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a b s t r a c t 

Subjected to electric and/or mechanical stimuli, either deterministically or stochastically, dielectric elas- 

tomer structures may undergo remarkable oscillations which can deteriorate the operating performance 

or even induce complete failure. This work investigates the reliability evaluation of ideal dielectric elas- 

tomer balloon subjected to harmonic voltage and random pressure simultaneously, with the objective to 

provide some guidance on the design of dielectric elastomer structures/ components. The operating safety 

domain is determined by the material strength of dielectric elastomer material, while the reliability eval- 

uation comes down to solving a first-passage failure problem in mathematics. The stochastic differential 

equations with respect to the first integral and phase difference are derived by executing a special trans- 

formation and stochastic averaging. The reliability function ( i.e. , the probability of system states being in 

a specified safety domain in a given time interval) is then obtained by numerically solving the associated 

backward Kolmogorov equation. The influences of some crucial parameters ( e.g. , the initial energy, the 

intensity of random pressure, the amplitude and frequency of harmonic voltage) on the reliability are 

discussed in detail. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Due to its prominent advantages ( e.g. , the capacity undergoing

arge stretch, capacity of rapid response to external stimuli, small

ass density, and excellent compatibility with chemistry and bi-

logy), the dielectric elastomer (DE) material has attracted exten-

ive attention in scientific and industrial communities [1 , 2] . DE

lm with compliant electrodes covered on its two surfaces consti-

utes the so-called DE structures , the in-plane dimensions of which

an be easily changed by imposing an external voltage. By utilizing

he electromechanical coupling property, DE structures have been

xtensively adopted as sensors for sensing external information

nd actuators for applying mechanical actions. The DE-based sen-

ors and actuators possess plenty of advantages and are perfectly

uitable for the soft robotics applications [3–15] . 

The quasi-static behaviors of various types of DE structures

 e.g. , plane, tubular and balloon) were extensively investigated. In

ost practical applications, however, the soft devices composed

f DE structures always operate in dynamic circumstances. Under
∗ Corresponding author. 
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eterministically time-varying voltage and/or mechanical load, 

he time-domain responses of DE structures were extensively

nvestigated [16–24] . For a DE balloon, the prominent depen-

ence of fundamental frequency on pressure difference, external

oltage, and pre-stretch were discovered [23] . Some typical non-

inear behaviors such as multiple-frequency resonance, jump, and

ifurcation were predicted theoretically [25 , 26] . 

Large stretchability and low stiffness are the notable advantages

f DE structures. These properties however, induce its sensitivity

o external disturbances, such as the pressure variation induced

y temperature fluctuation and the voltage variation induced by

lectromagnetic field. Subjected to random voltage, random pres-

ure, and combined excitations of harmonic voltage and random

ressure, the stationary responses of DE structures were studied

27–29] and the asymmetric property of the stationary response

f stretch ratio in the case with random voltage or random pres-

ure is discovered as well as the phenomena of stochastic jump

nd bifurcation in the case with combined excitations. Also, the

andom responses of the DE generator and the mechanical system

ncluding DE components were investigated [30–31] . 

Dissimilar from a traditional metal material which has an

lmost perfect lattice micro-structure, DE material possesses inho-
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechrescom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechrescom.2019.103459&domain=pdf
mailto:xiaolingjin@zju.edu.cn
https://doi.org/10.1016/j.mechrescom.2019.103459


2 Y. Tian, X. Jin and Z. Huang et al. / Mechanics Research Communications 103 (2020) 103459 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Potential energy function of DE balloon. ( s r = 0.1, s f = 0.2, r ad = 0.1). 
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l  

a  
mogeneous long-chain structure. From the viewpoint of material

strength, the amount of micro-defect and coupled interaction of

strongly electric field and mechanical load render DE material

easier to fail than the traditional material. Four typical modes

of failure exist in DE structures, including electrical breakdown,

electromechanical instability, loss of tension, and rupture induced

by large stretch [32–36] . Early research focused on the pull-in

failure [37 , 38] . Plante and Dubowsky established three large-scale

failure criteria of DE actuators: pull-in, material strength, and di-

electric strength [32] . Zhao and Suo studied the electro-mechanical

instability of DE structures by the Hessian of free-energy function

and found that the stability can be dramatically enhanced by

pre-stresses [39] . More recently, buckling mode instabilities in

DE structures were analyzed which could not be detected by

the Hessian method [40–42] . For the DE structures with stretch

ratio-dependent permittivity, Leng et al. analyzed the electro-

mechanical stability and established the relation between nominal

quantities and real quantities [43] . Chen et al. investigated the

dynamic electro-mechanical instability of DE balloon subjected

to parametric combinations of direct current (DC) voltage and

alternate current (AC) voltage [44] . 

The existing literature regarding failure analysis of DE structures

focuses on the quasi-static case or the deterministically dynamic

case . The electric voltage and mechanical pressure imposed on DE

structures, however, are inevitably perturbed by the circuit noise

and temperature fluctuation. The random disturbance may induce

large-amplitude responses, and it is just the large-amplitude

random response which induces failure. This manuscript attempts

to address the failure probability of DE structures under deter-

ministic and random stimuli. In this work, the system reliability

is described as a first-passage failure problem. The deterministic

voltage is modeled by a harmonic function, while the pressure

disturbance is modeled as Gaussian white noise. By combining

the transformation technique, stochastic averaging and Markov

diffusion process theory, the reliability function and various statis-

tical quantities are obtained by numerically solving the backward

Kolmogorov equation. Numerical results are given to demonstrate

the implementation and accuracy of the proposed method and the

influences of some crucial system parameters on system reliability.

2. Equation of motion of stretch ratio 

As a typical configuration of DE structures, DE balloon achieves

extensive applications, e.g. , as the main body of pump and loud-

speaker. When used as a pump, the voltage with rectangular or

triangular wave is imposed to periodically change its volume.

When used as a soft loudspeaker, a constant voltage and a con-

stant pressure are set to maintain its initial configuration, and then

a deterministic harmonic voltage signal is imposed to excite the

vibration around the initial configuration. The pressure difference

however, is dramatically influenced by temperature change which

is fluctuating constantly. Pressure disturbance may significantly

deteriorate the operating performance of a soft loudspeaker as

the frequency band of pressure disturbance covers its resonant

frequencies. Stochastic jump and bifurcation occur in the DE

balloon subjected to harmonic voltage and random pressure [28] ,

which dramatically degrades the reliability. 

Excited by the voltage and pressure, DE balloon will experience

spherical symmetrical deformation as long as it does not lose

its stability. In this case, the DE balloon behaves as a simple

single-degree-of- freedom oscillator [28] . The average radii of

the undeformed and deformed states are set as R and r , respec-

tively. A DC voltage �0 and a harmonic AC voltage are imposed

on electrodes simultaneously. Random pressure difference p is

imposed to inflate the balloon. Assume that the DE material is

incompressible with ideal dielectric behavior, and the DE balloon
s taken to deform under isothermal condition. Here, we adopt

he well-known neo-Hookean model to describe the elastic energy

f the ideal DE material. Then, the non-dimensional governing

quation of the stretch ratio for DE balloon is derived as [28] 

¨ + c ̇ λ + 2 λ − 2 λ−5 − pR 

μK 

λ2 − 2 

ε�2 

μK 

2 
λ3 = 0 (1)

n which, λ = r/R is the stretch ratio; the symbol “dot” denotes

he differentiation with respect to t; t = t̄ R −1 √ 

μ/ρ is the non-

imensional time; t̄ is the actual time; μ is the elastic modulus;

is the mass density; c is the non-dimensional viscous damping

oefficient; ε is the permittivity; K denotes the thickness of bal-

oon in free state. The total voltage Φ = Φ 0 [1 + r ad sin ( Ωt )], in

hich r ad is the ratio of the amplitude of AC voltage to DC voltage;

is the non-dimensional frequency of AC voltage. The random

ressure is p = p 0 [1 + ξ ( t )], in which p 0 is the mean value of

ressure; ξ ( t ) is zero-mean Gaussian white noise with intensity

 D . By substituting analytical expressions of voltage and pressure

nto the governing Eq. (1) , we obtain, 

¨ + c ̇ λ + g ( λ) = s r λ
2 ξ ( t ) + s f λ

3 
[
2 r ad sin ( 	t ) − r 2 ad / 2 cos ( 2	t ) 

]
(2

n which, the parameters s r = p 0 R / ( μK ) and s f = 2 ε�2 
0 
/ (μK 

2 )

easuring the mean pressure and mean voltage, respectively. The

onlinear restoring force is expressed as 

 ( λ) = 2 λ − 2 λ−5 − s r λ
2 − s f 

(
1 + r 2 ad / 2 

)
λ3 (3)

Integrating the restoring force yields the potential energy of the

ystem in Eq. (2) , i.e. 

 ( λ) = λ2 + λ−4 / 2 − s r λ
3 / 3 − s f 

(
1 + r 2 ad / 2 

)
λ4 / 4 (4)

he potential energy function only possesses one potential well

nd approaches a minimum value V min at the sole stable equilib-

ium point λeq . The shape of the potential energy is asymmetric

ith respect to this equilibrium point as shown in Fig. 1 . Once the

ynamic response exceeds the critical value associated with the

ump of the potential function, the response increases infinitely

hich corresponds to the strength failure and the loss of function-

lity. It is appropriate to set the local maximum value of potential

nergy V max as the threshold of failure . 

. Transformation technique and stochastic averaging 

The ultimate purpose of random analysis is to evaluate the re-

iability of systems/structures and further to provide some guid-

nce to improve the reliability. There exist two major failure modes
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Fig. 2. Schematic of safety domain with respect to the energy and phase difference. 
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n random analysis, i.e. , first-passage failure and fatigue failure.

irst-passage failure postulates that once the dynamic response

eaches a prespecified safety boundary for the first time, the sys-

em/structure fails. Fatigue failure occurs as the accumulated dam-

ge reaches a threshold and can also be described as a first-

assage problem [45–47] . Herein, we describe the failure problem

f DE balloon as a first-passage problem. 

System in Eq. (2) possesses strongly nonlinear stiffness and is

isturbed by the combined excitations of Gaussian white noise and

wo harmonic excitations with different frequencies. The modal

amping is generally slight, while the pressure disturbance in-

uced by temperature fluctuation is smaller compared to the static

ressure, i.e. , the average pressure. Thus, it is suitable to investi-

ate the reliability of the system in Eq. (2) through the stochastic

veraging method [48] . 

Introduce a special transformation as follows [28] 

gn ( λ − λeq ) U ( λ) = 

√ 

H cos ϕ, 

˙ = −
√ 

2 H sin ϕ 

(5) 

n which, ϕ is the phase, H = 

˙ λ2 / 2 + U(λ) is the first integral of

he system in Eq. (2) and the modified potential energy U is de-

ned as, 

 ( λ) = V ( λ) − V ( λeq ) (6) 

he Itô stochastic differential equations with respect to the first

ntegral H and the phase ϕ are derived by starting from the Itô

quations of stretch ratio and its ratio, and then using the Itô dif-

erential rule. 

Due to the existence of harmonic excitations, the system in

q. (2) may undergo resonant and non- resonant responses. Herein,

nly the resonant case is considered which corresponds to se-

ere vibration and may induce failure in a short time interval. The

hase difference Γ is introduced and expressed as, 

= 2	t − k 

q 
ϕ (7) 

here, k and q are relatively prime positive integers and satisfy the

elation, 

2	

ω ( H ) 
= 

k 

q 
+ σ (8) 

n which, σ = O ( c ) is the detuning parameter. The averaged fre-

uency ω( H ) can be calculated from ω(H) = 2 π/ T h (H) , in which

he first integral-dependent period T h ( H ) is expressed as, 

 h ( H ) = 2 

∫ λ2 

λ1 

1 √ 

2 H − 2 U ( λ) 
dλ (9) 

n which, λ1 and λ2 correspond to the lower and upper bounds of

otion with energy H , respectively, and can be determined by two

djacent roots of the equation H − U ( λ) = 0. It is obvious that 0 <

1 < λeq < λ2 . 

Here, we transform the original variable pair ( H , ϕ) to a new

ariable pair ( H , Γ ). Note that the variances of the first integral H

nd the phase difference Γ are prominently slower than that of

he phase ϕ. Performing the time averaging yields the following

veraged Itô stochastic differential equations with respect to the

ew variable pair ( H , Γ ) [28] , i.e. 

dH = m 1 dt + σ 1 dB ( t ) 

d� = m 2 dt + σ 2 dB ( t ) 
(10) 
here the averaged drift and diffusion coefficients are calculated

y 

m 1 = 〈 m 1 〉 t , m 2 = 

〈
2	 − k 

q 
m 2 

〉
t 

, b 11 = 〈 σ 2 
1 〉 t , 

b 22 = 

〈
k 2 

q 2 
σ 2 

2 

〉
t 

, b 12 = b 21 = 

〈
k 

q 
σ1 σ2 

〉
t 

(11) 

n which, 

 i = F i + D 

∂ G i 

∂H 

G 1 + D 

∂ G i 

∂ϕ 

G 2 , σ
2 
i = 2 DG 

2 
i ( i = 1 , 2 ) 

F 1 = −2 cH sin 

2 ϕ −
√ 

2 H sin ϕs f λ
3 

×
[

2 r ad sin 

(
�

2 

+ 

k 

q 

ϕ 

2 

)
− r 2 

ad 

2 

cos 

(
� + 

k 

q 
ϕ 

)]
, 

F 2 = −c sin ϕ cos ϕ + 

g ( λ) √ 

2 H cos ϕ 

− cos ϕ √ 

2 H 

s f λ
3 

×
[

2 r ad sin 

(
�

2 

+ 

k 

q 

ϕ 

2 

)
− r 2 

ad 

2 

cos 

(
� + 

k 

q 
ϕ 

)]
, 

G 1 = −
√ 

2 H sin ϕs r λ
2 , G 2 = −cos ϕ √ 

2 H 

s r λ
2 

(12) 

he stretch ratio λ in Eq. (12) is expressed by the first integral H

nd the phase ϕ through the transformation in Eq. (5) . Further-

ore, replacing the time averaging by space averaging yields, 

 

·〉 t = 

2 

T h (H) 

∫ λ2 

λ1 

[ ·] √ 

2 H − 2 U(λ) 
d λ (13) 

. Reliability evaluation 

Define a conditional reliability function R ( t | h 0 , γ 0 ) as P {( H ( τ ),

( τ )) ∈ 	s , τ ∈ (0, t ]|( h 0 , γ 0 ) ∈ 	s }, which measures the proba-

ility of system response keeping in a prespecified safety domain

s during the time interval (0, t ] under the condition of the initial

tate ( h 0 , γ 0 ) within the safety domain. Herein, the safety domain

s is determined by the difference between the local maximum

alue V max and the local minimum value V min of the potential

nergy as shown in Fig. 2 . The system fails if and only if the

otal energy exceeds the critical value h c = V max − V min . The

wo-dimensional safety domain 	s adopted here is defined as 0

H ( τ ) ≤ h c , − 2 π ≤ Γ ( τ ) ≤ 2 π . It is worth to pointing out that

oth the mechanical and electric mechanisms are considered in

he reliability analysis because the energy H adopted to measure

ystem responses includes parameters s r and s f simultaneously. 
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Fig. 3. Conditional reliability functions and conditional probability densities with 

several different combinations of initial energy and random pressure intensity. 

Fig. 4. Dependence of the mean first-passage time on the initial energy for two 

different values of random pressure intensity. 
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The conditional reliability function R ( t | h 0 , γ 0 ) is governed by the

following backward Kolmogorov equation [49] , 

∂R (t| h 0 , γ0 ) 

∂t 
= m̄ 1 ( h 0 , γ0 ) 

∂R (t| h 0 , γ0 ) 

∂ h 0 

+ m̄ 2 ( h 0 , γ0 ) 
∂R (t| h 0 , γ0 ) 

∂ γ0 

+ 

1 

2 

b̄ 11 ( h 0 , γ0 ) × ∂ 2 R (t| h 0 , γ0 ) 

∂h 

2 
0 

+ ̄b 12 ( h 0 , γ0 ) 
∂ 2 R (t| h 0 , γ0 ) 

∂ h 0 ∂ γ0 

+ 

1 

2 

b̄ 22 ( h 0 , γ0 ) 
∂ 2 R (t| h 0 , γ0 ) 

∂γ 2 
0 

(14)

The initial condition is as, 

R (0 | h 0 , γ0 ) = 1 , ( h 0 , γ0 ) ∈ 	s (15)

while the boundary conditions are, 

R (t| 0 , γ0 ) = finite , 

R (t| h c , γ0 ) = 0 , 

R (t| h 0 , γ0 + 4 nπ) = R (t| h 0 , γ0 ) 

(16)

The governing Eq. (14) with the initial and boundary condi-

tions in Eqs. (15) and ( 16 ) constitutes a definitive problem with

respect to the conditional reliability function. It is then numerically

solved by finite difference method. For the lattice points within the

safety domain 	s the explicit central difference scheme is adopted,

while for the lattice points at the boundary h 0 = 0 the for-

ward difference scheme is adopted. At the boundaries γ 0 = ±2 π ,

the expressions R ( t | h 0 , −2 π − �γ 0 ) = R ( t | h 0 ,2 π − �γ 0 ) and

R ( t | h 0 ,2 π + �γ 0 ) = R ( t | h 0 , −2 π + �γ 0 ) are adopted in the cen-

tral difference scheme. 

The conditional probability density of the first-passage time is,

p(T | h 0 , γ0 ) = −∂R (t| h 0 , γ0 ) / ∂t | t= T (17)

The first-order moment, i.e. , the mean first-passage time, pos-

sesses important practical significance and can be calculated by the

following relation, 

μ1 ( h 0 , γ0 ) = 

∫ ∞ 

0 

T p(T | h 0 , γ0 ) d T (18)

5. Numerical results and discussion 

Numerical results are given in this section to demonstrate the

implementation and accuracy of the established method for evalu-

ating the first-passage failure of DE balloon by comparing with the

results from Monte Carlo simulations (MCS) of the original system

in Eq. (1) . The conditional reliability function is first calculated, as

well as the mean first-passage time. Then, the influences of the

initial energy, the intensity of random pressure, the amplitude and

frequency of harmonic voltage on the reliability are discussed in

detail. 

In the numerical example, the ratio of relatively prime positive

integers is set as k/q = 2 . As k and q are relatively prime positive

integers, k/q = 2 actually indicates that k = 2 and q = 1. Referring

to the parameter values in the existing literatures [22 , 25 , 28] ,

the values of system and excitation parameters are set as: the

non-dimensional damping coefficient c = 0.01, the amplitude ratio

of the AC to DC components of the imposed voltage r ad = 0.1,

the non-dimensional frequency of harmonic voltage Ω = 2.95,

the non-dimensional quantities s r = 0.1 and s f = 0.2, the initial

energy h 0 = 0.0, and the intensity of pressure disturbance D = 0.3,

without otherwise mentioned. In this case, the stretch ratio asso-

ciated with the stable equilibrium point is λeq = 1.029 while the

minimum and maximum values of the potential energy are 1.412

and 4.050, respectively. 
For the above values of system parameters, the DE balloon is

n the resonant state. Fig. 3 (a) depicts the conditional reliability

s a function of time interval for several different combinations of

nitial energy values and excitation intensities and the conditional

robability density of the first-passage time is shown in Fig. 3 (b).

bviously, the present results (denoted by solid curves) coincide

ell with the MCS results (denoted by discrete symbols). The



Y. Tian, X. Jin and Z. Huang et al. / Mechanics Research Communications 103 (2020) 103459 5 

Fig. 5. Dependence of the mean first-passage time on the random pressure inten- 

sity for two different values of initial energy. 

Fig. 6. Conditional reliability functions and conditional probability densities with 

two different amplitude ratios of imposed voltage. 

r  

a

t  

r  

v  

t  

Fig. 7. Dependence of the mean first-passage time of DE balloon on the amplitude 

ratio of imposed voltage. 

Fig. 8. Conditional reliability functions and conditional probability densities with 

two different frequencies of harmonic voltage. 
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i  
eliability decreases with the increase of the initial energy value

nd/or the intensity of random pressure. 

Figs. 4 and 5 depict the dependence of the mean first-passage 

ime on the initial energy and the intensity of random pressure,

espectively. As the initial energy h 0 is smaller than a critical

alue ( i.e., h 0 < 0.5 in this instance), the mean first-passage

ime of DE balloon slightly fluctuates with the change of initial
nergy. For large initial energy ( i.e., h 0 > 0.5 in this instance), the

ean first-passage time sharply decreases with the initial energy

alue. From the view of randomness, the small initial energy can

e regarded as an additional small disturbance and it has only

egligible influence on the reliability. As shown in Fig. 5 , the mean

rst-passage time of DE balloon monotonically decreases with the

ncrease of the intensity of random pressure, and the descent rate
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Fig. 9. Dependence of the mean first-passage time on the frequency of harmonic 

voltage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

v  

e  

p  

w  

t  

p  

a  

m  

t  

f

D

A

 

F  

1  

U

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tends to moderate with the increase of the intensity of random

pressure. The large intensity of random pressure induces large

random response and so small system reliability. 

The influence of the amplitude ratio of AC component to DC

component of imposed voltage on the reliability of DE balloon

is shown in Fig. 6 (a) for the conditional reliability function and

Fig. 6 (b) for the conditional probability density of first-passage

time. As r ad = 0, the DE balloon is subjected to a constant voltage

and a time-varying pressure with static and random components.

Although the DE balloon with r ad = 0 belongs to the non-resonant

case [28] , the obtained results also possess high accuracy, as illus-

trated by compared with the MCS results. As shown in Fig. 6 (a)

and (b), DE balloon without harmonic voltage ( i.e., r ad = 0)

possesses the highest reliability compared with the cases with

non-zero harmonic voltage (such as r ad = 0.1). Given the initial

energy h 0 = 0 and the initial phase difference γ 0 = 0, the relation

of the mean first-passage time to the voltage ratio is depicted in

Fig. 7 . The mean first-passage time monotonically decreases with

the increase of the amplitude ratio of imposed voltage. 

The influences of the frequency of harmonic voltage on the re-

liability function and the probability density of first-passage time

are depicted in Fig. 8 (a) and (b), respectively. The relation of the

mean first-passage time to the frequency of harmonic voltage is

depicted in Fig. 9 . It is worth to pointing out that for the frequency

around the resonant frequency 	 ≈ 2.95, the system possesses the

minimal reliability. 

6. Conclusions 

In this work, the reliability evaluation of a DE balloon sub-

jected to a sinusoidal voltage and a random pressure disturbance

has been investigated, which is described as a first-passage fail-

ure problem in mathematics. By adopting a special transformation

and stochastic averaging, the backward Kolmogorov equation with

respect to the conditional reliability function is derived. Numeri-

cally solving this equation yields the conditional reliability func-

tion, the conditional probability density of first-passage time, as

well as various-order statistical moments of first-passage time. The

present results coincide with the MCS results very well whether

for the resonant case or for the non-resonant case. For small initial

energy, the reliability of the DE balloon is insensitive to the varia-

tion of initial energy. However, for large initial energy, it monotoni-

cally decreases with initial energy. The reliability of the DE balloon

monotonically decreases with the amplitude ratio of imposed volt-

age. The system possesses the minimal reliability for the frequency

around the resonant frequency. 
The objective of this work is to accurately predict the reliability

f a DE balloon subjected to the combined excitation of harmonic

oltage and random pressure disturbance, which is just the real

xcitation in the operating process of DE balloon actuators. It may

rovide some guidance on the design of DE-based components

ith the objective to maximize system reliability. By combining

he present procedure and the stochastic dynamic programming

rinciple or stochastic maximum principle, it is possible to develop

 feedback control strategy to maximize system reliability. Further-

ore, it is of great significance to generalize the present procedure

o the cases with non-Gaussian or non-white noise. These are our

urther works. 
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