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A B S T R A C T

Fractional viscoelastic models have been confirmed to achieve good agreement with experimental data using
only a few parameters, in contrast to the classical viscoelastic models in previous studies. With an increasing
number of applications, the physical meaning of fractional viscoelastic models has been attracting more at-
tention. This work establishes an equivalent viscoelasticity (including creep and relaxation) between the frac-
tional Maxwell model and the time-varying viscosity Maxwell model to reveal the physical meaning of fractional
viscoelastic models. The obtained time-varying viscosity functions are used to interpret the physical meaning of
the order of the fractional derivative α from the perspective of rheology. When α changes from 0 to 1, the
viscosity functions quantitatively exhibit the transformation of viscoelasticity from elastic solid to Newtonian
fluid, which can be considered as an extension of the Deborah number. The infinite viscosity coefficient for α=0
shows the elastic solid property, while the constant viscosity coefficient for α=1 exhibits the Newtonian fluid
property. The sharply decreasing viscosity coefficient (versus α) near α=0 indicates that the elastic solid
property decays rapidly. In addition, similar viscoelastic responses between the Hausdorff and fractional deri-
vative models are found due to a similar time-varying viscosity.

1. Introduction

Classical viscoelastic rheological models are usually composed of
springs and dashpots in series or parallel, such as the Maxwell, Kelvin,
Zener, and more complex models (Mainardi, 2010). Because of their
simple form, these classical models are easy to use and can help in
understanding viscoelastic phenomena. However, the exponential type
viscoelastic functions (such as creep and relaxation) deduced from these
classical models do not match well with the real mechanical responses
for a variety of viscoelastic materials (Di Paola et al., 2011). A number
of springs and dashpots need to be added to fit experimental data well.
For example, 30 Maxwell models are connected to form the Generalized
Maxwell model (see Table 1) for the description of the relaxation be-
havior of Nafion (Zhang et al., 2017), in which a total of 61 parameters
are needed. As claimed by Di Paola et al. (2011), this many parameters
cause two main problems: high computational cost and meaningless
results (e.g., negative values for the elastic modulus or viscosity coef-
ficient).

Alternatively, a potentially efficient method to remedy these pro-
blems is to introduce the fractional derivative, because fractional cal-
culus has been presented that has the ability to capture complex phe-
nomena with very few parameters (Sun et al., 2018). As early as 1936,

Gemant (1936) applied a fractional viscoelastic model to study Nut-
ting's relaxation phenomenon. Subsequently, Scott Blair (1944) sug-
gested a fractional constitutive model to describe a viscoelastic mate-
rial, which is the well-known Scott–Blair (SB) model. Koeller (1984)
presented a mathematical expression for the SB model. The fractional
viscoelastic model has been broadly applied to cope with a variety of
practical viscoelastic materials, as reviewed in a recent paper
(Sun et al., 2018). With an increasing number of applications, in-
vestigations into the physical meaning of fractional viscoelastic models
are significant, and are attracting increasing attention to reveal the
hidden physical schemes of the complex phenomena of viscoelastic
materials.

From the mathematical perspective, the physical meanings of frac-
tional calculus were generally investigated with relation to non-local
and memory effects (Du et al., 2013; Heymans and Podlubny, 2005;
Moshrefi–Torbati and Hammond, 1998; Podlubny, 2001; Liang et al.,
2019). For example, previous outstanding works from
Moshrefi–Torbati and Hammond (1998) and Podlubny (2001) provided
a physical interpretation of the Riemann–Liouville fractional derivative
as memory. On the other hand, fractional viscoelasticity (see Eq. (1))
was introduced by Scott Blair (1944), who considered viscoelasticity as
an intermediate state between the Hooke's elasticity and Newtonian
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viscosity, where σ and ε are the stress and strain and α is the order of the
fractional derivative. Subsequently, Bagley and Torvik (1983) linked
the molecular theory for polymer solids with the fractional viscoelastic
model with α = 0.5. Wharmby and Bagley (2013) generalized this
equivalence for 0 < α< 1. Metzler et al. (1999) reported that the stress
relaxation of fractional viscoelastic models is related to the long-tailed
continuous time random walk processes. These works enriched the
physical meaning of fractional viscoelasticity.
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∝ < <

∝

σ ε

σ α

σ
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d ε
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In addition, several scholars have bridged the fractional viscoelastic
models to the classical viscoelastic models, as the latter have a clear
physical meaning. Schiessel and Blumen (1995) and Heymans and
Bauwens (1994) demonstrated that the SB model with α=0.5 can be
hierarchically represented by springs and dashpots in ladders, trees, or
fractal structures. Di Paola and Zingales (2012) established two her-
editary models to describe the SB model with α < 0.5 and α > 0.5.
Xiao et al. (2016) numerically validated that the fractional Zener model
is equivalent to the generalized Maxwell model by adopting the same
relaxation spectra. These prominent lines of research imply that the
fractional viscoelastic models are equivalent to the classical models
with a large number of viscoelastic elements.

Recently, Pandey and Holm (2016) linked the SB model to the
Maxwell model with a linearly time-varying viscosity. Mainardi (2018)
noted that the fractional relaxation equation is equivalent to the dif-
ferential equation with a time-varying coefficient. In addition, viscoe-
lastic models based on the Hausdorff derivative, which is considered as
the first-order derivative coupled with a time-varying coefficient, have
been reported that exhibit an equivalent viscoelastic response com-
pared with the fractional viscoelastic models (Cai et al., 2016; Su et al.,
2017). Therefore, time-varying viscosity may be an inherent property of
the fractional viscoelasticity.

This work presents an investigation of the time-varying viscosity
property of the fractional Maxwell (FM) model (see Table 1). The FM
model is powerful and widely used in the science of viscoelasticity and
rheology (Jaishankar and Mckinley, 2013). This is because it can mimic
the initial elastic deformation in a creep test and the initial finite stress
in a relaxation test, and describe the power-law behavior in a dynamic

test for real viscoelastic materials. To reveal the time-varying viscosity
property of the FM model, a time-varying viscosity Maxwell (TVM)
model (see Table 1) is established. In this work, we obtain the time-
varying viscosity functions by establishing equivalent creep and re-
laxation responses between the FM and the TVM models. The obtained
time-varying viscosity functions are used to interpret the physical
meaning of fractional viscoelastic models. The main abbreviations in
this work are listed in Table 2. The rest of this paper is outlined as
follows. Section 2 introduces the FM and the TVM models, and
Section 3 establishes the equivalent viscoelasticity including the creep
and relaxation between the two models. Section 4 clarifies the physical
meaning of the fractional viscoelasticity according to the time-varying
viscosity functions. Section 5 discusses the generality of the obtained
time-varying viscosity functions and interprets the similar viscoelastic
responses between the Hausdorff derivative models and the fractional
derivative models. Section 6 presents the conclusions.

2. Fractional Maxwell (FM) model and time-varying viscosity
Maxwell (TVM) model

The FM model (see Table 1) consists of a classical spring and a SB
model in series. The constitutive equation of the FM model is

+ = < <σ V
E

d σ
dt

V d ε
dt

α, 0 1,
α

α

α

α (2)

where V is a material parameter with the SI unit of Pa•sα

(Jaishankar and Mckinley, 2013), E is the elastic modulus of the spring,
and α is the order of the fractional derivative. In this paper, the Rie-
mann–Liouville (RL) fractional derivative (Mainardi, 2010) is adopted
by
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where dα/dtα represents the RL fractional derivative operator, m is an
integer not less than 1, and Г is the Gamma function. The Laplace
transform of the RL fractional derivative obeys the following equation if
f(t) is integrable near t==0 (Mainardi, 2010):
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where f s˜ ( )is the transform function of f(t). Taking the Laplace transform
for Eq. (2), yields
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Setting ε= ε0, i.e., =ε ε s˜ /0 in Eq. (4) and taking the inverse Laplace
transform, the relaxation modulus G(t) of the FM model is obtained by

= ⎛
⎝

− ⎞
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G t EM E
V

t( ) ,α
α

(5)

whereMα(•) is the Mittag–Leffller (ML) function with a single parameter
(Mainardi, 2010). The creep compliance J(t) of the FM model can also
be derived by setting σ= σ0:

Table 1
Schematic diagram for several viscoelastic models and their parameters.

Models Schematic
Diagram

Number of
parameters

Fractional Maxwell (FM) model
(Jaishankar and Mckinley, 2013)

3

Time-varying viscosity Maxwell (TVM)
model (Buckingham, 2000)

3*

Fractal dashpot model (Cai et al., 2016) 2

Generalized Maxwell model (Zhang et al.,
2017)

2N+1

⁎ The number of parameters for the TVM model depends on the form of η(t).
In this paper, η(t) is a function of parameters V and α; therefore, the TVM model
has 3 parameters in total.

Table 2
List of abbreviations.

Abbreviation Full name

FM Fractional Maxwell
TVM Time-varying viscosity Maxwell
SB Scott–Blair
RL Riemann–Liouville
ML Mittag–Leffller
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The TVM model (see Table 1) is actually the classical Maxwell
model with a time-varying viscosity. Time-varying viscosity fluid is a
very common non-Newtonian fluid, such as printer ink, yogurt, peanut
butter, xanthan gum solutions, pectin gels, and hydrogenated castor oil.
To the best of our knowledge, the TVM model was reported for the first
time by Buckingham (2000) to investigate the strain-hardening process.
Recently, Pandey and Holm (2016) deduced that the TVM model is the
bridge between the power-law relaxation and the Lomnitz creep law.
The constitutive relation of the TVM model is given by

+ =σ
η t

E
σ η t ε

( ) ˙ ( ) ˙, (7)

where η(t) is the time-varying viscosity, and the dots over the variables
represent the time difference d/dt. Setting σ= σ0 in Eq. (7), the creep
compliance of the TVM model can be derived by

= +J t
E

R t( ) 1 ( ), (8)
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On the other hand, substituting a constant strain ε0 for ε in Eq. (7),
the relaxation modulus of the TVM model can be deduced by

= −G t Ee( ) .ER t( ) (10)

3. Equivalent viscoelasticity between the FM model and the TVM
model

3.1. Equivalent creep and relaxation

First, we investigate the equivalent creep between the FM model
and the TVMmodel and compare the creep compliance of the FM model
(see Eq. (6)) with that of the TVM model (see Eq. (8)). If the viscosity
function ηc(t) is chosen as

= −η t V α t( ) Γ( ) ,c
α1 (11)

the same creep responses between the FM model and the TVM model
are achieved, where the subscript c stands for the creep. The creep
viscosity function ηc(t) is plotted in Fig. 1.

It can be seen from Fig. 1 that the viscosity coefficient ηc increases
with time t in a power-law manner. The small order of fractional

derivative α results in a quick increase in the viscosity coefficient ηc
versus t. When α is close to zero, the viscosity coefficient ηc is large and
tends to infinity. When α equals 1, ηc degenerates into a constant
function over time, which corresponds to the Newtonian fluid.

On the other hand, we compare the relaxation modulus of the FM
model (see Eq. (5)) with that of the TVM model (see Eq. (10)). If the
viscosity function ηr(t) is chosen as
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−
− ( )

( )
η t Vt

M t

M t
( ) ,r

α
α

E
V

α

α α
E
V

α
1
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the same relaxation moduli for the two models are obtained. In the
derivation process, a useful equation for the relaxation viscosity func-
tion ηr is also presented:

− = ⎛
⎝

− ⎞
⎠

ER t M E
V

texp( ( )) ,r α
α

(13)

where ∫=
=

R t( ) .r
τ

t
dτ

η τ
0

( )r
The subscript r represents the relaxation, and

Mα,β(•) is the ML function with two parameters α and β (e.g., β may be
equal to α, as in the function Mα,α(•) depicted in Eq. (12))
(Mainardi, 2010). It is noted that the following property was used in the
above derivation process (Mainardi, 2010):

= −d
dz

M z z M z( ) ( ).α
α α

α α
α1

, (14)

The obtained relaxation viscosity function ηr is plotted in Fig. 2.
From Fig. 2, it can be seen that the variation of ηr is similar to that of ηc.

3.2. Approximate relaxation and creep

The viscosity functions obtained by the above equivalent viscoe-
lasticity lead to different but approximate relaxation and creep re-
sponses. Inserting the creep viscosity function ηc into Eq. (10), the re-
laxation modulus of the TVM model is obtained by

⎜ ⎟= ⎛
⎝

−
+

⎞
⎠

G t E Et
V α

( ) exp
Γ(1 )

.
α

(15)

According to the study from Metzler and Nonnenmacher (2003), the
ML function has an asymptotic form similar to the stretched exponential
function when t is close to zero:

⎜ ⎟− ∼ ⎛
⎝

−
+

⎞
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M λt λt
α

( ) exp
Γ(1 )

,α
α

α

(16)

where λ is a constant, and 0 < α < 1. Considering the above property,

Fig. 1. Creep viscosity function ηc versus time t with different orders of frac-
tional derivative α, where V is set to be 1 Pa•sα.

Fig. 2. Relaxation viscosity function ηr versus time t with different orders of
fractional derivative α, where E==1 Pa, and V==1 Pa•sα.
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it can be concluded that the relaxation modulus of the TVM model
(Eq. (15)) approximates that of the FM model (Eq. (5)) when the value
of V is much larger than the value of E or t is close to zero, as shown in
Fig. 3.

In addition, setting η(t)= ηr in Eqs. (8) and (9), the creep com-
pliance of the TVM model is derived as

= ⎧
⎨⎩

− ⎡
⎣

⎛
⎝

− ⎞
⎠

⎤
⎦

⎫
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J t
E

M E
V

t( ) 1 1 ln .α
α

(17)

According to Eq. (16), the creep compliance of the TVM model
(Eq. (17)) approximates that of the FM model (Eq. (6)) when the value

of V is much larger than the value of E or t is close to zero, as shown in
Fig. 4.

3.3. Experimental validation

To validate the equivalent viscoelasticity between the FM model
and the TVM model, we choose the rheological data of ‘highly anom-
alous’ butyl rubber reported by Scott Blair et al. (1947). The relaxation
data is fitted by both the FM and the TVM models, and the obtained
parameters are used to predict the corresponding creep data. The re-
sults are shown in Fig. 5. From Fig. 5, it can be seen that both the FM

Fig. 3. Comparison of the relaxation modulus of the TVM model (GTVM) and that of the FM model (GFM) with four values of V, where E==1 Pa, and α=0.5. It is
noted that the relaxation modulus of the TVM model is derived by adopting the creep viscosity function ηc. Note the largely distinct ranges of the moduli.

Fig. 4. Comparison of the creep compliance of the TVM model (JTVM) and that of the FM model (JFM) with four values of V, where E==1Pa, and α=0.5. It is noted
that the creep compliance of the TVM model is derived by adopting the relaxation viscosity function ηr.
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and the TVM models can fit the relaxation data well and capture the
tendency of the creep for this viscoelastic material.

4. Time-varying viscosity— the bridge between the FM model and
the TVM model

The above section explicitly illustrates that two specific time-
varying viscosity functions (ηc and ηr) connect the equivalent viscoe-
lasticity between the FM and the TVM models. As mentioned recently
by Mainardi (2018), ηr approximates ηc when the value of V is much
larger than the value of E or t is close to zero. Indeed, Fig. 6 shows that
the two time-varying viscosity functions are closer to each other with
the larger value of V (E is set to be 1 Pa).

4.1. Linking the viscoelasticity with the time-varying viscosity

The increased time-varying viscosity function not only relates to the
rheopexy of non-Newtonian fluid but also exhibits a viscoelastic prop-
erty. For example, creep is a very common viscoelastic property, and its
typical curve is plotted in Fig. 7. The strain response under a constant
stress σ0 is usually divided into two parts as follows:

= +ε ε ε ,elastic creep (18)

where εelastic and εcreep represent the transient elastic strain and the

following time-dependent creep strain, respectively. In the field of
rheology, the viscosity coefficient reflects the flow resistance
(Barnes et al., 1989), which can be obtained by

=η σ
ε̇

, (19)

Fig. 5. (a) Relaxation data (Scott Blair et al., 1947) is fitted by the FM model and the TVM model; (b) creep data (Scott Blair et al., 1947) and the predicted values by
the two models.

Fig. 6. Comparison of the two time-varying viscosity functions ηc and ηr with four values of V, where E==1 Pa, and α=0.5.

Fig. 7. Typical stable creep curve for a viscoelastic material.
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whereε̇is the strain rate. For the typical creep process (see Fig. 7), the
initial elastic strain develops in a very short time, and the corre-
sponding strain rate approximates infinity. According to Eq. (19), the
initial viscosity coefficient tends to zero. As for the following creep
strain, the strain rate decreases with time, which leads to an increased
viscosity coefficient.

4.2. Interpreting the order of fractional derivative α from the time-varying
viscosity

The order of fractional derivative α is usually regarded as an index
of the viscoelastic property (Scott Blair, 1944). Hooke's elasticity and
Newtonian viscosity are two limiting cases of the fractional viscoelas-
ticity with α=0 and α=1, respectively. With α varying from 0 to 1,
the fractional viscoelasticity is considered to continuously change from
Hooke's elasticity to Newtonian viscosity. Di Paola and Zingales (2012)
pointed out that elasticity plays the leading role with α < 0.5, while
viscosity has the major role with α > 0.5. Metzler and
Nonnenmacher (2003) related the order α to the rheological property
with a modified Deborah number for fractional relaxation processes.
The Deborah number De is defined as

=
α

De 1 ,
(20)

where the large order α relates to the fluid property, and the small α
relates to solid-like materials from the physical meaning of the Deborah
number.

Figs. 1 and 2 both show that a small α results in a large value and
quick increase of the viscosity coefficient, which corresponds to a large
deformation resistance. To illustrate this more clearly, Figs. 8 and 9
exhibit ηc and ηr as the functions of the order of fractional derivative α
at t==1, 10, 100 and 1000s. In addition, Fig. 8 compares ηc at
t==1 s with the Deborah number. From Figs. 8 and 9, it can be seen
that the viscosity coefficients ηc and ηr change over α in a similar
manner. When α is close to zero, the viscosity coefficient is infinite, i.e.,
the elastic solid property is indicated. Indeed, real solid materials ex-
hibit very high viscosity coefficients. For example, the viscosity coef-
ficient of the upper mantle is approximately 1021 Pa•s (Karato and
Wu, 1993), which is 1024 times greater than the viscosity coefficient of
water (Collier and White, 1990). In addition, the infinite viscosity
coefficient corresponding to an elastic solid property can also be de-
duced from Eq. (19). For an elastic solid, the strain rate is zero when the
solid is under a constant stress, which leads to the infinite viscosity
coefficient according to Eq. (19). The viscosity coefficient decreases
quickly with α when α approaches 0, which means the elastic solid

property decays quickly near α=0. With further increases in α, the
viscosity coefficient continues to decrease, and its change rate is re-
duced. This shows that the resistance of flow diminishes, which is a
fluid-like property. When α approaches 1, the viscosity coefficient
changes little with α and time t, at which point a Newtonian fluid is
obtained.

From Fig. 8, it can be seen that the generalized Deborah number is
very close to ηc at t==1 s, which can be considered as a special case of
the viscosity functions. In addition, the increased viscosity coefficient
over time exhibits viscoelasticity according to Section 4.1, and when α
changes from 0 to 1, the viscosity coefficient reveals the transformation
of the viscoelasticity from an elastic solid to a Newtonian fluid, as il-
lustrated in Fig. 9.

5. Discussion

This work aims to investigate the physical meaning of fractional
viscoelastic models by establishing the equivalent viscoelastic creep
and relaxation responses between the FM model and the TVM model.
The obtained time-varying viscosity functions are used to interpret the
physical meaning. Although the time-varying viscosity functions are
obtained by comparing the FM model with the TVM model, the similar
time-varying viscosity functions between other fractional viscoelastic
models and classical time-varying viscosity models can also be derived.
For example, the equivalent creep response between the fractional
Kelvin–Voigt model and the time-varying viscosity Kelvin–Voigt model
can be linked by the time-varying viscosity function:

=
−

−
− ( )

( )
η t Vt

M t

M t
_ ( ) ,α

α
E
V

α

α α
E
V

αc Kelvin
1

, (21)

which is the same as the relaxation viscosity function ηr in Eq. (12). In
addition, ηc_Zener and ηr_Zener can be obtained by comparing the creep
and relaxation of the fractional Zener model with that of the time-
varying viscosity Zener model, as expressed below:
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2

, 2

1 2
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(22)

where E1 and E2 are the elastic moduli of the two springs. It can be seen
that all these time-varying viscosity functions are in similar forms (see

Fig. 8. Creep viscosity function ηc as a function of the order of fractional de-
rivative α at t==1, 10, 100, and 1000s, and a comparison of ηc at t==1 s
and the Deborah number, where V==1 Pa•sα.

Fig. 9. Relaxation viscosity function ηr as a function of the order of fractional
derivative α at t==1, 10, 100, and 1000s, where V==1 Pa•sα and
E==1Pa. It is noted that the viscosity functions exhibit viscoelasticity over
time, and the viscoelasticity transforms from an elastic solid to a Newtonian
fluid as α changes from 0 to 1.
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Eqs. (12), (21) and (22) and Fig. 6). Therefore, it is feasible to de-
termine the time-varying viscosity property of fractional viscoelastic
models by merely comparing the FM model with the TVM model.

In addition, similar viscoelastic responses between Hausdorff deri-
vative models and fractional derivative models have been reported
(Cai et al., 2016; Su et al., 2017). Actually, the basic viscoelastic ele-
ment fractal dashpot model (see Table 1) exhibits a power-law
equivalent viscosity according to the property of the Hausdorff deri-
vative (Su et al., 2017)

= −η t
ξ
β

t( ) ,βH 1
(23)

where ξH and β are two parameters of the fractal dashpot model. This
expression is almost the same as the creep viscosity function ηc in
Eq. (11), which confirms the similar viscoelastic creep responses be-
tween the fractal dashpot model and the SB model. Similar viscoelastic
responses of other complex models based on the Hausdorff derivative
and the fractional derivative were also discussed by Cai et al. (2016).

This work obtains the time-varying viscosity functions by estab-
lishing the static equivalent viscoelastic responses between the FM and
the TVM models. By analyzing the obtained time-varying viscosity
functions, we manifest the transformation of fractional viscoelasticity
from elastic solid to Newtonian fluid when the order of fractional de-
rivative α changes from 0 to 1.

6. Conclusion

This paper established the equivalent creep and relaxation re-
sponses between the FM and the TVM models. Two different time-
varying viscosity functions were derived from the above equivalences,
and they led to approximate relaxation (creep) responses between the
FM and the TVM models. On the one hand, the results revealed that the
obtained viscosity coefficients increase with time, which exhibits vis-
coelasticity. On the other hand, the physical meaning of the order of
fractional derivative α was given from the viewpoint of rheology. These
time-varying viscosity functions quantitatively show the transformation
of viscoelasticity from the elastic solid to the Newtonian fluid as α
changes from 0 to 1. The infinite viscosity coefficient with α=0 in-
dicates the elastic solid property, and the constant viscosity coefficient
with α=1 indicates the Newtonian fluid property. In addition, the si-
milar viscoelastic properties of the Hausdorff derivative models and the
fractional derivative models were also presented from the similar
equivalent time-varying viscosities. Consequently, the time-varying
viscosity enriched the physical meaning of the fractional viscoelasticity,
which has enhanced our confidence to use fractional viscoelastic
models.
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