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A B S T R A C T

In this paper, a novel micromechanics-based constitutive model is proposed for linear viscoelastic particle-
reinforced composites based on a homogenization approach in the time domain. After decomposing the de-
formation into its volumetric and deviatoric parts, the long-term responses of the constituents are utilized to
formulate the constitutive equations of the composites. The strain energy contributions of the constituents are
computed from micromechanics principles to derive the effective constitutive model of the composites.
Representative volume element models with various particle volume fractions are constructed to validate the
constitutive model numerically. The effects of the particle volume fraction, strain rate, and elastic and viscous
parameters on the effective viscoelastic behaviors of the composites and the creep performances are investigated.
The results reveal that the proposed constitutive model can predict well the effective properties of linear vis-
coelastic particle-reinforced composites in the time domain. The experimental results are also employed to
validate the proposed constitutive model in the frequency domain. The findings suggest that the constitutive
model can also provide satisfactory predictions for the behaviors of the linear viscoelastic particle-reinforced
composites in the frequency domain. After the constitutive model is validated, the composites, exhibiting full
relaxation behaviors, are discussed.

1. Introduction

Viscoelastic particle-reinforced composites have been widely used
in engineering practice owing to their excellent combination of high
stiffness and damping properties (Dunn, 1995). As a fundamental pro-
blem, the prediction of the effective mechanical properties of viscoe-
lastic particle-reinforced composites based on the mechanical proper-
ties of their constituents and the microstructures of the composites is
still an active research area to date. The constitutive models of linear
viscoelastic particle-reinforced composites in the literature can be
generally classified into two categories, one based on Laplace transform
and the other based on homogenization in the time domain.

The framework of Laplace transform was originally proposed by
Hashin (1965) for linear viscoelastic heterogeneous materials, where
the viscoelastic equations are transformed into the linear elastic regime
using Laplace transforms. After carrying out a homogenization proce-
dure in the Laplace domain, the equations are transformed inversely
into the time domain to obtain the effective mechanical properties of
the viscoelastic composites. Subsequently, various micromechanical

models were employed to estimate the effective (fictional) elastic
moduli of composites in the Laplace domain, such as those based on the
self-consistent method (Laws and McLaughlin, 1978), the Mori-Tanaka
method (Brinson and Lin, 1998) and the Hashin-Shtrikman bounds
(DeBotton and Tevet-Deree, 2004). The complex moduli
(Christensen, 1969; Hashin, 1970; Li and Weng, 1994) and damping
properties (Azoti et al., 2013; Dunn, 1995) of different types of linear
viscoelastic particle-reinforced composites were studied using different
homogenization methods in the Laplace domain. Even though great
advantages are offered by the Laplace transform to analyze the effective
frequency-related properties of viscoelastic composites, the evaluation
of their effective performances in the time domain is not straightfor-
ward. The main reason is that the (inverse) transform from the Laplace
domain to the time domain is usually difficult to be accomplished since
the effective elastic moduli in the Laplace domain are sometimes either
not available in closed form or not simple enough to be analytically
inverted. While, it is worth noting that, in some specific situations, such
as the isotropic linear viscoelasticity considered in this paper, the
analytical Laplace transform inversion is available for the particle-
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reinforced composites under the volumetric deformations, because the
effective elastic bulk modulus is usually a simple closed-form rational
function, for instance the composite-sphere model (Christensen, 1979).
With regard to the deviatoric behaviors, while, the effective elastic
shear modulus is usually not a simple closed-form function, so that the
exact analytical Laplace transform inversion is difficult to be accom-
plished. However, the inverse transform is still can be implemented
through employing some technical operations, such as model simplifi-
cations (Hashin, 1965), consideration of the specific viscoelastic model
(Rougier et al., 1993), numerical inversion (Yi et al., 1998) and ap-
proximate inversion (Brenner et al., 2002).

To overcome the above limitation, some homogenization methods
in the time domain have been proposed in the literature. Some of them
characterize the interactions between the inclusions and the homo-
geneous medium for viscoelastic particle-reinforced composites, e.g.,
the additive-interaction law (Molinari et al., 1997), the translated-fields
method (Paquin et al., 1999) and the exact-interaction law
(Berbenni et al., 2015). Other approaches, such as variational incre-
mental methods (Lahellec and Suquet, 2007a, b; Tressou et al., 2018),
those combining the Laplace transform and internal variables
(Ricaud and Masson, 2009), and full-field solutions (Seck et al., 2018),
have been developed to characterize the effective behavior of linear
viscoelastic particle-reinforced composites. In contrast to the models
based on Laplace transform, homogenization methods in the time do-
main can offer an explicit description of the effective time-dependent
response of viscoelastic composites. However, in homogenization
methods, it is often very difficult to obtain closed-form constitutive
equations of viscoelastic composites because of the introduction of
time-dependent internal variables.

In this paper, a new homogenization method in the time domain is
proposed to derive the constitutive model of linear viscoelastic particle-
reinforced composites with explicit closed-form constitutive equations.
The deformation is first decomposed into its volumetric and deviatoric
parts. The long-term responses of the constituents are then utilized to
formulate the constitutive equations of the composites. The strain en-
ergy contributions of the constituents are computed from micro-
mechanics principles to derive the effective constitutive model of the
composites. Unlike the homogenization methods in the time domain
discussed above, the time-dependent internal variables are not in-
troduced in the proposed method, which leads to a simple closed-form
constitutive model of linear viscoelastic particle-reinforced composites.
The resulting composite constitutive equation has the same form as that
of composite's individual constituents. The simple closed form of the
constitutive model provides an explicit description of the effective
mechanical responses of composites in both the time and frequency
domains. Representative volume element (RVE) models of viscoelastic
particle-reinforced composites are also created to numerically validate
the proposed constitutive model. Furthermore, the experimental results
of the amorphous poly(ethylene)terephthalate (PET) reinforced with
spherical glass beads (Cruz et al., 2009) are compared with the pre-
dictions of the proposed constitutive model.

This paper is organized as follows. In Section 2, the homogenization
method in the time domain is proposed to derive the constitutive model
of linear viscoelastic particle-reinforced composites. Section 3 presents
comprehensive numerical validations of the proposed model. The ex-
perimental results in the literature are employed to validate the pro-
posed constitutive model in Section 4. A detailed discussion of the full
relaxation behaviors for the particle-reinforced composites is carried
out in Section 5, and some concluding remarks are given in Section 6.

2. Constitutive formulation

2.1. Individual constituent

The particle-reinforced composites studied in this work are com-
prised of two linear viscoelastic constituents, whose constitutive

behavior is generally described as

∫= −
−∞

σ t τ dε τ
dτ

dτC( ) ( ) ,
t

(1)

where σ and ɛ are the stress and strain tensors, respectively, and C
represents the (fourth-order) stiffness tenor. The strain tensor ɛ can be
additively decomposed into a volumetric part described by its trace,

= ɛε tr ( )m , and a deviatoric part e, defined so that, = +ɛ ε I e( /3)m ,
where I is the second-order identity tensor. Therefore, the mechanical
behaviors of the materials can be characterized by superposing the
volumetric and deviatoric performances. For isotropic materials, the
constitutive Eq. (1) can be alternatively written as

∫ ∫= − + −σ k t τ dε τ
dτ

dτ μ t τ d τ
dτ

dτI e( ) ( ) 2 ( ) ( ) ,
t m t

0 0 (2)

where k(t) and μ(t) are defined as the relaxation bulk and shear moduli,
respectively. Here, we also assume that both constituents are stress and
strain-free when t≤ 0. These relaxation moduli functions can be nor-
malized as

= =k t g t k μ t g t μ( ) ( ) , ( ) ( ) ,k
e

μ
e

(3)

where the material parameters, =
→∞

k k tlim ( )e
t

and =
→∞

μ μ tlim ( )e
t

, refer to

the corresponding long-term moduli, which relate to the purely elastic
process when viscoelastic materials experience at sufficiently long (i.e.,
quasi-static) loading times. The dimensionless time-dependent relaxa-
tion functions gk(t) and gμ(t), for the volumetric and deviatoric de-
formations, respectively, satisfy the condition that

= =
→∞ →∞

g t g tlim ( ) lim ( ) 1
t k t μ . Therefore, based on (3), the stress can be

expressed as
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Here, =σ k εm
e e

m and = μs e2e e denote the referred elastic volumetric
and deviatoric stresses, respectively, which correspond to the long-term
moduli, ke and μe. In addition, Wv

e and Wd
e are the referred elastic strain

energy density functions (SEDFs) for the volumetric and deviatoric
deformations of a given strain, respectively.

2.2. Homogenization approach

We consider an RVE of a heterogeneous material, which is macro-
scopically isotropic and occupies a volume V. Based on the homo-
genization framework developed by Hill (1972), the volumetric
averages of the stress, strain and strain energy are computed as

∫ ∫ ∫= = =σ ɛσ
V

dV ε
V

dV W
V

W dV¯ 1 , ¯ 1 , ¯ 1 .
V V V (5)

Substituting (4) into (5), the average stress of the linear viscoelastic
particle-reinforced composites can be obtained as
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(6)

where Vm and Vp are the volumes of the matrix and particles, respec-
tively. The scripts, m and p, in the material property functions, g t( )k

m ,
g t( )μ

m , g t( )k
p , g t( )μ

p ,Wmv
e ,Wpv

e ,Wmd
e , andWpd

e represent the corresponding
functions for the matrix and particles, respectively. According to Hill's
homogenization theorem Hill, 1972), = ɛW ε W¯ (¯) ( ) can be treated as
the effective SEDF of the composite since it describes the effective
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mechanical behaviors of the “overall” composite. Hence, the volumetric
average variables, σ̄ , ε̄ and W̄ , are considered as the corresponding
effective variables of the overall composite. Considering only the re-
ferred elastic parts of (6), the referred elastic stress can be represented
as

∫= ∂
∂

= ∂
∂

ɛ
ɛ

σ t
V

W t
t

dV W ε t
ε t

¯ ( ) 1 [ ( )]
( )

¯ [¯ ( )]
¯ ( )

,e
V

e e

(7)

where W ε t¯ [¯ ( )]e is the effective SEDF of each constituent of the overall
composite, respecting to the effective viscoelastic strain ε t¯ ( ) of the
corresponding constituent. Usually, the ε t¯ ( ) is quite challengeable to be
analytically computed for the viscoelastic particle-reinforced compo-
sites. Here, we consider a referred elastic composite of the same micro-
structure with the same load applied. The elastic moduli of the con-
stituents of the referred elastic composite are the same as the long-term
elastic moduli (i.e., =

→∞
k k tlim ( )e

t
and =

→∞
μ μ tlim ( )e

t
) of the corre-

sponding viscoelastic constituents of the original composite we studied.
To simplify the theoretical difficulties, the effective strain ε̄ e of the re-
ferred elastic composite is employed to approximate the ε t¯ ( ), that is,

≈W ε t W ε¯ [¯ ( )] ¯ (¯ )e e e is postulated. We note that the ε̄ e can be regarded as
the effective long-term strain, =

→∞
ε t εlim [¯ ( )] ¯

t
e, under a given load. Fig. 1a

compares the effective elastic and viscoelastic strains, computed from
the FEM simulations, for the matrix and particle phases of the compo-
site with =c 0.3 under the relaxation and creep. Uniaxial tensions are
proportionally applied to ε̄11 (or σ̄11) = 0.01 up to the normalized time

=t 1 and then held constant until =t 4. The normalized material
parameters are presented in Table 1. This figure shows that the ε̄
computed from the relaxation and creep are almost superposed. They
are very close to the ε̄ e, which obviously keeps constant, during the
entire loading process. This implies a good agreement between ε̄ and ε̄ e.
Fig. 1b presents the comparison of ε̄ and ε̄ e for the matrix and particle
phases of the composites with comparable constituent's stiffness (i.e.,

=E E/ 2p m ) undergoing uniaxial compression (the strain rate
=ε s˙ 0.01/11 ). For the case of comparable constituent's stiffness, the

differences between the ε̄ and ε̄ e are slightly larger due to the stronger
strain interaction between the matrix and particles, while the values are
well below 3.5%. Therefore, it is reliable to use ε̄ e to approximate ε̄ for
both the constituents of the linear viscoelastic particle-reinforced
composites.

Based on (7) and the elastic approximation, the constitutive equa-
tion given by (6) can be reformulated as
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where ∫= ɛW ε W dV V¯ (¯ ) [ ( ) ]/mv
e e

V mv
e e
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e e
V pv

e e
p

,

∫= ɛW ε W dV V¯ (¯ ) [ ( ) ]/md
e e

V md
e e

m
, and ∫= ɛW ε W dV V¯ (¯ ) [ ( ) ]/pd

e e
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re-
present the effective SEDFs of the matrix and particles of the referred
elastic composites for the volumetric and deviatoric deformations, re-
spectively.

Here, we define =R W W¯ / ¯v pv
e

v
e and =R W W¯ / ¯d pd

e
d
e as the effective

strain energy ratios of the particle to that of the composite for the vo-
lumetric and deviatoric deformations, respectively, where

∫= = +ɛW ε W dV V W ε W ε¯ (¯ ) [ ( ) ]/ ¯ (¯ ) ¯ (¯ )v
e e

V v
e e
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e e

mv
e e and =W ε¯ (¯ )d

e e

∫ = +ɛW dV V W ε W ε[ ( ) ]/ ¯ (¯ ) ¯ (¯ )V d
e e

pd
e e

md
e e denote the effective SEDFs of

the composite under volumetric and deviatoric deformations, respec-
tively. For the volumetric deformation, Rv is independent of the elastic
volumetric strain = ɛε tr ( )m

e e due to the linearity of the composite
system. For the deviatoric deformation, it can also be proven that Rd is
independent of the elastic deviatoric strain tensor = −ɛ εe I( /3)e e

m
e

using the isotropy assumption of the composites. That is, for a given
composite, Rv and Rd are constants. Therefore, employing Rv and Rd, the
effective stress tensor of the composite given by (8) can be reformulated
as

∫

∫
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(9)

Eq. (9) can be written in a similar format to (2) for an individual
constituent. Thus,

∫ ∫= − ∂
∂

+ − ∂
∂

σ g t τ k ε
τ

dτ g t τ μ
τ

dτI e¯ ¯ ( ) ¯ ¯ 2 ¯ ( ) ¯ ¯ .
t

k
e m t

μ
e

0 0 (10)

Here, k̄e and μ̄e represent the effective elastic bulk and shear moduli,

Fig. 1. A comparison between the effective viscoelastic strains (symbols) and
the referred elastic strains (lines) of the matrix and particle for the particle-
reinforced composites with =c 0.3 for (a) relaxation and creep under uniaxial
tension ( =E E/ 10p m ) and (b) proportionally applied uniaxial compression
( =E E/ 2p m ).

Table 1
Normalized matrix and particle material parameters.

E ν β1 τ1

Matrix 1 0.35 0.5 1
Particle 10 0.25 0.2 0.5
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respectively, while =ε tr ε¯ (¯)m and = −ε εe I¯ ¯ (¯ /3)m denote the volumetric
and deviatoric effective strains of a given effective strain tensor ε̄ , re-
spectively. The effective dimensionless relaxation functions of the
composite are defined as

= + −
= + −

g t R g t R g t
g t R g t R g t
¯ ( ) ( ) (1 ) ( ),
¯ ( ) ( ) (1 ) ( ).

k v k
p

v k
m

μ d μ
p

d μ
m

(11)

We note that it is the analogy between the constitutive model of the
composite and those of the individual constituents that greatly facil-
itates the study of the effective mechanical behavior of viscoelastic
particle-reinforced composites in both the time and frequency domains.

In this paper, the generalized Maxwell model is used to describe the
linear viscoelastic responses of the matrix and particles. The di-
mensionless relaxation function for the generalized Maxwell model is
given as a Prony series (Lakes, 2009)

∑= +
=

−g t β e( ) 1 ,
α

n

α
t τ

1

/ α

(12)

where βα is the dimensionless viscous parameter, and τα refers to the
relaxation time. The integer, n, represents the number of terms in the
series. Therefore, based on (11), the effective dimensionless relaxation
functions for the volumetric and deviatoric deformations can be derived
when their effective strain energy ratios of the particles to composite, Rv

and Rd, are determined. After the effective elastic bulk and shear
moduli of the composite are obtained, the effective stress σ̄ of the linear
viscoelastic particle-reinforced composite can then be computed ac-
cording to (10).

It is worth noting that no microstructure limitation for the particle-
reinforced composites is introduced in constructing the homogenization
method to derive the constitutive model of the linear viscoelastic par-
ticle-reinforced composites. It implies that the proposed method can be
applied to the composites reinforced by any particle shape and dis-
tribution. However, it is quite challengeable to determine the effective
strain energy ratios, Rv and Rd, and the effective moduli, k̄e and μ̄e, for
the composites reinforced with non-spherical or non-randomly dis-
tributed particles. Therefore, this paper limits on the discussions for the
linear viscoelastic composites with spherical and randomly distributed
particles.

2.3. Determinations of Rv, Rd, k̄e and μ̄e

We first compute the effective elastic bulk modulus k̄e and the ef-
fective volumetric strain energy ratio of the particle to composite Rv.
Using the classical composite-sphere model, the effective elastic bulk
modulus can be expressed as (Christensen, 1979)

= +
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− + ⎤⎦( )

k k
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e4

3 (13)

where kp
e, km

e and μm
e are the elastic bulk modulus of the particle, the

matrix and the elastic shear modulus of the matrix, respectively. Fur-
thermore, the parameter c is the volume fraction of the particles. The
effective strain energy of the particle and matrix for the composite
sphere subjected to a hydrostatic pressure p can be computed as
(Christensen, 1979)
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The parameters in (14) are determined as
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The effective volumetric strain energy ratio of the particles to
composite Rv is calculated as

=
+
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+ ⎡⎣

− − − ⎤⎦( )
R

W
W W

ck A

ck A k c A μ B

¯
¯ ¯

9

9 3 3 (1 ) 4 1
.v

p
e

p
e

m
e

p
e

p

p
e

p m
e

m m
e

c m

2

2 2 1 2

(16)

It has been numerically verified by Segurado and Llorca (2002) that
the three-phase model (TPM) (Christensen and Lo, 1979) can provide
accurate estimates for the effective shear moduli of linear elastic par-
ticle-reinforced composites. Consequently, the TPM is utilized to ap-
proximate the effective elastic shear modulus μ̄e, as well as the effective
deviatoric strain energy ratio of the particles to composite Rd. The TPM
offers a complicated but closed-form formulation of μ̄e, which can be
easily computed numerically. Based on the TPM, the strain fields in the
particles and the matrix under simple shear can be also determined. The
expression of μ̄e and the formulation of the strain fields are not given
explicitly here, since the detailed expressions can be found in
(Christensen and Lo, 1979). After the strain fields are determined, the
effective SEDFs of the particles W̄p

e and matrix W̄m
e , can be obtained as

∫ ∫= =ɛ ɛ ɛ ɛW
V

C dV W
V

C dV¯ 1
2

( : ): , ¯ 1
2

( : ): ,p
e

V
p p

e

V
m

p m (17)

where Cp and Cm are the stiffness tensors of the particles and matrix,
respectively. The deviatoric strain energy ratio of the particles to the
composite's is then obtained as

=
+

R
W

W W

¯
¯ ¯ .d

p
e

p
e

m
e

(18)

Thus, the value Rd can now be computed in terms of the particle
volume fraction c, for composites with various particle/matrix stiffness
contrasts (see Fig. 2). After Rv, Rd, k̄e and μ̄e are obtained, the effective
stress σ̄ of linear viscoelastic particle-reinforced composites can be
computed using the constitutive Eq. (10).

3. Numerical validation

3.1. RVE models and finite element simulations

The RVE models adopted in Guo et al. (2014) are employed in this
paper to numerically validate the proposed constitutive model. Each
cuboidal RVE model contains 27 randomly distributed non-overlapping

Fig. 2. Effective strain energy ratio between the particles and the composite,
Rd, for the particle-reinforced composites undergoing isochoric deformations as
a function of the particle volume fraction c, for different particle/matrix stiff-
ness ratios μp/μm.
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same-sized spheres (Fig. 3). Here, nine RVE models with three different
particle volume fractions (i.e., =c 0.1, 0.2 and 0.3, and 3 models for
each value of c) are modelled using finite element (FE) techniques. The
periodic microstructures of the RVE models are enforced and the per-
iodic boundary conditions (PBCs) are applied in every RVE model. All
the FE simulations are performed using the commercial code ABAQUS/
Standard with the geometric nonlinearity switched on. About 80,000
quadratic tetrahedral elements (element type C3D10 in ABAQUS) and
approximately 120,000 nodes are used to model each RVE. The isotropy
of the RVE models as well as the level of mesh refinement have been
comprehensively verified by Guo et al. (2014). For more details of the
RVE models, PBCs, meshes and evaluation of the macroscopic con-
stitutive behaviors, see Guo et al. (2014).

3.2. Effect of particle content

Stress relaxation loading conditions under uniaxial tension and
simple shear are applied to all the RVE models to validate the con-
stitutive model. Without loss of generality, the normalized material
parameters are utilized, and the normalizing factors are set as the
corresponding matrix material parameters. The tensile and shear strains
are proportionally applied up to = =ε ε 0.0111 22 within a normalized
time of =t 1. After that, strains are held constant until =t 4. The nor-
malized material parameters of the particles and the matrix (i.e.,
Young's modulus (E), Poisson's ratio (ν), viscous parameter (β1) and
relaxation time (τ1)) are defined in Table 1. We note that, in the nu-
merical simulations, the dimensionless viscous parameters and relaxa-
tion time defined in (12), namely βα and τα, respectively, for the volu-
metric and deviatoric deformations are assumed to be the same, which
implies that the constituents exhibit the same viscous behavior whether
they undergo volumetric or deviatoric deformations. The stresses σ11
and σ12 for the stress relaxation under uniaxial tension and simple shear
are plotted in Fig. 4 against the loading time t. For each value of c, the
results obtained from the three corresponding RVE models show a good
correlation, with less than 2.8% and 1.3% discrepancies for the re-
laxations under uniaxial tensions and simple shears, respectively. This
suggests that the RVE models are large enough for the effective

response of the composites to be predicted accurately. The predictions
of the proposed constitutive model are plotted in Fig. 4 for comparison.
Here, it can be seen that the theoretical predictions coincide very well
with all the FEM results, with the maximum discrepancy being 1.3%.
These results reveal that the constitutive model can correctly capture
the relaxation behavior of the viscoelastic particle-reinforced composite
with particle volume fractions ranging from 10% to 30%.

3.3. Effect of strain rate

We apply uniaxial tensile deformations to the RVE models with
=c 0.3 and four different strain rates (i.e., →ε̇ 011 , =ε̇ 0.00111 , 0.01 and

0.1/s) to further validate the constitutive model. Here, →ε̇ 011 indicates
a sufficiently long process related to a purely elastic response. Again,
the material constants defined in Table 1 are used. The FEM results of
the stress σ11 vs. the strain ɛ11 for different strain rates are presented in
Fig. 5. It can be seen that the results obtained from the three RVE
models agree well with each other for the different strain rates, with the
maximum relative differences being less than 1.3%, and that the
stresses increase with strain rate, as expected. We note that the

Fig. 3. A sample of the RVE models ( =c 0.2) with periodic microstructures for
the viscoelastic particle-reinforced composites.

Fig. 4. A comparison between the stresses computed with the constitutive
model (lines) and the FEM simulations (symbols) for different particle volume
fractions for (a) uniaxial tension, and (b) simple shear as a function of loading
time.
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nonlinearity of the effective tensile behaviors under different strain
rates is seen to be weak. This phenomenon mainly results from the
small deformation applied as well as the low viscous parameter and
relaxation time defined. A comparison between the stresses predicted
by the constitutive model and the FEM results is shown in Fig. 5. The
results show that the theoretical and numerical results are almost su-
perposed at the relatively small strain rate of ≤ε̇ 0.00111 /s. As the strain
rate increases, the constitutive model slightly overestimates the stress
predicted by the FEM, with the relative differences well below 1.6%.
These results demonstrate the capability of the constitutive model to
predict accurately the strain rate sensitivity of the composite behavior.

3.4. Effect of elastic parameters

In this subsection, we explore the effect of the elastic parameters
(i.e., Young's modulus and Poisson's ratio) of both the matrix and the
particles on the effective composite behavior. Here, the ratios

=E E/ 2p m , 10 and 100 and =c 0.3 are employed in the RVE simulations
to study the effect of the particle/matrix stiffness contrast. The other
material parameters are set to be the same as those listed in Table 1. A
uniaxial compression loading condition with a strain rate of =ε̇ 0.0111 /s
is considered in the FEM simulations. The corresponding stress-strain
curves for different stiffness ratios are plotted in Fig. 6. The numerical
RVE results demonstrate that a somehow larger divergence at the high
particle/matrix stiffness contrast of =E E/ 100p m , viz. less than 4.2%,
when compared with the lower stiffness ratio results. The stresses
predicted by the constitutive model agree well with the FEM results,
with the maximum relative differences being well below 1.8% when Ep/
Em≤ 10, and 3.8% when =E E/ 100p m .

After investigating the stiffness contrast effect, the effect of the
matrix and particle Poisson's ratios on the effective composite response
was explored. Here, values of =ν 0.25p for the particle, and =ν 0.35m ,
0.45 and 0.495 for the matrix are used. The other material constants are
the same as those listed in Table 1. The plane-strain uniaxial tension
(i.e., uniaxial tension in ɛ11, constraint in ɛ33 and free in ɛ22) with a
strain rate of =ε̇ 0.0111 /s was applied to the RVE models with =c 0.3.
The stresses in both the tensile, σ11, and the constrained, σ33, directions
are plotted in Fig. 7 as the functions of the tensile strain ɛ11. Again, the
numerical results from the three RVE models demonstrate a good
agreement for σ11 and σ33, exhibiting a maximum relative differences of
3.8% and 5.5%, respectively. These results also reveal a good correla-
tion between the theoretical predictions and the numerical results when

=ν 0.35m . When the matrix tends to be incompressible (νm→ 0.5), the

constitutive model slightly overestimates (< 2.7%) the stresses along
both the tensile and constrained directions, which suggests that the
constitutive can predict well the effective behaviors of the RVE models
with a composite matrix having a range of Poisson's ratios.

3.5. Effect of the viscous parameters

To study the effect of the viscous parameters on the effective vis-
coelastic responses of the particle-reinforced composites, three sets of
viscous parameters are used in the RVE models, as defined in Table 2.
First, we consider the composite as purely elastic. Then we investigate
the composite with purely elastic particles and a viscoelastic matrix
using the second set of parameters. In the third set of parameters, both
the particle and the matrix are modelled as viscoelastic materials. The
Young's moduli and Poisson's ratios of the matrix and particles are listed
in Table 1. Plane-strain compression with =ε̇ 0.0111 /s was applied to the
three RVE models with =c 0.3. The computed compression stress σ11
and constraining stress σ33 from the three RVE models are consistent
with the constitutive model predictions, exhibiting a maximum dis-
crepancy of 4.3% (Fig. 8). The theoretical predictions agree well with
the numerical results, and the maximum relative difference between the
models’ predictions and the numerical results is about 2.2%. Thus it can
be concluded that the proposed model is capable of predicting well the
effective behaviors of the composite assuming different combinations of
elastic and viscoelastic properties for the particle and matrix.

3.6. Creep behaviors

The constitutive model of (10) for the linear viscoelastic particle-
reinforced composites presents an integral function with respect to the
variable of the effective strain, which provides the direct computation
of the effective stress for a given strain history. For the case of applying
stress, the numerical iteration can be carried out to find the solution of
the strain response. Strain creep loadings under uniaxial tension are
applied to the RVE models of =c 0.3 to further validate the constitutive
model. The normalized tensile stress is proportionally applied up to

=σ 0.0111 and then held constant until =t 4. The material constants are
defined as the values given in Table 1. The strains computed from the
RVE models as well as the constitutive model are presented in Fig. 9, as
the functions of the loading time. Again, the FEM results simulated from
the three RVE models demonstrate the good agreement. The strain es-
timated by the constitutive model coincides well with the numerical
results, showing the relative difference of less than 3.6%. It implies that

Fig. 5. A comparison between the nominal stresses predicted by the con-
stitutive model under uniaxial tension with =c 0.3 (lines) and the FEM results
(symbols) for different strain rates.

Fig. 6. The nominal stresses computed from the RVE models with =c 0.3
(symbols) under uniaxial compression are compared with the constitutive
model predictions (lines) for different particle/matrix stiffness ratios.
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the constitutive model can also offer sufficiently good predictions of the
creep behaviors for the linear viscoelastic particle-reinforced compo-
sites.

4. Experimental validation

As the proposed model is numerically validated in the time domain,
it is then utilized to predict the effective behaviors of the PET reinforced
by spherical glass beads in the frequency domain. Under the steady-

state harmonic oscillatory strains, the storage moduli (real parts) and
loss moduli (imaginary parts) for the complex shear modulus

= ′ + ″μ μ iμ* and bulk modulus = ′ + ″k k ik* are computed by
(Lakes, 2009)

∫′ = + −
∞

μ ω μ ω μ τ μ ωτ dτ( ) [ ( ) ]sin( ) ,e e
0 (19)

∫″ = −
∞

μ ω ω μ τ μ ωτ dτ( ) [ ( ) ]cos( ) ,e
0 (20)

∫′ = + −
∞

k ω k ω k τ k ωτ dτ( ) [ ( ) ]sin( ) ,e e
0 (21)

∫″ = −
∞

k ω ω k τ k ωτ dτ( ) [ ( ) ]cos( ) ,e
0 (22)

where ω is the angular frequency of the applied strains. Owing to the
analogy between the constitutive models of the composites and their
individual constituents, the effective storage and loss moduli for the
composites under deviatoric and volumetric deformations can be

Fig. 7. Comparisons between the stresses along the (a) tensile direction σ11, and
the (b) constrained direction σ33, computed from the constitutive (lines) and the
RVE (symbols) models when subjected to plane-strain tension as a function of
the tensile strain ɛ11, and for different Poisson's ratios of the matrix.

Table 2
Normalized matrix and particle viscous parameters*.

βm1 τm1 βm2 τm2 βm3 τm3 βp1 τp1

Case 1 \ \ \ \ \ \ \ \
Case 2 0.5 1 \ \ \ \ \ \
Case 3 0.5 1 0.2 10 0.1 100 0.2 0.5

⁎ The symbol “\” represents no value in this table.

Fig. 8. Comparisons between the stresses along (a) the tensile direction σ11, and
(b) the constrained direction σ33, computed from the RVE models (symbols) and
the constitutive model predictions (lines) under plane-strain compression with

=c 0.3 for the various combinations of elastic and viscoelastic parameters for
the particle and matrix.
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straightforwardly derived, with the explicit forms of

∑ ∑′ = +
⎡

⎣
⎢
⎢

−
+

+
+

⎤

⎦
⎥
⎥= =

μ μ ωμ R β
ωτ

ω τ
R β

ωτ

ω τ
¯ ¯ ¯ (1 )

1 1
,e e

d
α

n

α
α

α
d

α

n

α
α

α1

2

2 2
1

2

2 2
m

m

m
m

m p

p

p
p

p

(23)
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The experimental results reported by Cruz et al. (2009) are em-
ployed. The mechanical responses of the PET matrix under shears with
different frequencies ω can be fitted well using the linear viscoelastic
model with the form of Prony series (12) (Fig. 10a), and the fitted
material parameters are presented in Table 3. The reinforcements of
glass beads are considered as linear elastic materials, whose Young's
modulus and Poisson's ratio are =E 28p GPa and =v 0.2p (Cruz et al.,
2009), respectively. The experimental results as well as the theoretical
predictions from the proposed model for the effective storage and loss
shear moduli of the composites with =c 0.15 and 0.27 are presented in
Fig. 10b and c, respectively, as the functions of the frequency ω. For
comparison, the theoretical estimates from the Mori-Tanaka model
(MT) (Benveniste, 1987) combining the Hashin's elastic-viscoelastic
correspondence principle (Hashin, 1970) are also included in the fig-
ures. As can be seen, the two theoretical predictions demonstrate the
same tendency with the experiments. For =c 0.15, the effective storage
and loss shear moduli computed from the two theoretical model are
nearly the same. However, both of them are seen to underestimate the
experimental results. For =c 0.27, the effective storage and loss shear
moduli estimated from the proposed model are fairly better than that
predicted from the MT. It is fair to conclude that the effective storage
and loss shear moduli are well predicted by the proposed model when
the PET is reinforced with spherical elastic glass beads up to nearly
30%. As expected, the effect of the volume fraction of the beads are

Fig. 9. A comparison between the strains computed with the constitutive model
(lines) and the FEM simulations (symbols) for the models of =c 0.3 for the
creep behaviors under uniaxial tension.

Fig. 10. Comparisons of effective storage and loss shear moduli from the ex-
periments (symbols), proposed model (solid lines) and MT (dash lines) for (a)
pure PET, (b) PET reinforced by 15 vol% glass beads, and (c) PET reinforced by
27 vol% glass beads.
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better assessed by the proposed model as compared to Mori-Tanaka.

5. Full relaxation behaviors

The proposed constitutive model considers that the effective beha-
viors of the viscoelastic composites can be decomposed into the cor-
responding time-dependent and long-term parts, which implies that the
performances of the composites will bound to the (non-zero) long-term
states as the loading time tends to be infinity. However, for some vis-
coelastic materials, their behaviors will be fully relaxed, so that the
constitutive model fails to estimate the effective performances of the
composites consisting of this kind of viscoelastic materials. To over-
come this limitation, the instantaneous behaviors, instead of the long-
term behaviors, are utilized to reformulate the constitutive model.

Employing the instantaneous (time-independent) bulk modulus
=

→
k k tlim ( )

t
0

0
and shear modulus =

→
μ μ tlim ( )

t
0

0
, the relaxation moduli

functions can be alternatively normalized as

= =k t g t k μ t g t μ( ) ( ) , ( ) ( ) ,k μ
0 0 0 0

(27)

where gk
0 and gμ

0 satisfy the condition that = =
→ →

g t g tlim ( ) lim ( ) 1
t k t μ0

0
0

0 and

relate to the time-dependent relaxation functions for the volumetric and
deviatoric deformations, respectively. Therefore, based on the in-
stantaneous moduli, the constitutive model of the individual con-
stituents can be rewritten as

∫ ∫= − + −σ g t τ k dε τ
dτ

dτ g t τ μ d τ
dτ

dτI e( ) ( ) 2 ( ) ( ) .
t

k
m t

μ0
0 0

0
0 0

(28)

Following the same procedure as that of Section 2, the constitutive
model of the linear viscoelastic particle-reinforced composites can be
then derived, with the similar format to (28) as

∫ ∫= − + −σ g t τ k dε τ
dτ

dτ g t τ μ d τ
dτ

dτI e
¯ ¯ ( ) ¯ ¯ ( ) 2 ¯ ( ) ¯

¯ ( ) .
t

k
m t

μ0
0 0

0
0 0

(29)

Here, k̄0 and μ̄0 are the effective instantaneous bulk and shear
moduli, respectively, and the corresponding effective relaxation func-
tions are defined as

= + −

= + −

g t R g t R g t

g t R g t R g t

¯ ( ) ( ) (1 ) ( ),

¯ ( ) ( ) (1 ) ( ),
k v k

p
v k

m

μ d μ
p

d μ
m

0 0 0 0 0

0 0 0 0
(30)

where gk
p0 , gk

m0 , gμ
p0 , and gμ

m0 are the relaxation functions of the particles
and matrix for the volumetric and deviatoric deformations, respec-
tively. In (30), Rv

0 and Rd
0 are defined as the effective instantaneous

strain energy ratios of the particles to composite for the volumetric and
deviatoric deformations, respectively. We note that, since both the in-
stantaneous and long-term behaviors are considered to be linearly
elastic, k̄0, μ̄0, Rv

0, and Rd
0 can be thus achieved using the same micro-

mechanical models as those in Section 2.3, through simply replacing
the long-term variables by the corresponding instantaneous variables.

To study the full relaxation behaviors of the composites, the clas-
sical Maxwell model is employed to characterize the viscoelastic be-
haviors of the constituents, whose relaxation functions read
(Lakes, 2009)

= −g t e( ) .t τ0 / α (31)

To verify the prediction accuracy of the constitutive model re-
formulated with the instantaneous moduli on the full relaxation beha-
viors of the composites, both the particles and matrix are considered as

Maxwellian materials, with the normalized material constants of
=E 10p , =ν 0.25m , =τ 2αp , =E 1m , =ν 0.35m , and =τ 1αm . Stress re-

laxations under uniaxial tension are applied to the models with =c 0.3.
The tensile strains are proportionally applied up to =ε 0.0111 within a
normalized time of =t 1. Then, the strains are held constant until =t 5.
The stresses computed from the RVE models and the constitutive model
of (29) are presented against the loading time in Fig. 11. As expected,
the stresses asymptotically diminish to approach zero with increasing
time. During the proportionally loading process, the theoretical pre-
diction coincides well with the FEM results, and the relative difference
is only 1.1% at =t 1. For the relaxation process, the constitutive model
tends to slightly overestimate the FEM results with increasing time. The
findings reveal that the constitutive model reformulated can offer suf-
ficiently good predictions on the effective viscoelastic behaviors of the
particle-reinforced composites consisting of the Maxwellian con-
stituents.

6. Concluding remarks

A new homogenization method in the time domain is proposed to
decompose the effective responses of linear viscoelastic particle-re-
inforced composites in terms of the corresponding matrix and particle
contributions. The constitutive model is developed by deriving the
stresses of the two individual composite constituents and then super-
posing them. The resulting constitutive formulation has the same form
as that of each individual constituent, which offers great advantages on
the analysis of the effective mechanical behaviors of viscoelastic par-
ticle-reinforced composites in both time and frequency domains.

Representative volume element models of the composite micro-
structure with different particle volume fractions (i.e., =c 0.1, 0.2 and
0.3) are constructed to validate the constitutive model numerically. The
effects of the particle volume fraction, the strain rate, the elastic and
viscous parameters on the effective viscoelastic behaviors of the com-
posites and the creep behaviors have been comprehensively in-
vestigated. The numerical results show that the proposed composite
viscoelastic constitutive model can accurately predict the effective
properties of linear viscoelastic particle-reinforced composites in the
time domain.

The experimental results of the PET reinforced with 15 vol% and 27
vol% glass beads are utilized to validate the proposed constitutive
model in the frequency domain. The findings show that the proposed
model can provide satisfactory estimates for the effective storage and
loss shear moduli of the viscoelastic composites under different

Table 3
The material parameters of the PET.

μm (GPa) νm βm1 τm1 (s) βm2 τm2 (s)

0.032 0.48 6.49 10.02 4.61 1.1
βm3 τm3 (s) βm4 τm4 (s) βm5 τm5 (s)
4.02 48.3 2.62 0.08 1.36 5.32

Fig. 11. A comparison between the stresses computed with the constitutive
model (lines) and the FEM simulations (symbols) for the particle-reinforced
composites consisting of two Maxwellian constituents undergoing relaxations.
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frequencies.
The constitutive model is reformulated with the instantaneous

moduli to estimate the linear viscoelastic particle-reinforced compo-
sites, whose mechanical behaviors will be fully relaxed. The FEM si-
mulations under relaxations are carried out to validate the constitutive
model reformulated. The results reveal that the constitutive model can
predicts well the effective behaviors of the composites consisting of the
Maxwellian constituents.
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