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a b s t r a c t 

The synthesis of a 1D full second gradient continuum was obtained by the design of so-called panto- 

graphic beam (see Alibert et al. Mathematics and Mechanics of Solids (2003)) and the problem of the 

synthesis of planar second gradient continua has been faced in several subsequent papers: in dell’ Isola 

et al. Zeitschrift für angewandte Mathematik und Physik (2015) and dell’ Isola et al. Proceedings of the 

Royal Society A: Mathematical, Physical and Engineering Sciences (2016). it is considered a three-length- 

scale microstructure in which two initially orthogonal families of long Euler beams (i.e. beams much 

longer than the size of the homogenization cell but much slenderer than it) are interconnected by per- 

fect or elastic pivots (hinges). The corresponding homogenized two-dimensional continuum (which was 

called pantographic sheet ) has a D4 orthotropic symmetry. It has been proven to have a deformation en- 

ergy depending on the second gradient of in-plane displacements and to allow for large elongations in 

some specific directions while remaining in the elastic regime. However, in pantographic sheets, the de- 

formation energy only depends on the geodesic bending of the actual configuration of its symmetry di- 

rections (see for more details Steigmann et al. Acta Mechanica Sinica (2015) [3] and Placidi et al. Journal 

of Engineering Mathematics (2017) [6] ). On the other hand, in Seppecher et al. J. of Physics: Conference 

Series vol. 319 (2011), it was designed a bi-pantographic architectured sheet where the previously con- 

sidered Euler beams were replaced by pantographic beams to form a more complex three-length-scale 

microstructure and it was proven that, once homogenized, such a bi-pantographic sheet, in planar and 

linearized deformation states, produces a more complete second gradient two-dimensional continuum. 

Derivatives of elongations along the two symmetry directions now appear in the deformation energy. 

The aim of the present paper is the experimental validation of the second gradient behavior of such bi- 

pantographic sheets. As their intrinsic mechanical structure produces a geometrically non-linear behavior 

for relatively small total deformation, we first need to extend the homogenization result to the regime of 

large deformations. Subsequently we compare the predictions obtained using such second gradient model 

with experimental evidence, as elaborated by local Digital Image Correlation (DIC) focused on the discrete 

kinematics of the hinges. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

I n physical literature the problem of synthesis has been con-

ronted in many contexts. Namely, given a Lagrangian potential

describing the conservative part of considered phenomena) and a

ayleigh dissipation potential, specified in terms of suitable kine-
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atic descriptors, one has to find a physical system, belonging to

 class specified a priori , whose evolution is governed by the cor-

esponding Hamilton–Rayleigh principle. 

I n the period (1930–1970) in which the prevalence of digi-

al computers was not yet achieved, the problem of synthesis of

lectric circuits was confronted in order to design suitable, and

edicated, analog computers (see, e.g., Kron [13,14] ). When the a

riori class of physical systems is constituted by electric circuits

ith only passive elements, the previous general problem was

articularized as follows: given quadratic Lagrangian and Rayleigh
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Fig. 1. Schematics of pantographic beam. 

Fig. 2. Schematics of pantographic sheet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Zero-energy deformation mode for pantographic sheet. 

Fig. 4. Bi-pantographic structure and bias extension experiment schematics. 
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potentials, in terms of a finite number of degrees of freedom, one

has to find the graph of a circuit and the interconnecting (linear

and passive) electric elements such that it is governed by the cor-

responding Hamilton-Rayleigh principle. 

The available results found in the literature for the synthesis of

passive electric circuits were recently used to synthesize piezoelec-

tromechanical metamaterials, suitably tailored to dampen out me-

chanical vibrations (see dell’Isola et al. [15–17] and [18,25] ). 

The synthesis problem for mechanical metamaterials reads as:

given any choice of the continuous fields describing a kinemat-

ics, given functionals expressing the deformation energy, the ki-

netic energy and the dissipation potential in terms of these fields,

find the architectured mechanical structure (possibly multi-scale)

such that, in the homogenization limit, the obtained continuous

model is exactly the one chosen a priori . Therefore, the qualita-

tive behaviour of a metamaterial shall be given by its multi-scale

architecture rather than by the constituting base materials [31] . 

After the 20 0 0s, in addition to the study on the synthesis of

first gradient continua [23,24] , the synthesis of second gradient

continua has been discussed and solved in the linear and conser-

vative case for 1D, 2D and 3D continua (see [1,2,4,5] and [7,8] ). In

[9] and then in [10] a synthesis of couple-stress 3D and 2D con-

tinua has been obtained. Couple-stress continua (see [11] ) are a

particular case of second gradient continua. If F denotes the place-

ment gradient, and its polar decomposition F = RU is introduced,

couple-stress continua are those whose deformation energy only

depends on ∇R . 

In [2] the problem of synthesizing a beam whose deforma-

tion energy (in the case of planar and linearized strains) depends

on the second gradient of both axial and transverse components

of displacement was solved by introducing so-called pantographic

beams (see Fig. 1 ). The homogenization of pantographic beams

in non-linear strain regime has been subsequently addressed in

[20,21] . 

In [4,5] an architectured three-length-scale pantographic sheet

was designed. It was a first solution to the problem of the determi-

nation of a microstructure whose homogenization produces a sec-

ond gradient 2D continuum that is not a couple-stress continuum.

The basic idea [4] was to consider an architectured microstruc-

ture formed by two families of Euler beams, initially orthogonal

(generalization have been developed in this respect [26] ), which

are interconnected by perfect or elastic pivots (hinges) (see Fig. 2 ).

This architectured microstructure has a D4 orthotropic symmetry,

whose material symmetry directions are those of the beams. 
The concept underlying such a synthesis process is clear: when

he structure is subjected to a global deformation, the beams are

ent and therefore the macroscopic deformation energy must ac-

ount for this phenomenon, and thus depends on geodesic curva-

ure of the current configuration of the material symmetry direc-

ions (i.e. on the second derivatives of material lines’ transverse

isplacements along corresponding material symmetry directions

or linearized strains, see also [22] ). A global deformation is pos-

ible without bending any of the beams (see Fig. 3 ). However, its

omogenized deformation energy does not depend on the full gra-

ient of in-plane displacements and the capacity of large deforma-

ion is only restricted to a single specific deformation mode. 

To find a more complete second gradient 2D continuum [1] ,

 bi-pantographic sheet, i.e. a D4 symmetric material synthesized

or getting a deformation energy depending on the derivatives

long the symmetry directions of the corresponding elongations,

as been proposed. The basic idea exploited there consists in re-

lacing the long Euler beams constituting pantographic sheets with

reviously mentioned pantographic beams (see Fig. 4 ). 

It has been proved [1] via an asymptotic expansion homoge-

ization that, when dealing with planar and linearized strains, bi-

antographic sheets lead to a more complete second gradient lin-

ar two-dimensional continuum. However, still not all second gra-

ients of the placement field appear. Namely, mixed (with respect

o material symmetry directions) second spatial derivatives of the

lacement field do not appear in the deformation energy density of

uch a continuum. Nevertheless, the very nature of the mechanical

rchitectured structure of bi-pantographic sheets implies that the

eometric nonlinearities arise “very early” in every deformation

attern (see for a discussion of this point [19] ). Therefore, the ho-

ogenization process needs to be performed for the case of large

trains if one intends to compare modelling with experiments. We

riefly introduce homogenization results for bi-pantographic struc-

ures in large strains and then predictions obtained using such sec-

nd gradient model are compared with experimental evidence. 

The specific objective of the present paper is to present a pre-

iminary comparison between the predictions of the novel second

radient continuum, briefly introduced herein, for bi-pantographic
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Fig. 5. Technical drawing of bi-pantographic prototypes. All lengths are expressed 

in mm. 

s  

t  

m

2

 

χ  

o  

n

E

w  

 

r

T  

t  

fi

3

e

 

i  

a  

i  

t  

r  

w  

t  

a

Fig. 6. Full top-view of additively manufactured bi-pantographic fabrics especially 

designed for bias extension test (A). Zoomed view of microstructure realization in 

Computer Aided Design (B). Zoomed view of short slender elements obtained by 

optical microscopy (C). 
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heets with experimental evidence obtained by DIC [12] in bias ex-

ension test performed on Polyamide 2200 SLS 3D-printed speci-

ens. 

. Asymptotic homogenization of bi-pantographic architectures 

Let us denote the reference domain of the body as � and let

: � → R 

2 be the placement function. The homogenized energy

btained heuristically for the lattice length ε → 0 in the case of

on-linear strains is the following 

 = 

∫ 
�

∑ 

α= x,y 

{ 

K E K F 

[ 

3 
4 
ρ2 

α − 1 

3 
4 
ρ2 

α( K E − 6 K F ) − K E 

(
∂ϑ α

∂α

)2 

+ 

3 
4 
ρ2 

α(
1 − 3 

4 
ρ2 

α

)
[ 8 K F + ρ2 

α( K E − 6 K F ) ] 

(
∂ρα

∂α

)2 
] 

+ K S 

[ 
cos −1 

(
1 − 3 

2 

ρ2 
α

)
− π + 2 γ

] 2 } 

d A (1) 

ith ρα and ϑα used in order to rewrite the tangent vector field
∂χ
∂α

to deformed material lines oriented along the axis e α in the

eference configuration as 

∂χ

∂x 
(x, y ) = ρx (x, y ) { [ cos ϑ x (x, y ) ] e x + [ sin ϑ x (x, y ) ] e y } , 

∂χ

∂y 
(x, y ) = ρy (x, y ) { [ cos ϑ y (x, y ) ] e y + [ sin ϑ y (x, y ) ] e x } . (2) 

hus ρα corresponds to the norm of the tangent vector ‖ ∂χ
∂α

‖ to

he deformed material lines directed along e α in the reference con-

guration. 

. Comparison of numerical predictions with experimental 

vidence 

Tested specimens were 3D-printed using Selective Laser Sinter-

ng (SLS) procedure ( Figs. 5 and 6 ). Polyamide powder was used

s raw material (see Fig. 5 (A) and (C)). Hard-device conditions

n Fig. 4 , i.e. bias extension test, were realized 1. by ’welding’ to

he two clamping regions the adjacent elements, such clamping

egions being gripped by the loading machine 2. by connecting

ith stocky rhomboidal elements (meant to be rigid with respect

o other elements of the specimen for the considered load range)

djacent hinge axes in the vicinity of gripping areas. 
Fig. 6 (B) shows the different pieces constituting the designed

i-pantographic prototype: 1. short slender elements meant to

ainly bend and extend (black square), 2. cylinders meant to be

ainly twisted (green square), and 3. hinges connecting short slen-

er elements at middle points (red square). It is worth to stress

ut that the specimen was printed as a whole piece, without the

eed for additional assembly of the joints. The specimen is made

y eight layers, each one hosting a family of parallel equispaced

lender elements, giving for a total thickness of the specimen equal

o 13.4 mm. 

Digital Image Correlation (DIC) is used to measure the displace-

ent of two sets of points ( Fig. 7 (left)). The red points corre-

pond to the hinges interconnecting the two families of panto-

raphic beams, while the blue points depict one series of auxiliary

inges, namely those internal to a given pantographic beam. For

he sake of readability only one of the two possible sets of auxil-

ary hinges are shown in Fig. 7 (left). In the present case, local DIC

nalyses are performed, in which interrogation windows are cen-

ered about each considered hinge. The average translation is eval-

ated by maximizing the correlation product, which is computed

ia fast Fourier transform. The size of each interrogation window

s equal to 50 pixels (or 6.3 mm). This length is about one third of

he distance between two neighboring principal hinges in the ver-

ical and horizontal directions (see Fig. 7 (left)). It is worth noting

hat the elementary cell of the homogenization model would also

onsider this characteristic length-scale. 

Fig. 7 (right) shows the deformed shape when a displacement

f 30 mm was prescribed to the sample. In the present case the

nalyses consisted of the registration of 60 images (i.e. 0.5 mm

ncrement each). An incremental procedure was followed, namely

isplacement increments were measured by updating the picture

f the reference configuration (becoming the picture of the de-

ormed configuration of the previous increment). Such procedure

llows the rigid body translation hypothesis of the matter inside

he interrogation window to be a good approximation of the local

inematics. Furthermore it enables very large displacements am-

litudes to be measured (in the present case the maximum dis-

lacement is equal to about 250 pixels). 

The image elaboration which has been obtained shows some

ot standard deformation patterns. In particular the material lines

onstituted by the pantographic beams and “materialized” by the

ed squares of Fig. 7 (right) show a change of geodesic curvature,
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Fig. 7. Local Digital Image Correlation of experimental data. Reference configuration (left) and 60th picture corresponding to a prescribed displacement equal to 30 mm 

(right). 
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Fig. 8. Comparison of points in red color in Fig. 7 (left) between continuum modelling simulation and experiments. The agreement is excellent within measurement toler- 

ances. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Total reaction force versus prescribed displacement for continuum modelling 

and experiment. 
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which is the kinematic signature of higher order continua equilib-

rium. We are not aware of first gradient continua showing such

characteristic deformation for a tensile test. It is worth noting that

in pantographic sheets (which are already second gradient but less

complete continua) material curves having only one curvature (see,

e.g., [4] ) have been observed. Concerning the points labeled with

blue squares it has to be remarked that they are approaching one

to the other, as opposed to the red points that see their separa-

tion increase. As a consequence it is not possible to introduce a

unique homogenized displacement field consistently accounting for

the displacements of all red and blue points. This observation con-

firms the theoretical considerations presented in [7] . The fact the

blue points see their distance decrease and become less than the

interrogation window size may cause some registrations to be less

satisfactory. Special care should be exercised for very large defor-

mations when using the present registration procedure. 

Fig. 8 shows the comparison between predicted and measured

displacements of the primary hinges, for two prescribed overall

displacements. This model has been described in the previous sec-

tion and it is capable, by construction, to predict the displacement

of the red points, only. The three material parameters of the used

second gradient continuum are calibrated with a simple “best fit”

procedure, which is, however, initialized by a theoretically estab-

lished first conjecture identification (see [4] ). The data used in the

identification procedure are two shearing angles derived from ex-

perimental displacements shown in Fig. 8 and the resultant force.

Albeit only three independent parameters are used in the cali-

brated model very good agreement is observed for the 173 hinges

positions (in Fig. 8 (left)). With the same parameters set, the model
s validated in Fig. 8 (right). Fig. 8 compares the experimental and

redicted total reaction force versus prescribed displacement. 

. Conclusions 

In this paper we have synthesized a 2D continuum whose de-

ormation energy depends on i) the geodesic curvature of the D4

irections of material symmetry, ii) the derivatives of elongations
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long D4 directions with respect to these directions and iii) the

rst gradient shear strain. It has to be remarked that the strains

efined in ii) are first introduced for bi-pantographic sheets. The

onstitutive parameters needed in the model formulation reduce

o three only. 

Some experimental evidence is gathered, in an extension test,

or a 3D printed specimen via local and incremental DIC analy-

es. In addition to the measurement of the detailed kinematics of

arious hinges, the 3 material parameters K E , K S , K F could be cali-

rated, and the model validated in large deformation modes. 

It is concluded that the architectured material mathematically

esigned in [1] allows for large elastic deformations in two inde-

endent material directions. It is expected that such a mechan-

cal behavior may be of great interest in various applications,

ike in fiber-reinforced materials [32] . Future outlooks include the

tudy of bi-pantographic structures by means of discrete and semi-

iscrete modelling [27,28,30] and the search for exotic solutions

29] enabled by strong nonlinearities. 
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