant C s is replaced by a proportionality function

 sd ( x , t ), which is evaluated for each time step and for each dis-

rete position in the domain. A summary of all the simulation

ases is given in Table 2 . 

. Topological analysis 

In order to access the details of vortex dynamics in the tempo-

al wakes, we evaluate and study the second and third invariants

f the velocity gradient tensor. For a quantitative analysis, the ap-

roach of Refs. [2,12–14] were followed, using invariant maps to

tudy the behavior of dissipative scales. 

. Results and discussions 

.1. Isosurfaces of Q 

The following isosurfaces of Q were rendered in order to allow

 visual identification on the differences in the temporal evolution,

or cases #1,2 and 3. The quantitative results of cases #4, 5 and

 have been omitted, given that only minor significant differences

ere observed, when compared with the DNS cases. The levels of

 were fixed in a range, in such a manner that 0 < Q < max ( Q ),

xcluding possible hyperbolic structures ( i.e. , levels where Q < 0)

nd thus following the definition of vortex proposed by Jeong and

ussain [15] . A slice of the central YZ plane, showing the vortic-

ty magnitude, | ω|, is also provided in a perspective view. It is im-

ortant to highlight that the derivatives needed for the numerical

alculation of the Q , | ω| and any other quantity expressed in this

aper were evaluated using spectral accuracy. 

Fig. 2 shows the temporal evolution of the isosurfaces of Q for

ase #1 ( c.f. Table 1 ). It was possible to distinguish two different

airing mechanisms acting on the coherent structures, along dif-

erent stages in the development of the wake. The first mechanism,

ere denoted by primary pairing mechanism , can be seen in Figs. 2 -

a) (azimuth view) and 3 (top view). On these figures, it is possible

o notice the presence of structures endowed with strong coher-

nce, in the form of rolls, called Kelvin-Helmholtz instabilities. 

It is also noticeable that some of these coherent structures

how higher curvatures than others. Note that one of the Kelvin-

elmholtz ( c.f. Fig. 3 ) has a sharp curvature, high enough to allow
he pairing with the structure immediately preceding to it, result-

ng in a reticulated structure, composed of two Kelvin-Helmholtz

tructures. 

Another important result is also observed in Figs. 2 -(b) and 4 .

he hairpin vortices appear to interlace the Kelvin-Helmholtz in-

tabilities, causing a mechanical effect of stretching on these lon-

itudinal rolls. Such pairing mechanism appears to occur due to

ifferences in the advection of the Kelvin-Helmholtz instabilities,

hich is strongly influenced by the external disturbances imposed

n the flow. This mechanism, therefore, acts as a secondary pairing

echanism , originating counter-rotating structures called von Kár-

án eddies. This mechanism plays an important role in the devel-

pment of the wakes, since the onset of von Kármán eddies char-

cterizes the beginning of the nonlinear growth region. 

Figs. 2 -(c) and 5 reveal that the displacement of the coherent

tructures, subjected to different shear stresses and local veloci-

ies, cause distortions in the reticulated structures formed by the

rimary pairing mechanism. This effect, in turn, causes the degen-

ration of the hairpin vortices observed in Figs. 2 -(b) and 4 , due to

he stretching in the longitudinal filaments. Finally, Figs. 2 -(d) and

 show a later stage on the development of the secondary pairing 
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Fig. 4. Pattern of hairpin vortices on the early evolution wake viewed from the top 

( XZ plane), generated by the primary pairing mechanism, for a disturbance ampli- 

tude of 10 −3 , for t = 165[ s ] . 

Fig. 5. Detail of the secondary pairing mechanism, viewed from top ( XZ plane), 

showing the mechanical effect that the hairpin vortices exert in a pair of Kelvin- 

Helmholtz instabilities, for a disturbance amplitude of 10 −3 , for t = 180[ s ] . 

Fig. 6. Secondary pairing mechanism, in an advanced stage, viewed from top ( XZ 

plane), for a disturbance amplitude of 10 −3 , for t = 270[ s ] , showing the degenera- 

tion of hairpin vortices in three-dimensional filaments. 

 

 

 

 

 

 

 

 

Fig. 7. Side view ( YZ plane) of the wake, the Kelvin-Helmholtz instabilities, and the 

onset of Kármán vortices, due to the arise of instabilities in the spanwise direction. 

Disturbance amplitude of 10 −5 , for t = 300[ s ] 

Fig. 8. Isosurfaces of Q , colored by vorticity magnitude | ω| (front) and slice of cen- 

tral YZ plane, showing contours of | ω| (back), for a disturbance amplitude of 10 −4 , 

for (a) t = 135[ s ] , (b) t = 165[ s ] , (c) t = 195[ s ] and (d) t = 270[ s ] . 
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mechanism. At this stage, the hairpin vortices have already degen-

erated into longitudinal filaments and these structures predomi-

nate in the flow. Hence, it is possible to state that the wake has

reached its three-dimensional stage. 

A closer look at Figs. 2–9 permits to assess the qualitative ef-

fect caused by the different random perturbation amplitudes in the

wake development. The strong coherence of the Kelvin-Helmholtz

instabilities in cases #1, 2 and 3 remains in the roll-like shape over

the time. In case #1, it is possible to infer that the 10 −3 distur-
ance amplitude saturates the two-dimensional modes faster than

bserved for the 10 −4 (case #2) and 10 −5 (case #3) amplitudes.

or this reason, case #2 presents a less intense energy state than

bserved in case #1. Comparing cases #1 and 2 at the same time

 t = 195[ s ] ), it is possible to see a strong presence of longitudinal

laments in the first ( Fig. 2 ), while in the second ( Fig. 8 ) the wake

s still in its linear stage, with no significant three-dimensional

otion. 

The isosurfaces of Q for case #3 stands out as the one with

he lowest energy state among all DNS cases. Notice that the sat-

ration of the linear stage takes longer, when compared with the

ther cases, and therefore, the first von Kármán eddies are only

isible at the last time step ( t = 300[ s ] ). Finally, Fig. 7 shows a side

iew of the wake in case #3, at t = 300[ s ] . The absence of strong

hree-dimensional motions and the secondary pairing mechanism

cts between the Kelvin-Helmholtz instabilities, generating the

ongitudinal filaments that compose a pair of von Kármán eddies.

his snapshot also shows that the wake of case #3 has reached
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Fig. 9. Isosurfaces of Q , colored by vorticity magnitude | ω| (front) and slice of cen- 

tral YZ plane, showing contours of | ω| (back), for a disturbance amplitude of 10 −5 , 

for (a) t = 210[ s ] , (b) t = 240[ s ] , (c) t = 270[ s ] and (d) t = 300[ s ] . 

Fig. 10. Turbulent kinetic energy spectra for (a) DNS and (b) LES cases, for t = 

150[ s ] 

Fig. 11. Turbulent kinetic energy spectrum for (a) DNS and (b) LES cases, for t = 

240[ s ] 
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Fig. 12. Comparison between the energy levels E ( k ) of the DNS and LES simulations, 

for k = 10 , at (a) t = 150[ s ] and (b) t = 240[ s ] . 
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he nonlinear stage in a later time step, when compared with

ases #1 and 2. 

.2. Turbulent kinetic energy spectra 

The turbulent kinetic energy spectra were calculated for all the

imulated cases, using the three velocity components and its com-

lex conjugates, both evaluated in Fourier space. It is clear from

igs. 10 and 11 that for the studied Reynolds number ( Re = 346 ),

he simulations did not achieve a fully developed turbulent regime,
s observed by Moser and Rogers [1] . However, it is noticed that

he higher disturbance amplitudes caused a tendency of approxi-

ation to the Kolmogorov −5 / 3 slope. 

In general, the turbulent kinetic energy spectra of the LES sim-

lations (cases #4, 5 and 6) agreed well with the results from

he DNS simulations. Moreover, the results showed a very clean

ropoff at high wavenumbers. 

Figs. 12 -(a) and (b) reveals the differences between the tur-

ulent kinetic energy levels, for the DNS and LES cases at a fixed

avenumber in the decay region ( k = 10 ), at the instants t = 150[ s ]

nd t = 240[ s ] , respectively. This analysis allows a quantitative

omparison of the energy level in the LES simulations against the

NS results. Such comparison permits one to check if the Dynamic

magorinsky model has adequately modeled the fine-scale struc-

ures and/or has caused any accumulation of energy at this spe-

ific wavenumber. Figs. 12 -(a) shows that, for the 10 −3 and 10 −5 

ases, there was a small accumulation of turbulent kinetic en-

rgy in the LES simulations. This is also observed at the instant

 = 240[ s ] ( Fig. 12 -(b)), for the disturbance amplitudes of 10 −3 and

0 −4 . 

.3. Topological analysis 

The following subsections provide a topological analysis of the

ne-scale structures in the previous simulation cases. Scatter plots

f Q vs. R , −Q S vs. Q W 

and Q S vs. R S are shown and their physical

nterpretations are described. 

.3.1. Invariant maps of Q vs. R 

The invariance maps of Q vs. R showed in the present work

ere constructed using the current values of these properties at

ach Fourier mode belonging to the central YZ plane. For this pur-

ose, only the DNS simulations were considered (cases #1, 2 and

), given that these results showed richer details than the LES sim-

lations (cases #4, 5 and 6). In possession of these values, scatter

lots were constructed for each time step considered. 

The main features observed in the ( Q, R ) map for case #1

 Fig. 13 ) agreed with those observed by several authors (see Refs.

2,14,16] ). At a three-dimensional stage of development, the collec-

ion of points lies predominantly in the upper left and lower right

uadrants, forming a classical shape, usually referred in the litera-

ure as teardrop [2,16] . This shape was already observed in several

ypes of turbulent flows [16] , including isotropic turbulence, chan-

el flows [17] , compressible [12] and incompressible [2,14] shear

ows. Moreover, preliminary results indicate that this shape seems

o be strictly related with the solution of the Navier-Stokes equa-

ions, supporting the theory that this shape might be universal

14] . 

Still in Fig. 13 , notice that the points tend to align along the

egion of D = 0 in the lower right quadrant. Fluid elements lying

n this region tend to dissipate high levels of kinetic energy. From
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Fig. 13. Scatter plots of Q vs R , for a disturbance amplitude of 10 −3 , for (a) t = 

180[ s ] and (b) t = 240[ s ] . 

Fig. 14. Scatter plots of −Q S vs Q W , for a disturbance amplitude of 10 −3 , for (a) 

t = 180[ s ] and (b) t = 240[ s ] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Scatter plots of Q S vs R S , for a disturbance amplitude of 10 −3 , for (a) t = 

180[ s ] and (b) t = 240[ s ] . 

Fig. 16. Scatter plots of Q S vs R S , for a disturbance amplitude of 10 −4 , for (a) t = 

180[ s ] and (b) t = 240[ s ] . 

Fig. 17. Scatter plots of Q S vs R S , for a disturbance amplitude of 10 −5 , for (a) t = 

180[ s ] and (b) t = 240[ s ] . 
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Fig. 13 -(a) to (b), it seems that more points migrate to this par-

ticular region, which agrees with the qualitative results provided.

This increase of dissipative structures might be explained by the

increasing of three-dimensional filaments in the flow. 

7.3.2. Invariant maps of −Q S vs. Q W 

These invariant maps are specially useful for the topological

analysis related with the dissipation of kinetic energy [16] . Fig. 14

shows the temporal evolution of the wake simulated in case #1.

For t = 180[ s ] , a large number of points lie closer to the horizontal

region, representing structures in which the enstrophy density is

considerably higher than the dissipation, as it occurs outside of the

vortex tubes [14] . Such phenomenon, in which the shape is similar

to a half ellipsoid, is often observed in strongly three-dimensional

flows [2] and agrees with the qualitative results previously showed.

The strong dominance of three-dimensional filaments are origi-

nated from the secondary pairing mechanism, due to interactions

between the hairpin vortices and the Kelvin-Helmholtz instabili-

ties. 

In the scatter plot shown in Fig. 14 , for t = 240[ s ] , the topology

in the invariant space has approximated to a L-shape scatter. This

shape was reported by Sondergaard et al. [2] to be usual in flows

which the turbulent motions have not reached the fully develop-

ment stage. 

7.3.3. Invariant maps of Q S vs. R S 
These invariant maps provide a more detailed analysis of

regions with intense kinetic energy dissipation, as well as the

geometry behavior of the local deformation of the structures. As

observed by previous works [2,14,18] , it is possible to identify for

the most perturbed simulations ( Figs. 15 , 16 , 17 ) that the structures

show a preferred orientation towards the lower right quadrant

( R S > 0 and Q S < 0), tending to align to the positive branch of

the rate-of-strain discriminant, ( D S = 0 ). Therefore, the mean flow

geometry is associated with the expansion of fluid elements [16] .

Despite this supposed orientation preference, note that some few

points also lie on the contraction region ( R < 0). 
S 
The points provided in Fig. 16 -(a), for t = 180[ s ] lie about the

 S = 0 region, which means that an initial two-dimensional flow

eometry is observed. This result can be justified considering the

act that the wake is still in its linear region ( c.f. Fig. 8 ), i.e., the

inear stage is not saturated yet. However, despite the fact that

he wake is still in its linear region, the fluid elements start to

e subject to stretching mechanisms ( i.e., expansion). This phe-

omenon might be explained by the stretching in the coherent

tructures caused by the secondary pairing mechanism. Conversely,

ig. 16 -(b) shows that the saturation already took place for t =
40[ s ] , since the points are much more aligned with the right

ranch of the D S = 0 curve. This indicates that the axysimmetric

xpansion occurs in most part of the flow and might be explained

y the stretching of longitudinal filaments due to the effects of

he second pairing mechanism in an advanced stage, as showed

n Fig. 6 . 

. Conclusions 

DNS and LES simulations of a turbulent wake were performed,

ubjected to three different random disturbances, imposed as ini-
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ial conditions. The quantitative analysis allowed the comparison

f how efficient the vorticity can be as vortex identification tool,

hen compared with the second invariant of the velocity gradi-

nt tensor, Q . It was shown that the vorticity tends to identify less

ccurately the vortical structures of a temporal wake in its early

volution stages, and for these purposes, the utilization of the Q

riterion is strongly recommended. 

The development of each disturbance amplitude case along the

ime were provided, evidencing the relation between different dis-

urbance amplitudes and the time needed for transition and for

he degeneration of coherent structures in three-dimensional, fine-

cale structures. Early coherent structures were highlighted, and

wo different pairing mechanisms were identified and discussed. In

erms of quantitative results, the turbulent kinetic energy spectra

f all simulations for a specific time was shown, seeking for com-

arisons of LES and DNS cases. Scatter plots of invariant quantities

ere compared, allowing a physical interpretation on the stages

f fine scale structures and correlations of the enstrophy density

nd local viscous dissipation of kinetic energy. A brief analysis of

he fluid elements topology allowed a comparative study of the ef-

ects of the pairing mechanisms, identified in the qualitative re-

ults, with the invariant quantities. 

Recently, advances in turbulence modeling, such as the finite

cale theory and the implicit large eddy simulation (ILES) emerged

o make mathematically more precise the role of the observer in

he classical physics of fluid flows [19] . Additionally, the reader is

eferred to [20–24] for general references on these topics. These

re in the scope of this work and will be studied in the future. We

nvision that implicit turbulence modeling approaches can be the

ey to answer many open questions related to other physical the-

ries and numerical methods in fluid dynamics, including a more

fficient coupling of turbulence models and spectral methods. 
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