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a b s t r a c t 

Lattice metamaterials have demonstrated promising characteristics such as having tun- 

able/unconventional properties and being lightweight. This work centers on the design of tensegrity- 

based lattices, known as “T-bar” structures, capable of supporting compressive loads with minimum 

mass. Analytical formulas for the calculation of the mass of these structures under externally applied 

forces and pre-stress are derived. These formulas account for local failure of the T-bar structures (mate- 

rial yielding and buckling of its individual members). A numerical approach is introduced to assess the 

global stability of the structures under external forces and pre-stress and to account for global buckling 

in the design process. The mass of the structure is minimized by adjusting its shape and topology 

while global buckling is simultaneously prevented using two different design methods: i) optimizing 

the pre-stress distribution in the structure, and ii) optimizing the cross-section areas of the tensegrity 

members. Using either method, the results show that 2D and 3D T-bars possess a global minimum mass 

design for a given externally applied force and length. The computed results also show that designs 

obtained by optimizing the cross-section areas of the members have lower mass than those obtained by 

optimizing the pre-stress distribution. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Lattice metamaterials are currently being investigated for their

ttractive engineering properties including negative or tunable

oisson’s ratio [1,2] , improved thermal resistance [3] , tunable

hermal expansion [4,5] , load-bearing capabilities with low mass

ensity [6] , and high energy absorption and tunable energy

issipation [7,8] . A key challenge in the development of lattice

etamaterials is to determine the most favorable arrangement

f matter (the lattice members) to achieve a target property. The

heory of tensegrity structures (pre-stressable trusses with com-

ression and tension-only members [9] ) can provide solutions to

he design of lattice materials. For example, Fraternali and cowork-

rs demonstrated tunable acoustic properties in tensegrity-based

etamaterials [10] . Also, Zhang and coworkers designed and fab-

icated tensegrity metamaterials with high energy absorption [11] . 

An important property of tensegrity structures that can be ex-

loited in lattice materials is their ability to support loads with

inimum mass. Tensegrities having a double-pyramid form known

s D-bars have been theoretically shown to support compressive

orces and absorb energy with minimum mass [12,13] . Other ex-

mples include the tensegrity “Michell truss” that has been analyt-
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cally demonstrated to support cantilever-type loads with minimal

ass [14] , and tensegrity tori that support concentric loads with

inimum mass [15] . 

The objective of this work is to design tensegrity lattices for the

upport of compressive loads with minimal mass. The focus is on a

ensegrity topology known as the T-bar structure, previously stud-

ed and proposed for compressive constructions [16,17] . Schemat-

cs of T-bar structures are shown in Fig. 1 . These structures have

ouble-pyramid shape and compressive forces applied at their end

oints. T-bars can be used as components of lightweight lattice

aterials as illustrated in Fig 1 . A T-bar of complexity q = 1 is

ormed by a single T-bar unit that has two bars (compressive mem-

ers) of equal length along the loading direction and p bars con-

ecting the intersection of the longitudinal bars to the vertices of a

entered p -sided regular polygon. Fig. 1 shows T-bars of p = 2 (2D

-bars) and p = 4 (T-bars with a centered square). Strings (tensile

embers) form the sides of the central polygon and also connect

he vertices of this polygon to the end points of the T-bar unit. A

-bar of complexity q is formed by replacing the longitudinal bars

f a T-bar of complexity q − 1 with T-bar units (this is denoted as

 self-similar iteration), as illustrated in Fig. 1 for T-bars of com-

lexities q = 2 and q = 3 . 

The contributions of this work are summarized as follows: 

• This work presents, for the first time, a formulation to per-

form minimal mass design of compressive 2D and 3D T-bar

https://doi.org/10.1016/j.mechrescom.2020.103477
http://www.ScienceDirect.com
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T-bar structures

T-bar-based lattices

Fig. 1. 2D and 3D T-bar structures of different complexity q . These structures can 

be integrated in larger assemblies to synthesize lattice compressive materials of 

minimal mass. 
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Fig. 2. Geometric parameters of 3D tensegrity T-bar systems for complexities q = 

1 , 2 . 
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lattices of arbitrary complexity . Previous studies of T-bar com-

pressive structures have only considered T-bars of complexity

q = 1 [17] or are limited to 2D T-bars [16] . 
• Equations for the loads in bars and strings of T-bar systems are

extended from previous works [12,16] to account for arbitrary

pre-stress loading scenarios . 
• A novel algorithm that allows for the design of minimum

mass 2D and 3D T-bars of any complexity is developed. Lo-

cal and global failure stability constraints are concurrently ac-

counted for in the minimal mass design of T-bar systems.

Two approaches for the prevention of global instabilities are

implemented in the algorithm: one based on optimizing the

pre-stress distribution and the other on optimizing the cross-

section areas of the members. The algorithm hierarchically de-

termines minimal mass designs of the T-bar units introduced

at each self-similar iteration and hence the final T-bar system

is also of minimal mass. 

The design of compressive T-bar members of minimal mass is

relevant for the development of any general tensegrity structure

where lightweight properties are critical. This is because monolithic

compressive members (bars or struts) can be replaced with T-bars

of optimal complexity to minimize the overall structural mass.

Examples of recent practical tensegrity structures that would

greatly benefit from the replacement of bars/struts by optimal

T-bars include: metamaterials based on pentamode lattices studied

by Fraternali and coworkers [18,19] ; ball-like robots for planetary

exploration investigated by Sunspiral and coworkers [20,21] ; and

minimal mass tensegrity bridges researched by Fraternali and

coworkers [22,23] . 

2. Minimum mass under local failure constraints 

This section provides the analytical formulas for the mass of

T-bar structures considering local failure criteria of the individual
embers. Fig. 2 shows a 3D T-bar structure subjected to a com-

ressive force f . The total length of the T-bar structure, is denoted

y l . Each T-bar unit forming a T-bar structure has two kinds of

ars: longitudinal bars that are aligned with the applied compres-

ive force, and radial bars that connect the center of the unit to

he vertices of the central polygon. A T-bar unit also has two kinds

f strings: planar strings that form the sides of the central polygon

nd diagonal strings that connect the vertices of the central poly-

on to the end points of the unit. In each T-bar unit, the angle

etween the longitudinal bars and the diagonal strings is denoted

s the aperture angle. The aperture angle of the T-bar units in-

roduced at the i th self-similar iteration is denoted by αi , where

 = 1 , 2 , . . . , q (see Fig. 2 ). 

The material properties of the bars and strings are assumed

iven, and therefore the calculation of the mass of the T-bar con-

ists of finding the cross-section area (obtained through local fail-

re constraints) and the length of the members. The length of the

ongitudinal bars, radial bars, diagonal strings, and planar strings

re denoted by l L , l R i , l D i , and l P i , respectively. Also, the total num-

er of longitudinal bars, radial bars, diagonal strings, and planar

trings in the T-bar structure are denoted by n L , n R i , n D i , and n P i ,

espectively, for i = 1 , . . . , q . These parameters are determined from

eometry as follows: 

 L = 2 

q , l L = 

l 

2 

q 
. (1)

 R i = 2 

i −1 (p) , l R i = 

l 

2 

i 
tan (αi ) , for i = 1 , 2 , . . . , q, (2)

 D i = 2 

i −1 (2 p) , l D i = 

l 

2 

i cos (αi ) 
, for i = 1 , 2 , . . . , q, (3)

 P i = 2 

i −1 (p) , l P i = 

2 l sin ( π
p 
) sin (αi ) 

2 

i cos (αi ) 
, for i = 1 , 2 , . . . , q. (4)

The magnitude of compressive force in the radial bars intro-

uced at each iteration is denoted by f R i , i = 1 , . . . , q, and the mag-

itude of the compressive force in the longitudinal bars is denoted

y f L . Using the static equilibrium condition that the sum of the

ember forces at each node is zero, the magnitude of compressive

orces in all the bar members can be uniquely calculated from the
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For any p

…

Fig. 3. Force balance diagram for planar strings and radial bars. These schematics 

illustrate the central p -sided polygon of a T-bar unit. 
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iven external force f and independent string pre-tensions t D i and

 P i 
: 

f L = f + p 

q ∑ 

i =1 

t D i cos (αi ) , f R i = 2 t D i sin (αi ) + 2 t P i sin 

(
π
p 

)
, 

for i = 1 , 2 , . . . , q. (5) 

The term 2 t P i sin 

(
π
p 

)
in the formula for the compressive force

f the radial bars f R i in Eq. (5) can be intuitively observed by an-

lyzing the force balance of the central p -sided polygon of a T-

ar unit. Examples for p = 3 , p = 4 , and any p are provided in

ig. 3 . These schematics indicate that the radial bars must balance

 force of t P i cos 
(

π
2 − π

p 

)
for each of the two planar strings con-

ected at every polygon vertex, making the total force contribu-

ion of these strings into the compressive force of the radial bars

 t P i cos 
(

π
2 − π

p 

)
= 2 t P i sin 

(
π
p 

)
. 

Note that t D i and t P i are pre-tensions that can be arbitrarily se-

ected to adjust the load distribution in a T-bar. Eq. (5) is valid for

ny p ≥ 2, q ≥ 1, and αi > 0. Using Euler theory of buckling, the

inimum mass of a compressive member of length 

ˆ l subjected to

 force ˆ f that is designed to satisfy buckling constraints is given

s [13] : 

 bB = 2 ρb ̂
 l 2 
(

ˆ f 

πE b 

) 1 
2 

, (6) 

here ρb and E b are the mass density and Young’s modulus of

he bar material, respectively. The minimum mass of a compres-

ive member designed under yielding constraint is denoted by m bY 

nd the minimum mass of a tensile member also designed under

ielding constraint is denoted by m sY . These are given by: 

 bY = 

ρb 

σb 

ˆ l ̂  f , m sY = 

ρs 

σs 

ˆ l ̂  f , (7) 

here σ b is the yield stress of the bar material and ρs and σ s are

he mass density and yield stress of the string material. The mini-

um mass of a compressive member is the maximum of the mass

equired for either yielding or buckling constraints, while a ten-

ile member is only subjected to yield constraints. Accordingly, the

ass of a string m s and the mass of a bar m of a T-bar structure
b 
re: 

 b = max (m bB , m bY ) , m s = m sY . (8) 

The minimum mass of the string and bar members in a T-bar

tructure are obtained by substituting the force and length values

rom Eqs. (2) - (5) into Eqs. (6) - (8) . Then, the minimum total mass

f a T-bar system subjected to a compressive force of magnitude f

s obtained as the addition of the mass of all the members in the

ystem as: 

 T = max ( m LB , m LY ) + 

q ∑ 

i =1 

max 
(
m RB i , m RY i 

)
+ 

q ∑ 

i =1 

m P i + 

q ∑ 

i =1 

m D i , 

(9)

here the mass of the different kinds of members is: 

 LB = 

2 ρb l 
2 √ 

πE b 

√ 

f + p 
∑ q 

i =1 
t D i cos (αi ) 

2 

q 
, (10) 

 LY = 

ρb 

σb 

l 

( 

f + p 

q ∑ 

i =1 

t D i cos (αi ) 

) 

, (11) 

 RB i = 

2 ρb l 
2 √ 

πE b 

p tan 

2 (αi ) 
√ 

2 t D i sin (αi ) + 2 t P i sin ( π
p 
) 

2 

i +1 
, (12) 

 RY i = 

ρb 

σb 

pl tan (αi ) 
(
t D i sin (αi ) + t P i sin 

(
π
p 

))
, (13)

 P i = 

pρs l sin ( π
p 
) sin (αi ) 

σs cos (αi ) 
t P i , m D i = 

pρs l 

σs cos (αi ) 
t D i . (14)

This section provided the minimum mass ( Eq. (9) ) for a T-bar

tructure for given pre-stress in the strings t P i and t D i and ex-

ernally applied compressive force f . Only local failure modes of

he individual members in the T-bar structure were considered.

he next section provides the formulation employed to assess the

lobal buckling properties of T-bar tensegrity structures to also ac-

ount for such failure mode in the structural design. 

. Global buckling analysis 

A T-bar structure subjected to an external compressive force

nd pre-stress can lose its load-bearing capability due to both lo-

al and global failure modes. Global failure in this context en-

ails buckling of the T-bar structure as a whole without necessarily

eaching the load level required for local failure of its individual

embers. This section presents the formulation that allows for the

esign of the pre-tensions in the strings and the cross-section ar-

as of the members required to prevent global buckling. 

.1. Stiffness matrix formulation 

The global stiffness matrix of the entire T-bar structure is deter-

ined from the contributions of the stiffness matrices from all its

ndividual members. A recent paper [24] provided the derivation

or the linearized global stiffness matrix which can be obtained by

inearizing the static equilibrium equation of tensegrity structures

iven as [25] : 

 ̂  γC s − B ̂

 λC b = W, (15) 

here S = [ s 1 s 2 · · · s τ ] and B = [ b 1 b 2 · · · b β ] are the matrices

ontaining the vectors along the lengths of the strings s j and bars

 k , respectively. The total number of strings in the T-bar is de-

oted by τ and the total number of bars is denoted by β . The force

ensity (magnitude of the tensile force per unit length) in the j th

tring is denoted by γ j ≥ 0 and the force density (the magnitude
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of the compressive force per unit length) in the k th bar is denoted

by λk ≥ 0. The string connectivity matrix C s and bar connectivity

matrix C b provide the information of the start and end nodes of

each string and each bar, respectively [25] . The diagonal matrices

ˆ γ and 

ˆ λ are written by arranging γ j and λk in their diagonal ele-

ments, and the external force matrix W = [ w 1 w 2 · · · w ν ] contains

the vector of external forces w i applied to the i th node. The num-

ber of nodes in the system is denoted by ν . 

The non-linear static equilibrium Eq. (15) is linearized about an

equilibrium configuration to obtain: 

K L d n = d w, (16)

where d n = [d n � 
1 

d n � 
2 

· · · d n � ν ] � is a vector containing small varia-

tions of the node positions vectors, and d w = [d w 

� 
1 d w 

� 
2 · · · d w 

� 
ν ] �

is a vector containing small variations of external forces at all the

nodes. The linearized global stiffness matrix K L from Eq. (16) is

given as [24] : 

K L = (C � s � I 3 ) b.d. ( · · · , K s j , · · · )(C s � I 3 ) 

−(C � b � I 3 ) b.d. ( · · · , K b k 
, · · · )(C b � I 3 ) . (17)

The contributions of the j th string and the k th bar in the global

stiffness matrix are denoted by K s j and K b k 
, respectively: 

K s j � γ j I 3 + E s j A s j 

s j s 
� 
j 

l 3 s j 

, K b k 
� λk I 3 − E b k A b k 

b k b 
� 
k 

l 3 
b k 

, (18)

where E s j and A s j are the Young’s modulus and the cross-section

area of the j th string, respectively. Similarly, E b k and A b k 
denote the

Young’s modulus and the cross-section area of the k th bar member.

3.2. Criteria for global stability of T-bar structures 

The string force density vector γ = [ γ1 γ2 · · · γτ ] � and the bar

force density vector λ = [ λ1 λ2 · · · λβ ] � can be written as the sum

of force densities due to pre-stress ( γ p , λp ) and force densities due

to the external force ( γ w 

, λw 

) as: 

γ = γp + γw 

, λ = λp + λw 

, (19)

where the force densities due to pre-stress (self-equilibrated under

zero external force) are solved using the static equilibrium equa-

tion ( Eq. (15) ) as: 

(C � b � I 3 ) ̂  B λp = (C � s � I 3 ) ̂  S γp , γp ≥ 0 , λp ≥ 0 , (20)

where I 3 is the identity matrix of dimension 3 × 3 and 

ˆ S =
b.d. (s 1 , s 2 , . . . , s τ ) and 

ˆ B = b.d. (b 1 , b 2 , . . . , b β ) are the body diago-

nal matrices formed by arranging the string vectors s j and bar vec-

tors b k along their body diagonals, respectively. Eq. (20) gives a

unique solution for the force densities in the bars ( λp ) for given

values of pre-stress in the strings ( γ p ) because the coefficient ma-

trix (C � 
b 

� I 3 ) ̂  B is a full column rank matrix for any T-bar structure.

This can also be confirmed from the exact analytical solution given

in Eq. (5) . 

The external force f on the T-bar structure only causes com-

pressive loading in the longitudinal bars. This can be verified from

Fig. 2 and Eq. (5) : 

γw 

= 0 , λw k 
= 

{
2 q f 

l 
; For longitudinal bars 

0 ; Otherwise 
. (21)

Using Eqs. (20) and (21) , the linearized global stiffness matrix

from Eq. (17) is updated with: 

K s j = γp j I 3 + E s j A s j 

s j s 
� 
j 

l 3 s j 

, (22)

K b k 
= (λp k + λw k 

) I 3 − E b k A b k 

b k b 
� 
k 

l 3 
b 

. (23)
k 
From Eq. (16) , global instability is interpreted as non-trivial val-

es of displacement in the structure (d n � = 0) under no changes in

he values of the external forces ( d w = 0 ): 

 L d n = 0 . (24)

Eq. (24) has non-trivial solutions for d n, if and only if , the sym-

etric global stiffness matrix K L is singular, or determinant of

 L is zero. Thus, to minimize mass of the T-bar structure un-

er global instability constraints, the minimum values of pre-stress

 γ p ) or cross-section areas of the members such that the matrix K L 

eaches singularity ( i.e., the onset of buckling failure) for the given

xternal force f must be determined. 

As stated in Eq. (24) , global stability of the tensegrity structures

s assessed by means of a linearized matrix, as in buckling analy-

is of beams and plates using the finite element method [26,27] .

his matrix is obtained by linearizing the non-linear equations of

tatic equilibrium ( Eq. (15) ) about the current equilibrium configu-

ation of the tensegrity structure. Some inaccuracy is introduced in

he process as here the nominal (initial) coordinate positions of the

odes are employed instead of their deformed positions. However,

uch differences in node positions between initial and deformed

onfigurations are small as the strings and bars are assumed to

e comprised of a stiff material in this work (aluminum). Thus,

hanges in the length of the strings and bars, and consequently

ifferences in node positions between initial and deformed config-

rations, are small compared to the dimensions of the tensegrity.

urther research quantifying the effect of this assumption and non-

inear buckling analysis of tensegrity structures are recommended

or future studies. 

The mass minimization of the structure considering global

uckling alone is a convex problem (unique optimum solution) as

ll the design variables appear linearly in Eq. (24) . However, the

ombined problem of minimizing the mass of the structure con-

idering both local and global failure becomes a non-convex as the

rea of the bar members ( A b k 
) is a non-linear function of the force

ensities in the bar λk , for local buckling constraints ( cf. Eq. (6) ).

he next section discusses two design approaches to solve this

on-convex problem. 

. Methods for determining minimum mass designs of T-bar 

tructures 

This section describes two approaches to minimize the mass of

-bar structures based on the local and global failure criteria de-

eloped in the previous sections. 

.1. Pre-stress method: optimum pre-stress for a T-bar unit 

A T-bar unit (equivalent to a T-bar of q = 1 ) has p planar strings

nd 2 p number of diagonal strings that can be independently pre-

tressed. The tension in these strings is scaled using two indepen-

ent pre-stress factors: γ P ≥ 0 for planar strings and γ D ≥ 0 for

iagonal strings, 

p = 

[
γP [1 1 · · · 1] � p×1 

γD [1 1 · · · 1] � 2 p×1 

]
. (25)

The force density in the bars due to pre-stress ( λp ) can be

niquely calculated as a function of pre-stress factors γ P and γ D 

sing Eq. (20) . Eq. (19) allows us to solve for the force density in

ach member and Eqs. (6) and (7) are used to calculate the area of

ach member. All the variables in Eq. (17) are now dependent on

he pre-stress factors. The design problem to minimize the mass of

he T-bar unit then consists of finding the minimum values of the

re-stress factors such that the stiffness matrix of the T-bar unit K L 

eaches singularity, which physically represents the onset of global

uckling. 
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Fig. 4. (a) Contour plot of mass ratio μ2 D for 2D T-bar structures with opti- 

mized pre-stress factor ( γ D ). (b) Minimal mass configuration of the T-bar structure 

(marked with the ‘ × ’ in the contour) displaying calculated member cross-sections. 
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.2. Area method: optimum string cross-section areas for a T-bar unit

Similar to the method discussed in Section 4.1 , the cross-section

reas of the planar strings and diagonal strings can be indepen-

ently scaled to prevent global buckling. Let us define ηP ≥ 1 and

D ≥ 1 as the area factors that scale the cross-section areas of the

lanar strings A P and diagonal strings A D , respectively. The areas of

he strings are then scaled as follows: 

 P → ηP A Pb , A D → ηD A Db , (26) 

here A Pb and A Db are the baseline member cross-section areas

12] . Pre-stress values of γp = λp = 0 are used in this method. The

esign problem for this method consists of finding the minimum

alues of the area factors such that the stiffness matrix of the T-

ar unit K L reaches singularity. 

.3. Hierarchical design of T-bar structures 

For a T-bar structure of complexity q , there would be different

-bar units introduced at each self-similar iteration that may be

ubjected to global buckling. The minimum mass design of a T-bar

s obtained when the T-bar units introduced at each self-similar

teration are designed such that they reach the onset of buckling.

lgorithm 1 outlines the hierarchical design approach for minimal

ass T-bar structures of arbitrary complexity, where the pre-stress

r area factors of T-bar units are optimized sequentially for each

elf-similar iteration i , from i = 1 to i = q . 

Algorithm 1: Hierarchical design of minimal mass T-bar struc- 

tures with arbitrary complexity. 

Step 1: Design a complexity q = 1 T-bar structure (equivalent to a T-bar unit) 

of length l 1 = l and external force f 1 = f by determining the minimum 

values of pre-stress or area factors for both planar and diagonal strings 

( [ γP 1 , γD 1 ] or [ ηP 1 , ηD 1 ] ) such that the stiffness matrix of the T-bar unit K L 1 
reaches singularity. 

Step 2: Design the T-bar units of the subsequent self-similar iteration i + 1 

which have length l i +1 = l/ 2 i and external force f i +1 = f i + pγD i l D i cos (αi ) by 

calculating the minimum pre-stress or area factors ( [ γP i +1 
, γD i +1 

] or 

[ ηP i +1 
, ηD i +1 

] ) such that the stiffness matrix of the T-bar units K L i +1 
reaches 

singularity. 

Step 3: Repeat Step 2 for each self-similar iteration. 

. Results and discussion 

Results of mass minimization for 2D and 3D T-bar structures

sing the approach developed in the previous section are pre-

ented herein. The mass ratio μ is used to compare the mass of

he T-bar structures m T with that of a compressive column of solid

ircular cross-section, m col , as: 

= 

m T 

m col 

, where m col = max 

( 

2 ρb l 
2 
√ 

f √ 

πE b 
, 
ρb l f 

σb 

) 

. (27) 

If μ < 1, the T-bar structure requires less mass than the com-

ressive column to support a compressive force f . Note that both

ielding and buckling failure modes are accounted for in the mass

alculation of the solid column. The mass ratio is referred to as

2 D for 2D T-bars and μ3 D for 3D T-bars. 

The increase in pre-stress and cross-section area required to

revent global buckling of a T-bar system under compressive load-

ng (obtained via the pre-stress and area methods, respectively)

dd mass to the structure. To quantify this additional mass, a pa-

ameter φ defined as the ratio of the mass of the T-bar designed

onsidering global buckling m T and the mass of the T-bar designed

ithout considering global buckling m T local 
is introduced: 

= 

m T 

m T 

, (28) 

local 
here m T local 
is calculated using Eq. (9) with t D i = t P i = 0 to con-

ider only local failure constraints. This parameter is referred to as

2 D for 2D T-bars and φ3 D for 3D T-bars. 

Material properties of aluminum are used for both string and

ar members ( E s = E b = 60 GPa, σs = σb = 110 MPa, and ρs = ρb =
700 kg/m 

3 ) and the analogous compressive column. For simplic-

ty, it is assumed that the aperture angles of the T-bar units are

qual among all the self-similar iterations: α1 = α2 = · · · = αq = α.

.1. 2D T-bar structures 

For 2D T-bar structures ( p = 2 ), there are no planar strings and

hus the only optimization variables are the pre-stress factor ( γ D )

nd the area factor ( ηD ). Fig. 4 (a) provides the contour plots of the

ass ratio μ2 D for a 2D T-bar structure for pre-stress factor γ D 

btained using Algorithm 1 . The lighter shaded area in the contour

lot corresponds to the region where the mass of the T-bar struc-

ure is lower than the mass of a compressive column designed for

uckling m T < m col . As observed in the figure, T-bar structures pro-

ide lower mass solutions for compressive loads for a large range

f aperture angles and throughout the entire studied complexity

ange ( q = 1 , . . . , 5 ). The darker shaded region in the contour plot

epresents the complexity and angle set ( q, α) where global buck-

ing cannot be prevented for any value of pre-stress in the strings.

his can be explained as T-bar structures of low aperture angles

ave a large “length-to-width” ratio and thus have low critical

uckling forces. Fig. 4 (a) also shows that there is a global optimum

esign for the given force f and length l , which was found to be

2 D = 0 . 2246 for q = 3 and α = 24 ◦ (marked with an ‘ × ’ in the

ontour plot). Fig. 4 (b) shows the optimum configuration of the T-

ar structure displaying the calculated member cross-sections. 
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Table 1 

Mass ratio μ2 D optimized with two different methods for different values of force f 

and length l . Units: f (N), l (m), and α (deg). 

f 

l 2 f l

Pre-stress method Area method 

q α μ2 D φ2 D q α μ2 D φ2 D 

1000 1000 1 4 20 0.08 1.28 4 26 0.07 1.12 

2500 2500 1 4 22 0.12 1.81 4 29 0.10 1.51 

10000 10000 1 3 24 0.22 1.66 3 31 0.21 1.58 

100000 1000 0.1 1 28 0.65 1.30 1 33 0.63 1.26 

250000 2500 0.1 1 31 1.01 1.53 1 33 1.00 1.51 

1000000 10000 0.1 1 35 1.52 1.52 1 33 1.51 1.51 

(a)

(b)

Fig. 5. (a) Contour plots of mass ratio μ2 D for the 2D T-bar structure with opti- 

mized area factor ( ηD ). (b) Optimum configuration of the T-bar structure (marked 

with the ‘ × ’ in the contour) displaying calculated member cross-sections. 
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The contour plots of mass ratio μ2 D for optimized area factor

ηD are shown in Fig. 5 (a) and the global optimum configuration

( q = 3 , α = 31 ◦, μ2 D = 0 . 2068 ) is shown in Fig. 5 (b). Notice that the

method of optimizing area factor ( ηD ) provides a solution with

lower mass than that obtained by optimizing the pre-stress fac-

tor ( γ D ). The same trend is observed for different values of f and l

as shown in Table 1 . 

Table 1 also provides optimum complexity q and angle α for

different combinations of force f and length l . The first column

in the table represents a force per unit area parameter f / l 2 . For

a small value of this parameter, the compressive column is more

prone to buckling failure and thus the mass ratio μ2 D is small

(more mass savings by replacing the column with a T-bar). The

value of the mass ratio increases with the increased value of

the parameter f / l 2 and for f/l 2 = 250 0 0 0 N/m 

2 the mass ratio is
reater than 1 ( μ2 D (γD ) = 1 . 0157 > 1 , μ2 D (ηD ) = 1 . 0015 > 1 ) for

oth methods indicating that the single column is the minimum

ass structure. Notice that for f/l 2 = 10 0 0 0 0 0 N/m 

2 , the single

olumn is designed to avoid yielding failure and thus the mass

f T-bar designed to avoid only local failures would be equal to

he mass of the single column, m T local 
= m col . Thus, the reason for

he mass ratios μ2 D = 1 . 52 (pre-stress method) and μ2 D = 1 . 51

area method) to be above 1 is entirely based on global stability

o the structure, hence μ2 D = φ2 D = 1 . 52 (pre-stress method) and

2 D = φ2 D = 1 . 51 (area method). 

By comparing the results between the pre-stress method and

he area method in Figs. 4 and 5 , and Table 1 , one observes

hat the two methods provide different minimal mass designs un-

er the same loading and length requirements. Cross-section area

 s j and member force t s j = γ j ‖ s j ‖ are linearly related for ten-

ile string members under yielding failure constraints through the

quation σs A s j = t s j . For compressive bars under buckling failure

onstraints, the cross-section area A b k 
and member force f b k =

k ‖ b k ‖ are non-linearly related through the Euler buckling for-

ula (πE b A 

2 
b k 

) / (4 ‖ b k ‖ 2 ) = f b k . In a T-bar structure, increasing ten-

ion in the strings increases the compressive forces in the bars and

hus the area/mass of the bar members is non-linearly increased.

ecause of this, increasing the pre-stress in the T-bar structure

which increases the areas of strings and bars accordingly) in the

re-stress method ; and only increasing the cross-section areas of

he strings (without adding pre-stress) in the area method , provide

ifferent minimal mass results to prevent global buckling. 

.2. 3D T-bar structures 

For 3D T-bar structures, we have to simultaneously consider the

wo pre-stress factors γ P and γ D for the pre-stress method and the

wo area factors ηP and ηD for the area method. It was found that

he pre-stress of the planar strings γ P is not a critical parameter to

revent global buckling and to minimize the mass of the structure.

s such, this pre-stress value is kept at γP = 10 for the remainder

f these examples. A contour plot of mass ratio μ3 D for optimized

re-stress factor ( γ D ) as shown in Fig. 6 (a). The global optimum

onfiguration (marked with an ‘ × ’) was found to be q = 3 and

= 25 ◦ with a mass ratio of μ3 D = 0 . 2500 . The darker shaded area

n the figure corresponds to the region where no solution for γ D 

as found to prevent global buckling. Fig. 6 (b) shows the optimum

onfiguration of the T-bar structure. 

It was also observed for the area method that the cross-section

reas of the planar strings do not play a critical role in prevent-

ng global buckling. Therefore, a small value of ηP = 10 −4 is used

n the presented examples. Fig. 7 (a) shows the contour levels of

ass ratio μ3 D plotted for different values of angle α and complex-

ty q . It shows a global minimum achieved at q = 3 and α = 31 ◦.

his optimum solution of μ3 D = 0 . 2159 obtained from Fig. 7 (a) has

ower mass than that obtained by optimizing the pre-stress factor

D . The optimum configuration of the T-bar structure drawn to the

cale is shown in Fig. 7 (b). 
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Table 2 

Mass ratio μ3 D optimized with two different approaches for different values of force f 

and length l . Units: f (N), l (m), and α (deg). 

f 

l 2 f l 

Pre-stress method Area method 

q α μ3 D φ3 D q α μ3 D φ3 D 

1000 1000 1 4 19 0.10 1.60 4 27 0.07 1.12 

2500 2500 1 4 22 0.14 2.12 4 29 0.11 1.66 

10000 10000 1 3 25 0.25 1.89 3 31 0.21 1.58 

100000 1000 0.1 1 28 0.66 1.32 1 33 0.64 1.28 

250000 2500 0.1 1 31 1.04 1.57 1 33 1.01 1.53 

1000000 10000 0.1 1 36 1.56 1.56 1 33 1.54 1.54 

(a)

(b)

Fig. 6. (a) Contour plots of mass ratio μ3 D for a fixed pre-stress factor in the planar 

strings ( γP = 10 ) and optimized pre-stress factor in diagonal strings ( γ D ). (b) Opti- 

mum configuration of the T-bar structure (marked with the ‘ × ’ in the contour) 

displaying calculated member cross-sections. 
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Fig. 7. (a) Contour plots of mass ratio μ3 D for a fixed area factor in the planar 

strings ( ηP = 10 −4 ) and optimized area factor in diagonal strings ( ηD ) with different 

complexities q . (b) Optimum configuration of the T-bar structure (marked with the 

‘ × ’ in the contour) displaying calculated member cross-sections. 
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Table 2 provides the optimum α and q for different combina-

ions of force f and length l . It is observed from the table that

or all combinations of f and l , the method of optimizing area fac-

or ηD provides lower mass solutions than those obtained by op-

imizing the pre-stress factor γ D . Similar to the results observed

n Table 1 , the value of mass ratio μ3 D increases by increasing the

alue of f / l 2 and the mass ratio becomes greater than 1 ( μ3 D (γD ) =
 . 0429 > 1 , μ3 D (ηD ) = 1 . 0163 > 1 ) for f/l 2 = 250 0 0 0 N/m 

2 where

he single column is the optimal mass solution. Similar to Table 1 ,

or f/l 2 = 10 0 0 0 0 0 N/m 

2 , the single column is designed to avoid

ielding failure and thus the mass of T-bar designed to avoid

nly local failures would be equal to mass of the single column,

 T local 
= m col . Thus, the reason for the mass ratios μ3 D = 1 . 56 (pre-

tress method) and μ2 D = 1 . 54 (area method) to be above 1 is en-

irely based on providing global stability to the structure, hence
3 D = φ3 D = 1 . 56 (pre-stress method) and μ3 D = φ3 D = 1 . 54 (area

ethod). 

. Conclusions 

This paper presented a novel approach to design minimum

ass tensegrity T-bar lattices, which can be integrated into

ightweight load-bearing architectured materials. The methodol- 

gy developed in this paper allows for the determination of the

omplexity q , aperture angle α, and pre-stress distribution or

ember cross-sections areas of 2D or 3D T-bar structures with

inimal mass for given compressive force f and T-bar length

 . In earlier work of designing minimum mass T-bar structures,

nly 2D T-bar structures, or T-bars limited to complexity 1, were

onsidered. 
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The paper first provided an analytical solution for the mass

of a T-bar structure of arbitrary shape, topology, and pre-stress

distribution considering local failure modes. The pre-stress distri-

bution or string cross-section areas are then designed such that

global buckling is also prevented with minimum mass. The uti-

lized approach to minimize the mass of complexity q > 1 T-bar

structures was developed by sequentially designing the T-bar units

introduced at each self-similar formative iteration. The examples

considered for both 2D and 3D structures provided a global mini-

mal mass T-bar design for given force f and length l . The obtained

results showed that the method of optimizing the cross-section

area of the strings provides lower mass designs than those ob-

tained by optimizing the pre-stress distribution for both 2D and 3D

structures. 
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