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A B S T R A C T

Interpretation of the temperature dependence of the dynamic yield stress of shock-loaded metals has recently
become a critical problem in shock wave physics. However, the temperature dependence of the dynamic yield
stress of BCC metals is rarely investigated owing to the lack of an accurate description of the constitutive be-
havior of BCC metals subjected to high strain rate and high temperature. To unravel the underlying mechanism
of the dynamic yield stress of BCC metals under such extreme conditions, we established a dislocation-based
constitutive model in which the dislocation generation equation is proposed from the viewpoint of dissipation
energy. When applied to shock-loaded BCC metals, this model reproduced the elastic–plastic wave character-
istics observed in preheated plate-impact experiments quantitatively even at temperatures of >1000 K. It was
found that forest hardening induced by thermally activated homogeneous nucleation (TA-HN) serves as the
primary contributing factor to the thermal hardening behavior of vanadium at elevated temperature, while
Peierls stress serves as the primary contributing factor to the thermal softening behaviors of other BCC metals.
The novelty of this work lies in that the forest hardening mechanism, as a plastic hardening mechanism and
usually regarded as temperature insensitive for BCC metals, has been proved to be temperature sensitive and
influence dislocation motion significantly owing to TA-HN at high strain rate and high temperature. Based on
this mechanism, we also predicted that the thermal hardening behavior would also occur in other BCC metals,
e.g., molybdenum and tungsten, at temperature ranges beyond the limit of existing experiments.

1. Introduction

Study of the dynamic deformation of metals under shock wave
loading is critical to many technical applications, e.g., high-speed im-
pact phenomena, vehicular crash tests, and development of armor.
Owing to the strain rate dependence of the deformation mechanisms,
dynamic strength behavior at shock wave loading differs significantly
from that at quasi-static states or moderate strain rates. In recent years,
numerous works (Luscher et al., 2013; Lloyd et al., 2014; De et al.,
2014) have addressed the constitutive behaviors of metals at shock
wave loading. Nonetheless, the physical principle of dynamic strength
under such extreme conditions is still not well understood. It has been
found that dynamic strength is influenced by numerous external factors,
including applied stress (Meyers et al., 2009), strain rate, and tem-
perature (Kanel et al., 2014). Among these factors, temperature has
long been regarded as a critical factor to the strength of metals

(Cui et al., 2016) and has recently become a popular topic in the study
of the dynamic strength of metals (Krasnikov et al., 2011;
Mayer et al. 2013; Kanel 2014; Gurrutxaga-Lerma et al., 2017).

In early studies (Lennon and Ramesh, 2004; Voyiadjis and
Abed, 2005), focus was placed on the strength of a metal at moderate
strain rate and in a quasi-static state, and it was found that the strength
of a metal decreases significantly with increasing temperature. A widely
accepted interpretation of this phenomenon is that the plastic de-
formation is governed by the thermal activation mechanism at this
strain rate range. The fundamental origin of the thermal activation
mechanism lies in a dislocation overcoming the Peierls barrier to move
with the aid of thermal fluctuation when the external applied stress is
not high enough (Kuskin and Yanilkin, 2013). Based on this theory,
constitutive models could describe the plastic response of metals at
moderate strain rates, <104 s−1, effectively, and predicted a thermal
softening behavior of the strength.
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Recently, Kanel and Zaretsky found that the temperature depen-
dence of the dynamic yield stress of shock-loaded metals, where strain
rate can be >104 s−1, differs considerably from that at moderate strain
rate, <104 s−1 (Kanel, 2014). In particular, the thermal hardening
behavior of the dynamic yield stress of shock-loaded metals opposes the
thermal softening behavior of those under a quasi-static state or a
moderate strain rate. Thermal hardening behavior is observed in most
FCC and HCP metals. However, most BCC metals still exhibit thermal
softening behaviors (Zaretsky and Kanel, 2014, 2016, 2017) at the same
strain rate range except for iron (Zaretsky, 2009) and vanadium
(Zaretsky and Kanel, 2014). In particular, the HEL spikes of vanadium
are temperature insensitive, whereas the HEL minima exhibit a distinct
increase as temperature increases from 800 K to 1100 K. Here, we de-
fine this behavior as thermal hardening of the dynamic yield stress.
Besides that, twinning was also observed in the recovered vanadium
sample. For iron, the dynamic yield strength exhibits an anomalous
thermal hardening behavior around the Curie temperature.

Constitutive models, based on thermally activated dislocation mo-
tion, seem incapable of describing dynamically the plastic response of
shock-loaded metals, especially the temperature dependence of the
dynamic yield stress. From the viewpoint of dislocation motion, a dis-
location subjected to a high strain rate could overcome the Peierls
barrier easily without the aid of thermal fluctuations because the ap-
plied stress at a high strain rate is usually relatively high. For a gliding
dislocation, phonon drag and relativistic effects control its motion at
relatively low dislocation velocity and at higher dislocation velocity,
approaching the transverse sound speed, respectively. Based on this
picture, the thermal hardening behavior of FCC metals is attributed to
the phonon drag mechanism (Krasnikov et al., 2011; Mayer et al., 2013)
and the shear modulus (Gurrutxaga-Lerma et al., 2017). Nonetheless, it
seems that these two thermal hardening mechanisms are not suitable
for shock-loaded BCC metals because of the relatively high Peierls stress
of BCC metals. When addressing the temperature dependence of the
dynamic strength of shock-loaded iron, Gurrutxaga-Lerma highlighted
the role of Peierls stress on dislocation motion and pointed out that the
increasing phonon drag hardening is counterbalanced by the rapid drop
of Peierls stress. Apart from that, the relativistic effect is difficult to
achieve because of relatively high resistance for a gliding dislocation in
a BCC metal. Moreover, the anomalous temperature-dependent beha-
vior of the shear modulus of vanadium at >800 K (Walker, 1978) in-
validates the relativistic effect, although the dislocation velocity ap-
proaches the transverse sound speed.

As opposed to dislocation motion, dislocation generation has also
been proposed as the main contributing factor to strength as strain rate
increases. In particular, homogeneous nucleation has long been pro-
posed as a likely mechanism for the generation of dislocations at shock
fronts. Armstrong et al. (2009) pointed out that a transition from
thermally activated dislocation motion at moderate strain rate to
thermally activated dislocation generation at very high strain rate is
responsible for the upturn behavior of the strength around a strain rate
of 104 s−1. Obviously, a constitutive model based on thermally acti-
vated dislocation generation also predicts a thermal softening behavior,
like a constitutive model based on thermally activated dislocation
motion does, but is still incapable of explaining the thermal hardening
behaviors at high strain rates.

Besides dislocations, deformation twinning is also a shear de-
formation mechanism, especially in BCC and HCP metals. Atomistic
simulation indicates that there exists a transition from dislocation
motion to twinning as shear stress exceeds the threshold stress for
twinning. It is found that twinning can more easily occur at low tem-
perature because Peierls stress for perfect dislocations increases more
rapidly as temperature decreases than that for partial dislocations. To
the authors’ knowledge, the effect of twinning deformation on the
temperature dependence of the dynamic strength under shock loading
has never been discussed before.

Although the shock-loading response of shock-loaded BCC metals

has been addressed in several works (Barton et al., 2011; Hansen, 2013;
Gurrutxaga-Lerma et al., 2017), it seems that the dynamic plastic de-
formation of BCC metals has not been described accurately because the
plastic deformation mechanisms, including homogeneous nucleation
(HN) and twinning, are not considered comprehensively. Moreover,
existing models have never been proven to remain effective for BCC
metals under high strain rate and elevated temperature (>1000 K).

In this article, a dislocation-based crystal plasticity model is estab-
lished with the aim at unraveling the underlying temperature depen-
dence mechanism of the dynamic strength of shock-loaded BCC metals.
To describe the mechanical response of BCC metals correctly, the
controlling mechanisms of dislocation motion, dislocation generation,
dislocation annihilation, and twinning shear deformation are compre-
hensively considered in this model. The innovative feature of this model
lies in the dislocation generation equation being proposed from the
viewpoint of energy. Different from existing works, the dislocation
generation equation in this article is coupled with the shear modulus
and is classified as an HN term and a multiplication term. In particular,
the HN term is not just the classical Arrhenius equation multiplied by a
constant parameter; rather it is multiplied by a thermal-energy-related
term. Compared to the classical Arrhenius equation, in this equation,
the HN is not only controlled by the applied stress but also by thermal
energy. Moreover, this model also couples dislocation evolution with
twinning, making it possible to study the competition between twinning
and dislocation evolution during dynamic yielding. Using this model,
we simulated the shock-loading response of typical BCC metals, in-
cluding tantalum, vanadium, molybdenum, tungsten, and iron. The si-
mulated velocity profiles match well with experimental results, in-
cluding elastic–plastic wave characteristics and the temperature
dependence of the dynamic yield stress.

2. Thermoelastic–viscoplastic model

Under high strain rate and high temperature, the mechanical re-
sponse of a deformed crystalline metal can be described by a thermo-
elastic–viscoplastic model, which will be detailed in the following.

The deformation gradient is used to describe the deformation pro-
cess, =F y

x
d
d . For a thermoelastic–viscoplastic system, the deformation

gradient can be decomposed into three components (De et al., 2014):

=F F F F ,e t p (1)

where Fe, Ft, and Fp denote the elastic deformation gradient, thermal
deformation gradient, and plastic deformation gradient, respectively.
The spatial gradient of total velocity, defined as = −L FF˙ 1, can be ex-
pressed by the following additive decomposition:

= + +− − − − − −L F F F F F F F F F F F F˙ ˙ ˙ .e e e t t e e t p p t e1 1 1 1 1 1 (2)

The spatial velocity gradient of the plastic shear deformation
(Roters et al., 2010) and thermal deformation can be expressed as
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= =−L F F ζT˙ ˙ ˙ ,t t t 1 (4)

where γ̇dis
α is the plastic shear rate in slip system α with slip direction s α

0
and slip plane normal m α

0 in the reference configuration, Ndis is the
number of slip systems,Ntw is the number of twinning systems, γ̇tw

β is the
plastic shear rate in twinning system β with twinning direction stw

β and
plane normal mtw

β in the reference configuration, matrix Q is used to
reorient the single crystalline parent volume owing to the activation of
twinning, ζ is the thermal expansion tensor and treated as isotropic for
BCC symmetry, and Ṫ is the temperature change rate during the de-
formation. Because the fraction of twinning in the deformation
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addressed in this work is small, the third term in Eq. (3) is ignored.

2.1. Thermoelastic formation

We now derive the stress tensor expression from the internal energy
of a deformed system. The internal energy of a thermo-
elastic–viscoplastic system can be written as (Lloyd et al., 2014)

� �= ε η ξ( , , ),e (5)

where ɛe is a reference elastic strain measure, η is the entropy, and ξ is
an internal state variable that quantifies the lattice defect contribution
to the total energy. Expanding the internal energy about a reference
state up to second order in elastic strain and first order in entropy
change gives
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Apparently, higher order elastic strain should be considered to de-
scribe the mechanical response at finite deformation more accurately
and rigorously. However, to a good approximation, especially for
elastic–plastic materials, third and higher order elastic constants are
usually ignored (De et al., 2014).

Following the thermoplastic model derived by De et al. (2014), the
stress tensor equation can be obtained from the stress-dependent and
entropy-dependent internal energy. By taking into account the pressure
and temperature dependence of the elastic constant tensor, which are
significant for high loading rates (De et al., 2014), the work conjugate
stress of the strain can be defined as
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� is the second-order elastic constant, εV
e is the vo-

lumetric component of the elastic strain tensor, and P is the pressure. By
following Maxwell's thermomechanical relation,

∂
∂

= ∂
∂ ∂

= −
ɛ ɛ

ΓT ε
η

T ,e e

2

(8)

the stress can be expressed as
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where Γ is the Grüneisen tensor.
For shock-loading problems, the mechanical response is usually

decomposed into a spherical part and a deviatoric part, and the sphe-
rical part is mainly described by an equation of state (EOS). Here, the
stress tensor is split into hydrostatic σh and deviatoric σ′ components:
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and

′ = ɛσ ℓ: : ,e� (10b)

where ′ɛ e is the deviatoric part of the strain tensor and ℓ represents a
fourth-order operator that extracts the deviatoric part from a second-
order tensor. σEOS is used to represent the terms that are purely related
to volume change, i.e.,
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In this work, the EOS term is replaced by the Grüneisen EOS
(Abaqus Analysis User’s Guide, 2016),

=
−

σ
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0 0
2

2 (12)

where C0 and s are critical parameters determined by experiments, and
= −μ ρ ρ1 /0 is the nominal volumetric compressive strain. Obviously,

the EOS term can be replaced by other EOS models, such as the
Birch–Murnaghan model (Lloyd et al., 2014).

The rates at which temperature and entropy change are expressed as

= − +qTη σ ε˙ div : ˙ ,L p (13)

= − + +q ΓC T C T ε σ ε˙ div : ˙ : ˙ ,V V
e L p (14)

where q denotes the heat flux. The heat transmission term can be ig-
nored because deformation induced by shock loading is so quick that
heat transmission is not significant. Then rates at which temperature
and entropy change can be expressed as (De et al., 2014)

= ɛTη σ˙ : ˙ ,L p (15)

= +Γ ɛ ɛT T σC ˙ C : ˙ : ˙ .V V
e L p (16)

2.2. Single-crystal plasticity kinetics

In this article, plastic deformation is attributed to dislocations and
twinning. Dislocation motion and dislocation generation together con-
trol the plastic deformation plastic strain rate according to the gen-
eralized Orowan equation

= + +γ bρ V ρ ρ bl˙ ( ˙ ˙ ) ¯,dis
α

M
α

D
α

M
α

IM
α (17)

where ρM, ρ̇M , ρ̇IM , VD, and l̄ refer to mobile dislocation density, gen-
eration rate of mobile dislocations, generation rate of immobile dis-
locations, dislocation velocity, and the displacement a dislocation seg-
ment undergoes during its formation, respectively. Thus plastic
deformation is determined by dislocation motion, dislocation genera-
tion, and twinning deformation, which will be depicted in detail in the
following.

Dislocations can have either edge character or screw character. For
BCC metals, the mobility of the edge dislocations is much higher than
that of the screw dislocations, which leads to that the area encountered
by the edge dislocations during the plastic slip is much smaller than that
encountered by the screw dislocations (Cui et al., 2016). The area en-
countered by the dislocation line during dislocation motion represents
the plastic deformation. Therefore, the edge dislocations play a minor
role on the plastic deformation of BCC metals than the screw disloca-
tions. Barton et al. (2011) has also pointed out that dislocations den-
sities for screw dislocations occupies roughly 60% of the overall po-
pulation based on dislocation dynamics simulation. In this article, to an
approximation, we did not distinguish dislocation characters, and we
mainly took screw dislocations into account, like Barton et al. (2011)
did.

2.2.1. Dislocation motion
A dislocation will not glide until applied stress exceeds the me-

chanical threshold stress, also known as the critical resolved shear stress
(CRSS), which mainly includes the Peierls stress τp, dis-
location–dislocation interaction resistance τint, and athermal resistance
τa. The non-Schmid effect is not considered in this study because the
Schmid effect is not significant at the temperature range addressed here
(Chen et al., 2013). The mechanical threshold stress may be written as

= + +τ τ τ τ .c p int a (18)

Peierls stress is usually regarded as the main resistance in a BCC
metal, and it drops with temperature considerably. The temperature
dependence of Peierls stress, based on the theory proposed by
Smirnov (1967), can be expressed as
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where x denotes ΘD/T, D3(x) is a third-order Debye function, =q G τ/ T
denotes the relation between shear modulus G and the ideal shear
strength τT, τp0 is the Peierls stress at 0 K, h is the Planck's constant, NA

is Avogadro's number, and Am is atomic weight.
The interaction resistance is often known as ‘forest’ dislocation work

hardening, which indicates that dislocation–dislocation interaction also
serves as the obstacle for a dislocation to move (Madec and
Kubin, 2017). The interaction resistance is expressed by a Taylor rela-
tion, =τ A Gb ρint I IM , in which AI is the hardening coefficient, G is the
shear modulus, and ρIM is immobile dislocation density.

The long-range resistance serves as an athermal threshold below
which there is no viscoplastic flow. As detailed in the multiscale
strength model (Barton et al., 2011), this athermal resistance could be
connected notionally to grain structure and does not contribute sig-
nificantly to the strength results.

Below the mechanical threshold stress, a dislocation cannot move
without the aid of thermal fluctuation. Based on this picture, thermally
activated dislocation motion is usually proposed to describe the dis-
location evolution at moderate strain rate. Given that the applied stress
in shock loading is usually much higher than the mechanical threshold
stress, which makes thermally activated dislocation motion impossible,
we did not take the thermally activated dislocation motion mechanism
into account in this study. Above the mechanical threshold stress, a
dislocation will move along the slip system, which is 〈111〉{110}for
BCC metals. During its motion, a dislocation has to overcome phonon
drag resistance. Apart from phonon drag viscosity, a gliding dislocation
in a BCC metal will also overcome the viscosity caused by self-pinning
and unpinning (Marian et al., 2004). Therefore, we introduced the ef-
fective viscosity, summation of phonon drag viscosity, and pinnin-
g–unpinning viscosity to control the dislocation motion above the me-
chanical threshold stress. The effect of temperature on the effective
viscosity is attributed to phonon drag. The phonon drag coefficient is
based on the theoretical deduction by Kuskin and Yanilkin (2013) and
is given by
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where Γ is the Grüneisen coefficient and kD is the Debye wave vector.
The viscosity caused by self-pinning and unpinning is taken as an ad-
justable parameter and assumed to be temperature independent.
Therefore, the dislocation velocity governing equation can be written as
(Hirth et al., 1998)
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where m0 is the dislocation mass, ct is the transverse sound speed, τ is
the resolved shear stress, and Bpin is defined as the effective viscosity
caused by self-pinning and unpinning and is taken as temperature in-
sensitive and adjustable.

2.2.2. Dislocation substructure evolution
When the shock wave arrives, the sharp rise of the shear stress

serves as the driving force for dislocation generation and motion. The
mobile segments glide on the slip plane until they are annihilated or
immobilized by obstacles. Based on this conceptualization of disloca-
tion evolution, dislocations can be classified as mobile dislocations and
immobile dislocations, and the dislocation density equations, as written
by Austin and McDowell (2012), are

= + − −ρ χρ ρ ρ ρ˙ ˙ ˙ ˙ ˙ ,M HN mult anni
M

trap (22a)

= − + −ρ χ ρ ρ ρ˙ (1 ) ˙ ˙ ˙ ,IM HN trap anni
IM

(22b)

in which terms with subscripts HN, mult, anni, and trap refer to HN,
multiplication, annihilation, and trapping respectively. χ is the fraction
of homogeneously nucleated dislocations that remain mobile after
traveling a distance χ̄hom (Austin and McDowell, 2012). Besides
homogeneous nucleation, heterogeneous nucleation also contributes to
plastic deformation, especially for polycrystalline metals. Nonetheless,
for simplicity, heterogeneous nucleation is not taken into account be-
cause we are dedicated to addressing the effect of temperature on the
dynamic yield stress, and thermally activated HN (TA-HN) is more
sensitive to temperature than heterogeneous nucleation. The sub-
structure evolution is explained in the following.

Multiplication: Dislocation line length may be generated by the
multiplication of preexisting dislocation segments. At low strain rates,
Frank–Read sources and cross-slip are regarded as common dislocation
multiplication mechanisms. A widely used multiplication generation
equation is the form derived by Johnston and Gilman (1960), which
suggests that the multiplication rate is proportional to the plastic strain
rate. However, it seems that Johnston and Gilman's equation has not
captured the essence of the multiplication process because there exists a
constant parameter with a dimension of dislocation density in the
equation. In this article, we modified the energy-based multiplication
generation equation derived by Krasnikov et al. (2011). It is assumed
that the energy of plastic dissipation provides the energy for newly
generated dislocations. The dislocation multiplication generation rate is
thus proportional to the plastic dissipation rate: =ρ A˙mult

ε
W

˙dissp

s
, where A

is a multiplication coefficient, =ε τγ˙ ˙dissp p is the plastic dissipation rate,

and =W lns
Gb

π
R
r4

2

0
is the elastic energy per unit length of screw disloca-

tion, with R being the radial distance to the dislocation line and r0 being
the cutoff radius of the dislocation core (Hirth and Lothe, 1968). Thus,
the dislocation multiplication equation can be written as

=ρ α
τγ

Gb
˙

˙
,mult mult

p
2 (23)

where αmult is a dimensionless parameter.
Homogeneous nucleation: At high strain rates, the activation of dis-

location multiplication is expected to be insufficient to produce enough
dislocations during the rise time of the shock front. Thus, HN genera-
tion, a fast-acting mechanism, becomes more fundamental. Usually, the
HN generation rate is of a classical Arrhenius form, which describes the
probabilistic nature of thermal activation. In this article, the HN gen-
eration equation is expressed as an Arrhenius equation multiplied by a
term associated with thermal energy. In contrast from the viewpoint of
energy of plastic dissipation, thermal energy is regarded as responsible
for the thermally activated dislocation nucleation because HN is ther-
mally activated when applied stress is below the nucleation stress. The
HN generation equation is expressed as

⎜ ⎟= ⎛
⎝

− − ⎞
⎠

ρ α k T
Gb

Q τ
k T

˙ exp Ω ,HN HN
B

B
3

0

(24)

where kBT is the thermal energy, Ω is the activation volume and set as
b3, and Gb3 is proportional to the elastic energy per b of dislocation. It is
suggested by this model that the dislocation generation rate is inversely
proportional to the shear modulus.

Annihilation: Dislocation annihilation occurs when two dislocation
with opposite signs are close. For mobile dislocations, dislocation an-
nihilation includes annihilation induced by interaction between mobile
dislocations and annihilation induced by interaction between mobile
dislocations and immobile dislocations. For immobile dislocations, the
annihilation process is all attributed to annihilation induced by inter-
action between mobile dislocations and immobile dislocations. Hence,
the annihilation equation is written as (Mayer et al., 2013)

= +ρ α ρ V b ρ ρ˙ ( ),anni
M

anni M D M IM (25a)

=ρ α ρ V bρ˙ ,anni
IM

anni M D IM (25b)
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where αanni is the annihilation rate.
Immobilization: When gliding dislocations encounter obstacles, part

of the gliding dislocations may be immobilized. Immobilized disloca-
tions are transferred as an immobile dislocation population. We adopt
the equation derived by Mayer et al. (2013) to describe this process.
The immobilization speed is proportional to the mobile dislocation
density and negatively proportional to a characteristic time:

= −ρ V ρ ρ ρ˙ ( ) ,trap I M IM0 (26)

where VI is the trapping rate and ρ0 is the minimum dislocation density.
Saturation dislocation density: Following the multiscale strength

model (Barton et al., 2011), saturation dislocation density is also in-
troduced in this model to set up the upper limit of dislocation density at
specified plastic strain rate,

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

ρ ρ ε
ε

S˙
˙sat s

p

N

n

0 0
(27)

Parameters ε̇N , S0, and n, which determine the strain rate depen-
dence of ρsat, are set as the same as those of vanadium for BCC metals
discussed in this article, whereas ρs0 is adjusted properly to discuss the
effect of ρsat on the temperature dependence of the dynamic yield stress
at higher temperature.

2.2.3. Deformation twinning
Compared to FCC metals, twinning can more easily occur in BCC

metals subjected to shock loading. Marian et al. (2004) pointed out that
there exists a transition from dislocation motion to twinning as shear
stress increases when the twinning threshold stress is higher than the
Peierls stress. Twinning is also a shear deformation mechanism and
plays the same role as dislocation does during plastic deformation.
Under high applied stress, a twin is nucleated in a grain and then
propagates on the twinning plane along the twinning shear direction
(Wu et al., 2015). Based on this picture, Wu et al. (2015) proposed a
twin nucleation, propagation, and growth model to describe the evo-
lution of twinning in AZ31. In this study, we aim to address the effect of
twinning on the mechanical response at elevated temperatures. Under
this conditions, the effect of dislocations on the mechanical response is
more significant than that of twinning. Consequently, we adopted a
phenomenological twinning model and did not distinguish the sub-
structure evolution of twinning to investigate the collective behaviors
of twinning. The twinning kinetics follows the power law form

= ⎧
⎨⎩

>
<

γ γ τ τ τ τ
τ τ

˙ ˙ ( / ) , ,
0, ,tw

β tw
β

tw
r

tw

tw

0 1/

(28)

where τtw is the twinning threshold stress below which twins do not
form, τ is the resolved shear stress, β denotes the twinning system,
which is set as 〈112〉{110} for BCC vanadium, γ̇tw

0 is the reference
twinning rate, and r is the rate-sensitivity power coefficient
(Florando et al., 2013).

2.2.4. Polycrystal model
The above theory is applied to describe the mechanical response of

monocrystalline material. To describe the mechanical response of
polycrystalline materials, a simplified polycrystal model is established.
For high-symmetry polycrystalline materials, the assumption that the
local deformation gradient in each grain is homogeneous and identical
to the macroscopic deformation gradient at the continuum material
point level is adopted. In this case, we ignored the effect of grain
boundary and only considered the distribution of the orientation of
grains along the loading direction. The number of grains is determined
by the sample size along the loading direction divided by real grain size,
~30 μm. Ignoring the effect of the grain boundary is acceptable because
the effect of the grain boundary on the width of the wave front has been
proved to be small compared to grain-to-grain anisotropy by atomistic
simulations (Bringa et al. 2005). The polycrystal model is displayed in

Fig. 1.
With σ(k) denoting the constant Cauchy stress in each grain, the

volume-average Cauchy stress is given as

∑=
=

σ V σ¯ ,
k

N
k k

1

( ) ( )

(29)

where V(k) is the volume fraction of each grain. Because all the grains
are assumed to be of the same volume, the stress is just the average over
all the grains,

∑=
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σ
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σ¯ 1 ,
k

N
k

1

( )

(30)

where N denotes the grain number along the loading direction.

2.3. Determination of parameters

2.3.1. Material parameters
Initial elastic constants at different temperatures are determined by

the temperature dependence of the elastic constants,

= +
∂
∂

× − +
∂
∂

× −c c
c
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T T
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T
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ij ij0
0

2

2 0
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(31)

where cij represents mnkl� with m denotes ij and n denotes kl, ∂
∂
c
T
ij is the

temperature derivative of cij, and
∂
∂

c
T

ij2

2 is the second order temperature
derivative of cij. Particularly, the second-order temperature derivative is
used to describe the anomalous temperature dependence of c44 of va-
nadium and tantalum below ~1000 K (Walker, 1978; Walker and
Bujard, 1980). To describe the mechanical response induced by tem-
perature change during the deformation, temperature derivatives of the
elastic constants at a specified temperature are calculated by differ-
entiating Eq. (31) with respect to temperature. The values of the elastic
constants are listed in Table 1. The pressure derivatives and the tem-
perature derivatives of the elastic constants are listed in Tables 2 and 3,
respectively.

The equivalent shear modulus is calculated by Voigt's expression
(Jamal, 2014),

= − +G c c c( 3 )/5.11 12 44 (32)

The bulk modulus is calculated by using the equation (Soga, 1966)

= +B c c( 2 )/3.11 12 (33)

The elastic constants of vanadium, tantalum, iron, molybdenum and
tungsten are obtained from Greiner, 1979, Walker and Bujard (1980),
Adams et al. (2006), Dickinson and Armstrong (1967), and
Soga (1966), respectively. Pressure derivatives of the elastic constants
of vanadium and tantalum are obtained from Katahara and
Manghnani (1976) and Varshi (1970), while those of other three metals
are not found in existing literatures yet. Temperature derivatives of
elastic constants of five metals are obtained from Walker (1978),

PolycrystalFlyer
Grain

Fig. 1. Schematic of a plate-impact experiment and polycrystal model.

Table 1
Elastic constants (in GPa).

V Ta Fe Mo W

c11 244.05 266.5 239.26 480.36 534.71
c12 120.96 161.4 135.78 156.17 209.16
c44 51.08 86.56 120.72 112.17 163.38
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Walker and Bujard (1980), and Varshi (1970). In particular, the elastic
constants for Fe, Mo, and W change with temperature linearly in the
temperature range between 300 and 1300 K, while those for Ta and V
change nonlinearly in the same temperature range (Walker, 1978;
Walker and Bujard, 1980). That is why we considered the second-order
temperature dependence of V and Ta but not that of the other three
metals.

The EOS parameters are listed in Table 4. ρ0 is the mass density at
room temperature. c0 and λ are the intercept and the slope of the

−u us p curve (Abaqus Analysis User’s Guide, 2016'), respectively,
where us is the shock wave speed and up is the particle velocity behind
the shock. Γ is the Grüneisen coefficient. The Grüneisen EOS parameters
at room temperature are obtained from the Material Properties Library
of Autodyn, while those at elevated temperature are obtained from
Crichton et al. (2016), Katahara and Manghnani (1976),
Molodets (2005), and Kushwah et al., (2003) for vanadium, tantalum,
molybdenum, and tungsten, respectively.

The phonon drag coefficients and their temperature derivatives for
vanadium, tantalum, iron, and molybdenum are determined by
Eq. (12), while those of tungsten are obtained from Po et al. (2016). In
particular, the temperature derivative of the phonon drag coefficient of
tantalum is set as zero based on calculations performed by
Barton et al. (2011). The phonon drag coefficient at a specified tem-
perature T is written as

= + −B T B B T( ) ( 300).ph T0 (34)

The phonon drag coefficients and their temperature derivatives are
listed in Table 5. Some other material parameters, including the Debye
temperature, the Peierls stress, the atomic mass, and the Burgers vector,
used in the model are listed in Table 6.

2.3.2. Model parameters
Among the 14 model parameters listed in Table 7, four of them (i.e.,

the multiplication rate αmult, mobile coefficient χ, HN rate αHN, and
pinning viscosity coefficient Bpin) influence the HEL evolution sig-
nificantly, while the other parameters are set as constants for all metals.
The model parameters are determined as follows:

(1) The multiplication rate αmult and pinning viscosity coefficient Bpin

are determined by fitting experimental results at room temperature;
these are not influenced by TA-HN significantly because of TA-HN's
strong temperature sensitivity. Particularly, αmult is estimated based
on the viewpoint that ~10% of the dissipated energy serves as the
energy for newly generated defects, like Krasnikov et al. (2011) did.
Bpin is proposed based on the atomistic simulation performed by
Marian et al. (2004), in which the effective viscosity of BCC iron is a
factor of ~2.5 higher than the phonon drag viscosity alone because

of dislocation self-pinning and unpinning. The value of Bpin is ad-
justed within several times of the phonon drag viscosity at room
temperature and set as temperature insensitive.

(2) Parameters that control TA-HN, including the HN coefficient αHN,
mobile coefficient χ, and average length l̄ that a nucleated dis-
location segment travels, are determined by fitting experimental
results at elevated temperatures. Among these parameters, the role

Table 2
Pressure derivatives.

V Ta Fe Mo W

∂c11/∂p 3.45 5.1
∂c12/∂p 3.09 3.14
∂c44/∂p 0.50 0.995

Table 3
Temperature derivatives.

V Ta Fe Mo W

∂c11/∂T (GPa/K) −0.0164 −0.0096 −0.0096 −0.0599 −0.00977
∂c12/∂T (GPa/K) −0.0019 0.0056 0.0056 0.0055 −0.02379
∂c44/∂T (GPa/K) −0.0174 −0.018 −0.018 −0.0106 −0.00161
∂2c11/∂T2 (GPa/K2) −9.6182×10−6 −5.05×10−6 0 0 0
∂2c12/∂T2 (GPa/K2) −3.5620×10−6 −5.05×10−6 0 0 0
∂2c44/∂T2 (GPa/K2) 1.6666×10−5 5.05× 10−6 0 0 0

Table 4
Grüneisen EOS parameters at room temperature.

V Ta Fe Mo W

ρ0 (g/cm3) 6.1 16.7 7.86 10.2 19.23
c0 (m/s) 5077.0 3410.0 4610.0 5143.0 1000.0
λ 1.2 1.20 1.73 1.25 1.24
Γ 1.4 1.67 1.67 1.59 1.67

Table 5
Phonon drag viscosity.

Viscosity V Ta Fe Mo W

B0 (10−5Pa s) 9.1 15.7 13.5 7.45 98
BT (10−7Pa s/K) 4.92 1.0 4.34 8.7

Table 6
Material parameters.

V Ta Fe Mo W

Debye temperature ΘD(K) 380 240 470 450 400
Peierls stress τp0(MPa) 340 525 900 870 900
Atomic mass Am(g/mol) 50.94 180.94 55.85 95.94 183.8
Burgers vector b(10−10m) 2.62 2.86 2.25 2.7 2.74

Table 7
Dislocation model parameters.

V Ta Fe Mo W

HN coefficient αHNa (1026 m−2 s−1) 1 5 0.3 50 80
Multiplication coefficient αMult

a 0.08 0.11 0.11 0.11 0.08
Annihilation coefficient αannib 10.0 10.0 10.0 10.0 10.0
Taylor hardening coefficient AI

a 0.4 0.4 0.4 0.4 0.4
Immobilization rate VI

a (m/s) 1.0 1.0 1.0 1.0 1.0
Initial dislocation density ρmin

b

(1011 m−2)
5 5 5 5 5

Mobile coefficient χa 0.005 0.005 0.005 0.005 0.005
Average length l̄ a b b b b b
Pinning viscosity Bpin

a (10−4 Pa s) 6.1 0.73 0.65 6.25 0.0
Athermal resistance τa (MPa)c 10 10 10 10 10
Saturation dislocation density
ρS0c (10−12 m−2) 4 2 4 4 4
γ̇ N c (s−1) 1 1 1 1 1

S0c 650 650 650 650 650
nc 0.56 0.56 0.56 0.56 0.56

a Adjusted to fit experimental data.
b Obtained from Mayer et al. (2013).
c Obtained from Barton et al. (2011).
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of χ should be particularly emphasized. χ is critical to reproduce
the thermal hardening phenomenon of the HEL of vanadium. The
relatively low value of χ seems to be the result of the quick im-
mobilization process of edge dislocations because of the high mo-
bility of edge dislocations.

(3) In this article, Taylor hardening behavior is regarded as universal
for a given crystallographic class of materials, and the Taylor
hardening coefficients AI of all metals are set as 0.4, close to DD
simulations (Madec and Kubin, 2017).

(4) Saturation dislocation density is used to address the temperature
dependent behavior at higher temperature in case that massively
generated dislocations by TA-HN at higher temperature exceeds the
up-limit of dislocation density. Parameters to determine the sa-
turation dislocation density are adjusted based on the dislocation
dynamics simulations using the multiscale strength model
(Barton et al., 2011). During the simulations, to address existing
experimental results, the effect of saturation dislocation density is
not significant.

2.4. Central difference rule

The proposed model is implemented as a VUMAT into the Abaqus/
Explicit finite element code. VUMAT is a user subroutine used to define
material behavior. In this study, the VUMAT is used to define the me-
chanical constitutive behavior of a material. The time integration in
Abaqus/Explicit is an explicit central difference scheme (Abaqus
Analysis User’s Guide, 2016'). In the explicit dynamics analysis
(Benson, 1992), the kinematic state ui is advanced using known values
of −u̇i 1/2 and üi,

= + +
+ −

+u u t t u˙ ˙ Δ Δ
2

¨ ,i i
i i

i1/2 1/2
1

(35a)

= ++ + +u u t uΔ ˙ ,i i i i1 1 1/2 (35b)

where the subscript i refers to the increment number in an explicit
dynamics step.

To improve the modeling of high-speed dynamics events, artificial
bulk viscosity is introduced in the explicit dynamics analysis. The bulk
artificial viscosity is evaluated as (Abaqus Analysis User’s Guide, 2016)

= − <p ρ a Lε a ρC Lε ε( ˙ ) ˙ , if ˙ 0,bv vol d vol vol2
2

1 (36a)

= <p ε0, if ˙ 0,bv vol (36b)

where =a 0.061 and =a 1.22 are the scale factor of the linear and the
quadratic viscosity, respectively, ε̇vol is the volumetric strain rate, L is
the element characteristic length, and Cd is the current dilatational
wave speed. The discretized form of Eq. (36a) is

= −+ + + + +p ρ a Lε a ρ C Lε( ˙ ) ˙ .bv
i i

vol
i i

d vol
i1/2 1/2

2
1/2 2

1
1/2 1/2 (37)

Artificial bulk viscosity is implemented into the internal energy
equation and the stress tensor:
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= ′ − +σ σ Iσ p( ) ,h bv (39)

where pbv is the bulk artificial viscosity pressure and ė is the deviatoric
strain rate. The discretized forms of Eqs. (38) and (39) are
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= − ++ ′ + + +σ σ Iσ p( ) .i i
h
i

bv
i1 1 1 1 (41)

For simplicity, the artificial viscosity in Eqs. (40) and (41) at step i is
approximated as the viscosity calculated at step i− 1/2. The

introduction of the artificial viscosity doesn't influence the calculated
results in this article considerably. In particular, only the HEL spike
changes slightly when we adjusted the values of the scale factors of the
artificial viscosity.

3. Results and discussion

The proposed model is implemented as a VUMAT into the Abaqus/
Explicit finite element code. Using the model, we modeled the pre-
heated plate-impact experiments performed by Zaretsky (2009) and
Zaretsky and Kanel (2014, 2015, 2016, 2017) in recent years. In these
experiments, BCC metals are preheated to a specified temperature and
then impacted by a flyer with a velocity of up to several hundred meters
per second accelerated by a gas gun. To avoid lateral rarefaction, the
diameter of the samples perpendicular to the loading direction is much
larger than the thickness along the loading direction. Under this con-
dition, the planar impact experiment is usually treated as a plane strain
problem. Particle velocities at the free surface are recorded by using
Velocity Interferometer System for Any Reflector (VISAR).

A three-dimensional finite element computational model is devel-
oped with a mesh size of 0.5 μm. The grain size is set as 30 μm. The
orientation distribution of the grain lattice of relatively thick samples,
1.0 and 2.0mm, is randomly chosen, while that of relatively thin
samples, 0.25 and 0.5mm, is adjusted to fit the experimental results.
There is only one mesh layer in the direction perpendicular to the
loading direction, and the displacement in the perpendicular direction
is set as zero to simulate the uniaxial strain state. The flyer plate is
endowed with initial velocity and impacts the sample at initial time.
Under this condition, global strain rate is enforced by the impact ve-
locity.

Model parameters are determined by fitting the evolution of the
critical features of the velocity profiles, including the HEL and the
plastic shock front. The dislocation-based constitutive model has 14
adjustable parameters. Among which, 4 are critical to HEL evolution:
αmult, Bpin, αHN, and χ; the others are set as equal values for different
materials.

αmult and Bpin are determined by fitting experimental results at room
temperature. With the same αmult and Bpin, calculated results match well
with experimental results at different applied stresses and those ob-
tained from samples with different thicknesses at room temperature, as
shown in Figs. 2 and 3. αHN, and χ are determined by fitting experi-
mental results at elevated temperature. Here, the texture to simulate
experiments of thicker samples is randomly chosen, while that of
thinner vanadium and tantalum samples are set as 〈111〉 preferential
and 〈100〉 preferential, respectively, which is acceptable because fewer
grains in a thinner sample cannot maintain a random distribution of
grain orientation.

We can see from Figs. 2 and 3 that model-generated results match
well with experimental results at different applied stresses, at different
temperatures, and with those obtained from samples with different
thicknesses, which verifies the validity of this model for addressing the
temperature dependence of the mechanical response at shock loading.

Subsequently, we simulated the velocity profiles of W, Fe, and Mo
using this model, as shown in Fig. 4. The temperature dependence of
the dynamic yield stress of five BCC metals using this model is displayed
in Fig. 5. Figs. 4 and 5 indicate that the calculated results with this
model are in good agreement with experimental results, including the
temperature dependence of the dynamic yield stress and the elastic–-
plastic wave characteristics, over wide temperature range, which sug-
gests that this model is effective for shock-loaded BCC metals even at
elevated temperature.

Given that dynamic yielding is dominated by plastic deformation,
we can now explore the underlying mechanisms of the dynamic yield
stress from the controlling mechanisms of dislocation evolution and
twinning evolution. How dislocation evolution and twinning evolution
influence the dynamic yield stress, respectively, is discussed in the
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following.

3.1. Effect of twinning on the dynamic yield stress of vanadium

In this study, we aimed to address the mechanical response of a
series of experiments performed by Zaretsky and Kanel in recent years.
In these experiments, twinning is only observed in the recovered va-
nadium sample, but not in other BCC metals. Therefore, we mainly
discuss the effect of twinning on the dynamic yield stress of vanadium.

There are three parameters used to describe the stress dependence
of the twinning shear rate in the phenomenological model used in this
article: the twinning threshold stress τtw, the reference twinning shear
rate γ̇tw

0 , and the rate-sensitivity power coefficient r. The twinning
threshold stress of vanadium is obtained from Ojha and Sihitogl (2014),
while the reference twinning shear rate and the rate-sensitivity power
coefficient are adjusted to fit the experimental results based on the
values of tantalum (Florando et al., 2013). Parameters for the twinning
model used in this article are listed in Table 8.

Two kinds of calculations are performed: one using the twinning
model, and another with no twinning, to study the effect of twinning.

To strengthen the effect of twinning on the mechanical response, the
reference twinning shear rate of tantalum is adjusted to 100 s−1. A
comparison between calculated results of vanadium with twinning
considered and those without twinning considered is displayed in
Fig. 6. It is suggested by Fig. 6 that the effect of twinning is significant
at the location near the impact surface and is almost negligible at a
location ~1.0 mm away from the impact surface. Calculated results also
indicate that the twinning shear rate drops significantly, by about two
orders of magnitude, when the shock wave propagates from 0.25 to
1.75mm, as shown in Fig. 7(a). The calculated spatial distribution of
twinning is in accordance with that in recovered samples (Meyers et al.,
2009; Pang et al., 2018). We can learn from Pang et al. (2018), as
shown in Fig. 7(b), that the twinning area fraction along 〈001〉 and
〈111〉 is significant near the impact surface but is almost negligible at a
location of >0.5mm away from the impact surface and that the
twinning area fraction along 〈011〉 drops to <10% at a location of
>1.5mm away from the impact surface.

As displayed in Fig. 8(a), the calculated results for vanadium at
elevated temperature exhibit the same spatial distribution as that at
room temperature, suggesting that twinning shear deformation does not
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Fig. 2. Comparison between experiments and simulations for vanadium: (a) 300 K; (b) 800 K. Red solid lines refer to calculated time histories of the free surface
velocity and black dashed lines refer to experimental results (Zaretsky and Kanel, 2014). During the simulations, both the evolution of twinning and that of
dislocations are taken into account. The 〈111〉 preferential texture is chosen to fit the experiments with the 0.5-mm sample, while a random distributed texture is
chosen to simulate experiments with thicker samples; the insets present the chosen texture. The same texture is chosen to simulate samples of the same thickness at
different temperatures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Comparison between experiments and simulations for tantalum: (a) 300 K; (b) 1300 K. Red solid lines refer to calculated time histories of the free surface
velocity and black dashed lines refer to experimental results (Zaretsky and Kanel, 2014). During the simulations, only the evolution of dislocations is taken into
account. The 〈100〉 preferential texture is chosen to fit the experiments with the 0.5-mm sample, whereas a random distributed texture is chosen to simulate
experiments of thicker samples; the insets present the chosen texture. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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significantly influence the temperature dependence of the dynamic
yield stress. The temperature dependence of twinning shear deforma-
tion can be understood from the temperature insensitivity of Peierls
stress for partial dislocations, which determines the twinning threshold
stress. Given that Peierls stress for perfect dislocations drops quickly
with increasing temperature (Hirth and Lothe, 1968), temperature in-
sensitivity of the twinning threshold stress leads to more significant
dislocation shear deformation and less significant twinning deformation
at higher temperature. As shown in Fig. 8(b), the twinning deformation
rate decreases with increasing temperature, whereas the dislocation
shear deformation rate increases with increasing temperature. None-
theless, the effect of twinning deformation on the temperature

dependence of the dynamic yield stress is still difficult to distinguish
from the effect of dislocations because the reduction of plastic de-
formation accommodated by twinning can be accommodated by dis-
locations at higher temperature.

3.2. Effect of dislocation evolution on the temperature dependence of the
dynamic yield stress

As analyzed above, the influence of twining on the dynamic yield
stress is only significant near the impact surface. Because the common
temperature dependence of the dynamic stress does not depend on
spatial size, we can thus attribute the temperature dependence of the
dynamic yield stress to dislocation evolution, including dislocation
motion and dislocation generation. In the following, we aim to address
the temperature dependence of the dynamic yield stress from the
viewpoint of dislocation motion and dislocation generation.

3.2.1. Dislocation motion mechanisms
In the classical picture, Peierls stress marks the transition from

thermally activated glide of dislocations below Peierls stress to the
phonon drag mechanism above Peierls stress, and thermal softening
behaviors are usually attributed to thermally activated dislocation
motion. For a weak shock-loading problem, the applied stress induced
by shock compression exceeds the Peierls stress quickly, leading to an
elimination of thermally activated glide of dislocations and to phonon
drag dominating dislocation motion. Thus the dislocation velocity is
mainly controlled by Peierls stress and phonon drag. As temperature
increases, the drop of Peierls stress makes it easier for dislocations to
move, while the growth of phonon drag makes it more difficult. The
interference is that Peierls stress with phonon drag may indeed result in
different temperature dependences of the dynamic yield stress.

First, let us neglect temperature-dependent dislocation generation,
i.e., TA-HN, to ascertain whether the abovementioned two classical
mechanisms i.e., Peierls stress and phonon drag, that control disloca-
tion motion are responsible for the temperature-dependent behaviors of
the dynamic strength of shock-loaded BCC metals. As shown in
Fig. 10(a), the calculated velocity profiles of tantalum and vanadium at
room temperature are in good agreements with temperature, and the
thermal softening behavior of tantalum is well reproduced. However,
the calculated HEL minima of vanadium at 1100 K and at 800 K are
much smaller than experimental values, and the HELs show a tem-
perature insensitive tendency at <1100 K. From the viewpoint of dis-
location motion, dislocation velocities, as displayed in Fig. 9, at dif-
ferent temperatures exhibit temperature insensitivity when subjected to
shear stress at several hundreds of MPa because the phonon drag
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Fig. 4. Comparison between calculated time histories of the free surface velocity of W, Fe, and Mo at different temperatures and experimental results (Zaretsky, 2009;
Zaretsky and Kanel, 2015, 2016, 2017): (a) 2mm Tungsten and 2mm Iron; (b) 1 mm Molybdenum.
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Fig. 5. Comparison of calculated temperature dependence of the dynamic yield
stress and experimental results. The dynamic yield stress, =σ ρ C uHEL l HEL0 ,
where ρ0 is the initial material density, Cl is the longitudinal sound speed, and
uHEL is the particle velocity at the HEL minimum, is the stress at the HEL
minimum. Solid symbols refer to experimental results while open symbols refer
to calculated results. The different shapes of symbols refer to results for dif-
ferent materials.

Table 8
Twinning model parameters.

Material V Ta

τtw (MPa) 220 300

γ̇tw
0 (s−1) 1 100

r 0.1 0.1
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hardening is counterbalanced by the rapid drop of Peierls stress. Ap-
parently, a constitutive model in which only the temperature depen-
dence of dislocation motion is taken into account is incapable of ac-
curately capturing the constitutive behavior of shock-loaded BCC
vanadium at elevated temperature.

3.2.2. Thermally activated dislocation generation
In addition to dislocation motion, dislocation generation has also

been proposed as the primary contributing factor to the dynamic
strength at high strain rate. To the best of our knowledge, the tem-
perature-dependent behavior of dislocation generation has not been
addressed in the literature. In this study, temperature-dependent dis-
location generation is mainly attributed to TA-HN. HN occurs when the
applied stress approaches the nucleation strength, ~G/15 for most
metals (Hirth and Lothe, 1968), and is difficult to achieve. According to
calculations, the shear stress induced by a shock velocity of several
hundred meters per second is much less than the nucleation strength.
Under this condition, HN is thermally activated. Owing to its thermal
activation property, TA-HN is of high temperature sensitivity and high
stress sensitivity. As temperature increases, decrease in activation en-
ergy and increase in thermal fluctuations make it easier for HN to occur.

Subsequently, we performed calculations using a model with TA-HN
considered. The calculated substructure evolution rate of vanadium is

displayed in Figs. 11(a) and (b). As shown in Figs. 11(a) and (b),
temperature=dependent dislocation generation is strongly strength-
ened by TA-HN. In particular, the HN rate at 300 K is almost negligible
compared to the multiplication rate, while the HN rate grows quickly
with temperature and is about two orders of magnitude larger than the
multiplication rate at 1100 K. A higher HN rate results in a higher
dislocation density at higher temperature. As shown in Fig. 12, the total
dislocation densities behind the shock front are ~1015 and ~1016 m−2

at 300 K and 1100 K, respectively.
A comparison between the calculated velocity profiles with TA-HN

considered and experimental results is displayed in Fig. 10(b). As
shown in Fig. 10(b), the calculated results at elevated temperature with
HN considered show a higher HEL minimum and match better with
experimental results than those without HN considered, which indicates
that TA-HN is responsible for the thermal hardening behavior of the
dynamic yield stress of BCC vanadium at elevated temperatures. Be-
sides that, we can also learn that TA-HN results in a slight decrease of
the HEL spike at elevated temperature, but it is not significant, which
indicates that the primary contributing factor to the temperature de-
pendence of HEL spikes are dislocation motion and not dislocation
generation. Nonetheless, from the viewpoint of dislocation generation,
TA-HN, providing more dislocations for plastic slip, is still a thermal
softening mechanism but not a thermal hardening mechanism.
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3.2.3. Forest hardening
Newly generated dislocations not only serve as plasticity carriers

but also as obstacles for other dislocations to move via dis-
location–dislocation interactions, namely, the forest hardening me-
chanism (Madec and Kubin, 2017). Forest hardening and Peierls stress
serve as the mechanical threshold stress, also known as the CRSS, for a
dislocation to move together. Forest hardening has been proposed as
providing the primary resistance to dislocations moving in FCC metals
owing to the relatively low Peierls stress of FCC metals, while the in-
fluence of forest hardening on dislocation motion has been proposed as
insignificant in BCC metals because the effect of forest hardening on
dislocation motion is almost negligible compared to the relatively high
Peierls stress of BCC metals. Moreover, existing studies at moderate
strain rates indicate that the plastic hardening of most BCC metals is
barely influenced by temperature and contributes to the athermal part
of the flow stress (Voyiadjis and Abed, 2005). However, massively
generated dislocations by TA-HN at high strain rate make the effect of
forest hardening on dislocation motion significant in BCC metals,
especially at relatively high temperature.

We can learn from Fig. 12 that immobile dislocation density at
1100 K is about three orders of magnitude higher than that at 300 K
because of the temperature sensitivity of TA-HN. Here, the influence of
the mobile coefficient χ, which defines the mobile portion of nucleated
dislocations after gliding a constant distance, should be emphasized. In
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the simulations, the value of χ, determined by fitting the HEL at ele-
vated temperatures is adjusted to be relatively small, which results in
most of nucleated dislocations becoming immobile after gliding a
constant distance and contributing to the forest hardening. If we adjust
the coefficient to a larger value, greater numbers of dislocations gen-
erated by TA-HN participate in plastic slip, which helps to decrease the
HEL, and thermal hardening behavior of the HEL minima would never
emerge. The small value of the mobile coefficient can be understood
from the mobility of edge dislocations. The mobility of edge disloca-
tions in a BCC metal is much higher than that of screw dislocations,
which results in most of the edge dislocations becoming immobilized
quickly when encountering grain boundaries or other obstacles
(Cui et al., 2016) and serve as obstacles for other dislocations.

The forest hardening mechanism, described by the Taylor relation,
can be reflected by the evolution of the CRSS. As shown in Fig. 13(a)
and (b), the CRSS at room temperature almost does not evolve, whereas
the CRSS at elevated temperature increases considerably. The CRSS of
vanadium at 1100 K even exceeds that at 300 K before the plastic wave
arrives. Given that Peierls stress is determined by the ambient tem-
perature, thermal hardening of the CRSS is thus attributed to forest
hardening. More dislocations generated at higher temperatures owing
to the thermal activation property of HN lead to thermal hardening of
the dislocation–dislocation interaction resistance and thermal

hardening of the dynamic yield stress.

3.2.4. Forest hardening and Peierls stress
As analyzed above, different temperature dependences of the dy-

namic yield stress result from different temperature dependences of the
CRSS, including the contribution of Peierls stress and forest hardening.
Though forest hardening plays the same role as Peierls stress does in
dislocation motion, their temperature effects on dislocation motion
happen to be opposite to each other. As temperature increases, a rapid
decrease of Peierls stress contributes to thermal softening of the CRSS,
whereas growth of the foresting hardening induced by HN contributes
to thermal hardening of the CRSS.

At relatively low temperature, Peierls stress of a BCC metal drops
sharply with increasing temperature, and the growth of forest hard-
ening induced by TA-HN is not enough to make up for the loss of the
Peierls stress because of the relatively low HN rate. Thus Peierls stress
controls the temperature dependence of the CRSS, leading to a thermal
softening behavior of the dynamic strength. That is why almost all BCC
metals exhibit thermal softening behaviors at relatively low tempera-
ture. As temperature increases, Peierls stress becomes relatively low, as
does the temperature derivative of Peierls stress. Meanwhile, forest
hardening induced by TA-HN grows quickly with temperature. In par-
ticular, the temperature derivative of the Peierls stress of vanadium is
almost negligible compared to that of forest hardening at >800 K.
Moreover, phonon drag also contributes to the thermal hardening be-
havior of the dynamic yield stress. Consequently, vanadium exhibits
thermal hardening behavior at >800 K. For other BCC metals, Peierls
stress and its temperature derivative are still significant over the same
temperature range and control the temperature-dependent behavior of
the CRSS. Consequently, these metals still exhibit thermal softening
even at temperatures of >1000 K.

3.2.5. Prediction of the temperature dependence of the dynamic yield stress
at higher temperature

Thermal hardening has only been observed in vanadium but has not
yet been observed in other BCC metals. Based on the above analysis, it
is expected that thermal hardening behavior can also be observed in
other shock-loaded BCC metals at higher temperatures at which Peierls
stress and its temperature derivative for a BCC metal almost vanish. To
verify this expectation, we simulated the shock-loading response of four
typical BCC metals, vanadium, tantalum, molybdenum, and tungsten,
over a wider temperature range, as shown in Fig. 14. It is numerically
found that all metals exhibit thermal softening behaviors at relatively
low temperature, whereas thermal hardening behaviors of the dynamic
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yield stress occur in all four metals except Ta at relatively high tem-
perature, as shown in Fig. 14(b).

As analyzed in Section 3.2.4, the thermal softening behavior of the
dynamic yield stress at relatively low temperature is due to the rapid
drop of Peierls stress, while thermal hardening behavior of the dynamic
strength at relatively high temperature is mainly due to forest hard-
ening induced by TA-HN, leading to thermal hardening of the CRSS.
However, it is demonstrated by Fig. 14 that the CRSS of vanadium and
molybdenum first increase and finally decrease with temperature at
relatively high temperature, which indicates that the thermal hardening
behaviors of vanadium and molybdenum at higher temperature, above
~0.5Tm, are no longer due to forest hardening but rather to phonon
drag. The Taylor relation indicates that the decrease of the CRSS above
0.5Tm is due to the decrease of the shear modulus and the saturation of
dislocation density.

The role of saturation dislocation density should be emphasized
when addressing the mechanical response at elevated temperature. We
used the saturation dislocation density model proposed by
Barton et al. (2011) to determine the upper limit of dislocation density
at a specified strain rate. At relatively high temperature, dislocation
density grows sharply and becomes saturated quickly even before the
HEL minima, as shown in Fig. 15. Thus the role of forest hardening on
the behavior of the HEL minimum at relatively high temperature is no
longer significant. The evolution of the CRSS is completely determined

by the saturation dislocation density, which is determined by the in-
stantaneous strain rate. We can see from Fig. 15 that dislocation density
becomes saturated quickly at elevated temperature, and the dislocation
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density evolves just as the saturation dislocation density does.
Thermal hardening behavior is not found in Ta because the shock

velocity in Ta is relatively lower than those in other metals, leading to a
relatively lower HN rate. Moreover, phonon drag hardening of Ta is
regarded as temperature insensitive, so also does not contribute to
thermal hardening behavior of the dynamic yield stress.

Above all, the temperature dependence of the dynamic yield stress
can be classified into three regions according to temperature. At rela-
tively low temperature, the rapid drop of Peierls stress dominates the
temperature dependence of the CRSS, leading to a thermal softening
behavior of the dynamic strength. At relatively high temperature, forest
hardening induced by HN dominates the CRSS and contributes to
thermal hardening behavior of the dynamic strength. At even higher
temperature, the temperature dependence of forest hardening almost
vanishes because dislocation density becomes saturated quickly be-
cause of the high HN rate, and the temperature dependence of the
dynamic strength is a result of interference between phonon drag and
Peierls stress.

4. Summary and conclusions

We have numerically investigated the temperature-dependent be-
haviors of the dynamic yield stress of shock-loaded BCC metals through
a dislocation-based constitutive model. The aim of this work is to gain
insight into the underlying mechanisms that control the temperature
dependence of the dynamic yield stress. To describe the shock-loading
response of BCC metals at high strain rate and high temperature cor-
rectly, a dislocation-based constitutive model in which controlling
mechanisms of dislocation motion, dislocation generation, and twin-
ning are comprehensively considered is established. Through numerical
simulations with this model, we have quantitatively reproduced the
experimental results, including the thermal hardening behavior of va-
nadium at elevated temperature and the thermal softening behaviors of
other BCC metals.

It is found that the influence of twinning on the dynamic yield stress
of shock-loaded BCC metals and its temperature dependence is almost
negligible and four dislocation-associated mechanisms, including
Peierls stress, phonon drag, forest hardening, and TA-HN, are demon-
strated to significantly influence the temperature dependence of the
dynamic yield stress of shock-loaded BCC metals. In the classical pic-
ture, Peierls stress and the phonon drag mechanism, which control
dislocation motion, are the fundamental origin of the temperature de-
pendence of the dynamic yield stress. In this article, Peierls stress has
been proven to be the primary contributing factor to the thermal soft-
ening behavior of BCC metals, in accordance with the conclusion of D3P
simulations (Gurrutxaga-Lerma et al., 2017), while the temperature
effect of phonon drag on the dynamic yield stress is counterbalanced by
the rapid drop of Peierls stress and is almost negligible at relatively low
temperature. The novelty of this work lies in the forest hardening in-
duced by TA-HN having been proposed as the primary contributing
factor to the experimentally observed thermal hardening behavior of
vanadium. The forest hardening mechanism is usually regarded as in-
significant and insensitive to temperature in BCC metals. However, it is
suggested by this work that forest hardening becomes significant at the
elevated temperatures at which Peierls stress almost vanishes and that
the temperature effect of TA-HN results in the forest hardening me-
chanism being temperature sensitive and increasing with increasing
temperature. What excites us is that the numerical analysis predicts that
this thermal hardening mechanism is also suitable for other BCC metals,
e.g., tungsten and molybdenum, at temperatures between 0.35Tm and
0.50Tm, and that phonon drag hardening contributes more significantly
to the dynamic strength at even higher temperature, above ~0.50Tm.
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