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a b s t r a c t 

This paper gives a proof of equivalence between two existing force methods (FM) for structural analy- 

sis: The Integrated Force Method (IFM) and a force method based on singular value decomposition (SVD) 

of the equilibrium conditions here named as SVD-FM. Recently, these methods have been employed to 

design and control active structures. Actuation is employed to counteract the effect of external loading 

by modifying internal forces and the external geometry in order to meet strength and serviceability re- 

quirements. Both IFM and SVD-FM offer an effective way to estimate the combined effect of external 

loading and that of actuation. Generally, the SVD-FM has a lower degree of computational complexity 

with respect to the IFM, the more so as the structure static indeterminacy increases. However, the IFM 

has a more intuitive formulation that is preferable pedagogically and it is of value for future extensions 

to kinematically indeterminate configurations and to geometric non-linear cases. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Active structural control through integrated sensing and actua-

ion has been investigated and experimentally tested to reduce the

tructure response under extreme loading events such as strong

inds, earthquakes and unusual crowds [1–4] . The ability to con-

rol internal forces and the external geometry allows a structure to

perate closer to design limits. For example, a change of geometry

an result in a significant shift of the structure natural frequen-

ies. This strategy has been investigated to reduce the dynamic re-

ponse of tensegrity structures [5 , 6] , of an underslung cable-stayed

eam bridge under pedestrian loading [7] and of frames equipped

ith variable stiffness joints made of shape memory polymer com-

osites [8] . 

It has been shown that through integrated structure-control

ptimization [9–12] it is possible to design adaptive structures

ith a significantly better material utilization compared to weight-

ptimized passive structures. Senatore et al. [13] formulated a

ew integrated structure-control optimization method that pro-

uces structures with minimum ‘whole-life’ energy. The whole-life

nergy includes the energy embodied in the material and the op-

rational energy for actuation. Numerical and experimental studies
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ave shown that well-designed adaptive structures save up to 70%

f the energy with respect to weight-optimized passive structures

14 , 15] . Recent studies [16 , 17] have investigated structural adapta-

ion through large shape changes. In this case the structure is de-

igned to be controlled into a shape that is optimal to counteract

he effect of the external load. The optimal shape changes as the

oad changes. This way a structure can be designed with a lower

mbodied energy (i.e. better material utilization) compared to an

daptive structure limited to small shape changes. 

When designing adaptive structures, the actuation system must

e strategically placed. The action of the actuators is to modify in-

ernal forces and displacements actively in order to meet strength

nd/or serviceability requirements. If the location of the actua-

ors is not well chosen, it might be impossible to achieve the re-

uired force and geometry correction or it might require a much

igher energy than needed [13] . Many methods exist to obtain

n optimal actuator layout some of which based on efficient enu-

erations, ranking and continuous relaxation [13 , 18–20] . However,

ctuator placement remains a challenging task due to the combi-

atorial nature of the problem. 

Actuation has been modeled as an imposed strain distribution

aused by the active elements [21–23] . For example, in reticular

tructures, the structure internal forces and shape are controlled

hrough length changes of linear actuators which are fitted within

ome of the structural elements. A convenient method to com-

ute the effect of an imposed strain is the Integrated Force Method
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Nomenclature 

A equilibrium matrix 

E Young’s modulus 

G flexibility matrix 

J IFM deformation coefficient matrix 

S IFM governing matrix 

S d shape influence matrix 

S f force influence matrix 

S ∗
d 

reduced shape influence matrix 

S ∗
f 

reduced force influence matrix 

[ U r U q ] left singular vectors 

U q States of infinitesimal mechanisms 

V r diagonal matrix of singular values 

[ W r W s ] right singular vectors 

W s states of self-stress 

α element cross section areas 

�d change of node positions (i.e. change of shape) 

�f change of internal forces 

m degree of kinematic indeterminacy 

l element lengths 

�l actuator length changes 

�l e element length changes (all elements are active) 

n act number of actuators 

n cd number of controlled degrees of freedom 

n d number of degrees of freedom 

n e number of elements 

n n number of nodes 

�p change of external load 

s degree of static indeterminacy 

η coefficient vector of force solution 

ξ coefficient matrix of decomposed generalized in- 

verse 

(IFM) [24] . The IFM formulation is a generalization of the standard

force method (SFM) because it does not require the choice of any

redundant and basis determinate structures [25] . The IFM takes a

familiar form of matrix-vector product similar to the classical equi-

librium formulation. The IFM allows an initial deformation to be

assigned directly as part of the external load in order to model

a non-elastic strain which is usually produced by a lack of fit or

by thermal strain. On the other hand, a non-elastic strain can be

thought of as caused by the action of actuators and it has been

referred as eigenstrain [13 , 26] . 

Another force method that has been used for control of adap-

tive structures was first presented in the work of Pellegrino and

Calladine [27 , 28] . In common with the IFM, this method also al-

lows to assign a non-elastic strain as part of the external load and

it requires the determination of the self-stress basis to compute

the internal forces in statically indeterminate structures. The self-

stress basis can be obtained through singular value decomposition

(SVD) of the equilibrium conditions. This method, which is here re-

ferred as SVD-FM, has been generalized to structural systems with

static as well as kinematic indeterminacies. The SVD-FM formula-

tion has also been extended to control structures with geometric

non-linear behavior through an iterative scheme [29 , 30] . 

The work presented in this paper shows that the IFM and SVD-

FM are equivalent. For simplicity the proof of equivalence between

these two methods will be given referring to reticular structures

with no kinematic indeterminacy under quasi-static loading. How-

ever, the IFM can be generalized to continuous structures [31] and

to compute the dynamic response [32] . Similar considerations ap-

ply to the SVD-FM. 
. Proof of equivalence 

Consider a reticular structure with s -degree of static indeter-

inacy. The structure is a set of n n nodes connected by n e ele-

ents. There are n d = n n · dim degrees of freedom; where dim

s either 2 or 3 for a planar and a spatial structure, respectively.

orce-equilibrium conditions are: 

 �f = �p , (1)

here A ∈ R 

n d ×n e , �f and �p are the equilibrium matrix, inter-

al forces and external load. The symbol � denotes a change or

 difference. The IFM and SVD-FM formulations make use of some

erms resulting from the singular value decomposition of A : 

 = 

[
U r U q 

][V r 0 

0 0 

][
W r W s 

]T 
. (2)

[ U r U q ] ∈ R 

n d ×n d , [ W r W s ] ∈ R 

n e ×n e and V r ∈ R 

n e ×n e are the

eft singular vectors, right singular vectors and singular values for

atrix A , respectively. U r ∈ R 

n d ×( n d −m ) is the basis of the column

pace of A which can be interpreted as the range of all loads

hat can be taken by the structure. These loads are in equilibrium

ith the forces that lie in the space spanned by W r ∈ R 

n e ×( n e −s ) 

the row space of A ). The term W s ∈ R 

n e ×s is the null space of A

 W s = ker (A ) ), s is the degree of static indeterminacy. The columns

f W s are the s states of self-stress i.e. all possible combination

f internal forces which are in equilibrium with zero load. In the

bsence of external load (i.e. �p = 0 ), there exist an infinite num-

er of non-trivial solutions for the homogeneous equation A �f = 0

hich are linear combination of the self-stress basis: 

f = W s η. (3)

The term U q ∈ R 

n d ×m is the left null space of A ( U q = coker( A )),

 is the degree of kinematic indeterminacy. The columns of U q 

re m independent nodal displacements which do not cause any

train i.e. the inextensional mechanism basis. For kinematically de-

erminate structures, U q ∈ R 

n d ×m does not exist. This work only

onsiders kinematically determinate structures. For further details

egarding the static and kinematic interpretation of the terms in

q. (2) the reader is referred to [28] . 

.1. Solution for forces 

The IFM formulation can be written as follows: 

A 

W 

T 
s G 

]
�f = 

{
�p 

−W 

T 
s �l 

}
, (4)

r in compact form as: 

 �f = �p 

∗, (5)

here: 

 = 

[
A 

W 

T 
s G 

]
;�p 

∗ = 

{
�p 

−W 

T 
s �l 

}
. (6)

The concatenation of r equations of compatibility: 

 

T 
s G �f = −W 

T 
s �l , (7)

akes the IFM governing matrix S ∈ R 

n e ×n e a square matrix for

inematically determinate structures. G ∈ R 

n e ×n e is the member

exibility matrix, for example for a reticular structures G is a di-

gonal matrix with components l 
i 
/ ( E 

i 
α

i 
) where E 

i 
and α

i 
are the

oung’s modulus and the cross section area of the i th member

f the structure. A simple derivation of the compatibility condi-

ions in Eq. (7) is given in [13] . �p 

∗ ∈ R 

n e is the concatenation of

he external load vector �p ∈ R 

n d and the eigenstrain load vec-

or −W 

T 
s �l (as defined in [13] ) where �l ∈ R 

n e is the prescribed
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train which is thought of as caused by the active element length

hanges. For a statically determinate system W s does not exist,

herefore in this case the actuator length changes can only be used

o control the shape of the structure (i.e. �l does not cause any

hange of the internal forces). The assignment of �l implies that

he actuator locations are known. In Senatore et al. [13] optimiza-

ion of the actuator layout is based on a control efficacy index

omputed through the IFM. This index measures the contribution

f each candidate actuator to attain required force and geometry

hanges. 

Solving Eq. (4) gives the change of internal forces caused by the

xternal load in combination with the effect of the actuator length

hanges �l : 

f = 

[
A 

W 

T 
s G 

]−1 {
�p 

−W 

T 
s �l 

}
. (8) 

Following the SVD-FM formulation given in [28] , the internal

orces caused by the external load and actuator length changes is:

f = 

(
W r V 

−1 
r U 

T 
r 

)
�p + W s η, (9)

here: 

= −
(
W 

T 
s G W s 

)−1 
W 

T 
s 

[
�l + G 

(
W r V 

−1 
r U 

T 
r 

)
�p 

]
. (10) 

Different to the IFM, SVD-FM does not have a simple form

nd it is more difficult to give it a physical interpretation. The

eader is referred to [28] for the derivation of Eqs. (9) and (10) .

owever, Eq. (8) is equivalent to Eq. (9) . Knowing that A 

+ =
 r V 

−1 
r U 

T 
r [33] where ( ·) + denotes the Moore-Penrose pseudoin-

erse, Eq. (9) appears as the expanded expression of Eq. (8) .

emma 1 , which gives the decomposition of a generalized inverse

f a vertically partitioned rectangular matrix [34] , is employed to

rove the equivalence of Eq. (8) with Eq. (9) . 

emma 1. If C ∈ R 

m ×p and D ∈ R 

n ×p then: 

C 

D 

]−
= 

[
C 

− − ξD C 

− | ξ ]
, (11) 

here : 

= 

(
I − C 

−C 

)[
D 

(
I − C 

−C 

)]−
. (12) 

The notation ( ·) − denotes the generalized inverse and [ ·| ·] col-

mn concatenation. If C and D are such that m + n = p , the inverse

hich is denoted as ( ·) −1 is identical to the generalized inverse. A

ecomposition of the inverse of a vertically partitioned square ma-

rix is thus given as: 

C 

D 

]−1 

= 

[
C 

+ − ξD C 

+ | ξ ]
, (13) 

here: 

= 

(
I − C 

+ C 

)[
D 

(
I − C 

+ C 

)]+ 
. (14) 

Through Lemma 1 , Eq. (8) can be decomposed into: 

f = 

[
A 

+ − ξ
(
W 

T 
s G 

)
A 

+ | ξ ]{ �p 

−W 

T 
s �l 

}
, (15) 

here: 

= 

(
I − A 

+ A 

)[
W 

T 
s G 

(
I − A 

+ A 

)]+ 
. (16) 

Through the identity I − A 

+ A = W s W 

T 
s [33] , ξ can be rewritten

s: 

= W s W 

T 
s 

(
W 

T 
s GW s W 

T 
s 

)+ 
. (17) 
Since W s W s 
T ( W s 

T ) + = W s [33] , and owing to the fact that

 

T 
s GW s is an invertible square matrix, ξ can be rearranged into:

= W s 

(
W 

T 
s GW s 

)−1 
. (18) 

Expanding Eq. (15) and substituting ξ: 

f = 

[ 
A 

+ − W s 

(
W 

T 
s GW s 

)−1 
W 

T 
s G A 

+ 
] 
�p 

− W s 

(
W 

T 
s GW s 

)−1 
W 

T 
s �l . (19) 

Using the identity A 

+ = W r V 

−1 
r U 

T 
r [33] and then tiding up: 

f = 

(
W r V 

−1 
r U 

T 
r 

)
�p 

− W s 

(
W 

T 
s GW s 

)−1 
W 

T 
s 

[
�l + G 

(
W r V 

−1 
r U 

T 
r 

)
�p 

]
. (20) 

Finally, �f can be expressed as: 

f = 

(
W r V 

−1 
r U 

T 
r 

)
�p + W s η, (21)

here: 

= −
(
W 

T 
s GW s 

)−1 
W 

T 
s 

[
�l + G 

(
W r V 

−1 
r U 

T 
r 

)
�p 

]
. (22) 

Eq. (8) is equivalent to Eq. (9) . �

.2. Solution for displacement 

Consider the IFM formulation to compute the displacements

ue to the external load �p and the actuator length changes �l :

d = 

{ [
A 

W 

T 
s G 

]−1 
} T 

( G �f + �l ) , (23) 

r in compact form: 

d = J ( G �f + �l ) , (24) 

here J , the deformation coefficient matrix is: 

 = n 

d rows of 
[
S −1 

]T 
. (25) 

The same task can be carried out via the SVD-FM as follows: 

d = U r V 

−1 
r W 

T 
r ( G �f + �l ) . (26)

Recalling Lemma 1 and Eq. (15) , Eq. (23) can be rewritten as: 

d = 

[
A 

+ − ξ
(
W 

T 
s G 

)
A 

+ | ξ ]T 
( G �f + �l ) , (27) 

here: 

= W s 

(
W 

T 
s GW s 

)−1 
. (28) 

Therefore by substitution of ξ in Eq. (27) : 

�d = 

[ 
A 

+ − W s 

(
W 

T 
s GW s 

)−1 (
W 

T 
s G 

)
A 

+ | W s 

(
W 

T 
s GW s 

)−1 
] T 

( G �f + �l ) . 

(29) 

By taking only the first n d rows of the matrix term in Eq. (29) :

d = 

[
A 

+ −W s 

(
W 

T 
s GW s 

)−1 (
W 

T 
s G 

)
A 

+ 
]T 

( G �f + �l ) . (30) 

The terms containing W s vanish because the product: 

 

T 
s ( G �f + �l ) = 0 , (31) 

hich expresses compatibility conditions in the absence of exter-

al load. For this reason, the only non-zero term in Eq. (30) is: 

d = 

(
A 

+ )T 
( G �f + �l ) . (32) 

Since ( A 

+ ) T = U r V 

−1 
r W 

T 
r [33] , Eq. (23) is equivalent to Eq. (26) .
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2.3. Shape and force control 

Both force methods discussed in this paper offers an effective

formulation for shape and force control. Within the assumption

of small deformations, the effect of a non-elastic element length

change �l e is to cause a change of the internal forces �f and

shape �d which can be expressed as a matrix-vector product: 

S f �l e = �f , (33)

S d �l e = �d , (34)

where S f ∈ R 

n e ×n e and S d ∈ R 

n d ×n e are the force influence ma-

trix and the shape influence matrix, respectively. Note that in

Eq. (33) and (34) , �l e ∈ R 

n e is length change of all the elements

if they were all active. 

From the IFM formulation, S f and S d are: 

S f = 

[
A 

W 

T 
s G 

]−1 {
0 

−W 

T 
s I 

}
, (35)

S d = J 
(
G S f + I 

)
, (36)

where I is the identity matrix of dimensions of n e × n e .

Eq. (35) and (36) are equivalent to iterating Eq. (8) and (24) for a

unitary length change of each active element and no external load

i.e. �p is a zero vector. 

Using the SVD-FM formulation, the force and shape influence

matrices are: 

S f = −W s 

(
W s 

T G W s 

)−1 
W s 

T 
, (37)

S d = U r V 

−1 
r W 

T 
r 

(
G S f + I 

)
, (38)

which are Eq. (9) and (26) when the external load �p is a zero

vector. From the proof of equivalence of Eq. (8) with (9) and

Eq. (23) with (26) it follows immediately the equivalence of

Eqs. (35) with (37) and Eq. (36) with (38) . 

In practice, only selected elements are replaced by actuators,

and only selected degrees of freedoms are controlled. Without loss

of generality, there are n act ≤ n e number of actuators and n cd ≤ n d 

number of controlled degrees of freedom. The force influence ma-

trix is reduced to S ∗
f 

∈ R 

n e ×n act 
, which contains only the columns

corresponding to the active elements. Similarly, the shape influ-

ence matrix is reduced to S ∗
d 
, which contains only the rows and

columns corresponding to the controlled degrees of freedom and

active elements, respectively. A target (required) shape �d 

t∗ ∈ R 

n cd 
,

only contains the values corresponding to the controlled degrees

of freedom. It is usually desirable to control large structures with

a simple actuation system, and thus S f and S d are generally rect-

angular with significantly more rows than columns (i.e. an overde-

termined linear system). The inverse problem to compute the ac-

tuator length changes �l in order to obtain a required change of

internal forces �f t and shape �d 

t can be formulated as a least

square optimization: 

min 

�l 

∥∥∥∥S · �l −
{
�d 

t 

�f t 

}∥∥∥∥
2 

, (39)

where S is: 

S = 

[
S ∗

d 
S ∗

f 

]T 
. (40)

For small deformations, the minimum number of actuators n act 

to control the required displacements exactly is equal to the sum

of n cd and the static indeterminacy s [13] . This way, Eqs. (39) can

be solved exactly. As the number of actuators decreases, control

accuracy also decreases. The formulation stated in Eqs. (39) and
40) has been extended to geometrically non-linear problems in

29] . Other formulations exist that include buckling constraints

17] . 

The computational cost of the IFM and SVD-FM is dominated

y the SVD of the equilibrium matrix A . In the IFM the terms U r ,

 r and W r are discarded. Hence, it may appear desirable to replace

he SVD with a more efficient process to determine the null space

f matrix A . However, SVD offers the best precision and stability

or this task [35] . Without considering the SVD routine, the compu-

ational complexity of IFM and SVD-FM are O (( n e ) 3 ) and O ( n e ( n d ) 2 ),

espectively. For kinematically determinate structures, n d = n e − s

olds, and thus the SVD-FM has a lower degree of computational

omplexity as the degree of static indeterminacy increases. 

. Conclusions 

This work has presented a proof of equivalence of two force

ethod formulations, namely the IFM and SVD-FM. These formu-

ations have been employed as part of design and control methods

or active structures because they offer an effective way to control

nternal forces and the external geometry in order to counteract

he effect of loading. The SVD-FM has a lower degree of computa-

ional complexity as the degree of static indeterminacy increases.

owever, the IFM offers a more intuitive formulation that is prefer-

ble pedagogically and is of value for future extensions to kine-

atically indeterminate configurations and to geometric non-linear

ases. 
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