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a b s t r a c t 

This paper addresses the application of the novel method of polynomial system resultants for solving two 

problems governed by systems of cubic equations. Both problems emerge in analysis of stationary dy- 

namics of a periodic waveguide, which consists of linearly elastic continuous rods with nonlinear springs 

between them. The first one is the classical problem of finding “backbone curves” for free nonlinear vi- 

brations of a symmetric unit periodicity cell of the waveguide. The second one is the problem of finding 

the Insertion Losses for a semi-infinite waveguide with several periodicity cells. Similarly to the canon- 

ical linear case, a very good agreement between boundaries of high attenuation frequency ranges and 

eigenfrequencies of a unit cell is demonstrated. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The periodicity-induced attenuation of the wave energy trans-

ission in linear systems is a classical subject explored in many

etails since the pioneering work of Brillouin [1] . Discrete spring-

ass lattices and continuous periodic beams, plates and cylindrical

hells are standard models for the analysis of the Bloch–Floquet

aves in linear mechanical systems. We do not dwell on any

iterature survey on these studies. 

The obvious advance in modelling the periodicity effects is

o take into account the nonlinearity of a periodic system. How-

ver, this step challenges the applicability of the Floquet theory,

hich has been developed under the fundamental assumption

f linearity of a governing system of differential equations with

eriodic coefficients. Therefore, most of the work in the analysis

f nonlinear periodic systems has been done so far in the “weakly

onlinear formulation”, which facilitates the application of tra-

itional asymptotic methods with the method of multiple scales

sually being the first choice [1–5] . Alternatively, the harmonic

alance method has been used in [4,6] , whereas an emerging

ethod of varying amplitudes has been used in [6] . 

In the vast majority of papers dealing with non-linear periodic

ystems, the discrete spring-mass 1D and 2D lattices are consid-

red and the weak nonlinearity (quadratic or cubic) is introduced
∗ Corresponding author. 
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n spring elements [1–5,7,8] . Much fewer papers are concerned

ith weakly nonlinear continuous components of a periodic

tructure [6,9] . 

We consider a periodic system, which consists of identical elas-

ic rods supporting linear plane dilatation waves interconnected

ith identical nonlinear springs. This system may be perceived as

 reduced-order model of a multilayered structure with its rela-

ively thick plies connected to each other by a thin layer of glue.

t is realistic to assume that the behavior of glue departs from

onventional Hooke’s law and hence introduces nonlinear interfa-

ial forces, whereas the behavior of each lamina is perfectly linear.

ultilayered structures of this type are broadly used, for example,

n wind turbines, and in aeronautics. 

In what follows, the problems’ formulations are reduced to

ystems of algebraic equations, but, due to the nonlinearity of

prings’ stiffness, these equations are cubic polynomials. Analysis

f systems of the polynomial equations is the classical topic,

hich originates from the string theory. The theory of systems of

olynomial equations is similar to the canonical theory of systems

f linear algebraic equations. However, a generalization of the

undamental concept of the determinant of the system of linear

lgebraic equations to polynomial equations has been formalized

nly recently [10,11] . The counterpart of a determinant is called

he polynomial system resultant. The analytical method of the

olynomial system resultants [11] is an emerging convenient tool

o solve these equations without any a priori assumptions (e.g.

eak nonlinearity). In its relatively simple form, for the single

olynomial equation, the resultants method, was used in [12]

https://doi.org/10.1016/j.mechrescom.2020.103476
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Fig. 1. Periodic structure (boundaries of the symmetrical unit cell – dashed vertical 

lines). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

c  

u  

o  

l

(  

o  

p

 

l  

n  

r  

p  

I  

z  

w  

r

 

t  

i

3

 

t  

f  

u  

v  

t  

u  

c

U  

U  

 

s

U  

 

E  

e

D

D

 

 

t  

f  

b  

q  

e

 

r  

(

u  

 

m

U  
analyse the Hopf bifurcations. We are unaware of any publications,

where this method has been used for nonlinear eigenfrequency

or wave propagation analysis in the mechanical systems. We

believe that this emerging method will soon find a broad scope of

applications in the non-linear theory of dynamical systems. 

As a final remark, we notice that as soon as the plies are con-

sidered as infinitely stiff and the springs are linear, the discrete

mass-spring model proposed by Newton in 1686 is readily recov-

ered, which does not predict any stop-bands. On the other hand,

as is also well known, if a layer of glue is considered as a linearly

elastic continuum, then stop-bands emerge. 

The paper is organized as follows. In Section 2 the mathemat-

ical model of a periodic structure is formulated. In Section 3 the

polynomial system resultants method is used to solve the problem

of finding a “backbone curve” for a unit periodicity cell (i.e. the

nonlinear eigenfrequency problem). In Section 4 the forcing (en-

ergy flow) problem for a semi-infinite structure with a variable

number of nonlinear periodic inserts is solved also by means of

the polynomial system resultants method. The findings reported

in this paper and the intended future work are summarized in

conclusions ( Section 5 ). 

2. The problem formulation 

We consider a periodic structure, which consists of identical

elastic rods with nonlinear springs between them as shown in

Fig. 1 . If it is not stated otherwise, we assume that the structure

is infinite. It means, that the spring connections are spread to the

left, i.e there are the springs at the points x = −L, −2 L, . . . , and to

the right at x = 2 L, 3 L, . . . . 

Each elastic element supports a single plane axial wave gov-

erned by the standard linear 1D wave equation Eq. (1) ( u is axial

displacement, c is sound speed, c = 

√ 

E 
ρ with E as Young’s modulus

and ρ as the density of the material). 

c 2 
∂ 2 u 

∂ x 2 
= 

∂ 2 u 

∂ t 2 
(1)

To introduce the spring connection, we formulate the continuity

conditions at each interface (as an example we show one at the

point x = L ). The continuity conditions are concerned with force

Eq. (2 (a)) and force-displacement Eq. (2 (b)): 

E A u 

′ 
1 ( L, t ) = E A u 

′ 
2 ( L, t ) (a ) 

EA u 

′ 
1 ( L, t ) + K L [ u 1 ( L, t ) − u 2 ( L, t ) ] 

+ K NL [ u 1 ( L, t ) − u 2 ( L, t ) ] 
3 = 0 (b) 

(2)

Each spring has the linear stiffness, K L and the non-linear one

K 

NL 
. In the absence of a spring, K L → ∞ , K NL → ∞ and the con-

ventional displacement continuity is recovered. 

Also, we impose periodicity conditions in the standard form, i.e.

we assume, that periodicity multiplier � is not depended on the

coordinate and thus the periodicity conditions could be written in

a form Eq. (3) . 

u (L/ 2) = �u (3 L/ 2) 

u 

′ (L/ 2) = �u 

′ (3 L/ 2) 
(3)
To convert the problem formulation to a non-dimensional form,

he length scale is chosen as L . Thus, the non-dimensional axial

oordinate is x̄ = 

x 
L and the non-dimensional axial displacement is

¯ = 

u 
L . In what follows, bars over non-dimensional quantities are

mitted and all quantities are considered as dimensionless. The

inear spring has the non-dimensional stiffness parameter κ = 

K L L 
EA 

that is, obviously, a ratio of stiffness of discrete and continu-

us components of a periodic structure), the nonlinear stiffness

arameter is defined as N = 

K NL L 
2 

K L 
. 

This structure is, probably, the simplest possible periodic non-

inear continuous system, and we will assess the influence of the

onlinearity on vibrations of a finite periodic structure (a symmet-

ic unit periodicity cell), on wave propagation in a semi-infinite

eriodic structure under time-harmonic force applied at its edge.

n the case, then the nonlinearity stiffness parameter is set to

ero, N = 0 , each of the three above-mentioned problems has a

ell-known elementary solution, which serves as a convenient

eference. 

It is convenient first to find eigenfrequencies of a finite struc-

ure, to understand, how the wave propagation should work in the

nfinite case. 

. Eigenfrequencies of a symmetrical periodicity cell 

As is known for linear periodic structures, the boundaries be-

ween pass- and stop-bands can be easily found as the eigen-

requency spectra of a finite counterpart of an infinite waveg-

ide, the symmetric unit periodicity cell shown in Fig. 1 with

ertical dashed lines as the boundaries of the finite struc-

ure. In the linear case, N = 0 , the response is time-harmonic,

 j ( x, t ) = U j ( x ) cos ωt, j = 1 , 2 . Then the so-called A-type boundary

onditions ( Eq. (4 )) define fixed edges 

 1 ( 1 / 2 ) = U 2 ( 3 / 2 ) = 0 (4)

The B-type ( Eq. (5 )) conditions define free edges 

 

′ 
1 ( 1 / 2 ) = U 

′ 
2 ( 3 / 2 ) = 0 (5)

The solution of the linear homogeneous equation Eq. (1) is

hown in Eq. (6) . 

 j ( x ) = B 1 j sin �x + B 2 j cos �x, � = 

ωL 

c 
, j = 1 , 2 (6)

It is a straightforward matter to formulate boundary problems

qs. (2) –( (4) ) and ( Eqs. (2) and (5) ) and obtain the eigenfrequency

quations for N = 0 ( Eq. (7) ). 

 

0 
A (�) = −4� cos 

(
�

2 

)(
� cos 

(
�

2 

)
+ 2 κ sin 

(
�

2 

))
= 0 

 

0 
B (�) = 4 �3 sin 

(
�

2 

)(
−2 κ cos 

(
�

2 

)
+ � sin 

(
�

2 

))
= 0 

(7)

Each of these equations introduces two sub-spectra: free vibra-

ions without deformation of the spring (eigenfrequencies found

rom conditions cos �2 = 0 and sin 

�
2 = 0 , respectively), and free vi-

rations which involve deformation of the spring (these eigenfre-

uencies are found by equating to zero expressions in the brack-

ts). 

As soon as the nonlinearity is taken into account, N � = 0, the

esponse should be sought in the form of truncated expansion

 Eq. (8) ). 

 j ( x, t ) = 

M ∑ 

m =1 

U j,m 

( x ) cos mωt , j = 1 , 2 (8)

However, since the equation Eq. (1) remains valid, the displace-

ent field in each spatial component has the form 

 j,m 

( x ) = b m 

j, 1 sin m �x + b m 

j, 2 cos m �x (9)
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To assess the influence of nonlinearity on the eigenfrequencies

q. (7) , we retain only one term in the decomposition Eq. 8 , M = 1 .

Then we substitute the approximate solution Eq. (9) into the

ystem of equations Eqs. (2) –(4) for Class A boundary conditions

nd into the system of equations Eqs. (2) and (5) for Class B ones.

n each case, we obtain the following equation written in vector

orm Eq. (10) . 

 ∗ cos (ωt) + C ∗ cos 3 (ωt) = 0 (10)

The vectors L, C are written explicitly in form Eq. (11) . 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

sin (�)(κ(b 1 1 , 1 - b 
1 
2 , 1 ) - �b 1 1 , 2 ) + cos (�)(κ(b 1 1 , 2 - b 

1 
2 , 2 ) + �b 1 1 , 1 ) 

�((b 1 2 , 2 − b 1 1 , 2 ) sin (�) + (b 1 1 , 1 − b 1 2 , 1 ) cos (�)) 

b 1 1 , 1 sin 

(
�

2 

)
+ b 1 1 , 2 cos 

(
�

2 

)

b 1 2 , 1 sin 

(
3�

2 

)
+ b 1 2 , 2 cos 

(
3�

2 

)

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

;

 = κN 

⎛ 

⎜ ⎝ 

((b 1 1 , 1 - b 
1 
2 , 1 ) sin (�) + (b 1 1 , 2 - b 

1 
2 , 2 ) cos (�)) 

3 

0 

0 

0 

⎞ 

⎟ ⎠ 

(11) 

We apply the conventional harmonic balance method and elim-

nate the cubic term using the identity cos 3 (ωt) = 

1 
4 (3 cos (ωt) +

os (3 ωt)) . Then balancing terms with cos( ωt ) only we obtain the

quations Eq. (12) . 

 + 

3 

4 

C = 0 (12)

The system of equations Eq. (12) is a homogeneous system of

ubic equations with respect to the unknown coefficients b m 

i, j 
. To

nd eigenfrequencies, an analog of the canonical determinant of

 system of linear algebraic equations should be formulated and

quated to zero. The generalization of the determinants in the case

f a system of polynomial equation case is the resultant of the sys-

em [10,11] . 

First, we define the resultant of two polynomials. Let

 ( x 1 , . . . , x n ) and B ( x 1 , . . . , x n ) be the polynomials in variables

 1 , . . . , x n . The polynomials are written in the form (we assume

hat all variables except x k are kept constant) A = 

∑ n 
i =0 a i x 

i 
k 

and

 = 

∑ m 

j=0 b j x 
j 

k 
. The polynomial A has the roots λi with respect to

he variable x k and the polynomial B has the roots μj with respect

o the same variable x k . Then we can define the resultant of the

wo polynomials as Eq. (13) . 

e s x k (A ( x 1 , . . . , x n ) , B ( x 1 , . . . , x n )) = a e 0 b 
d 
0 

∏ 

1 ≤ i ≤ d 
1 ≤ j ≤ e 

( μ j − λi ) (13)

With index x k we denote that resultant is taken with respect to

he variable x k , i.e. other variables are assumed to be fixed as con-

tants. Resultant of two polynomials can also be computed as the

eterminant of the Sylvester matrix, which consists of the polyno-

ial term coefficients a i , b j . The exact form of the Sylvester matrix

s easily found in the textbooks and therefore we will not repro-

uce it in the article. 

The theory of resultants of systems of this type is presented,

mong others, in the text [10] . In what follows, we apply this

heory with minimum mathematical details, which may be found

n the above reference. To find the resultant of the system com-

osed as more than two equations it is expedient to enumerate
quations. Thus, for the system Eq. (12) , we obtain the vector of

our equations which is shown in Eq. (14) . 

 + 

3 

4 

C = 

⎛ 

⎜ ⎝ 

e 1 
e 2 
e 3 
e 4 

⎞ 

⎟ ⎠ 

= 0 (14)

System Eq. (14) is the system of the polynomial equations with

espect to the unknown amplitudes of the displacements b 1 
1 , 1 

,

 

1 
1 , 2 

, b 1 
2 , 1 

, b 1 
2 , 2 

. To find the resultant of the system Eq. (14) we have

o define all permutations of the unknown variables of size n − 1 =
 . The set of all permutations is V = { (b 1 

1 , 1 
, b 1 

1 , 2 
, b 1 

2 , 1 
) , . . . , (b 1 

2 , 2 
,

 

1 
2 , 1 , b 1 1 , 2 ) } . The set V contains A 

4 
3 = 24 permutations, where A 

i 
j 
=

i ! 
(i − j)! 

. In order to find the resultant for every entry in the set V ,

e use the following procedure. 

For brevity, we consider the only permutation (b 1 
1 , 1 

, b 1 
1 , 2 

, b 1 
2 , 1 

) .

irst, we take resultants of an arbitrary pair of equations from

q. (14) with respect to the first variable b 1 
1 , 1 

. 

 1 , 1 = re s b 1 
1 , 1 

( e 1 , e 2 ) 

 1 , 2 = re s b 1 
1 , 1 

( e 1 , e 3 ) 

 1 , 3 = re s b 1 
1 , 1 

( e 1 , e 4 ) 

(15) 

The second step is to take resultants from Eq. (15) with another

ariable, b 1 
1 , 2 

. It is written as Eq. (16 ). 

 2 , 1 = re s b 1 
1 , 2 

( r 1 , r 2 ) 

 2 , 2 = re s b 1 
1 , 2 

( r 1 , r 3 ) 
(16) 

The final step is the resultant of the resultants from the pre-

ious step with respect to the yet unused variable, b 1 
2 , 1 

, which is

ritten as Eq. (17) . 

 3 , 1 = re s b 1 
2 , 1 

( r 2 , 1 , r 2 , 2 ) (17)

The resulting equation Eq. (17) contains the unknown ampli-

ude b 1 
2 , 2 

and the other variables κ , N , � stated above as the

arameters. The resultant of the system Eqs. (2) –(4) is the least

ommon part among the all possible final steps r 3,1 for the all

ossible permutations in V . For the problem Eqs. (2) –(4) , resultant

q. (17) contains the single parameter β = (b 1 2 , 2 ) 
2 
N, which is the

roduct of the scaled unknown amplitude and the nonlinear stiff-

ess. In the paper, we assume that unknown amplitude is equal

o 0.1, for example (b 1 2 , 2 ) 
2 = 0 . 1 , and we change only nonlinear

tiffness as β = 0 . 1 N. However, we note that for any prescribed

alue of the parameter β there is an infinite number of possible

ombinations of the amplitudes b 1 2 , 2 and nonlinear stiffness N . 

Thus, the equations Eq. (7) may be used as the calibration con-

ition for the single resultant procedure for arbitrary permutation

f the variables, i.e. we normalize Eq. (17) such that r 3 , 1 = D 

0 
A 
(�)

 Eq. (7) ) at β = 0 . Therefore, the procedure Eqs. (15) –(17) is not

eed to be done among all permutations of the unknown dis-

lacements. It should be noted that the same result, in this case,

s obtained with the full procedure described above. 

Using normalization procedure or the complete resultant

ethod, one can obtain the backbone eigenfrequency curves for a

ymmetrical periodicity cell, shown in Fig. 1 . The final form of the

on-linear eigenfrequency equation for A- and B-type boundary
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Fig. 2. Eigenfrequencies of a symmetrical cell both type A boundary conditions and 

type B boundary for different parameters β = (b 1 2 , 2 ) 
2 
N = N (vertical axis) and eigen- 

frequencies of a linear symmetrical periodicity cell (vertical dashed lines). 
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conditions is Eq. (18) . 

D A (β, �) = −4� cos 

(
�

2 

)(
2 κ sin 

(
�

2 

)

+� cos 

(
�

2 

)
− 24 βκsin 

3 

(
�

2 

))
= 0 

D B (β, �) = 4 �3 sin 

(
�

2 

)(
−2 κ cos 

(
�

2 

)

+� sin 

(
�

2 

)
− 24 βκcos 3 

(
�

2 

))
= 0 

(18)

As is proved in [13] for the linear case, β = 0 , the eigenfrequen-

cies found from these equations, D 

0 
A 
= 0 and D 

0 
B 
= 0, see also Eq. (7) ,

coincide with all boundaries between stop- and pass-bands in an

infinite periodic structure composed of the cells shown in Fig. 1 .

Therefore, it is reasonable to assume that, in the non-linear case,

eigenfrequencies found from equations Eq. (18) may be considered

as educated guesses for positions of these boundaries. Naturally,

a proof of this statement requires a generalization of the Floquet

theory, and this task lies beyond the scope of this paper. However,

the reader may be referred to [14] , where it has been shown that

stop-band boundaries for an infinite radially periodic membrane

also match fairly well spectra of symmetric periodicity cells with

the A- and B-type boundary conditions – although the Floquet the-

ory is not directly applicable for the problems formulated in polar

coordinates. 

The first five eigenfrequencies found from equations Eq. (18) are

shown in Fig. 2 as functions of the parameter β for κ = 1 . It is

seen, the structure of eigenfrequency spectra is the same as in the

linear case: the eigenfrequencies found from equations cos �2 = 0 ,

sin 

�
2 = 0 correspond to the eigenmodes with no deformation of

the spring. Thus, these are independent upon the nonlinearity pa-

rameter β (vertical lines in Fig. 2 ). The second part of the spectra

is the purely non-linear eigenfrequencies which are dependent on

a non-linear parameter β , which merges their linear counterparts

in Eq. (7) as soon as β = 0 . 

It should be noted, that the eigenfrequency curve cannot be ob-

tained directly with other methods unless the ’weak nonlinearity’

assumption is used. 

The eigenfrequency spectra analysis suggests that the attenu-

ation zones, similar to the linear stop-bands, should exist in the

non-linear case. To verify this statement, the forcing problem for a

semi-infinite periodic nonlinear structure should be solved. 

4. Forcing problem 

The standard “virtual experiment” for verification of posi-

tions of pass- and stop-bands predicted by the Floquet theory

in the linear case is the calculation of Insertion Losses (IL) for a

semi-infinite structure, which accommodates a variable number

of periodicity cells near its edge (where a driving force is ap-

plied). The “rest” of the structure (its part extended to infinity)

is homogeneous. In pass-bands, the energy flow is insensitive to

the amount of inserted periodicity cells and remains of the same

order as it would be in a homogeneous structure. In stop-bands,
he energy flow is heavily suppressed due to the periodicity, and

L grow as the amount of inserted periodicity cells increases. 

We hypothesize that eigenfrequencies defined by equations

q. (18) in the nonlinear case preserve their properties known in

he linear case. To verify this statement, we need to solve the

orcing problem for the semi-infinite periodic structure shown in

igure 1 and perform numerical energy flow analysis. Energy is

ransmitted by the travelling waves, thus, for the forcing problem

he sine and the cosine functions in Eq. (9) are replaced with the

xp ( ± i �x ). The boundary conditions are replaced with the exci-

ation condition (a harmonic force) at the left boundary and Som-

erfeld condition at the infinity. Additionally, we assume that the

tructure is semi-infinite and exists only if x ≥ 0. The conditions

ave the form Eq. (19) . 

f 1 (0 , t) = 1 ∗ cos (ωt) 

 

m 

b m 

last, 2 cos (mωt) = 0 

(19)

The formulation of the forcing problem makes the system of

ubic equations inhomogeneous, thus, the problem becomes inho-

ogeneous and can be written in the form Eq. (20) 

M ∑ 

 =1 

L m 

cos ( mωt ) + κβ

[ 

M ∑ 

m =1 

C m 

cos ( mωt ) 

] 3 

= −F 1 cos ωt (20)

Using again the harmonic balance method we obtain the final

nhomogeneous system of coupled polynomial equations with re-

pect to the unknown amplitudes of the displacements b m 

i, j 
in each

ime-harmonic mode. For the inhomogeneous system, the resultant

ay be found analogously to the homogeneous case, however, it

s required to introduce an auxiliary variable to homogenize the

ystem. 

For every permutation V = { (b 1 1 , 1 , b 
1 
1 , 2 , b 

1 
2 , 1 , . . . ) , . . . , (b 1 2 , 2 , b 

1 
2 , 1 ,

 

1 
1 , 2 

, . . . ) } , we introduce the auxiliary variable a and compose the

ystem of the homogeneous equations with respect to the un-

nowns a, b 1 1 , 1 , b 
1 
1 , 2 , . . . , b 

k 
n, 2 

in the following way. 

First, we multiply each equation by a k 1 , where k 1 is the high-

st power of the first variable in a permutation (for example, b 1 
1 , 1 

)

n the equation at hand. Second, we replace every unfixed variable

ollowing the rule b 1 
1 , 2 

→ 

b 1 
1 , 2 
a , . . . , b k 

n, 2 
− > 

b k 
n, 2 
a . The obtained sys-

em has two properties. First, it is homogeneous and second, its

olution at a = 1 is the solution of the original system. The result-

ng system for the fixed variable b 1 
1 , 1 

is written as Eq. (21) 

 

(
b 1 1 , 1 ; a, b 1 1 , 2 , . . . , b 

k 
n, 2 

)
= 0 (21)

The resultant of the system is taken as Eqs. (15) –(17) . It should

e noted that in this case the resultant is taken with respect to the

ll possible permutations in the set ˜ V (b 1 
1 , 1 

) = { a, b 1 
1 , 2 

, . . . , b k 
n, 2 

} . 
As soon as the coefficients b m 

i, j 
are found, the performance of

he semi-infinite structure with the given number of periodicity

ells is fully defined. We are interested in the assessment of the

eriodicity-induced vibro-isolation effect. It is a common practice

o quantify it by the Insertion Losses function defined as Eq. (22) .

 L n (x, �) = 10 log 10 

(
E 0 (�) 

E n (x, �) 

)
(22)

In Eq. (22) E 0 ( �) is the energy flow through the homogeneous

od and E n ( x , �) is the energy flow through the structure with n

eriodic inserts at the same frequency � and the same excitation

onditions. In the linear case, this quantity is constant along the

tructure. In the nonlinear case, it becomes dependent on the

oordinate x . It occurs because the energy injected into the struc-

ure at the directly excited frequency � leaks at each non-linear
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Fig. 3. The energy flow through the five ( n = 5 ) consequent periodicity cells. 

Fig. 4. Insertion Losses for N = 0 . 3 for a different number of periodic insertions 

n = 3 , 5 , 10 (blue, red, green). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Insertion Losses for n = 10 periodic insertions (green) and eigenfrequencies 

of the unit symmetrical cell (vertical lines, blue, dashed), N = 0 . 3 . (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

i  

s  

t  

fl  

�

 

x  

m  

f

 

s  

p

 

c

 

t  

H  

p  

p  

c  

a  

p  

F  

t  

F  

o  

i  

F  

o

5

 

s  

f  

i  

w

 

a  

a  

a  

f  

e  

a  

t

 

s  

q  

a

D

 

c  

i

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

[  

 

[  
nterface to high-order harmonics m �. Naturally, within each

egment, the energy is preserved, but each interface contributes

o the energy loss at the frequency �. In the Fig. 3 the energy

ow E 5 ( x , 0.1) through the five periodicity cells at the frequency

= 0 . 1 is shown. 

Thus, computations of Insertion Losses are done at the point

 = n + 1 / 2 , where the multi-segment periodic insert ends and

erges the uniform semi-infinite waveguide. The insertion losses

or a number of cells n = 3 , 5 , 10 is shown in Fig. 4 . 

We note that the higher order time-harmonics do not introduce

ignificant changes in energy flow and, thus, in Insertion Losses

icture and stop-band position. 

The positions of the eigenfrequencies of the symmetrical unit

ell versus Insertion Losses are shown in the Fig. 5 . 

As clearly seen from this graph, the non-linear periodic struc-

ure features pass- and stop bands similar to the linear one.

owever, it is hard to claim that the eigenfrequencies of a unit

eriodicity cell precisely define boundary frequencies separating

ass- and stop-bands. Therefore, the nonlinear counterpart of the

anonical Floquet theory for linear periodic systems is required to

ssess the validity of the use of eigenfrequencies of the unit cell to

redict the location of pass- and stop-bands. Such an approximate

loquet theory may be formulated for the system considered in

his paper using the resultant method along with the conventional

loquet periodicity conditions. The similar task for a radially peri-

dic membrane (i.e., in polar coordinated) has been accomplished

n [14] in the linear formulation of the problem. The nonlinear

loquet theory approximations, nevertheless are out of the scope

f the paper. 
. Conclusion 

We have demonstrated that the novel method of polynomial

ystem resultants may reliably be used for solving nonlinear eigen-

requency and wave propagation problems for continuous mechan-

cal systems. In contrast to existing methods, the assumption of a

eak nonlinearity is not a pre-requisite for its applicability. 

Using this method, we have computed the Insertion Losses for

 semi-infinite structure with a variable number of periodic inserts

nd found that there are frequency ranges, where Insertion Losses

re high and sensitive to the number of periodic inserts and the

requency ranges, where they are not. We have also computed the

igenfrequencies (backbone curves) for nonlinear free vibrations of

 unit symmetric periodicity cell and found a good agreement be-

ween the two solutions. 

These results much resemble the properties of linear periodic

tructures and their unit periodicity cells and suggest that the Flo-

uet theory may be generalized for non-linear waveguides. This is

 challenging task for future studies. 
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