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a b s t r a c t 

We present a general approach of design, dynamics, and control for tensegrity morphing airfoils. Firstly, 

based on reduced order Class- k tensegrity dynamics, a shape control law for tensegrity systems is de- 

rived. Then, we develop a method for discretizing continuous airfoil curves based on shape accuracy. 

This method is compared with conventional methods (i.e. evenly spacing and cosine spacing methods). 

A tensegrity topology for shape controllable airfoil is proposed. A morphing tensegrity airfoil example is 

given to demonstrate successful shape control. This work paves a road towards integrating structure and 

control design, the principles developed here can also be used for 3D morphing airfoil design and control 

of various kinds of tensegrity structures. 

Published by Elsevier Ltd. 
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. Introduction 

The Wright Brothers made the first sustainable, controllable,

owered, heavier than air manned flight in 1903. The fundamental

reakthrough was their invention of a three-axis control method

or improving fly control stability of the wing box structure by

orphing the shape of the wing during flight [1] . 

Morphing airfoil is gaining significant attention by researchers

ith the thriving prosperity of the aerospace industry. Compared

o a fixed-wing, a flexible profile is more adjustable to various

ight conditions. The fundamental concept of achieving certain

erodynamic performance by means of changing the shape of a

ing motivates us to solve the following problems: find an ef-

cient airfoil structure and control laws to adjust various flight

egimes. The existing morphing technologies (wing slats, flaps,

poiler, aileron, winglet, and trims) can achieve some desired per-

ormance. And many researchers have pointed out the challenges

f this area. Sofla et al. [2] , Lachenal et al. [3] , Kuribayashi et al.

4] , and Liu et al. [5] summarized shape morphing status and

hallenges, mainly focusing on the direction of shape memory al-

oys (SMA), piezoelectric actuators (PZT), shape memory polymers

SMP), and stimulus-responsive polymers (SRP). Valasek [6] , Bar-

arino et al. [7] , and Reich and Sanders [8] addressed important is-

ues on morphing aircraft, bio-inspiration, smart structures, power

equirements and smart actuators. Santer showed load-path-based
∗ Corresponding author. 
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opology optimization for adaptive wing structures [9,10] . How-

ver, few of them start with a system point of view to solve the

tructure and control problem in an integrative manner. This study

resents our system which integrates structure and control designs

sing a novel tensegrity morphing airfoil. 

Tensegrity is a network of bars and strings, where bars only

ake compression and strings only take tension [11] . Perhaps bi-

logical systems provide the greatest evidence that tensegrity con-

epts yield the most efficient structures [11] , for example, the

icromechanism of the spider fibers shows that the network

tructure has both tensile and compressive members [12] . There

re many advantages of tensegrity: 1. All structural members are

xially loaded, there is no material bending. 2. All the structure

embers are uni-directionally loaded, so there is no reversal of

oad direction, and the uncertainties of the 1-dimensional mate-

ial movement bring better stability margins. 3. The structural effi-

iency in strength to mass is very high. 4. The tensegrity system is

asy to integrate structure and control because the dynamic mod-

ls are more accurate. A structural member can also serve as a

ensor and actuator. The actuator and sensor architecture can be

asily optimized. One can change shape/stiffness without changing

tiffness/shape, and one can achieve minimal control energy (mor-

hing from one equilibrium to another). The bar-string connection

atterns are like 3D fibers that allow engineers and artists to knit

ny structure that physics and their imagination allow. This new

imension of engineering thought motivates engineers to rethink

nd study structures in a more fundamental way, for example,

eam structures made of V-Expander cells [13,14] , the mechanical

esponse of 3D tensegrity lattices [15] , high performance robotics
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[16–18] , minimum mass bridge [19] , deployable antenna [20] , lan-

ders [21–24] , tunable energy dissipation structure [25] , and tenseg-

rity spine [26,27] , etc. 

The conceptual design and physical model of the tensegrity

wing are presented in the book Tensegrity System by Skelton

and Mauricio 2009, which was a DARPA sponsored “smart struc-

tures” research program. The design in their book is a light weight

fixed wing, composed of 2D airfoil solid pieces connected with

tensegrity T-Bar topology [11] . Henrickson et al. [28] presents a

2D cross-bar topology airfoil (a class-1 tensegrity structure) de-

sign and demonstrate the morphing ability. These design shows

the tensegrity system brings more functionalities to wing design

such as minimum mass, deployability, and shape control. In a

similar way to a bird’s wing, the strings in the tensegrity wing

are functioning as muscles to warp the whole wing to achieve

various aerodynamic performance requirements. Some researchers

have discussed their ideas in morphing wing design, for example,

Moored studies the deflection [29] and shape optimization [30] of

the wing in span-wise direction by tensegrity beams and plates,

Jones shows his idea in fuzzy control strategy for morphing [31] .

James presented a control theory to formulate computationally fea-

sible procedures for aerodynamic design [32] . However, we argue

that control design after wing design destroys the flying efficiency

that is so carefully treated in the structure design in the first place

[11] . Instead of using control systems to push the structure away

from its equilibrium, we propose to simply modify the equilibrium

of tensegrity structures to achieve the new desired shape with lit-

tle control effort. As feedback, less control power also exerts less

stress on structural components to accomplish the same objec-

tives. Thus, the best performance cannot be achieved by separating

structure and control designs. This paper starts from airfoil shape

discretization methods, presents a practical airfoil topology design,

and a nonlinear control law for any Class- k structures. 

This paper is structured as follows: Section 2 introduces tenseg-

rity principles, nonlinear Class- k dynamics, reduced-order form,

and nonlinear shape control laws. Section 3 discusses the error

bound method for continuous airfoil shape discretization and the

design of tensegrity airfoils. Section 4 gives a case study and re-

sults. Section 5 presents the conclusions. 

2. Tensegrity dynamics and control 

2.1. Class- k tensegrity dynamics 

The accurate quantitative knowledge of structural behavior

should be given in a simple, compact form. Tensegrity dynamics

were first analytically studied by Motro et al. in 1987 [33] , since

then many kinds of research followed. Skelton et al. introduced a

non-minimal coordinates method without using the conventional

angular velocities for rigid bodies [34] simplified the math a lot.

Recent work by Goyal et al. give a complete description of tenseg-

rity dynamics by including string mass, class- k bar-length correc-

tion, and analytic solutions of Lagrange multiplier � [35] : 

N̈ M s + NK s = W + �P T , (1)

M s = 

[
C T nb 

(
C T b 

ˆ J C b + C T r ˆ m b C r 
)

C T ns ˆ m s 

]
, (2)

K s = 

[
C T s ˆ γC sb − C T nb C 

T 
b 

ˆ λC b C 
T 
s ˆ γC ss 

]
, (3)

where ˆ λ is: 

ˆ λ = − ˆ J ̂  l −2 � ̇ B 

T ˙ B � − 1 

2 

ˆ l −2 � B 

T (W + �P T − S ̂  γC s ) C 
T 
nb C 

T 
b � , (4)

and the operator � • � sets every off-diagonal element of the square

matrix operand to zero, N ∈ R 3 × n ( n is the total number of nodes)

is the nodal matrix with each column denotes x, y , and z co-

ordinates of each node, M s ∈ R n × n is mass matrix of all the
ars and strings, K s ∈ R n × n is the stiffness matrix, W ∈ R 3 × n 

ontains the external force at each node, � ∈ R 3 × c ( c is num-

er of constraints NP = D ), the Lagrange multipliers required to

aintain these constraints can be thought of as contact forces

t the Class- k nodes [36] . � is the matrix of Lagrange multipli-

rs associated with the constraint NP = D, P ∈ R c × n is the con-

traint matrix, denoting which nodes are the Class- k nodes and

hich nodes are grounded. B = 

[
b 1 b 2 · · · b β

]
∈ R 3 ×β and

 = 

[
s 1 s 2 · · · s α

]
∈ R 3 ×σ ( b i and s i are bar and string vec-

ors, β and σ represent the number of bars and number of string)

re bar and string matrices whose columns are bar or string vec-

ors, C b and C s are the connectivity matrix of bars and strings (con-

ists of a “−1 ” at the i th column, a “+1 ” at the j th column, and

eros elsewhere to define a structure member connecting from

 i to n j .), they satisfy B = NC T 
b 

and S = NC T s . The nodes have two

ypes: bar nodes N b ∈ R 3 × 2 β , which are the endpoints of bars,

nd string nodes N s ∈ R 3 × σ , which are the locations of string-to-

tring connections that have a point mass associated with them,

 = 

[
N b N s 

]
. Then, the bar and string nodes can be extracted

rom the node matrix N with the definition of two connectivity

atrices, C nb and C ns . C s is divided into two parts: the first, C sb , de-

cribing bar-to-string joints and the second, C ss , describing string-

o-string joints. ˆ • is an operator that converts a vector into a diag-

nal matrix. ˆ m b , ˆ m s , ˆ γ , ˆ λ are bar mass, string mass, string force

ensity, and bar force density matrices respectively. ˆ J is the bar

oment of inertia matrix, which satisfies J i = 

m bi 
12 + 

m bi r 
2 
bi 

4 l 2 
i 

, and r bi 

nd l i are the radius and length of the i th bar. 

Adding the linear constraints to the dynamics will restrict the

otion in certain dimensions. We separate the moving and sta-

ionary nodes by performing a Singular Value Decomposition of

he matrix P to eliminate unnecessary computations of stationary

odes, the order of dynamics equation can be reduced into [35] : 

¨2 M 2 + η2 K 2 = 

˜ W , (5)

here η = [ η1 η2 ] � NU = [ NU 1 NU 2 ] , M 2 = U 

T 
2 

M s U 2 , K 2 =
 

T 
2 

K s U 2 , ˜ W = W U 2 − η1 U 

T 
1 

K s U 2 , η1 = DV 	−1 
1 

, NP = D, P = U	V T =

U 1 U 2 

][	1 

0 

]
V T . 

.2. Coordinate transformation 

.2.1. X matrix definition 

From the above, the reduced order dynamics can be written in

 standard second order differential equation form. Let X matrix be

he product of the η2 and M 2 matrices. Since M 2 is the mass ma-

rix for the tensegrity system and it is non-singular, an expression

or η2 in terms of X can then be written as: 

X = η2 M 2 → η2 = X M 

−1 
2 (6)

˙ X = ˙ η2 M 2 → ˙ η2 = 

˙ X M 

−1 
2 (7)

¨
 = η̈2 M 2 → η̈2 = Ẍ M 

−1 
2 . (8)

.2.2. Conversion of matrix dynamics 

Substitute Eqs. (6) –(8) into Eq. (1) , one can get: 

¨
 + X M 

−1 
2 K 2 = 

˜ W . (9)

Take the i th element of the first and second terms of the

q. (4) and use the fact ˆ x y = 

ˆ y x , where x and y are vectors,

q. (4) can be written as: 

λi = 

J i || ̇ b i || 2 
l 2 
i 

+ 

1 

2 l 2 
i 

b 

T 
i W C T nb C 

T 
b e i 

+ 

1 

2 l 2 
b 

T 
i �P T C T nb C 

T 
b e i −

1 

2 l 2 
b 

T 
i S 

̂ C s C T nb 
C T 

b 
e i γ , (10)
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here b i is the vector of each bar, e i is a vector with 1 in the i th

lements and zeros else where. Stack all the elements of vector λ
e get: 

λ = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

J 1 ‖ ̇ b 1 ‖ 2 
l 2 
1 

+ 

1 
2 l 2 

1 

b 

T 
1 W C T 

nb 
C T 

b 
e 1 + 

1 
2 l 2 

1 

b 

T 
1 �P T C T 

nb 
C T 

b 
e 1 

. . . 

J i ‖ 

˙ b i ‖ 

2 

l 2 
i 

+ 

1 

2 l 2 
i 

b 

T 
i W C T nb C 

T 
b e i + 

1 

2 l 2 
i 

b 

T 
i �P T C T nb C 

T 
b e i 

. . . 

J β ‖ 

˙ b β‖ 

2 

l 2 
β

+ 

1 

2 l 2 
β

b 

T 
βW C T nb C 

T 
b e β + 

1 

2 l 2 
β

b 

T 
β�P T C T nb C 

T 
b e β

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
τ

−

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 
2 l 2 

1 

b 

T 
1 S 

̂ C s C T nb 
C T 

b 
e 1 

. . . 
1 

2 l 2 
i 

b 

T 
i S 

̂ C s C T nb 
C T 

b 
e i 

. . . 
1 

2 l 2 
β

b 

T 
βS ̂ C s C T nb 

C T 
b 

e β

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
�

γ . (11) 

We can express in a compact matrix form, 

λ = �γ + τ. (12) 

.3. Shape control law 

.3.1. Shape objectives 

L specifies the axes of interest for the system nodes, R denotes

hich of those system nodes are nodes of interest. By multiply-

ng Y c = Lη2 R, one can, therefore, extract the current values of the

ode coordinates of interest for the node configuration N : 

 c = LNU 2 R = Lη2 R = LX M 

−1 
2 R. (13) 

Ȳ is a matrix containing the desired values for the node co-

rdinates of interest. The error matrix E between the current and

esired node coordinates of interest can then be written: 

 = Y c − Ȳ . (14) 

.3.2. Error dynamics 

To achieve the desired shape control, the error matrix E and its

rst and second-time derivatives should all go to zero. This goal is

xpressed as follows. Let � and  be chosen matrices such that: 

¨
 + � ˙ E + E = 0 (15) 

s a stable equation about the value E = 0 . Using Eqs. (9) , (13) , and

14) , the Eq. (15) becomes: 

 ( ̃  W − X M 

−1 
2 K 2 ) M 

−1 
2 R + �L ˙ X M 

−1 
2 R + LX M 

−1 
2 R − Ȳ = 0 . (16) 

his can be expanded and rearranged: 

X M 

−1 
2 K 2 M 

−1 
2 R = L ̃  W M 

−1 
2 R + �L ˙ X M 

−1 
2 R + LX M 

−1 
2 R − Ȳ (17) 

Substitute K 2 = U 

T 
2 

K s U 2 and K s from Eq. (3) into the left hand

ide of this equation: 

X M 

−1 
2 K 2 M 

−1 
2 R = LX M 

−1 
2 U 

T 
2 K s U 2 M 

−1 
2 R 

= LX M 

−1 
2 U 

T 
2 

[
C T s ˆ γC sb − C T nb C 

T 
b 

ˆ λC b C T s ˆ γC ss 

]
U 2 M 

−1 
2 R. (18) 

et us take a look at the mass matrix again, 

 2 = U 

T 
2 

M s U 2 
M s = 

[
C T nb 

(
C T b 

ˆ J C b + C T r ˆ m b C r 
)

C T ns ˆ m s 

]
= 

[
C T b C T r 0 

0 0 I 

]⎡ ⎢ ⎣ 

ˆ J 0 0 

0 

ˆ m b 0 

0 0 

ˆ m s 

⎤ ⎥ ⎦ 

⎡ ⎣ 

C b 0 

C r 0 

0 I 

⎤ ⎦ (19) 

Using [ 1 
2 C 

T 
b 

2 C T r ] 
−1 = [ C T 

b 
C T r ] 

T 
, it can also be shown

hat: 

 

1 

2 

C 
T 
b 2 C T 

r 0 

0 0 I 

] −1 

= 

⎡ ⎣ 

C b 0 

C r 0 

0 I 

⎤ ⎦ . (20) 

Then, M 

−1 
s can be obtained, 

 

−1 
s = 

[ 

1 

2 

C 
T 
b 2 C T 

r 0 

0 0 I 

] 

⎡ ⎢ ⎣ 

ˆ J 0 0 

0 

ˆ m b 0 

0 0 

ˆ m s 

⎤ ⎥ ⎦ 

−1 ⎡ ⎢ ⎣ 

1 

2 

C b 0 

2 C r 0 

0 I 

⎤ ⎥ ⎦ 

= 

[ 

1 

2 

C 
T 
b 2 C T 

r 0 

0 0 I 

] 

⎡ ⎢ ⎣ 

ˆ J 0 0 

0 

ˆ m b 0 

0 0 

ˆ m s 

⎤ ⎥ ⎦ 

−1 ⎡ ⎢ ⎣ 

1 

2 

C b C nb 

2 C r C nb 

C ns 

⎤ ⎥ ⎦ 

= 

[ 

1 

4 

C 
T 
b 

ˆ J −1 C b C nb + 4 C T 
r ˆ m 

−1 
b 

C r C nb 

ˆ m 

−1 
s C ns 

] 

. (21) 

Let M s 1 = 

1 
4 C 

T 
b 

ˆ J −1 C b C nb + 4 C T r ˆ m 

−1 
b 

C r C nb and M s 2 = ˆ m 

−1 
s C ns , M s can

e simply written as M s = 

[
M s 1 

M s 2 

]
. Then, M 

−1 
2 

= U 

T 
2 

[
M s 1 

M s 2 

]
U 2 . 

Eq. (18) can be written as: 

LX M 

−1 
2 K 2 M 

−1 
2 R = LX M 

−1 
2 U 

T 
2 (C 

T 
s ˆ γC sb M s 1 

−C T nb C 
T 
b 

ˆ λC b M s 1 + C T s ˆ γC ss M s 2 ) U 2 R. (22) 

ake the i th column on both sides, 

LX M 

−1 
2 K 2 M 

−1 
2 R e i = LX M 

−1 
2 U 

T 
2 (C 

T 
s ˆ γC sb M s 1 U 2 R e i 

− C T nb C 
T 
b 

ˆ λC b M s 1 U 2 R e i + C T s ˆ γC ss M s 2 U 2 R e i ) . (23) 

sing the fact ˆ x y = 

ˆ y x , we have: 

LX M 

−1 
2 K 2 M 

−1 
2 R e i = LX M 

−1 
2 U 

T 
2 (C 

T 
s 

̂ C sb M s 1 U 2 R e i γ

+ C T s 
̂ C ss M s 2 U 2 R e i γ − C T nb C 

T 
b 

̂ C b M s 1 U 2 R e i λ) . (24) 

ecalling that −λ = �γ + τ, 

LX M 

−1 
2 K 2 M 

−1 
2 R e i = LX M 

−1 
2 U 

T 
2 [(C 

T 
s 

̂ C sb M s 1 U 2 R e i 

+ C T s 
̂ C ss M s 2 U 2 R e i + C T nb C 

T 
b 

̂ C b M s 1 U 2 R e i �) γ

+ C T nb C 
T 
b 

̂ C b M s 1 U 2 R e i τ ] . (25) 

.3.3. Control law 

From Eqs. (17) and (25) , one can simplify this into a compact

atrix form μ = �γ with definitions of μi and �i , in which μ is

he stack of each μi matrix and � is similarly a stack of each �i 

atrix. 

= �γ (26) 

i = 

(
L ˜ W M 

−1 
2 R + �L ˙ X M 

−1 
2 R + LX M 

−1 
2 R − Ȳ 

)
e i 

− LX M 

−1 
2 U 

T 
2 C 

T 
nb C 

T 
b 

̂ C b M s 1 U 2 R e i τ (27) 

i = LX M 

−1 
2 U 

T 
2 (C 

T 
s 

̂ C sb M s 1 U 2 R e i + C T s 
̂ C ss M s 2 U 2 R e i 

+ C T C T ̂ C b M s 1 U 2 R e i �) . (28) 
nb b 
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Fig. 1. Close loop system, where u is control input and u i is the rest length of the 

i th string, given by Eq. (30) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Illustration of error bound spacing method by NACA0012 with error bound 

δ = 0 . 008 m. 

Fig. 3. Comparison of cosine spacing, evenly spacing, and error bound spacing 

methods by NACA0012 with same amount of discrete points. 
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Since control variable γ is composed of force densities of the

strings, it also satisfies γ ≥ 0 (strings are always in tension), the

least square problem we choose to solve at each increment of real

time �t , is min || μ − �γ || 2 , γ ≥ 0 . Let the rest length of the i th

string be denoted by s i 0 , extensional stiffness by k i , damping con-

stant by c i , and string vector by s i . Assuming that strings follow

Hooke’s law and the viscous friction damping model, the tension

in a string is: 

γi = 

|| t i || 
|| s i || = 

{ 

k i 

(
1 − s i 0 

|| s i || 
)

+ c i 
s T 

i 
˙ s i 

|| s i || 2 if || s i || ≥ s i 0 

0 if || s i || < s i 0 

. (29)

Then, we have rest length s i 0 : 

s i 0 = || s i || 
[

1 − 1 

k i 

(
γi − c i 

s T 
i 

˙ s i 

|| s i || 2 
)]

. (30)

We can also write the string tension (a product of string length

and string force density) in a matrix form: 

T = S ̂  γ = (S − S 0 ) ̂ k + S� S T ˙ S �� S T S� −1 ˆ c , (31)

where S 0 = S� S T S� − 1 
2 ˆ s 0 represents the matrix containing the rest

length vectors. The overall control system is shown in Fig. 1 . 

3. Tensegrity airfoil design 

This section focuses on an error bound method for the dis-

cretization of continuous airfoils and a representation of the

tensegrity airfoil topology based on matrix notations. 

3.1. Error bound method 

Let us assume the cord length of an airfoil is 1, the num-

ber of discrete points is p . There are two widely used spac-

ing methods (evenly and cosine spacing) for discretizing an air-

foil in the computational fluid dynamics (CFD) field [37,38] .

The definition of evenly and cosine spacing is the x-coordinates

of the discrete points on the airfoil satisfy a linear func-

tion x i = 

i 
p , (i = 1 , 2 , 3 , . . . , p) or a cosine function x i = 0 . 5[1 −

cos ( πp i )] , (i = 1 , 2 , 3 , . . . , p) . However, these two methods could not

quantify the shape accuracy of the discretized shape compared to

a continuous shape. In other words, one cannot specify how big

the shape error is merely by the control points one uses. It might

not bother much when one is allowed to have a sufficient number

of discrete points, but when it comes to describing an airfoil with

limited points, it reveals the importance to obtain a better discrete

shape. In consequence, this paper proposes an error bound spac-

ing method, see Fig. 2 , which discretizes an airfoil and provides a

quantitative representation of airfoil shape accuracy. This may im-

prove the performance prediction of airfoil designs. 

Error bound method: Given the exact airfoil shape, approximate

the shape with straight-line segments. Choose the location of the

nodes of the straight-line segments such that the maximum error be-

tween the defined shape and each straight-line segment is less than a

specified value δ. 
Following the definition, an algorithm can be formulated to ob-

ain the coordinates of the discrete points, shown in Algorithm 1 .

et an example to illustrate the advantage of the error bound

ethod comparing with evenly and cosine spacing ones, shown in

ig. 3 . It is clear that the error bound method has better accuracy

or the same number of discrete points, and the error bound δ also

rovides a quantitative sense of the accuracy of the discrete airfoil.

Algorithm 1: Error Bound Spacing Algorithm 

1) Let y = f (x ) , x ∈ [0 , 1] be the function of a continuous 

airfoil shape, an error bound value be δ. 

2) Let x 0 ∈ x be the start point of discretization, then 

x ∈ [0 , x 0 ] is the continuous part (called the “D-Section”) 

and x ∈ [ x 0 , 1] is the discrete part. 

3) Let (x 2 , y 2 ) be the next discrete point, the line function of 

segment (x 0 , y 0 ) and (x 2 , y 2 ) is: 

Ax + By + C = 0 , (32) 

where A = y 2 − y 0 , B = −1 , and C = y 0 − Ax 0 . 

4) The point (x 1 , y 1 ) , x 1 ∈ (x 0 , x 2 ) has the largest distance 

with the line segment: 

d = 

| Ax 1 + By 1 + C| √ 

A 2 + B 2 
. (33) 

5) Obtain all the discrete points: 

while x ≤ 1 do 

f ′ (x ) | x = x 1 = 

y 2 −y 0 
x 2 −x 0 || Ax 1 + By 1 + C|| √ 

A 2 + B 2 
= δ

, solve for x 2 

Store (x 2 , y 2 ) and update x 0 ← x 2 . 

end while 

.2. Topology of tensegrity airfoil 

Having located the nodes of the straight-line approximation of

he desired shape, we now must show the interior tensegrity struc-

ure of the airfoil. Inspired by vertebrae, we connect the discrete

oints in a similar pattern shown in Fig. 4 , where the black and

ines represent rigid members (bars) and tendons (strings). The

-section, also called D-box, is a structure in a letter D form in

he front of the airfoil widely used in wing structure construc-

ion. This topology design is intuitive, compact, but effective for
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Fig. 4. Tensegrity topology of airfoil NACA2412 with shape error bound δ = 

0 . 001 m, along the chord 0 –0 . 4 m (the shaded blue area) is ‘Rigid Structure’, and 

0 . 4 –1 m (the black and red lines) is ‘Flexible Structure’. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 5. Tensegrity airfoil topology, error bound δ = 1 . 0 × 10 −4 m, along the chord 

0 –0 . 2 m (the shaded blue area is the D-Section), NACA0012 (structure complexity 

q = 21 ) and NACA2412 (structure complexity q = 22 ). (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 6. Node, bar, and string notations of a tensegrity airfoil with complexity q . (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

s  

q  

m  

F

3

 

t  

m  

o  

Fig. 7. Tensegrity NACA0012, error bound δ = 0 . 002 m, along the chord 0 –0 . 05 m, 

control objectives are big blue dots in the upper plot. There are three-time history 

plots in the lower figure, the magenta dotted lines are at 0 s, the blue lines are at 

7 s, and the red lines are at the 20 s. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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hape control ability. We define a tensegrity airfoil of complexity

 as the number of groups of vertical bars. Examples of an asym-

etric and asymmetric airfoil with high complexity are shown in

ig. 5 . 

.3. General modeling of tensegrity airfoil 

To generate a tensegrity airfoil with any complexity q , the first

hing is to define nodal, bar connectivity, and string connectivity

atrices: N, C b , and C s . The nodal matrix N contains the vectors

f all the nodes and labeling bars and strings as shown in Fig. 6 ,
t  
ne can write C b and C s by starting with each unit coordinates. C b in 
nd C s in whose two elements in each row denotes the start and end

ode of one bar or string: 

 b in 
= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

[ i, i + 1] , 1 ≤ i ≤ q 

[ i − q, i + 1] , q + 1 ≤ i ≤ 2 q 

[ i − 2 q, i + 1] , 2 q + 1 ≤ i ≤ 3 q 

, (34) 

 s in = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

[ i + 1 + q, i + 2 + q ] , 1 ≤ i ≤ q − 1 

[2 q + 1 , q + 1] 

[ i − q, i + 2] , q + 1 ≤ i ≤ 2 q − 1 

[ i − 2 q + 1 , i + 3] , 2 q ≤ i ≤ 3 q − 2 

[ i + 3 − q, i + 4 − q ] , 3 q − 1 ≤ i ≤ 4 q − 3 

[3 q + 1 , q + 1] 

. (35) 

Then a function can be written to convert C b in and C s in to C b and

 s [39] . 

. Numerical study of a morphing airfoil 

The primary goal of describing the kinematics of a flexible foil

i.e. fish swimming and wing flapping) is helping researchers study

he fundamental motion mechanism and recreate the similar effi-

ient flow types. In this study, we implement NACA0012 (D-Section

 –0 . 05 m, error bound δ = 0 . 002 m) to evaluate the performance

f the controller. The control objective is to transform the airfoil

rom one shape to another, shown in the upper part of Fig. 7 . The

orphing targets described in [40] , which are: 

 (x, t) = 

⎧ ⎨ ⎩ 

0 , 0 ≤ x ≤ c rgd 

A 0 ( 
x −c rgd 

c−c rgd 
) 2 sin 

(
π

2 

t 

)
, c rgd ≤ x ≤ c 

, (36)

here A 0 is the maximum amplitude achieved at the trailing edge

f the airfoil, c is the cord length, the rigid part is c rgd ( c f lex =
 − c rgd ), A is the amplitude envelop, x is coordinate along the cord,

nd t = [0 , 1] s (tail bends maximum at one fourth of a period).

hen, based on Eq. (36) , coordinates of control targets Ȳ can be cal-

ulated. In the control simulation, amplitude A 0 = −0 . 04 m, time

tep dt = 0 . 001 s , stability coefficients � = 2 . 5 and  = 4 , mass of

he longest bar and string are 1 kg and 0.01 kg, and the masses of

he shorter bars and strings are scaled accordingly. Nodes n 1 , n q +2 ,

nd n 2 q +2 in Fig. 6 are fixed with the D-Section, in our case struc-

ure complexity q = 5 , n , n , and n are not controlled. Since we
1 7 12 
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Fig. 8. Force densities of all the strings, string labels can be found in Fig. 7 . 

Fig. 9. Distance error between current node position and the target position with 

respect to time, node labels can be found in Fig. 7 . 
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are controlling x and y coordinates, matrix L = [1 0 0 ; 0 1 0 ; 0 0 0] ,

matrix R 16 × 13 (generated by I 16 × 16 with columns 1, 7 and 12 be-

ing deleted). 

The time-lapse in Fig. 7 shows that the desired shape trans-

formation is achieved in 20 s. For the above simulation, string

tensions drive the desired shape transformation. To illustrate this,

force densities ( γ ) time history is shown in Fig. 8 . Fig. 9 shows the

distance error between the current node positions to the target re-

spect to time, which demonstrates the successful shape control at

a final time. 

5. Conclusion 

This paper offers an approach to integrate structure and con-

trol design. Based on the non-linear reduced-order class- k tenseg-

rity dynamics, a non-linear control law is derived. The control vari-

ables (force densities in strings) appear linearly in the non-linear

dynamics. An airfoil discretization method to bound the local er-

ror of each node is introduced and combined with the design of

tensegrity airfoils. An example is given to demonstrate the feasi-

bility of shape control of tensegrity airfoils. The approach can also

be used for design and shape control of other tensegrity structures.
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