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In this paper, we formulate an efficient continuum mechanics-based model on the basis of a discrete 

lattice model. First, the dispersion relation of a lattice wave in a one-dimensional diatomic crystal lattice 

is derived. Then, the second- and fourth-order continuum models are obtained from the differential- 

difference equations of motion by using the Padé approximations. The results show that the proposed 

fourth-order continuum model can predict the dispersion behaviour of the one-dimensional diatomic 

crystal lattice very well in the first Brillouin zone. Furthermore, the applicability of the present model to 

the prediction of the dispersion behaviour of the one-dimensional diatomic lattice with internal resonator 

and inerter is examined. Finally, the vibration frequencies of finite diatomic lattices are calculated by both 

the discrete and the proposed continuum models. 
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. Introduction 

Wave propagation in one-dimensional periodic structures has a

ery long history, and it is of great importance in various fields

f science and engineering [1] . The first attempt dates back from

686 when Newton derived a formula for determining the sound

elocity. Afterwards, a huge number of papers appeared dealing

ith this problem. The interested reader is referred to the reviews

y Mead [2] , Li and Wang [3] , and Hussein et al. [4] . To study

he wave propagation phenomena, one-dimensional monoatomic

nd diatomic lattice chains are widely used. The diatomic lattice

hains are probably more important because they possess stop-

and or band-gap frequency ranges. In addition, this chain is the

implest possible model to study the wave propagation through in-

omogeneous media [5] . Therefore, the wave propagation in a one-

imensional diatomic crystal lattice has become a subject of ex-

ensive investigations [6–12] . Usually, wave propagation in lattice

hains is investigated via discrete and continuum models. How-

ver, the following important question has been raised by some

esearchers. 

• Is there a need to develop a continuum mechanics-based model

to study a discrete problem for which the exact solution is al-
ready known? 
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This question can be answered as follows. It should be noted

hat although the simplicity of discrete problems allows us to ob-

ain analytical solutions in many cases, however, their application

o systems with a complex geometry and new artificial materials

s rather limited [13] . Consequently, several researchers have at-

empted to develop continuum mechanics-based models to predict

he static and dynamic behaviour of lattices. The continuum model

as been largely developed for monoatomic lattice chains [14–18] .

nfortunately, few continualization schemes have been presented

or diatomic lattice chains in the literature. One of the most and

arliest quasi-continuum approximations was proposed by Askar

19] . The proposed model predicted both the acoustic and optical

odes accurately, but only in a limited frequency range. In addi-

ion, Wattis [20] extended the quasi-continuum method to study

he solitary waves in a diatomic lattice. Recently, some continuum

echanics-based models have been developed and applied to the

tudy of the acoustic metamaterial [21] . 

In this paper, an effective continuum method is developed to

nalyse the wave propagation in one-dimensional diatomic lattices.

o the best of our knowledge, there has been no attempt to tackle

he problem described in this investigation. The paper is divided

nto three parts. In the first part, which consists of Sections 2

nd 3 , the classic and nonlocal continuum mechanics-based mod-

ls are derived from the discrete model of the diatomic chain.

hen, the dispersion curves obtained from the discrete and con-

inuum models are compared with each other. Numerical results

how that the proposed fourth-order continuum model is ac-

https://doi.org/10.1016/j.mechrescom.2019.103467
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Fig. 1. A diatomic lattice chain. 
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curate and appropriate for the prediction of the dispersion be-

haviour of the diatomic crystal lattices in the first Brillouin zone.

In the second part, i.e., Sections 4 and 5 , the proposed contin-

uum mechanics-based model will be used to predict the disper-

sion behaviour of various diatomic metamaterials. In Section 4 , the

dispersion curves obtained from the continuum mechanics-based

model are compared with those obtained from the discrete model.

In Section 5 , the longitudinal wave propagation in a diatomic lat-

tice with inerter in the local attachments will be investigated for

the first time. In the last part, i.e., Section 6 , the applicability of the

proposed continuum models for vibration of finite diatomic lattices

is examined. Finally, the summary and concluding remarks are pre-

sented in Section 7 . 

2. Discrete model 

Let us consider a one-dimensional diatomic chain as shown in

Fig. 1 . Each unit cell contains a mass M connected by a massless

linear spring k to a mass m . The differential-difference equations

of motion for two adjacent odd and even atoms are [7] 

M 

d 2 u 2 n 

d t 2 
+ k (2 u 2 n − v 2 n −1 − v 2 n +1 ) = 0 (1)

m 

d 2 v 2 n +1 

d t 2 
+ k (2 v 2 n +1 − u 2 n − u 2 n +2 ) = 0 (2)

where u 2 n represents the displacement of the mass M at position

2 n and v 2 n + 1 represents the position of the mass m at position

2 n + 1. For harmonic wave propagation, it is assumed that the dis-

placements are expressed as 

u 2 n = U exp ( [ 2 nκa − ωt ] i ) (3)

v 2 n +1 = V exp ( [ (2 n + 1) κa − ωt ] i ) (4)

where a is the distance between the neighbouring atoms, κ de-

notes the wavenumber, ω is the angular frequency, and U and V are

the complex wave amplitudes. By substituting Eqs. (3) and (4) into

Eqs. (1) and (2) , a set of homogeneous algebraic equations with

respect to U and V is obtained [
2 k − M ω 

2 −2 k cos (κa) 
−2 k cos (κa) 2 k − m ω 

2 

](
A 

B 

)
= 

(
0 

0 

)
(5)

For a nontrivial solution of Eq. (5) , the determinant of the ma-

trix of coefficients must vanish. This condition gives the dispersion

relation . 

Mm ω 

4 − 2 k ω 

2 (M + m ) + 4 k 2 sin 

2 (κa) = 0 (6)

Solutions of the dispersion relation (6) are 

�2 
1 , 2 = (1 + α) ±

√ 

(1 + α) 
2 − 4 αsin 

2 (κa ) (7)

where 

�2 
1 , 2 = 

ω 

2 
1 , 2 

ω 

2 
0 

ω 

2 
0 = 

k 

m 

α = 

m 

M 

(8)

where �1 and �2 are the frequencies of upper and lower branches

respectively. The upper branch is known as the optical branch

while the lower branch is the acoustic branch. 
. Continuum model 

.1. Second-order continualized model 

To obtain an efficient continuum model from the differential-

ifference equations of motion, the discrete displacements must be

eplaced by their equivalent continuum counterparts. In Eq. (1) , the

iscrete displacements are approximated as follows: 

 2 n = u ( x 2 n ) = u (x ) 

 2 n +1 = v ( x 2 n + a ) = v (x ) + 

a 

1! 

∂v 
∂x 

+ 

a 2 

2! 

∂ 2 v 
∂ x 2 

+ 

a 3 

3! 

∂ 3 v 
∂ x 3 

+ 

a 4 

4! 

∂ 4 v 
∂ x 4 

+ · · ·

 2 n −1 = v ( x 2 n − a ) = v (x ) − a 

1! 

∂v 
∂x 

+ 

a 2 

2! 

∂ 2 v 
∂ x 2 

− a 3 

3! 

∂ 3 v 
∂ x 3 

+ 

a 4 

4! 

∂ 4 v 
∂ x 4 

− · · ·

(9)

Substituting Eq. (9) into Eq. (1) , we have 

 

∂ 2 u 

∂ t 2 
+ 2 k (u − v ) = k a 2 

(
∂ 2 v 
∂ x 2 

+ 

a 2 

12 

∂ 4 v 
∂ x 4 

+ · · ·
)

(10)

In a similar manner, the continuum model of Eq. (2) is obtained

s 

 

∂ 2 v 
∂ t 2 

+ 2 k (v − u ) = k a 2 
(

∂ 2 u 

∂ x 2 
+ 

a 2 

12 

∂ 4 u 

∂ x 4 
+ · · ·

)
(11)

hen Eqs. (10) and (11) are truncated at the second-order deriva-

ives, the equations of motion associated with the second-order

ontinuum model can be expressed as 

 

∂ 2 u 

∂ t 2 
+ 2 k (u − v ) = k a 2 

∂ 2 v 
∂ x 2 

(12)

 

∂ 2 v 
∂ t 2 

+ 2 k (v − u ) = k a 2 
∂ 2 u 

∂ x 2 
(13)

These equations are similar to those presented by Askar [19] .

or harmonic wave propagation, the solutions of Eqs. (12) and

13) can be written in complex forms as: 

 (x, t) = 

ˆ U exp ( [ κx − ωt ] i ) (14)

 (x, t) = 

ˆ V exp ( [ κx − ωt ] i ) (15)

here ˆ U and 

ˆ V are complex amplitudes. Applying the same proce-

ure as that used for the discrete model, we obtain the frequencies

f upper and lower branches as 

2 
1 , 2 = (1 + α) ±

√ 

(1 + α) 
2 − α(4 κ2 a 2 − κ4 a 4 ) (16)

The dispersion curves predicted by the second-order contin-

um model are shown in Fig. 2 and compared with the results

f the discrete model. It is observed that the frequencies of both

he acoustic and the optic modes are accurately predicted by the

econd-order continuum model only for κa < π /4. It can be con-

luded that the second-order continuum model is applicable only

or small wave numbers. This conclusion is consistent with previ-

us observations. 

.2. Fourth-order continualized model 

We propose another continualization scheme for the wave

ropagation in a one-dimensional diatomic crystal lattice. Trun-

ating the infinite series in Eqs. (10) and (11) at the fourth-order
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Fig. 2. Comparison between the second-order continuum mechanics-based model 

and the discrete model for α = 0.6. 

Fig. 3. Comparison between the fourth-order continuum mechanics-based model 

and the discrete model for α = 0.6. 
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erivatives, the equations of motion associated with the fourth-

rder continuum model are obtained: 

 

∂ 2 u 

∂ t 2 
+ 2 k (u − v ) = k a 2 L (v ) (17)

 

∂ 2 v 
∂ t 2 

+ 2 k (v − u ) = k a 2 L (u ) (18)

here L is the differential operator that can be efficiently approxi-

ated via the Padé approximation [15] as 

 = 

∂ 2 

∂ x 2 
+ 

a 2 

12 

∂ 4 

∂ x 4 
≈

∂ 2 

∂ x 2 

1 − a 2 

12 
∂ 2 

∂ x 2 

(19) 

Substituting Eq. (19) into Eqs. (17) and (18) and multiplying the

esulting equation by [1 − ( a 2 /12)( ∂ 2 / ∂x 2 )], Eqs. (17) and (18) can

hen be efficiently approximated by the following linear differen-

ial equations 

1 − a 2 

12 

∂ 2 

∂ x 2 

){
M 

∂ 2 u 

∂ t 2 
+ 2 k (u − v ) 

}
= k a 2 

∂ 2 v 
∂ x 2 

(20) 

1 − a 2 

12 

∂ 2 

∂ x 2 

){
m 

∂ 2 v 
∂ t 2 

+ 2 k (v − u ) 

}
= k a 2 

∂ 2 u 

∂ x 2 
(21) 

Using the non-dimensional parameters defined in Eq. (8) and

ubstituting Eqs. (14) and (15) into Eqs. (20) and (21) , the frequen-

ies of upper and lower branches are obtained as 

2 
1 , 2 = (1 + α) ±

√ 

(1 + α) 
2 − α

12 κ2 a 2 (48 − 8 κ2 a 2 ) 

(12 + κ2 a 2 ) 
2 

(22) 

Fig. 3 displays the dispersion curves obtained from the fourth-

rder continuum model. The figure demonstrates a perfect agree-

ent between the results of the fourth-order continuum model
nd the discrete lattice model. As a result, we can conclude that

he proposed continuum method is accurate and reliable for pre-

icting the wave propagation in the diatomic lattice chains in the

rst Brillouin zone. Although the results are expected, the fourth-

rder continuum model has not been developed so far. 

. Application of continuum mechanics-based model to 

iatomic metamaterials 

Acoustic metamaterials are artificial materials designed to

chieve novel physical properties not commonly observed in na-

ure. This new class of materials has attracted significant attention

n the research community because they have remarkable number

f potential applications in vibration mitigation and isolation, im-

act absorption and wave guides [ 22 , 23 ]. In this section, the ap-

licability of the present continuum mechanics-based model to di-

tomic metamaterials is investigated. At the first step, the disper-

ion relation for a diatomic lattice with internal resonator is ob-

ained by using the discrete lattice model. In this connection, we

onsider a one-dimensional infinite diatomic chain of metamaterial

s shown in Fig. 4 a. Each unit contains two macro-materials with

ass M 1 and mass m 1 which are connected by a massless spring

 . In addition, a micro-material with mass M 2 is connected by a

assless spring k 1 to mass M 1 . Similarly, mass m 2 is connected by

 massless spring k 2 to mass m 1 . The differential-difference equa-

ions of motion for a unit cell are 

 1 

d 2 u 

(1) 
2 n 

d t 2 
+ k 

(
2 u 

(1) 
2 n 

− v (1) 
2 n −1 

− v (1) 
2 n +1 

)
+ k 1 

(
u 

(1) 
2 n 

− u 

(2) 
2 n 

)
= 0 (23)

 2 

d 2 u 

(2) 
2 n 

d t 2 
+ k 1 

(
u 

(2) 
2 n 

− u 

(1) 
2 n 

)
= 0 (24) 

 1 

d 2 v ( 1 ) 
2 n +1 

dt 2 
+ k 

(
2 v ( 1 ) 

2 n +1 
− u 

( 1 ) 
2 n 

− u 

( 1 ) 
2 n +2 

)
+ k 2 

(
v ( 1 ) 

2 n +1 
− v ( 2 ) 

2 n +1 

)
= 0 

(25) 

 2 

d 2 v (2) 
2 n +1 

d t 2 
+ k 2 

(
v (2) 

2 n +1 
− v (1) 

2 n +1 

)
= 0 (26) 

The solutions of the lattice wave are of the form 

 

(1) 
2 n 

= U 

(1) exp ( [ 2 nκa − ωt ] i ) (27) 

 

(2) 
2 n 

= U 

(2) exp ( [ 2 nκa − ωt ] i ) (28) 

 

(1) 
2 n +1 

= V 

(1) exp ( [ ( 2 n + 1 ) κa − ωt ] i ) (29) 

 

(2) 
2 n +1 

= V 

(2) exp ( [ ( 2 n + 1 ) κa − ωt ] i ) (30) 

here U 

(1) , U 

(2) , V 

(1) and V 

(2) are the complex wave amplitudes.

y substituting Eqs. (27) –(30) into Eqs. (23) –(26) , a set of homoge-

eous algebraic equations with respect to U 

(1) , U 

(2) , V 

(1) and V 

(2) is

btained 

 

 

 

2 k + k 1 − M 1 ω 

2 −k 1 −2 k cos (κa) 0 

−k 1 k 1 − M 2 ω 

2 0 0 

−2 k cos (κa) 0 2 k + k 2 − m 1 ω 

2 −k 2 
0 0 −k 2 k 2 − m 2 ω 

2 

⎤ 

⎥ ⎦ 

⎛ 

⎜ ⎝ 

U 

(1) 

U 

(2) 

V 

(1) 

V 

(2) 

⎞ 

⎟ ⎠ 

= 

⎛ 

⎜ ⎝ 

0 

0 

0 

0 

⎞ 

⎟ ⎠ 

(31) 
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Fig. 4. Diatomic metamaterial chain; (a) mass-in-mass system (b) effective mass-spring system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Dispersion curves of the diatomic metamaterials obtained from the discrete 

and the continuum mechanics-based models for α0 = 0.5, α1 = 1.3, α2 = 0.8 and 

β1 = β2 = 0.75. 
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m  
For a nontrivial solution of Eq. (31) , the determinant of this set

of equations must be zero, i.e. ∣∣∣∣∣∣∣∣
2 k + k 1 − M 1 ω 

2 −k 1 −2 k cos (κa) 0 

−k 1 k 1 − M 2 ω 

2 0 0 

−2 k cos (κa) 0 2 k + k 2 − m 1 ω 

2 −k 2 

0 0 −k 2 k 2 − m 2 ω 

2 

∣∣∣∣∣∣∣∣
= 0 

(32)

Eq. (32) is the dispersion relation of the lattice wave in the di-

atomic metamaterial. Let α0 = m 1 / M 1 , α1 = M 2 / M 1 , α2 = m 2 / m 1 ,

β1 = k 1 /k , β2 = k 2 /k , ω 

2 
0 = k/ M 1 and �2 = ω 

2 / ω 

2 
0 , Eq. (32) can be

rewritten as ∣∣∣∣∣∣∣∣
2 + β1 − �2 −β1 −2 cos (κa) 0 

−β1 β1 − α1 �
2 0 0 

−2 cos (κa) 0 2 + β2 − α0 �
2 −β2 

0 0 −β2 β2 − α0 α2 �
2 

∣∣∣∣∣∣∣∣
= 0 

(33)

By solving Eq. (33) , the wave dispersion diagrams of diatomic

metamaterials can be determined with given wavenumbers. 

Next, consider an effective diatomic lattice system in which the

mass-in-mass system is represented by a simple diatomic mass-

spring system ( Fig. 4 b) with stiffness k and two effective masses

M eff and m eff. The two effective masses in the equivalent mass-

spring model are frequency dependent and are given by [21] 

M e f f = M 1 + 

k 1 M 2 

k 1 − M 2 ω 

2 
m e f f = m 1 + 

k 2 m 2 

k 2 − m 2 ω 

2 
(34)

Substituting Eq. (34) into Eqs. (20) and (21) , the continuum

equations of motion for the diatomic metamaterials are obtained

as (
M 1 + 

k 1 M 2 

k 1 − M 2 ω 

2 

)
∂ 2 u 

∂ t 2 
+ 2 k (u − v ) − k a 2 

∂ 2 v 
∂ x 2 

− a 2 

12 

{(
M 1 + 

k 1 M 2 

k 1 − M 2 ω 

2 

)
∂ 4 u 

∂ t 2 ∂ x 2 
+ 2 k 

(
∂ 2 u 

∂ x 2 
− ∂ 2 v 

∂ x 2 

)}
= 0 

(35)

(
m 1 + 

k 2 m 2 

k 2 − m 2 ω 

2 

)
∂ 2 v 
∂ t 2 

+ 2 k (v − u ) − k a 2 
∂ 2 u 

∂ x 2 

− a 2 

12 

{(
m 1 + 

k 2 m 2 

k 2 − m 2 ω 

2 

)
∂ 4 v 

∂ t 2 ∂ x 2 
+ 2 k 

(
∂ 2 v 
∂ x 2 

− ∂ 2 u 

∂ x 2 

)}
= 0 

(36)
 p  
Substituting from Eqs. (14) and (15) into Eqs. (35) and

36) leads to the dispersion equation 

S 11 S 12 

S 21 S 22 

∣∣∣∣ = 0 (37)

here 

 11 = 2( β1 − α1 �
2 ) − ( β1 − α1 �

2 + α1 β1 ) �
2 

 12 = −
(

24 − 10 κ2 a 2 

12 + κ2 a 2 

)
( β1 − α1 �

2 ) 

 21 = −
(

24 − 10 κ2 a 2 

12 + κ2 a 2 

)
( β2 − α0 α2 �

2 ) 

 22 = 2( β2 − α0 α2 �
2 ) − ( α0 β2 − α2 

0 α2 �
2 + α0 α2 β2 ) �

2 

(38)

For each value of κa, Eq. (37) has four distinct real roots imply-

ng four natural frequencies. A comparison between the dispersion

urves of the diatomic metamaterials obtained from the discrete

nd the continuum mechanics-based models is plotted in Fig. 5 .

or numerical calculations in this figure, we adopted α0 = 0.5,

1 = 1.3, α2 = 0.8 and β1 = β2 = 0.75. It is found that the dis-

ersion curves corresponding to the continuum mechanics-based

odel is fitting well with that predicted by the discrete lattice

odel in the first Brillouin zone. As can be seen from Fig. 5 , there

re three band-gaps for the diatomic metamaterial lattices. 

These results again show that the proposed continuum

echanics-based model is a promising tool to explore the wave

ropagation in one-dimensional diatomic lattices. In addition, the
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Fig. 6. Discrete representation of an infinite diatomic inertant acoustic metamaterial. 
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Fig. 7. The effect of the inertance ratio on the dispersion curves for α0 = 0.5 and 

α1 = α2 = 1. 

Fig. 8. The effect of the mass ratio on the dispersion curves for α0 = 0.6 and 

γ 1 = γ 2 = 0.75. 

a  

d  

s  

t  

t  

b  

d  

m

m  

M

m

M  
and-gaps can be predicted by the proposed continuum model ac-

urately. 

. Application of continuum mechanics-based model to 

iatomic inertant acoustic metamaterials 

A new modified acoustic metamaterial system with inerter was

ntroduced by Kulkarni and Manimala [24] . An inerter is a mass-

mplifying mechanical device that provides a force response pro-

ortional to the relative acceleration of its two ends [25] . As was

tated above, the dispersion behaviour of the diatomic inertant

coustic metamaterials has not been studied so far. Therefore, in

his section, the wave propagation in the diatomic acoustic meta-

aterials with inerters is investigated by using the proposed con-

inuum mechanics-based model. A one-dimensional discrete ele-

ent lattice representation for a diatomic inertant acoustic meta-

aterial is shown in Fig. 6 . 

In comparison to the mass-in-mass system, the internal springs

 1 and k 2 are respectively replaced by two inerters of inertance

 1 and J 2 . In this case, the two effective masses in the equivalent

ass-spring model are given by [24] 

 e f f = M 1 + 

J 1 M 2 

J 1 + M 2 

m e f f = m 1 + 

J 2 m 2 

J 2 + m 2 

(39) 

Using Eqs. (14) , (15) , (20) , (21) (39) , the dispersion relation is

btained as 

4 

(
1 + 

γ1 α1 

γ1 + α1 

)(
α0 + 

γ2 α0 α2 

γ2 + α0 α2 

)

− 2 �2 

(
1 + α0 + 

γ1 α1 

γ1 + α1 

+ 

γ2 α0 α2 

γ2 + α0 α2 

)

+ 

( 

4 −
(

24 − 10 κ2 a 2 

12 + κ2 a 2 

)2 
) 

= 0 

(40) 

here 

0 = 

m 1 

M 1 

α1 = 

M 2 

M 1 

α2 = 

m 2 

m 1 

γ1 = 

J 1 
M 1 

2 = 

J 2 
M 1 

ω 

2 
0 = 

k 

M 1 

�2 = 

ω 

2 

ω 

2 
0 

(41) 

If the coefficients γ 1 = 0 and γ 2 = 0, Eq. (38) is reduced to

he dispersion relation of diatomic crystal lattices. Fig. 7 shows the

ffect of the inertance ratio ( γ 1 or γ 2 ) upon the dispersion curves

hile Fig. 8 demonstrates the effect of the mass ratio ( α1 and α2 )

pon the dispersion curves. It is found that the lower and the up-

er branches of the dispersion curves shift towards low frequency

ith an increase of the both the inertance and the mass ratios. 

. Vibration of finite diatomic lattice chains 

In contrast to the study of the infinite one-dimensional lattices,

he vibration of the finite lattices by using a continuum nonlo-

al model has been barely investigated. Challamel and co-workers

 26 , 27 ] investigated the vibration of finite monatomic lattices with

irect and indirect neighbouring interactions by using the discrete
nd nonlocal continuum models. Since the vibration of the finite

iatomic lattices by using a continuum model has not been pre-

ented so far, in this section, the applicability of the present con-

inuum mechanics-based model to this problem is examined. First,

he vibration frequencies of a finite diatomic lattice are calculated

y using the discrete lattice model. Let us consider a fixed-fixed

iatomic lattice consisting of N unit cells ( Fig. 9 ). The equations of

otion for the discrete system are given as follows 

 

d 2 v 1 
d t 2 

+ k (2 v 1 − u 2 ) = 0 (42)

 

d 2 u 2 j−2 

d t 2 
+ k 

(
2 u 2 j−2 − v 2 j−3 − v 2 j−1 

)
= 0 

for j = 2 , 3 , ..., N 

(43) 

 

d 2 v 2 j−1 

d t 2 
+ k 

(
2 v 2 j−1 − u 2 j−2 − u 2 j 

)
= 0 

for j = 2 , 3 , ..., N 

(44) 

 

d 2 u 2 N 

2 
+ k (2 u 2 N − v 2 N−1 ) = 0 (45)
d t 
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Fig. 9. Finite diatomic lattice chain with fixed ends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Comparison of non-dimensional frequencies for 

α = 0.5 and q = N. 

N Discrete model Continuum model 

�1 �2 �1 �2 

10 0.9945 1.4181 0.9968 1.4165 

20 0.9985 1.4152 0.9997 1.4144 

30 0.9993 1.4147 1.0000 1.4142 

40 0.9996 1.4145 1.0000 1.4142 

50 0.9998 1.4144 1.0000 1.4142 

λ

λ
 

 

t

�  

 

 

i  

v

u  

v  

w  

t  

i  

e  

E  

a

 

 

o  

m  

α  

s  

u  

t

Normal-mode solutions of Eqs. (42) –(45) have the following

form: 

u 2 n = U 2 n cos (ωt − δ) 
v 2 n −1 = V 2 n −1 cos (ωt − δ) for n = 1 , 2 , 3 , ..., N 

(46)

where δ is an arbitrary phase constant. Substituting Eq. (46) into

Eqs. (42) –(45) and using Eq. (8) , leads to 

(2 − �2 ) V 1 − U 2 = 0 (47)

(
2 − �2 

α

)
U 2 j−2 − ( V 2 j−3 + V 2 j−1 ) = 0 (48)

(2 − �2 ) V 2 j−1 − ( U 2 j−2 + U 2 j ) = 0 (49)

(
2 − �2 

α

)
U 2 N − V 2 N−1 = 0 (50)

Eqs. (48) and (49) can be rewritten as (
V 2 j−1 

U 2 j 

)
= [ A ] 

(
V 2 j−3 

U 2 j−2 

)
(51)

where 

[ A ] = 

(
−1 �1 

−�2 �1 �2 − 1 

)
, �1 = 

(
2 − �2 

α

)
, �2 = 

(
2 − �2 

)
(52)

On iterating Eq. (51) , we have (
V 2 j−1 

U 2 j 

)
= [ A ] 

j−1 

(
V 1 

U 2 

)
(53)

If λ+ and λ− are two distinct eigenvalues of the matrix [ A ],

then we have [28] 

[ A ] 
j−1 = 

( λ+ λ
j−1 
− − λ−λ j−1 

+ ) 

λ+ − λ−
[ I ] + 

(λ j−1 
+ − λ j−1 

− ) 

λ+ − λ−
[ A ] (54)

The eigenvalues of the matrix [ A ] are obtained from ∣∣∣∣−1 − λ �1 

−�2 �1 �2 − 1 − λ

∣∣∣∣ = 0 (55)

Thus, it is concluded that 

λ+ λ− = 1 (56)

λ+ + λ− = �1 �2 − 2 (57)

Using Eq. (53) , we obtain (
V 2 N−1 

U 2 N 

)
= 

(
g 11 g 12 

g 21 g 22 

)(
V 1 

U 2 

)
(58)

where g 11 , g 12 , g 21 and g 22 are calculated from Eq. (54) . Using

Eqs. (47) , (50) , (56) –(58) , we obtain 

λ2 N+1 
+ − 1 

λ+ − 1 

= 0 (59)
Eq. (59) has 2 N roots; 

+1 = exp 

(
i 

2 πq 

2 N + 1 

)
+2 = exp 

(
−i 

2 πq 

2 N + 1 

)
for q = 1 , 2 , 3 , ..., N 

(60)

Using Eqs. (52) , (57) and (60) , the characteristic equation is ob-

ained as 

4 − 2 �2 (1 + α) + 4 αsi n 

2 
(

πq 

2 N + 1 

)
= 0 (61)

Solutions of Eq. (61) are 

(�2 
1 , 2 ) q = (1 + α) ±

√ 

(1 + α) 
2 − 4 αsin 

2 
(

πq 

2 N + 1 

)
(62)

In the following, the vibration frequencies are evaluated by us-

ng the fourth-order continuum mechanics-based model. For free

ibration, the solutions of Eqs. (12) and (13) can be written as 

 ( x, t ) = 

N ∑ 

q =1 

U q sin 

(
qπx 

L ∗

)
cos ( ω q t − δq ) (63)

 ( x, t ) = 

N ∑ 

q =1 

V q sin 

(
qπx 

L ∗

)
cos ( ω q t − δq ) (64)

here U q , V q , ω q and δq are the amplitudes, the frequencies and

he phase constant of the q th mode. In addition, L ∗ = ( N + + 1) a

s the total length of the chain. Using the non-dimensional param-

ters defined in Eq. (8) and substitution of the q th solutions into

qs. (20) and (21) , the non-dimensional frequencies of q th mode

re obtained as 

(�2 
1 , 2 ) q = (1 + α) ±

√ 

(1 + α) 
2 − α

576 (2 N + 1) 
2 
q 2 π2 − 96 q 4 π4 

(12 (2 N + 1) 
2 + q 2 π2 ) 

2 

(65)

Table 1 compares the frequencies of the diatomic lattice chain

btained from the discrete and the continuum mechanics-based

odels. For numerical calculations in this table, we adopted

= 0.5 and q = N . Excellent agreement between the reslts is ob-

erved. Therefore, it can be concluded that the proposed contin-

um mechanics-based model is also a promising tool to explore

he vibration of finite diatomic lattice chains. 
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. Conclusions 

In this paper we have proposed a fourth-order continuum

odel for the study of wave propagation in the diatomic lattice

hains. This is a modification of the continuum model developed

y Askar [19] . Here, we showed that the second-order continuum

odel cannot accurately predict the dispersion behaviour of the

iatomic lattice chain. In addition, the results indicate that the

ourth-order continuum model can predict physically realistic dis-

ersion curves in the first Brillouin zone. In addition, the proposed

ontinuum mechanics-based model was used to predict the wave

ropagation in the classical and the inertant acoustic metamate-

ials. Furthermore, we have shown that the proposed fourth-order

ontinuum model is also applicable for predicting the vibration fre-

uencies of the finite diatomic lattices. In the future, this investi-

ation can be extended to two- and three-dimensional diatomic

rystal lattices. 
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