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A B S T R A C T

Mechanical and hydraulic properties of a crack can significantly affect seismic wave propagation. To explore
these effects, we developed an effective medium model that describes the P-wave dispersion and attenuation in
inhomogeneous porous media containing a distribution of aligned cracks. Although there are numerous theo-
retical models for quantifying the seismic dispersion and attenuation, some of them are restricted to low fre-
quencies at which only effects of the wave-induced fluid flow (WIFF) are considered but the influences of elastic
scattering are ignored. Others only consider crack mechanical properties without incorporating crack perme-
ability. The others describe the crack by a thin layer with infinitely lateral extension, neglecting the crack length
information. To improve the applicability of previous theoretical models and overcome some of these restric-
tions, we consider a crack of finite size as a porous medium having different poroelastic properties from the
matrix material and use poroelastic linear slip conditions to describe the jumps in the stress and displacement
across the crack. We first study the scattering of a normally incident fast-P wave by a single circular crack. Then,
by combining the theoretical solution and Foldy's scattering method, we develop an effective medium model that
can relate seismic characteristics to mechanical compliance and hydraulic permeability of the cracks. Finally, we
perform comprehensive parametrical analysis to study the role played by different characteristics of crack on the
seismic signatures. We show that the P-wave phase velocity and attenuation are sensitive to the crack me-
chanical properties, fluid mobility inside the crack and crack size. The findings provide deep understandings on
seismic characteristics in cracked rocks and may allow for extracting these properties from seismic data.

1. Introduction

Earth's crustal rocks often contain cracks or fractures. The cracks are
believed to dominate the mechanical and hydraulic properties of the
rocks. Moreover, the crack orientation can reflect the geological stress
history of the rock. Therefore, much attention has been paid to develop
non-invasive techniques for probing cracked rocks. The method of
elastic wave is widely used for detecting inhomogeneous rocks. As such,
approaches to estimate the effective properties of such cracked solids
have been studied extensively in the literature (e.g., O'Connell and
Budiansky, 1977; Kawahara, 1992; Kawahara and Yamashita, 1992;
Smyshlyaev et al., 1993; Zhao et al., 2015; Guo et al., 2018; Song et al.,
2019). The effective medium models can provide simple tools to cap-
ture the overall mechanical properties of cracked rocks, and they have a
wide range of applications in geological, environmental and geophy-
sical sciences. Based on the frequency dependence of the time delay
between split shear waves in VSP data and effective medium model by

Chapman (2003), Maultzsch et al. (2003, Maultzsch et al. 2007) in-
verted crack density, crack size and crack orientations, which are very
useful for hydrocarbon reservoir modelling. Moreover, the effective
medium model can be used to identify fault properties
(Worthington and Hudson, 2000) and earthquake double-couple source
(Pearce et al., 1988).

The relationship between inhomogeneity microstructure and overall
property is a classical theme in the mechanics of heterogeneous mate-
rials and it has attracted particular attention from geophysics commu-
nity. The rocks of the earth's upper crust are typically porous to some
extent and often contain cracks, fractures and faults. One logical means
of modelling the essential features of such rocks is to use poroelasticity
theory. When seismic waves propagate in such fluid-containing cracked
rocks, complex interactions occur among the solid frame, pore fluid and
crack. In recent decades, many theoretical models (Hudson et al., 1996;
Hudson, 2000; Pointer et al., 2000; Chapman, 2003; Chapman et al.,
2003), heuristic approaches (Galvin and Gurevich, 2015; Kong et al.,
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2017; Guo et al., 2018) and numerical methods (Masson and
Pride, 2007; Rubino et al., 2013, 2014; Quintal et al., 2014) have been
developed to investigate frequency-dependent seismic dispersion and
attenuation in cracked porous rocks.

Seminal works in the area of estimation of seismic dispersion and
attenuation in cracked porous rocks include the papers by
Brajanovski et al. (2005, 2006), Lambert et al. (2006),
Kong et al. (2013), Rubino et al. (2015) Barbosa et al. (2016,
Barbosa et al., 2017), in which they modelled the cracks as thin,
compliant poroelastic layers with infinitely lateral extension. It is found
that the wave-induced fluid flow (WIFF, or scattered slow P wave via
mode conversion at the crack faces) contributes significant velocity
dispersion and attenuation when the fluid diffusion length is compar-
able to the crack spacing (the distance between two crack planes). The
works of these authors are important because they established adequate
but simple models to relate seismic dispersion and attenuation to rock
mesoscopic-scale inhomogeneity. In other word, the most distinguished
contribution of these works is that the layered models regard the geo-
metry correlations and involve some crack interactions. But their works
leave out the crack length information, which is particularly important
for rock permeability investigation.

The first exact solution for the elastic scattering by a fluid-saturated
crack in a porous medium is credited to Galvin and Gurevich (2006,
Galvin and Gurevich 2007), who investigated the normal P-wave
scattering by a circular fracture. Based on the scattering solution and
Foldy's (1945) scattering theorem, Galvin and Gurevich (2009) devel-
oped an effective medium model to estimate P-wave dispersion in a
rock containing aligned fractures. It is found that the attenuation peak
occurs when the diffusion length is of the same order of the fracture
radius (see also in Gurevich et al., 2009). The work of these authors is
also important because it first provides a physical interpretation of
wave propagation in porous media containing fractures of finite size.
Galvin and Gurevich (2015) obtained full-angle seismic dispersion an-
isotropy by combing linear slip deformation approximation (e.g.,
Sayers and Kachanov, 1991; 1995; Schoenberg and Sayers, 1995) and
their previous scattering solutions. Since the shear excess compliance is
assumed to be equal to its static value, their anisotropy model is re-
stricted to low frequencies at which the fracture radius is much smaller
than the elastic wavelength. Fu et al. (2018) studied corresponding P-
wave dispersion due to the presence of a distribution of aligned slit
fractures in plane-strain situation. Very recently, Song (2017) in-
vestigated the scattering of an oblique incident plane wave of arbitrary
polarization direction (P, SV and/or SH waves) by a circular fracture.
However, the papers stated above are restricted to the situation that the
crack-filling fluid is incompressible or the thickness of the fluid-satu-
rated crack is infinitesimal. In many practices, the infilled fluid is
compressible, in particular, when the crack is filled with a mount of gas
bubbles. Guo et al. (2018) and Song et al. (2019) studied the effect of
compressibility of the crack-filling fluid on wave scattering in elasticity
and showed that the crack fluid compressibility significantly controls
the mechanical compliance of the crack. But how the crack fluid com-
pressibility affects the wave propagation in porous media is still not
fully understood. Very recently, Guo et al. (2017a, 2017b) proposed a
heuristic model to estimate seismic dispersion and attenuation for a
porous medium containing aligned cracks with compressible fluid by
combing Eshelby's (1957) inclusion theory and branching function
method (Gurevich et al., 2009). But this model is restricted to low-
frequency range within which the effects of WIFF are considered but the
influences of the elastic scattering (scattering into fast P and S waves
due to mode conversion) are neglected.

In some situations, rocks are often permeated by plane dis-
continuities that, possessing low permeability relative to the back-
ground material, may serve as barriers for fluid flow. For example, the
compaction bands (Rudnicki, 2013), which are narrow, roughly planar
bands, can significantly alter the flow characteristics of the formations.
On one hand, oil, gas and water may be naturally occurring in the

localization bands and it is desired to withdraw these fluids. On the
other hand, because of the low permeability of the localization bands,
they shall be used to prevent CO2 from emitting to the atmosphere.
Therefore, detection and characterization of the localization bands are
also important for reservoir and environmental sciences. The common
feature of the discontinuities and cracks is that they have very small
aspect ratios. In the following, we shall also call these discontinuities
“cracks”. To our knowledge, there is no theoretical effective medium
model that simultaneously relates crack-infilling elasticity and crack
permeability to the effective properties of cracked fluid-saturated rocks.

To overcome previous restrictions, in this work we derive an exact
solution for the elastic wave scattering by a single crack in a porous
media. In particular, physical continuities and discontinuities of quan-
tities across the crack are described by poroelastic linear slip conditions
proposed by Nakagawa and Schoenberg (2007). The linear slip condi-
tions can relate crack opening displacement to the crack parameters
and hence they permit to account for the effects of crack-infilling
properties on the seismic response of an individual crack. The back-
ground is assumed to be another porous solid whose properties could be
different from the crack properties. Then, based on the scattering so-
lution and Foldy's (1945) scattering theorem, we develop an effective
medium model for velocity dispersion and attenuation in a fluid-satu-
rated rock containing a distribution of aligned cracks. Special attention
is devoted to exploring the effects of crack poroelastic parameters on
effective wave velocity and attenuation. Three different dispersion
mechanisms (i.e., WIFF, elastic scattering and Biot's global flow) are
included in the wave propagation models. Core mathematical process
follows the series expansion method proposed by Krenk and
Schmidt (1982).

2. Scattering by a single crack

First, we consider a circular crack whose diameter 2a is much larger
than the size of micro-scale pores of the background material. The crack
is assumed to occupy the region ≤ =r a z, 0 in a cylindrical coordinate
system (r, θ, z). The problem is to determine the scattering waves by the
crack at the normal incidence of a fast P wave. In Fig. 1, we give a
sketch of the crack including geometry and loading characteristics
(incident and scattered waves).

In the present paper, both the crack and background material are
modelled as porous media that can be described by Biot's (1962) theory
of poroelasticity. Biot's theory predicts two P waves (fast-P and slow-P)
and one S wave for propagating in porous media. The fast-P and S wave
behave like the ordinary elastic waves in elastic solids. The slow-P wave
reduces to a diffusion-type phenomenon at low frequencies. We denote
the solid displacement vector by u, the filtration displacement vector
(fluid displacement relative to the solid in a reference volume unit) by
w, the total stress tensor and pore pressure by σ and p, respectively. The
governing equations of Biot's theory can be found in Galvin and
Gurevich (2009) and Song et al. (2017a, 2017b).

Fig. 1. A circular crack in a porous medium subjected to normally incident P
wave.
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In the following, we denote the physical field quantities associated
with the incident wave by a superscript in, the scattered field quantities
in the upper half space z>0 by a superscript +, the scattered field
quantities in the lower half space z<0 by a superscript ‒. Throughout
the paper, a time-harmonic factor −e ωti , where ω is the angular fre-
quency, t is time and i is the unit imaginary number, is suppressed.
Therefore, the incident wave can be represented by the displacement
vector

= u k zu zexp(i )^,in
pf0 (1)

where uin is the incident solid displacement vector, u0 is the amplitude,
ẑ is the unit vector in the z direction and kpf is the fast-P wavenumber.

2.1. Boundary conditions

According to poroelastic linear slip model proposed by
Nakagawa and Schoenberg (2007), the jumps and continuities of phy-
sical quantities across a crack can be related to the crack parameters via
the following explicit relations
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= ≤ ≤ =+ −σ σ r a z(0 , 0),zz zz (6)

= ≤ ≤ =+ −σ σ r a z(0 , 0),rz rz (7)

where α is the Biot-Willis coefficient, B̃ is a Skempton coefficient-like
parameter which is defined as =B̃ αM

HU
where M is the storage modulus,

HU is the undrained P-wave modulus. =ηT
h
μ and =ηN

h
HD D

are shear
and drained normal compliances of the crack. h is the crack thickness,
HD and μ are the drained P-wave modulus and the shear modulus of the
crack. HD is related to the crack frame bulk modulus KD via the relation

= +H K μD D
4
3 . The membrane permeability κ ω^ ( ) is related to the fre-

quency-dependent dynamic permeability k(ω) (Johnson et al., 1987)
through the relation =κ ω^ ( ) k ω

h
( ) . ηf is the crack fluid viscosity. The

dimensionless function Π is defined as (Nakagawa and
Schoenberg, 2007)

= = −ε
ε

ε h ω
D

Π tanh , (1 i)
2 2

,
(8)

where =D k
η

MH
Hf

D
U

0 is the diffusion coefficient, k0 is the static perme-

ability. Π is complex and called a “fluid-pressure dissipation factor”,
which approaches unity for the low-frequency limit (drained response)
and approaches zero for the high-frequency limit (undrained response).

According to (Deresiewicz and Skalak, 1963), the continuity con-
ditions of displacement, stress and pore pressure on =z 0 and r> a can
be written as

= > =+ −u u r a z( , 0),z z (9)

= > =+ −w w r a z( , 0),z z (10)

= > =+ −u u r a z( , 0),r r (11)

= > =+ −p p r a z( , 0), (12)

= > =+ −σ σ r a z( , 0),zz zz (13)

= > =+ −σ σ r a z( , 0).rz rz (14)

It should be noted that the poroelastic parameters given in Eqs. (2)-
(5) are associated with the crack. To differentiate the matrix (back-
ground material) parameters from the those of the crack, we will denote
the matrix poroelastic parameters by a superscript B. For example, HU

B

denotes the undrained P-wave modulus of the matrix, while HU denotes
the undrained P-wave modulus of the crack.

2.2. Solutions

Because we consider a normally incident P wave, the scattered fields
are axis-symmetric and independent of the azimuth angle θ. According
to Song et al. (2017a), the scattered fields in the upper half space can be
expressed as

∫ ⎡
⎣⎢

∑ ⎤
⎦⎥

= −+ ∞ + −

=

+ −u A ke A η e J kr k k( ) d ,z s
η z

i pf

ps

i i
η z

0 0s i

(15)

∫ ⎡
⎣⎢

∑ ⎤
⎦⎥

= −+ ∞ + −

=

+ −w χ A ke χ A η e J kr k k( ) d ,z s
B

s
η z

i pf

ps

i
B

i i
η z

0 0s i

(16)

∫ ⎡
⎣⎢

∑ ⎤
⎦⎥

= −+ ∞ + −

=

+ −u A η e A ke J kr k k( ) dr s s
η z

i pf

ps

i
η z

0 1s i

(17)

∫ ⎡
⎣⎢

∑ ⎤
⎦⎥

=+ ∞

=

+ −p μ ς A k e J kr k k( ) d ,B

i pf

ps

i
B

i i
η z

0
2

0i

(18)

∫ ⎡
⎣⎢

∑ ⎤
⎦⎥

= − −+ ∞

=

+ − + −σ μ k τ k A e A η ke J kr k k(2 ) 2 ( ) d ,zz
B

i pf

ps

i
B

i i
η z

s s
η z

0
2 2

0i s

(19)

∫ ⎡
⎣⎢

∑ ⎤
⎦⎥

= − −+ ∞

=

+ − + −σ μ A η ke A k k e J kr k k2 (2 ) ( ) d ,rz
B

i pf

ps

i i
η z

s s
η z

0
2 2

1i s

(20)

where Ji() is the Bessel function of the first kind of order i, the di-
mensionless parameters
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and the quantity

= − =η k k i pf ps s( , , ).i i
2 2 2 (22)

To satisfy the radiation condition, the wavenumber ηi(k) is subject
to the following restriction:

≥ =η k i pf ps sRe[ ( )] 0( , , )i (23)

for any positive k. The symbol =k i pf ps s( , , )i denotes the wavenumber
in corresponding wave mode, where the subscripts pf, ps and s refer to
fast-P, slow-P and S waves, respectively. The symbol =χ i pf ps s( , , )i

B

denotes the ratio of filtration displacement to the solid displacement in
corresponding wave mode. The symbol CB denotes a modulus defined in
Biot's theory, it can be related to Biot-Willis coefficient and storage
modulus via the relation =C α MB B B.

The scattered fields in the lower half space can be expressed as:
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The unknown coefficients −Ai and +Ai for =i pf ps s, , can de-
termined from the boundary conditions. The stress continuity condi-
tions (6), (7), (13) and (14) immediately give
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Substitution of expressions (15)-(29) into boundary conditions (2)-
(5) and (9)-(12) and then use of Eq. (30) in the results give a series of
integral equations
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where the functions f k( )j
i and sj =j( 1, 2, ...,4) are lengthy and we thus

collect their expressions in Appendix A. Δuz(r), Δwz(r), Δur(r) and Δp(r)
denote the displacement and pore pressure jumps across the crack faces.
They are defined as follows
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Now, applying the inverse Hankel transform to Eqs. (35)-(38) gives
evaluation of the coefficients −Ai and +Ai in terms of the displacement
and pore pressure jumps on the crack faces.
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Note that the scattering problem will be fully solved if the dis-
placement and pore pressure discontinuities are known. To obtain the
displacement and pore pressure discontinuities, we follow the Legendre
series expansion method proposed by Krenk and Schmidt (1982).
Realizing that the near-tip stress of a crack possesses inverse square root
singularity, the displacement and pore pressure jumps can be expanded
as
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where P ()l
m is the associated Legendre function of the first kind. The

inner integral in Eqs. (40)-(43) is now evaluated by use of the result
(Krenk, 1982)
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where jm() is the spherical Bessel function of the first kind. Thus,
Eqs. (40)-(43) become
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Multiplying both sides of the integral Eqs. (31)-(34) by
p r r

a

( )j
0

3 , in-
tegrating the resulting equation with respect to r from 0 to a, and in-
troducing the relations (50)-(53) into the results, we obtain a linear
system of equations for the expansion coefficients
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and
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where the matrices Alj, Blj,…Hlj are collected in Appendix B. The coef-
ficients Sj

1, Sj
2, Sj

3 and Sj
4 are determined by the incident wave, their

explicit expressions are also given in Appendix B.
We have derived the exact solution of the scattering problem for a

single crack imbedded in an infinite porous solid. Because we adopted
poroelastic linear slip conditions, the solution can relate the crack
poroelastic properties to the scattered waves. In next section, we will
use the scattering solution to develop an effective medium model for
the wave propagation in a porous rock with a set of aligned cracks.

3. A sparse distribution of aligned cracks

3.1. Effective properties of a porous material containing aligned cracks

Here, we are concerned with velocity dispersion and attenuation in
a cracked porous material. We assume that the crack positions are
random but the crack orientation is aligned. As shown in Fig. 2, the
crack axes are parallel to z-axis. We assume that the medium contains
one set of cracks which have the same radius a. For simplicity, the
cracks are assumed to have the same poroelastic properties, size and
aspect ratio. According to Foldy's (1945) scattering theorem, the ef-
fective P-wavenumber keff of porous material containing cracks can be
expressed in terms of scattered far fields

= +k k πn f4 (0),eff pf
2 2

0 (56)

where n0 is the crack number density (number of cracks per unit vo-
lume) and f(0) is the scattered far-field amplitude of the fast-P wave in

the forward direction (with respect to the incident wave) by a single
crack. Mathematically, according to Gubernatis et al. (1977), f(0) is
related to the scattered far field from the following equation

= = → ∞+u r z u f e
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k z
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i pf

(57)

where u0 is the incident wave amplitude. By using the method of
steepest descent (e.g., Bleistein and Handelsman, 1986) and large-ar-
gument asymptotic expansion (Olver et al., 2010) of the spherical
Bessel function, we obtain
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(58)

where U0, W0 and P0 are the expansion coefficients defined in Eq. (44),
(45) and (47). Once the effective wavenumber keff is determined, the
effective phase velocity veff and inverse quality factor −Q 1 can be ob-
tained from

=v ω
kRe( )

,eff
eff (59)

and

=−Q
k
k

2
Im( )
Re( )

.eff

eff

1

(60)

The expressions (59) and (60) can be used to quantify the velocity
dispersion and attenuation due to the scattering by a plane fast-P wave
by randomly distributed aligned cracks. To do so, the system of linear
Eq. (54) has to be solved numerically for every frequency.

3.2. Consistency with incompressible-crack-fluid model

We have developed an effective medium model that can relate wave
characteristics to the mechanical compliance and hydraulic perme-
ability of the cracks. It is expected that the present model can reduce to
previous model (Galvin and Gurevich, 2009) of a crack containing in-
compressible fluid under corresponding assumptions. In the following,
let us check the consistency between the present model and the in-
compressible-crack-fluid model.

For the incompressible-crack-fluid model, the crack space is filled
with pure fluid. A key assumption is that the crack thickness is so small
that the non-dimensional factor ≫ 1a

h
K

μ
2 f

B , where Kf is the bulk modulus
of the crack fluid. Because the crack is thin enough and the crack faces
are permeable, there is no pore pressure jump across the crack plane.
These statements imply that the crack parameters can reduce to

= =
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In this case, the boundary conditions (2)-(5) directly reduce to
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which are the same as the boundary conditions used in Galvin and
Gurevich (2009). Simultaneously, the linear system of Eq. (54) reduces
to
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whereFig. 2. P wave propagating along z-axis in a cracked porous medium.
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Eqs. (63) and (64) are equivalent to the results obtained by
Song (2017) who solved the scattering by a circular crack containing
incompressible fluid by using the series expansion method. It should be
noted that at the normal incidence of a fast-P wave, Song (2017)’s re-
sults agree with those of Galvin and Gurevich (2007, 2009) who, using
a different method, reduced the scattering problem into a Fredholm
integral equation of the second kind.

In this subsection, we have shown that how the present model re-
duces to the incompressible-crack-fluid model. Therefore, the present
model can be regarded as an extended work of Galvin and
Gurevich's (2009) model. In some sense, the consistency with the pre-
vious model validates our scattering model.

4. Examples and discussions

4.1. Parameters

Numerical results of the frequency-dependent velocity and at-
tenuation for different crack properties and mechanistic insights on
these results are given in this section. In Table 1, we list the material
parameters for numerical calculations. For the purpose of exploring the
effects of crack on overall effective properties, throughout subsequent
numerical examples, the matrix parameters and crack density

= =ε n a 0.10
3 are fixed. In Table 2, we show detailed choices of the

crack parameters in each example.

4.2. Effects of crack fluid mobility on wave dispersion and attenuation

The ratio of material permeability to fluid viscosity coefficient de-
fines fluid mobility (e.g., Batzle et al., 2006). The crack fluid mobility
can largely control fluid flow and pore pressure and further affects the
velocity dispersion and attenuation. Fig. 3 illustrates the effects of crack
permeability on the phase velocity and inverse quality factor. It is
shown that when the crack permeability is smaller than that of the
matrix, the dispersion and attenuation due to WIFF are sensitive to the
crack permeability. Specifically, in Fig. 3(a) we give the frequency-
dependent P-wave phase velocities for different values of the crack
permeability. It is found that in the low-frequency range (f <104 Hz) if
the crack permeability value decreases one order of magnitude, the

velocity dispersion curves will roughly shift towards low frequencies by
one order of magnitude.

In Fig. 3(b), we show the results of the inverse quality factor. In the
low-frequency range (f <104 Hz) the characteristic frequency of the
attenuation peak also roughly moves to low-frequency range by one
order of magnitude if the permeability decreases one order of magni-
tude. By the way, to compare the results with the dispersion and at-
tenuation in the uncracked rock, we also display the P-wave velocity
and inverse quality factor in the matrix material. Neither dispersion nor
attenuation is observed in the matrix at such low frequencies, which
suggests that the low-frequency dispersion and attenuation in the
cracked material are attributed to the cracks. Essentially, the low-fre-
quency velocity dispersion and attenuation in the cracked materials are
caused by the mechanism of the WIFF, as the characteristic frequency of
the WIFF is actually proportional to the material diffusivity which is
also proportional to the fluid mobility (Müller et al., 2010).

It should be emphasized that when the crack permeability is com-
parable to or greater than that of the matrix, the dispersion and at-
tenuation due to the WIFF become not sensitive to the crack perme-
ability. The reason is that when the crack is very permeable, the crack
no longer serves as a barrier to prevent fluid motion. Consequently, the
fluid will have enough time to flow into the matrix during each oscil-
latory compressional half-cycle.

For all cases of non-zero values of the crack permeability, the low-
frequency limits of the P-wave velocity are independent of the crack
permeability. This is due to the fact that, in the low-frequency limit (or
at statics) the fluid pressure is in equilibrium between the pores and
cracks and all velocity curves converge to the same value. We also see
that for the impermeable crack (i.e., the crack permeability =k 00 ), the
low-frequency limit of the P-wave velocity is greater than that of a
permeable (or partially permeable) crack. This phenomenon can be
explained as follows. For =k 00 , the crack is hydraulically isolated from
the matrix pores so that no fluid mass exchange occurs between the
cracks and surrounding pores. As a result, when a P-wave propagates in
such a material, both cracks and matrix behave as undrained media.
Even in low-frequency range, unrelaxed fluid pressure can be induced,
resulting in larger velocity than the case of a permeable crack.

An important result of the impermeable crack situation is that its
low-frequency velocity provides us an upper bound to quantify the
dispersion magnitude between the low-frequency limit and the no-flow
limit. Typically, Fig. 3(a) shows that for frequency f <104 Hz, as the
frequency increases, most of the velocity curves converge to the result
of impermeable crack.

In Fig. 3(b), we also find that for frequency f<104 Hz the magnitude
of the first attenuation peak (which is caused by the WIFF) is not sen-
sitive to the crack permeability and remains almost unchanged at small
values of the crack permeability. In contrast, for large values of the
crack permeability, the magnitude of the first attenuation peak tends to

Table 1
Poroelastic parameters used for the numerical examples. .

Matrix property Symbol Value Crack property Symbol Value

Static permeability k B
0 0.01D Static permeability k0 1Da

Frame bulk modulus KD
B 26 GPa Frame bulk modulus KD 0.52 GPa

Frame shear modulus μB 31 GPa Frame shear modulus μ 0.62 GPa
Fluid bulk modulus Kf

B 2.25 GPa Fluid bulk modulus Kf 2.25 GPa

Fluid viscosity ηf
B 10−3 Pa•s Fluid viscosity ηf 10−3 Pa•s

Solid bulk modulus 36 GPa Solid bulk modulus 36 GPa
Porosity 0.1 Porosity 0.5
Tortuosity 3 Tortuosity 1
Fluid density 1000 kg/m3 Fluid density 1000 kg/m3

Solid density 2600 kg/m3 Crack radius a 0.5 m
Crack thickness h 10−3 m

Notice that some parameters are not noted by symbols since they are not referred to, but they are necessary for numerical calculation.
a
1D≈1.0×10−12 m2.
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decrease with the increase of crack permeability. This result indicates
that the characteristic frequency of the WIFF moves to higher frequency
at which the effects of elastic scattering become important and the ef-
fects of WIFF and elastic scattering compete with each other at certain
frequencies.

At frequencies 104< f<3×105Hz, we find the second attenuation
peak in Fig. 3(b). Such intermediate-frequency (or the second) at-
tenuation peak is attributed to elastic scattering. Correspondingly, in
Fig. 3(a) we can find velocity dispersion due to elastic scattering within
such frequency range. It is shown that the velocity dispersion due to
elastic scattering is constrained between the no-flow limit and the un-
cracked limit. For frequency f >3×105 Hz, all velocity and attenua-
tion curves converge to those of the uncracked matrix. Note that in such

high-frequency range there still exist velocity dispersion and attenua-
tion. It turns out that the high-frequency (or the third) dispersion and
attenuation are produced by Biot's global flow.

Fig. 4 shows the velocity and inverse quality factor for different
crack fluid viscosities. By comparing these dispersion and attenuation
curves with those in Fig. 3, we find that the effects of increasing crack
fluid viscosity are equivalent to those of decreasing crack permeability.
This is due to the fact that the dispersion and attenuation are essentially
determined by the fluid mobility (the ratio of crack permeability to
fluid viscosity).

Table 2
Crack parameter choice for calculating the velocity and attenuation.

Result Varying property Symbol Values of the varying property Other properties

Fig. 3 Static permeability k0 0–∞ Shown in Table 1
Fig. 4 Fluid viscosity ηf 10−3–104 Pa•s Shown in Table 1
Fig. 5 Frame bulk modulus KD 0–5 GPa Shown in Table 1
Fig. 6 Fluid bulk modulus Kf 0.01–5 GPa Shown in Table 1
Fig. 7 Crack size a, h a==0.15–50m, h/a==0.002 Shown in Table 1

Fig. 3. P-wave phase velocity (a) and inverse quality factor (b) versus fre-
quency for different crack permeability values. .

Fig. 4. P-wave phase velocity (a) and inverse quality factor (b) versus fre-
quency for different crack fluid viscosity values.
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4.3. Effects of crack frame bulk modulus on wave dispersion and
attenuation

It is interesting to investigate the effects of crack frame bulk mod-
ulus KD on wave dispersion and attenuation because strong scattering
can be produced by compliant cracks. The frame bulk modulus is one of
basic parameters for porous media and it can be related to the un-
drained bulk modulus = −K H μ( )U U

4
3 via Gassmann's (1951) equation

= +K K α MU D
2 , where the definitions of α (Biot-Willis coefficient) and

M (storage modulus) have been clarified in Section 2.1. In Fig. 5, we
plot P-wave velocity and inverse quality factor versus frequency for
different crack frame bulk moduli. In Fig. 5(a), it is shown that the total
dispersion magnitude (the velocity difference between high- and low-
frequency limits) and attenuation decrease with the increase of the
crack frame bulk modulus. The P-wave velocity increases with the crack
frame bulk modulus in the low-frequency range (WIFF-dominated fre-
quency range), but it decreases with the crack frame bulk modulus in
the intermediate-frequency range (elastic scattering-dominated fre-
quency range).

Fig. 5(b) shows that both of the attenuation due to WIFF and the
attenuation due to elastic scattering decrease with the crack frame bulk
modulus. These results agree with our expectation because of that the
more compliance the crack is, the stronger scattering can be caused by
the crack. Moreover, the characteristic frequency of elastic scattering

shifts toward higher frequencies with the increase of the crack frame
bulk modulus. The reason is most likely that, at a given frequency the
characteristic wavelength increases with the crack frame bulk modulus
so that the characteristic frequency of the elastic scattering increases.

4.4. Effects of crack fluid bulk modulus on wave dispersion and attenuation

It has been widely recognized that the rocks are often filled with
multi-phase fluids. It is of interest to explore how the multi-phase fluids
affect the seismic waves in cracked rocks. Aside from the fluid viscosity
effects studied in Fig. 4, the crack fluid compressibility can also sig-
nificantly affect the velocity dispersion and attenuation. Thus, Fig. 6
depicts P-wave phase velocity (a) and inverse quality factor (b) versus
frequency for different values of the crack fluid bulk modulus Kf.
Fig. 6(a) shows that the general trend in velocity is that the total
magnitude of the velocity dispersion increases with the decrease of Kf.
In Fig. 6(a), we can observe three different dispersion portions in dif-
ferent frequency ranges. The first (low-frequency) dispersion occurs
within the frequency band f <104 Hz and it corresponds to the con-
tribution of WIFF. The second (intermediate-frequency) dispersion
roughly occurs at frequencies 104<f <2×105 Hz and it is caused by
elastic scattering. The third (high-frequency) dispersion takes place in
the frequency range f >2×105 Hz and it is owing to Biot's global flow.

It can be seen that for different crack bulk moduli, significant

Fig. 5. P-wave phase velocity (a) and inverse quality factor (b) versus fre-
quency for different crack frame bulk moduli.

Fig. 6. P-wave phase velocity (a) and inverse quality factor (b) versus fre-
quency for different crack fluid bulk moduli.

Y. Song, et al. Mechanics of Materials 140 (2020) 103229

8



differences in velocity and attenuation occur in the low-frequency
range (WIFF-dominated frequency range). As Kf decreases, the WIFF-
dominated dispersion magnitude (the velocity change within the WIFF-
dominated frequency range) first decreases, and then conversely in-
creases. A similar phenomenon was observed by Kong et al. (2013) in a
periodic system of two different porous layers and can be explained as
below. For the case of large value of crack fluid bulk modulus, during
each oscillatory compressional half-cycle, high fluid pressure will be
induced in the crack so that the fluid will flow into the matrix. In
contrast, for the case of small value of crack fluid bulk modulus, the
induced fluid pressure in the crack is smaller than that in the matrix
pores. In this second case, the fluid will conversely flow into the crack.
Therefore, there must be an intermediate case in which no flow occurs
between the cracks and micro-scale pores. In this particular case, the
dispersion due to WIFF disappears.

Another result that can be found in Fig. 6(b) is that the character-
istic frequency of the WIFF moves to lower frequencies when Kf de-
creases. This result is expected, since the crack diffusivity is roughly
proportional to the crack fluid bulk modulus. If the diffusivity de-
creases, the fluid will need more time to flow across the crack.

Furthermore, the dispersion magnitude and attenuation due to
elastic scattering monotonously increases with the decrease of Kf (the
increase of crack fluid compressibility). This is because of that the no-
flow-limit velocity decreases with the increase of the crack fluid com-
pressibility, resulting in stronger elastic scattering.

4.5. Effects of crack size on wave dispersion and attenuation

To study the dependence of characteristics of the dispersion and
attenuation on crack sizes, Fig. 7 shows the P-wave velocity and inverse
quality factor as functions of frequency for six different values of the
crack radius. In Fig. 7, we keep the crack aspect ratio and the crack
density unchanged. We see that all velocity curves converge to the same
value in the low-frequency limit, demonstrating that the low-frequency
velocity is determined by the crack density. This result agrees with
previous works (e.g., Budiansky and O'Connell, 1976;
Benveniste, 1987) that for an elastic non-porous matrix with a dis-
tribution of dry cracks, the low-frequency effective velocity is de-
termined by the crack density rather than the crack volume fraction. We
also see that when the crack size increases by one order of magnitude,
the characteristic frequency of the WIFF shifts to low-frequency range
by two orders of magnitude, while the characteristic frequency of the
elastic scattering shifts to low frequency-range by only one order of
magnitude. These results are expected, since the characteristic fre-
quency of the WIFF is proportional to the inverse square of the crack
radius (Müller et al., 2010; Galvin and Gurevich, 2015) (or the char-
acteristic frequency of the WIFF is proportional to the inverse of the
area of the crack interface), while the characteristic frequency of the
elastic scattering is proportional to the inverse of the crack radius.

4.6. Comparison with the incompressible-fluid-crack model

In the last example, we aim at comparing the present effective
medium model with a previous incompressible-fluid-crack model.
Galvin and Gurevich (2007, 2009) first solved the problem of scattering
by a crack containing incompressible fluid and developed an effective
medium model for porous medium permeated by a random distribution
of aligned cracks. Because they focused on the dispersion and at-
tenuation in low-frequency range, their model is developed based on a
kind of simplified Biot's theory in which Biot's global flow is ignored.
Song et al. (2017a) and Song (2017) rederived the solution of such
scattering problem by using the full framework of Biot's theory.

In order to examine the effects of fluid motion inside the crack on
wave dispersion and attenuation, in Fig. 8 we compare the present
model with Song's (2017) work for different crack permeability coef-
ficients. For this example, in addition to the properties shown in

Table 1, we assume that the crack frame bulk and shear moduli
=K K0.001D D

B and =μ μ0.001 B, where KD
B and μB are the matrix frame

bulk and shear moduli.
Analogously to Fig. 3, we find that for low crack permeability (here,

< −k 100
16m2) the dispersion characteristic frequency (i.e., the fre-

quency at which the velocity changes the most strongest) of the WIFF is
sensitive to the crack permeability, whereas for high crack permeability
( > −k 100

16m2) the effects of crack permeability on dispersion and at-
tenuation are negligible. It is worthy to mention that the characteristic
frequencies at high crack permeability coefficients are close to that of
the incompressible-crack-fluid model. This result indicates that the in-
compressible-crack-fluid model assumes its crack permeability value to
be very large.

By comparing the curves with those in Fig. 3 in which the crack
stiffnesses are greater than those in Fig. 8, we can verify the crack
elastic properties can not only largely determine the velocity but also
significantly change the characteristic frequency of the WIFF. This is
due to the fact that apart from the fluid mobility, the crack elastic
properties also control the crack hydraulic diffusivity which is a key
parameter for determining the flow pattern.

5. Conclusions

Mechanical and hydraulic properties of the cracks have been shown

Fig. 7. P-wave phase velocity (a) and inverse quality factor (b) versus fre-
quency for different crack sizes.
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to have significant impacts on seismic signatures of cracked rocks. We
have studied the effective properties of fluid-saturated porous rocks
with aligned cracks containing compressible infillings which have dif-
ferent poroelastic properties from the background materials. To do so,
we first solved the elastic wave scattering problem of an incident P
wave by a circular crack. In particular, to study the effects of me-
chanical and hydraulic properties of the crack on the scattering, we
used poroelastic linear slip conditions to describe the relations between
crack properties and the stress and displacement discontinuities across
the crack. Then, based on the exact scattering solutions we estimated
attenuation and dispersion of elastic waves in rocks with a sparse dis-
tribution of aligned cracks by using Foldy's method. We also showed
how the present model reduces to previous model of crack containing
incompressible fluid. In numerical examples, we explore the effects of
mobility of the crack fluid, crack mechanical properties, crack fluid
compressibility and crack size on velocity dispersion and attenuation.
The significant findings and remarks are summarized as follows:

(1) We have considered three important attenuation mechanisms in the
present model. The low-frequency attenuation is attributed to
WIFF, the intermediate-frequency attenuation is caused by elastic
scattering, while the high-frequency attenuation is caused by Biot's
global flow. The first two attenuation peaks are sensitive to crack

fluid mobility, crack elasticity, crack fluid compressibility and crack
size.

(2) We find that the crack fluid mobility can largely control fluid flow
and pore pressure distribution inside the crack and further affects
the velocity dispersion and attenuation. For low crack fluid mobi-
lity, if it decreases by one order of magnitude the curves of the
velocity dispersion and attenuation of WIFF will shift towards to
low-frequency range by one order of magnitude. When the crack
fluid mobility is comparable to or greater than that of the matrix,
the dispersion and attenuation due to WIFF are no longer sensitive
to the crack fluid mobility.

(3) We verified that the effects of crack frame bulk modulus on wave
dispersion and attenuation are also important because strong scat-
tering can be produced by compliant cracks. It is found that the
total dispersion magnitude (the velocity difference between high-
and low-frequency limits) and attenuation decrease with the in-
crease of the crack frame bulk modulus. The P-wave velocity in-
creases with the crack frame bulk modulus in the low-frequency
range (WIFF-dominated frequency range), while it decreases with
the crack frame bulk modulus in the intermediate-frequency range
(elastic scattering-dominated frequency range).

(4) The crack fluid compressibility also plays an important role in
controlling the dispersion magnitude and attenuation peak as well
as dispersion characteristic frequencies at both low- and high-fre-
quency ranges. The general trend in velocity is that the magnitude
of velocity dispersion (the velocity difference between high-fre-
quency and low-frequency limits) increases with the decrease of Kf.
As Kf decreases, the magnitude of dispersion due to WIFF first de-
creases, and then conversely increases. A similar phenomenon is
also observed by Kong et al. (2013) in a periodic system of two
different porous layers. The characteristic frequency of WIFF moves
to low-frequency range when Kf decreases. Moreover, we find that
the magnitude of dispersion and attenuation due to elastic scat-
tering monotonously increases with the decrease of Kf.

(5) We see that when the crack size increases by one order of magni-
tude the characteristic frequency of the WIFF shifts to low-fre-
quency range by two orders of magnitude, while the characteristic
frequency of the elastic scattering shifts to low-frequency range by
only one order of magnitude.

In brevity, the present model extends a previous model and the
above results allow us better interpret frequency-dependent effective P-
wave velocity and attenuation in saturated-filled cracked rocks.

The present model assumes that the crack distribution is dilute,
interactions between the multiple cracks will be analyzed in a separate
paper.
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Appendix A. Expressions of several functions

In this appendix, we collect expressions for functions f k( )j
i and sj =j( 1, 2, ...,4).
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The expression of f k( )j
i =j( 1, 2, ...,4) is a function of the crack parameters and it serves as several intermediate functions for solving the integral

equations, while sj =j( 1, 2, ...,4) depends on the incident wave properties and it serves as the “source term” of the scattered waves.

Appendix B. Coefficients for the linear system of equations

In Section 2, we have showed that the integral equations of the scattering problem can be reduced to a linear system of equations. Now, detailed
expressions of the coefficients in the linear system of equations are given in this appendix. The matrices given in Eq. (54) are
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where Γ() denotes the Gamma function.
The expansion coefficients for the incident wave are
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