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a b s t r a c t 

Two kinds of nonlinearity are studied in the framework of a model of a discrete diatomic model of an 

acoustic metamaterial. It is shown that the continuum limit of a discrete model is similar to the equa- 

tions obtained using a model of a reduced continuum with a microstructure. An asymptotic approach is 

developed to obtain a modulation nonlinear governing equation for dynamical processes in an acoustic 

metamaterial. New metamaterial features caused by nonlinearity are found. 
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. Introduction 

The interest to the study of the acoustic metamaterials has

rown considerably in the recent years, see [1–6] and references

herein. The linear acoustic metamaterials draw more attention

2,3,7,8] , however, more and more works devoted to the nonlin-

ar acoustic metamaterials appear in the last years [2,9–13] . An

nfluence of nonlinearity on the frequency band gap, effective

egative modulus and density allows to describe new features of

etamaterials. The nonlinearities shift the double negative pass-

and into the adjacent modulus single negative forbidden band

nd transform the metamaterial from an acoustic insulator into

n acoustic conductor [12] . Novel nonlinear phenomena affecting

he bandwidth are discovered in [9,10] . The amplitude dependent

requency band gaps are noted in [1,2,12] . 

Metamaterials are usually studied on the basis of discrete lat-

ice models. Theoretical and experimental description of acous-

ic metamaterials on the basis of mas-in mass discrete system is

hown in [2] where nonlinearity is introduced using a nonlinear

igidity of the internal spring in the model. The Helmholtz res-

nators and membranes periodically distributed along a pipe are

onsidered in [12] . In [13] an acoustic metamaterial model contains

 pure Duffing oscillator shell with the internal oscillator. Various

etamaterial lattice models are considered in [9,10] . 

Continuum modeling have been developed in [3,7,8,14,15] . A

hree-dimensional continuum theory for fibrous mechanical meta-

aterials is proposed in [3] , in which the fibers are assumed to
∗ Corresponding author at: Institute for Problems in Mechanical Engineering, Bol- 

hoy 61, V.O., Saint-Petersburg, Russia. 

E-mail address: alexey.porubov@gmail.com (A.V. Porubov). 

l  

m  

i  

i  

t

ttps://doi.org/10.1016/j.mechrescom.2019.103464 

093-6413/© 2019 Elsevier Ltd. All rights reserved. 
e spatial Kirchhoff rods whose mechanical response is controlled

y a deformation field and a rotation field. This leads naturally

o a model based on the Cosserat elasticity. Rigidity constraints

re introduced that effectively reduce the model to a variant of a

econd-gradient elasticity theory [3,4] . A metamaterial is modeled

n [7] where a homogenization approach based on the asymptotic

nalysis establishes a connection between the different character-

stics at micro- and macroscales like in composite materials with

he inclusion embedded in the matrix. A metamaterial model stud-

ed in [8] , consists of periodic cylindrical cavities carried out from

n elastic matrix. In [14] it is shown that some classes of reduced

ontinua , e.g. media, whose strain energy depends on the gener-

lized co-ordinates, but does not depend on the gradient of part

f them, are the acoustic metamaterials. Continuum modeling of

edia with a microstructure [14,15] gives rise to the linear model

quations whose solutions allow frequency bandgaps (single neg-

tive acoustic metamaterials) and/or decreasing parts of the dis-

ersion curves (double negative acoustic metamaterials). Contin-

um models are usually linear. At the same time nonlinear con-

inuum generalization of the Cosserat model, see, e.g., [16,17] , re-

ults in derivation of the governing nonlinear dispersion equations

hich model an influence of a microstructure and nonlinearity on

he dispersion properties of a material. A similarity between the

escription of metamaterials and composites allows to employ the

pproaches used for nonlinear description of the composite mate-

ials, see, e.g., [19] 

In this paper we study a nonlinear metamaterial model fol-

owing both from a discrete consideration [9,10] and a continuum

odeling of a microstructure [14,15] . Two kinds of nonlinearity are

ntroduced in the model. An asymptotic transformation of the orig-

nal equations results in a nonlinear governing modulation equa-

ion for a nonlinear acoustic metamaterial. 

https://doi.org/10.1016/j.mechrescom.2019.103464
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2. Statement of the problem 

Consider a discrete problem of a di-atomic chain studied pre-

viously in [9,10] . Let us modify this model be an inclusion of an

additional nonlinearity caused by the non-Hookean interactions of

the springs between masses m in the chain. The additional masses

m 1 are attached by springs to each mass m in the chain, see [9,10] .

Masses m 1 do not interact directly between themselves, thus

corresponding on the continuum level to the distributed dynamic

absorber, while interacting masses m , after continualization, will

correspond to the bearing continuum [14] . The displacement of

the mass, m , with the number n is denoted by x n , while that of

m 1 is denoted by y n . Then the discrete equations of motion are 

ẍ n = β0 (x n −1 − 2 x n + x n +1 ) + ηβ1 (y n − x n ) + ηβ2 (y n − x n ) 
2 + 

β3 ((x n +1 − x n ) 
2 − (x n −1 − x n ) 

2 ) , (1)

ÿ n = −β1 (y n − x n ) − β2 (y n − x n ) 
2 . (2)

Here η = m 1 /m, while the linear stiffness of the spring of the

chain is β0 m , the nonlinear stiffness is β3 m . Corresponding linear

and nonlinear stiffnesses of the attached spring are β1 m 1 , β2 m 1 

respectively. We exclude dissipative parts in the model of [9,10] for

simplicity. 

It is known that discrete nonlinear models are difficult for an

analysis, and we proceed with a continuum limit of Eqs. (1) and

(2) . Following the standard procedure we introduce the continuum

functions u ( x, t ), v ( x, t ) for description of the displacements of the

masses m, m 1 with the number n while the continuum displace-

ments of the neighboring masses are sought using the Taylor series

around u . Retaining only the first nonzero term in the expansion

we obtain 

u tt = β0 h 

2 u xx + ηβ1 (v − u ) + ηβ2 (v − u ) 2 + 2 β3 hu x u xx , (3)

v tt = −β1 (v − u ) − β2 (v − u ) 2 , (4)

where h is a distance between the masses m in the chain. The lin-

earized version of Eqs. (3) , (4) is similar to that of the equations for

a reduced Cosserat model for metamaterials obtained in [14,15] . 

3. Derivation of governing nonlinear modulation equation 

We consider a weakly nonlinear case. For this purpose a small

parameter ε is introduced, and the solution is sought in the form 

u = ε u 0 + ε 2 u 1 + ε 3 u 2 + . . . , 

v = ε v 0 + ε 2 v 1 + ε 3 v 2 + . . . . 

Moreover we introduce fast and slow variables, so as u i =
u i (x, t, T , X, τ ) , v i = v i (x, t, T , X, τ ) , T = εt, X = εx, τ = ε 2 t . Then

we obtain coupled linear equations from Eqs. (3) and (4) at order

ε, 

u 0 ,tt = β0 h 

2 u 0 ,xx + ηβ1 (v 0 − u 0 ) , (5)

v 0 ,tt = −β1 (v 0 − u 0 ) . (6)

The solution to Eqs. (5) and (6) is sught in the form, 

u 0 = A (X, T , τ ) exp (ı (px − ωt)) + ( ∗) , 

v 0 = B (X, T , τ ) exp (ı (px − ωt)) + ( ∗) , (7)
here ( ∗) is a complex conjugate. Substitution of Eq. (7) into

qs. (5) and (6) allows us to resolve A from Eq. (6) , 

 = 

β1 − ω 

2 ) 

β1 

B. (8)

q. (7) with the use of Eq. (8) gives rise to the dispersion relation, 

 

2 = 

β1 (1 + η) + β0 p 
2 h 

2 

2 

±

1 

2 

√ 

(β1 (1 + η) + β0 p 2 h 

2 ) 2 − 4 β0 β1 p 2 h 

2 . (9)

Next order equations at ε2 are 

 1 ,tt = β0 h 

2 u 1 ,xx + ηβ1 (v 1 − u 1 ) −

 u 0 ,tT + 2 β0 h 

2 u 0 ,xX + ηβ2 (v 0 − u 0 ) 
2 + 2 β3 hu 0 ,x u 0 ,xx , (10)

 1 ,tt = −β1 (v 1 − u 1 ) − 2 v 0 ,tT − β2 (v 0 − u 0 ) 
2 . (11)

The solution to Eqs. (10) and (11) is sought in the form, 

 1 = A 1 (X, T , τ ) exp (ı (px − ωt)) + Q 1 (X, T , τ ) exp (2 ı (px − ωt))+ , 

( ∗) + F 1 (X, T , τ ) , (12)

 1 = B 1 (X, T , τ ) exp (ı (px − ωt)) + Q 2 (X, T , τ ) exp (2 ı (px − ωt))+

( ∗) + F 2 (X, T , τ ) . (13)

ubstituting Eqs. (12) and (13) into Eqs. (10) and (11) and equat-

ng to zero the terms at corresponding exponents, we obtain the

oupled equations for finding A 1 , B 1 . F 1 , F 2 , Q 1 , Q 2 . We obtain using

q. (8) 

 1 = F 2 + 

β2 ω 

4 

β3 
1 

BB 

∗, (14)

 1 = 

β1 − 4 ω 

2 

β1 

Q 2 + 

β2 ω 

4 

β3 
1 

B 

2 . (15)

 2 = 

(
ηβ2 ω 

4 − 2 ıβ3 hp 3 (ω 

2 − β1 ) 
2 
)
B 

2 

β1 (16 ω 

4 − 4[ β1 (1 + η) + 4 β0 h 

2 p 2 ] ω 

2 + 4 β0 β1 h 

2 p 2 ) 
. (16)

However, equating terms at exp (ı (px − ωt)) to zero in

qs. (10) and (11) does not result in the solutions for A 1 , B 1 
ue to Eq. (9) . Indeed, it follows from Eq. (11) that the terms at

xp (ı (px − ωt)) being equating to zero, give rise to the equation 

(β1 − ω 

2 ) B 1 − β1 A 1 − 2 ıωB T = 0 , (17)

hose solution is 

 1 = 

β1 − ω 

2 

β1 

B 1 − 2 ıω 

β1 

B T . (18)

ubstitution of Eq. (18) into equating to zero exp (ı (px − ωt)) part

f Eq. (10) , 

(β0 h 

2 p 2 + ηβ1 − ω 

2 ) A 1 − β1 ηB 1 = 2 ı (ωA T + β0 h 

2 pA X ) , (19)

esults in the equation for B . The part proportional to B 1 disappears

ecause of Eq. (9) and we obtain from Eq. (19) , 

(β1 (1 + η) − 2 ω 

2 + β0 h 

2 p 2 ) B T + (β1 − ω 

2 ) β0 h 

2 pB X = 0 . (20)

hen B = B (θ, τ ) where θ = X − W T , 

 = 

(β1 − ω 

2 ) β0 h 

2 p 

ω(β1 (1 + η) − 2 ω 

2 + β0 h 

2 p 2 ) 
, (21)
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nd the solution at this order does not contain secular or growing

erms. 

To complete the solution and define B , we consider at order ε3 

nly the problem of suppression the secular terms at exp (ı (px −
t)) . Assume that 

 2 = A 2 (X, T , τ ) exp (ı (px − ωt)) + ( ∗) + . . . , 

 2 = B 2 (X, T , τ ) exp (ı (px − ωt)) + ( ∗) + . . . 

hen the same as before algebraic manipulations with the terms at

xp (ı (px − ωt)) result in the equation for B 

B τ + (α1 + ıα2 ) B 

2 B 

∗ + γ B θθ = 0 , (22)

here 

1 = 

(
β4 

1 ω[ β1 (η − 2) + 3 ω 

2 − β2 h 

2 p 2 
)−1 

ω 

2 [ β1 (1 + η) + 4(β0 h 

2 p 2 β1 − ω 

2 )] − β0 h 

2 p 2 β1 

)−1 

2 β2 
1 β

2 
3 h 2 p 6 (β1 − 4 ω 

2 )(β1 − ω 

2 ) − 2 β2 
2 ω 

6 (2 β1 η + ω 

2 − β0 h 
2 p 2 ) 

[12 ω 

4 − β1 ω 

2 (3 + 4 η) + 3 β0 h 

2 p 2 (β1 − 4 ω 2 )] 
)
, 

2 = 

(
β4 

1 ω[ β1 (η − 2) + 3 ω 

2 − β2 h 

2 p 2 
)−1 

ω 

2 [ β1 (1 + η) + 4(β0 h 

2 p 2 β1 − ω 

2 )] − β0 h 

2 p 2 β1 

)−1 

β1 β2 β3 hp 3 ω 

4 (β1 − ω 

2 )[20 ω 

2 − 7 β2 
1 η − 8 β1 ω+ 

4 β0 h 

2 p 2 (2 β1 − 5 ω 

2 )] 
)
, 

= 

1 

ω 

3 (β1 (η − 2) + 3 ω 

2 − β0 h 2 p 2 )(β1 (1 + η) − 2 ω 

2 + β0 h 2 p 2 ) 2 

β0 h 
2 p 4 [ β2 

0 h 4 [ β2 
1 + β1 ω 

2 − 2 ω 

4 ] − ω 

2 (β1 (1 + η) − 2 ω 

2 ] 2 (β1 − ω 

2 )+ 

β0 h 

2 p 2 (ω 

2 − β1 )[ β2 
1 (η − 1) − 3 β1 (1 + η) ω 

2 + 6 ω 

4 ] 
)
. 

t α2 = 0 Eq. (22) is the well-known Nonlinear Schr ̄odinger equa-

ion. 

. Discussion 

Analysis of dispersion relation (9) reveals two dispersion curves,

ne starting from zero at p = 0 (acoustic branch) and another one

t ω = 

√ 

β1 (1 + η) (optic branch). At p → ∞ the acoustic branch

ends to ω → 

√ 

β1 η, hence a bandgap between the curves always

xists. This feature is typical for a linear acoustic metamaterial. 

Nonlinearity brings new features in the solution but makes an-

lytical study more complicated. Only particular solutions can be

btained. The solution to Eq. (22) is sought in the form 

 = P (θ, τ ) exp (ıϕ(θ, τ )) , (23)

here P and ϕ are real functions. Substituting Eq. (23) into

q. (22) and separating real and imaginary parts we obtain 

P θθ − P ϕ τ + α1 P 
3 − γ P ϕ 

2 
θ = 0 , (24)

 τ + α2 P 
3 + 2 γ P θϕ θ + γ P ϕ θθ = 0 . (25)
or the nonlinear Schr ̄odinger equation, α2 = 0 , or only one of

onlinearities is taken into account in the model, either β2 or β3 

s zero. In this case bright or dark solitary wave solution exists de-

ending on the sign of the product α1 γ , 

 = a sech 

(√ 

−2 α1 

γ
a (θ − 2 γ qτ ) 

)
, ϕ = q (θ − 2 γ qτ ) , 

 = a tanh 

(√ 

−2 α1 

γ
a (θ − 2 γ qτ ) 

)
, ϕ = q (θ − 2 γ qτ ) . 

he solution describes a dependence between the amplitude and

he wave number, also the shape of modulation of the harmonic

ave profile is defined by the sign of the equation coefficients. This

s not covered within the linearized consideration. These solutions

o not exist in the case of nonzero α2 corresponding to a degen-

rate case of the Ginzburg- Landau equation (GLE) see [18] and

eferences therein. Nonzero α2 appears due to a mutual influence

f nonlinearities of the chain, β3 � = 0, and of the internal oscilla-

or, β2 � = 0. The solutions similar to the known localized solutions

o the GLE require complex coefficient at the dispersion term and

he presence of the linear term proportional to B in Eq. (22) . This

ay be achieved by further modification of the original model by

ncluding the dissipative factors in it. 

The approach developed for obtaining governing nonlinear

quations in the paper may be used for a modeling of more com-

licated metamaterials like those based on a pantographic model

20,21] . 
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