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Growley, Benjamin, Master of Arts, Spring 2008    Geography 

 

Abstract Title:  Landslide Susceptibility Zonation GIS for the 2005 Kashmir Earthquake 

Affected Region 

 

Chairperson:  Dr. Ulrich Kamp 

 

 

  The October 8, 2005 Kashmir earthquake triggered several thousand landslides 

throughout the Himalaya of northern Pakistan and India. A spatial database, which 

included 2252 landslides, was developed and analyzed using ASTER satellite imagery 

and geographical information system (GIS) technology. A multi-criterion evaluation was 

applied to determine the significance of event-controlling parameters in triggering the 

landslides. The parameters included lithology, faults, slope gradient, slope aspect, 

elevation, land cover, rivers and roads. The results were broken down into four classes of 

landslide susceptibility. The results indicated that lithology had the strongest influence on 

landsliding, particularly when the rock is highly fractured, such as in the shale, slate, 

clastic sediments, and limestone and dolomite. Moreover, the proximity of the landslides 

to faults, rivers, and roads was also an important factor in helping to initiate failures. In 

addition, landslides occurred particularly in moderate elevations on south facing slopes. 

Shrub land, grassland, and also agricultural land were highly susceptible to failures, while 

forested slopes had few landslides. One-third of the study area was highly or very highly 

susceptible to future landsliding and requires immediate mitigation action. The rest of the 

region had a low or moderate susceptibility to landsliding and remains relatively stable. 

This study supports the view that earthquake-triggered landslides are concentrated in 

specific zones associated with event-controlling parameters.  It also concludes that 

western Himalaya deforestation and road construction are susceptible to landsliding 

during and shortly after earthquakes. 
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I.  INTRODUCTION 

 

Azad Jammu and Kashmir (AJK), a disputed territory in Northern Pakistan, is an 

area located atop the Western Himalayas.  Widely renowned for it breathtaking 

landscape, AJK is prone to large-scale disasters such as earthquakes and landslides.  

Landslides are one of the most widespread and damaging hazards in the Himalayas.  

Landslides can be particularly harmful when adjacent to human settlements and 

infrastructure such as towns, roads, bridges and utilities and are potentially deadly to the 

local populations.   The high susceptibility to landslides of the Western Himalayan terrain 

is largely due to a complex geological setting combined with frequent seismic activity, 

varying slopes and relief, heavy rainfall during the monsoon season, increasing amount of 

human development and a rapidly growing population.  In the wake of such a disaster, 

people of the region are looking to establish new standards in dwelling and road 

construction, and to develop routes for escape and make relief more accessible 

particularly in the more remote areas.  These types of changes require complex analysis 

of the landscape with modern technology to ensure that the proper procedures and polices 

are put into effect in a timely fashion to reduce any preventable loss of life and damage of 

property (Saha, 2002). 

 

1.  The Earthquake 

On October 8, 2005 at 8:50 am local time a devastating 7.6 magnitude (Richter 

scale) earthquake struck the Lesser Himalaya in Pakistan and India. The epicenter was 

located at 34°29´35˝ N and 73°37´44˝ E, just outside the regional capital of Muzaffarabad 
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in the Pakistani-controlled portion of Azad Jammu and Kashmir (Figure 1).  The massive 

quake had a focal depth of 26 km and the main shock was followed by 978 aftershocks of 

magnitude 4.0 and higher until October 27, 2005 (EERI, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The earthquake and its many aftershocks traumatized the people and ravaged the 

land and infrastructure of the region, completely overwhelming this marginalized area of 

northern Pakistan.  The 2005 earthquake event is reported as the deadliest earthquake in 

recent history of the sub-continent with approximately 72,800 fatalities; 68,700 injuries; 

and close to 400,000 buildings destroyed resulting in about 2.8 million people left 

homeless in Pakistan alone (Peiris et al., 2006).  Figure 2 demonstrates how deadly the 

2005 Kashmir earthquake was when compared with other earthquakes worldwide since 

1900.  High population density surrounding the epicenter of the powerful 7.6 magnitude 

Figure 1.  Location of Earthquake epicenter in Azad Jammu-Kashmir in northeastern Pakistan. 

(http://www.bbc.news.co.uk). 
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earthquake exacted a massive human toll.  Loss of life is attributed to the earthquake 

itself and was exacerbated by the numerous mass movements triggered by the intense 

shaking.   

 

 

 
 

Figure 2.  Fatalities in relation to magnitude for worldwide earthquakes since 1900 (CIRES 2006).  
 

 

2.  Objectives 

The main objectives of this research are three-fold:  First, to quantify the amount 

of landsliding immediately after the earthquake by creating a landslide inventory in a GIS 

environment by using field work and remote sensing analysis in an effort to evaluate the 

impact of the earthquake on the landscape before and after the snowmelt season; second, 

to develop a landslide susceptibility zonation GIS for the purposes of hazard assessment 

and mitigation; and third, to verify the methodology and resulting susceptibility GIS map 

by testing the known post-earthquake landslides against a pre-earthquake susceptibility 

map of the same region.   
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Ultimately, this study is an attempt to prepare a landslide susceptibility zonation 

map (LSZ) that includes portions of the Jhelum, Neelum and Kaghan valleys in the 

Lesser Himalaya using remote sensing and GIS technology.  Landslide susceptibility 

zonation is a rapidly advancing methodology and that entails the ranking of different 

portions of an area according to the degrees of actual or potential hazard from landslides 

(Varnes, 1984).  The LSZ produced by this study will be used to appropriate quick and 

safe mitigation measures and future strategic planning and identification of landslide-

prone areas within the confines of the selected study area (Saha, 2002). 

 

 

3.  Hypotheses 
 

This study will evaluate the following three hypotheses:  

 

 1.  Rates at which landsliding occurs within the individual characteristics of 

each influencing attribute will remain consistent before and after the earthquake event.  

Frequency of landslides will increase, but the amount of influence of each attribute will 

remain the same.   

2.  Landslides occur in connection with specific localized environmental settings.  

The most influential attribute within the designated study will be the local geology.  Land 

cover will also prove to be extremely important, especially on the amount of sliding that 

occurs post snow-melt season.  Human infrastructure (roads) will have a significantly 

negative effect making unstable slopes adjacent to hydrologic features even more 

dangerous. 

3.  The earthquake weakened many slopes that did not succumb to failure.  With 

the impending onslaught of the monsoon season and the spring thaw there will be a 
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significant increase in new and reactivated landslides.  These pose a serious threat to the 

area for the immediate and near future making the creation of a LSZ all the more 

necessary. 
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II.  BACKGROUND 

 

1.  The 2005 Kashmir Earthquake 

Several studies exist that focus on the geomorphoic consequences of the Kashmir 

quake.  Abbasi (2002) conducted a study of slope failure and landslide mechanisms in the 

Murree area of Northern Pakistan.  Several authors focused on examining different 

aspects of the earthquake event using several field techniques and remote sensing 

technology (Avouac, 2006; Pathier, 2006; Wang, 2007; Pararas, 2007).  The results of 

these studies often found specific information pertaining to the underlying cause of 

landslides in the region; for example Kumar, (2006) used remote sensing technologies to 

produce a geological assessment of the study area and found failures to be spatially 

distributed along the active faults. Other studies focused on landslides and their 

geomorphic, economic, and environmental effects (Harp, 2006; Kamp et al., 2008; Owen 

et al., 2008; Peiris, 2006; Sudmeier-Rieux, 2007; Trommler, 2008; Yeates, 2008).  The 

result of most of these undertakings was the examination of landslides using satellite 

images, landslide susceptibility modeling and field research in an effort to help the local 

policy makers and engineers design a sustainable disaster risk reduction strategy and 

recovery plan. 

 

2.  Susceptibility Mapping 

Landslide susceptibility mapping has been emphasized as an emerging area of 

worldwide research starting in the late 1980’s.  Multiple analytical techniques have been 

developed since then in nearly every major mountain chain (Brabb, 1984; Carrara, 1991, 
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1992; Pachauri, 1998; Chung, 1999).  Evolving technology and a growing need for 

landslide hazard data in times of crisis has spurred even more research in recent years 

(Barredo, 2000; Ayalew, 2004; Saha-Gupta, 2005; Akgun, 2007; Remondo, 2008; 

Zezere, 2008).  Several susceptibility and hazard mapping studies have been carried out 

for the Himalayas (Anbalagan, 1992; Pachauri and Pant, 1992; Gupta et al., 1993; Virdi 

et al., 1997). 

Landslides are a form of a natural hazard.  By definition a natural hazard is “a 

source of danger to life, property, and the environment” (Abbot, 2004:445).  Areas that 

are susceptible to landslides, but are not in proximity to any human infrastructure, would 

not be considered a hazard.  The city of Muzaffarabad and surrounding valleys have an 

extremely high population density and an extensive infrastructure, so any landslide 

mapping done in this area should be considered hazard mapping.  Hazard mapping 

involves a temporal framework and attempts to predict frequency and spatial distribution 

of future slope failures over a specified period of time.  The term landslide susceptibility 

map and landslide hazard map are often used as interchangeable terms in recent studies.  

Owing to conceptual and operational limitations, most landslide hazard maps could be 

better defined as landslide susceptibility maps (Brabb, 1984).  This study does not predict 

over any temporal periods; therefore it will produce only a susceptibility map.   

“In its very simplest form landslide maps provide information about the spatial 

distribution of landslides in relation to certain controlling factors” (Asch, 1984:40).  

These controlling factors vary in number and influence for each individual area of study.  

Once these parameters are factored in, the area is divided into zones or degrees of 

susceptibility to create a landslide susceptibility zonation.  According to Van Westing 
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(2003: 399), “The term zonation in a general sense implies a division of the land into 

areas and their classification according to degrees of actual or potential landslide hazard 

or susceptibility”.  The areas of the map divided into zones in order to simplify and 

improve the maps readability so that it may reach a broader audience.  Upon completion, 

the susceptibility zonation map should communicate the potential danger of future 

landsliding at any given point or area. 

Landslide susceptibility mapping might follow a qualitative or quantitative 

approach.  The latter includes deterministic or statistical methods, which often involve 

large amounts of input data concerning the geotechnical parameters and require complex 

methods to acquire and process the vast amounts of information.  Hence, they are best 

suited for site specific research or individual failures and not a regional analysis (Fall, 

2006), such as the one being undertaken in this study. 

The qualitative approach includes the heuristic method, which uses either direct or 

indirect mapping.  Direct mapping analyzes the degree of susceptibility either in the field 

or immediately upon completion of the field work; it is reserved for small scale mapping 

and usually includes complex groundwater data.  Indirect mapping utilizes data 

integration techniques, including qualitative methods, in which the researcher can assign 

weighted values to a series of geomorphologic- and human-induced parameters to each 

class within each parameter.  The parameter layers are then interpreted within the GIS to 

produce susceptibility values (Barredo et al., 2000).  Each of the characteristics is 

assigned a weighted value according to the relative influence it has in triggering a mass 

movement.  Several methods of weighting and ranking have been developed such as the 

analytic hierarchy process (AHP), weighted linear combination (WLC), bivariate (BSA) 



  

 9  

and multivariate statistical analysis (MSA), stepwise discriminate analysis, and logistic 

regression (Ayalew, 2005). 

 

3.  Landslide Classification 

There are many different types of landslides characterized by movement and 

material (Varnes, 1978).  The types of movements are categorized into three main classes 

of falls, slides and flows.  The material itself is also separated into three different types of 

rock, debris, and earth.  Each type of material is subject to each category of movement 

making nine total combinations possible.  In rock falls, a mass, usually large boulders or 

rocks, becomes detached from steep slopes and descends, mostly through the air.  Slides 

are defined as a type of mass movement in which a section of the slope weakens and 

separates from the more stable underlying material.  There are two subcategories of 

slides: rotational and translational.  A rotational slide is curved concavely, and the 

material rotates as it falls as if on an axis.  A translational slide moves down slope as if on 

a flat plane with little rotation.  A flow is usually associated with material that has a high 

concentration of water, and the movement can have a wide range of speed and size.  

Debris flows usually consist of loose soil, rock, and organic material mixed with water; 

they are also commonly known as mud slides.  Earth flows usually occur in fine-grained 

silt, clay and clayey sand.   

In November 2005 approximately one month after the earthquake Owen et al 

(2008) examined and photographed 1,293 slides at 174 locations in the study area.  A 

landslide inventory was constructed and the slope failures grouped into six geomorphic-

geologic-anthropogenic settings.  These includes (i) mainly rock falls in highly fractured 
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carbonate rocks comprising the lowest beds in the hanging wall of the likely earthquake 

fault; (ii) mostly rock falls and rock slides in Tertiary siliciclastic rocks along antecedent 

drainages that traverse the Hazara–Kashmir Syntaxis; (iii) natural failures in high and/or 

fluvially incised steep (50–60°) slopes comprising Precambrian and Lower Paleozoic 

rocks; (iv) mostly small debris falls in very steep (N60°) lower slopes of fluvially 

undercut Quaternary valley fills; (v) many small rock falls and shallow rock slides on 

ridges and spur crests; and (vi) failures in locations associated with road construction that 

traverse steep (N50°) slopes (Owen et al. 2008).  For the purposes of this study, the 

locations above were revisited and re-photographed during the months of May and June; 

2006.  These definitions and settings are used to classify landslides within the study area 

that are identified via field work and satellite interpretation.  Although the different forms 

of mass movement have different destructive magnitudes, they are all potentially 

hazardous and shall all be included in the landslide inventory map.  It is important to note 

the most probable type of slide in conjunction with the potential for slope failure, because 

it gives the administrative body an improved outlook in the development of future 

infrastructure.   
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III.  STUDY AREA 

 

 

The study area is in Azad Kashmir (“Free Kashmir”), which is the Pakistani 

administered section of the state of Jammu and Kashmir.  This area lies within a single 

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite 

image
1
.  The north, east and southern boundaries of the study area coincide with the 

satellite’s boundaries, while the western boundary follows a ridgeline just west of the 

GPS points collected in the field.  The area further west of this ridgeline does not contain 

any ground truthing data and was omitted from the study.  In addition to the lack of 

ground control points, the areas west of the ridgeline contained large amounts of flat 

agriculture land which were not prone to earthquake-triggered landslide activity and did 

not require the attention of this research.  The study area has a perimeter of 228 

kilometers and encompasses an area containing 2,549 square kilometers of mostly rugged 

mountainous terrain.   

The study area contains several major areas of devastation in part due to the close 

proximity to the earthquakes epicenter and some of the major fault lines in the area.  

Some of the more devastated urban areas, such as Balakot, Hattian, and Muzaffarabad are 

located within the boundaries of the selected research area.  Muzaffarabad is of particular 

interest being the capital of the Pakistan controlled Azad Kashmir, only about 50 

kilometers from the Pakistani-Indian Line of Control.  The city is positioned on the 

confluence of the Neelum and Jhelum rivers.  It occupies mainly gentle slopes, although 

it extends into the surrounding mountainous terrain.  To the west of the region lies the 

North Western Frontier Province (N.W.F.P.).  There are three principal valleys in the 

                                                 
1
 Bounding Coordinates:  34° 41’ 37” N, 73° 53’ 38” E, 34° 4’ 51” S, 73° 21’ 2” W.   
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study area: the Khagan Valley running at a NNW course from Muzaffarabad; the Neelum 

Valley running at a NNE direction from Muzaffarabad; and the Jhelum Valley east of 

Muzaffarabad running towards the India/Pakistan border (Figure 4). 
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Figure 3.  ASTER satellite image of the study area in northeastern Pakistan with major urban centers and 

earthquake epicenter.   
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Figure 4.  Oblique three-dimensional view of study area. (Google Earth). 

 

 

The total population for Azad Kashmir is over 3.2 million people with a density 

of approximately 252 people per square mile.  There is over 750,000 living in the 

Muzaffarabad district alone, 80,000 of which living within the city itself (Pakistan 

Statistics Division, 2006).  This is an extremely high population density and is the 

prevailing trend for the immediate areas within and surrounding the study area.  In fact, 

the Azad Kashmir alone would rank fifth in density if it were a U.S. state. 

The study area is a very complex climatic region and is often characterized as a 

subtropical highland climatic zone.  The mountainous terrain make many different types 

of weather possible based on elevation, latitude, and exposure.  Mean temperatures are 

very hot in summer (26°C) and cold in winter (6°C).  Temperature usually decreases 

about 6.5°C for every 1000 meters of elevation.  A monsoon season usually hits in late 
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June and lasts through August, often causing severe flooding and violent debris flows.  

These three months alone constitute 45 percent of the total annual rainfall of 1527 

millimeters (WMO, 2006).  The high steep slopes accumulate snow in winter and then 

shed the snow in late spring making them highly susceptible to freeze-thaw weathering 

and additional weakening of the slopes.  Due to the rugged terrain and the varying 

weather extremes, travel within this region is extremely difficult (Figures 5 and 6).   

 

 

 

Along this steep environment, roads are cut into the hillside removing the material 

from the side of the hill.  The hill slope is left in a weakened condition since it no longer 

has the base material to support it. Buildings and other structures are often built adjacent 

to these roads and usually require further cuts into the slope. 

Figures 5 and 6.  Earthquake-triggered landsliding along road.  
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IV. METHODOLOGY 

 

1.  Field Work 

The field work done in this research involves the method of repeat photography 

and was a continuation of previously conducted research.  This previous research was 

carried out in November, 2005 by colleagues
2
 approximately one month after the 

earthquake.  During this earlier field campaign, an inventory of 161 landslide locations 

were photographed and described, including vital geomorphologic information and 

Global Positioning System (GPS) measurements of each location (Owen et al., 2008). 

Approximately six months later in late May/early June, 2006 the same study area was 

revisited to repeat all photographs of the existing inventory and evaluate all potential 

changes in each location.  Information was recorded in field books and then manually put 

into a field computer along with the pictures on a daily basis.  Both inventories from 

2005 and 2006 were compared and analyzed with a focus on landsliding frequency, 

intensity and spatial distribution within the study area.  The data from the field work 

proved to be invaluable ground truth information for the landslide susceptibility mapping.   

 

2.  Geographical Information System 

A Geographic Informational System (GIS) offers a technological framework for 

supporting efficient and effective data capture, storage, management, retrieval, analysis, 

integration and display (Guzzetti et al., 1999).  The manipulation and analysis of data can 

be much more efficiently and cost-effectively accomplished by applying GIS technology 

                                                 
2
  Ulrich Kamp and Jennifer Parker Hamilton (University of Montana); Lewis Owen (University of 

Cincinnati); and Ghazanfar Khattak (University of Peshawar). 
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as opposed to a manual field collection approach (Carrara, 1999).  This study employs 

ESRI’s ArcGIS 9.2 using a UTM Grid, zone 43N and the WGS 84 (World Geographic 

System) reference system.  The GIS will be composed of a base map of the study area 

with all the identifiable landslides digitized into polygons.  This landslide base map is 

then overlaid with the base maps for geology, vegetation, slope, human factors 

(construction, road cuts, land use such as forestry and agriculture) and several other 

characteristics.  Data was analyzed and interpreted by overlaying all the layers together.  

The data needed was derived from satellite imagery, fieldwork, and existing topographic 

and geological maps.   

The attributes layers produced in this study include vector (geology, faults, rivers, 

tributaries, roads) and raster layers (elevation, slope, aspect, land cover).   

 

3.  Susceptibility Mapping 

Once the variable data is defined and collected, it must then be ranked and 

weighted.  The scale is weighted for the reason that some elements such as geology are 

much more influential in slope failure.  In this study, indirect mapping, an expert driven 

approach of weighting and ranking, was utilized since it is best suited for the amount and 

type of data available, the extent of the study area, and a geomorphological analyses 

aimed at the recognition and correct interpretation of the factors that control landslide 

occurrences (Casagli, 2004).  The weighting and ranking system chosen is the multi-

criteria, Analytical Hierarchy Process AHP method as it is incorporated within the 

IDRISI software used in the analysis. AHP breaks down a complex decision based 
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problem into a hierarchy of more easily recognizable sub-problems, each of which is then 

evaluated separately. This process is explained later in the thesis.  
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V.  LANDSLIDE INVENTORY MAPS  

 

Previous studies have indicated that it is now becoming generally accepted that 

susceptibility mapping starts with the inventory of landslides (Ayalew, 2004).  A field 

survey is the most accurate method available for collecting complete landslide inventory 

data; however the logistics of traversing mountainous terrain such as in Azad Kashmir is 

difficult at best and often times due to slope instability was dangerous or impossible.  

Instead, the use of remote sensing technologies such as satellite imagery was used to 

obtain significant, cost-effective data on the size and spatial distribution of slope failure 

in the area (Lee, 2001). 

 In the pre-earthquake satellite image 28 landslides were identified and digitized as 

training sites, while in the post-earthquake satellite image 40 landslide sites were 

collected using GPS points and photographs acquired during field work.  Additional 

landslides were then identified using Feature Analyst which identified landslides based 

on multiple spatial attributes (size, shape, texture, pattern, spatial association, and 

shadow). Results of this landslide identification were compared with existing field data.  

This procedure was repeated four times; the last step was a manual editing.   

The pre-earthquake analysis showed 371 landslides with a combined area of 

~ 8.3 km² and a mean landslide area of 0.02 km².  The post-earthquake image yielded 

2252 landslides comprising an area of ~ 60.8 km² and a mean landslide area of 0.027 

km².   
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VI.  ATTRIBUTE MAPS 

 

Landslide susceptibility mapping has been a rapidly evolving area of research 

over the past 10 years.  There are, however, many obstacles and pitfalls in the production 

of the individual layers, as well as the final map that impede a quick and accurate 

product.  The primary dilemma in this study was the availability and reliability of digital 

data.  Two pieces of GIS data (roads and tributaries) were made available through the 

United Nations, but were found to be noticeably inaccurate at a scale of 1:100,000 or 

larger and required a great deal of modification.  The GPS points were collected in the 

field, and then downloaded and placed in the correct projection of UTM coordinates, 

Zone 43N.  Several attributes including slope, aspect and elevation were derived from an 

ASTER digital elevation model (DEM) of the area using the Spatial Analyst extension in 

ArcMap 9.2.  Rivers, geology, and fault lines were digitized from hardcopy maps, fifteen 

meter ASTER
3
 satellite imagery, and (only for some locations) one meter Quickbird 

satellite imagery.  The land cover map was created from the ASTER satellite imagery 

using IDRISI Andes software.   

 

1.  Geology  

Geologic information was obtained and digitized from varying map sources 

produced by the United States Geological Survey (USGS), the Geological Survey of 

Pakistan, and the United States Agency for International Development (USAID).  

                                                 
3
  Jeff Olsenholler from the Department of Geography and Geology at the University of Nebraska - Omaha 

generated and orthorectified the ASTER DEMs using SILCAST software.   
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Attribute table generation followed the same symbology found in the original data 

sources.   

The bedrock underneath the study area is comprised of eleven different 

formations, three of these, the Murree, Hazara and Salkhala formations, dominate 

approximately 73% of the area (Table 1; Figure 7).  The Jhelum Valley consists almost 

exclusively of the Murree Formation with the very end of the valley peaking into the 

Panjal Formation.  The Neelum Valley passes through the Kingriali Formation and then 

secondly into the Murree Formation.  The Khagan Valley consists of the Hazara 

Formation before traveling NNW including pieces of the Panjal and Salkhala formations.   

 

Table 1.  Rock formations in the study area. 

 

 

The Murree Formation has an overwhelming presence (~ 52%) within the study 

area.  It includes red thinly laminated siltstone and shale, thick-bedded red mudstone, and 

subordinate green, gray, and maroon greywacke (Calkins et al., 1975).  An exact age is 

Valley Formation % of Study Area Lithology 

 

Kamlial 

 

8.09 

Grey to red sandstone and shale mixed with 

some conglomerate 

Murree 51.52 Red, thin-bedded shale, mudstone and 

greywacke 

Panjal 3.11 Agglomeratic slate 

Samana Suk 0.15 Limestone 

 

 

 

JHELUM 

Kawagarh Limestone 0.16 Marl, shale, and limestone 

 

Kingriali 

2.91 Dolomite, limestone, conglomerate, 

quartzose sandstone, siltstone 

Salkhala 13.66 Limestone and marble 

 

 

NEELUM 

Manshera Granite 5.70 Intrusive rock; granite 

Hazara 11.13 Black slate, shale, siltstone, graphite, 

limestone 

Tanawai 1.58 Quartzose schist and quarzite 

Panjal 3.11 Agglomeratic slate 

 

 

 

KHAGAN 

Alluvium 1.97 Alluvium 
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difficult to obtain, however, most experts believe the formation to be from the Tertiary 

age probably from the Miocene or Oligocene epoch. 

The Salkhala Formation represents some of the oldest known rocks in the region 

consisting of mainly metamorphic rocks from the Precambrian age.  Within the study 

area the Salkhala Formation has a strong presence in the north-east portion of the study 

area and is bordered by units of Manshera Granite and the Murree Formation.  It consists 

largely of quartz schist, marble, graphite schist, and quatrzo-feldspathic gneiss (Calkins et 

al., 1975). 

The Hazara Formation is composed of slate, phyllite, unmetamorphose shale and 

some limestone and graphite.  This formation has a substantial presence within the 

southwest portion of the study area and is located in the Muzaffarabad vicinity and to the 

area directly south. 

The Kamlial Formation represents a small portion in the NW of the study area, 

adjacent to the Kingriali and Murree formations. It consists primarily of grey to brick-red 

medium to coarse grained sandstone interbedded with purple shale and an 

intraformational conglomerate (Kazmi, 1998).  Its age is thought to be middle to late 

Miocene. 

Manshera Granite is not a formation like the preceding geological units but rather 

a large unit of intrusive rock found commonly along the southern fringes of the granite 

intrusions of the Himalayan region.  The granite is light colored and is usually found to 

be medium to course grained.  The age of the rock is inconclusive as the youngest rocks 

intruded belong to the Tanawal Formation of Ordovician to Devonian periods (Calkins et 

al., 1975).   
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The Panjal Formation contains agglomeratic rock that consists of slate or shale, 

glassy quartzose agglomeratic sandstone and small amounts of phyllite and 

conglomeratic sandstone.  In western Kashmir it is thought to range from Carboniferous 

to Permian in age (Calkins et al., 1975).  The Panjal Formation runs right along with the 

Panjal Thrust and the Main Boundary Thrust (MBT) and is also found in the northwest 

portion of the study area near Balakot. 

The Kingriali Formation consists of grey dolomite and dolomitic limestone with 

dolomitic shale and marl and is believed to be late Triassic in age (Kazmi, 1997).  The 

formation area located within the study area has also been known to contain small 

amounts of quartzite and phyllite.  In the massive response to the 2005 earthquake, an 

inconsistency arose in the nomenclature of the formation with new studies referring to the 

unit as the Muzaffarabad Formation, probably due to the location as it runs between the 

two towns of Muzaffarabad and Balakot.  The two names shall be considered 

interchangeable as the reference the exact same formation. 

The Alluvium in the region represents quaternary deposits which are stream-

deposited sand, gravel and boulders.  Patches are found near or juxtaposed to current or 

ancient stream beds and are now used for terrace farming, particularly around 

Muzaffarabad and also north and east of the city. 

The Tanawai or Tanawal Formation is a subset of the Kirana Group and consists 

mainly of quartzose schist and quartzite (Kazmi, 1997).  The formation is thought to 

range in age from the Ordovician to Devonian period with and is composed of 70-90% 

quartz schist (Calkins et al., 1975).  Within the study area the Tanawai Formation appears 



  

 24  

in the Khagan Valley running a NW-SE direction and is situated in-between long 

segments of alluvium and Manshera Granite.  

  The Samana Suk limestone and Kawagarh limestone units represent only a small 

portion (0.3%) in the western part of the study area.  The Samana Suk limestone contains 

black to dark gray thick-bedded limestone, while the Kawagarh limestone is light gray, 

but is commonly stained in shades of brown or red because of the presence of limonite 

and siderite (Calkins et al., 1975).  Calcareous shale and dark marl also are found within 

the Kawagarh Formation.  Samana Suk limestone is thought to be Jurassic in age while 

the Kawagarh limestone is younger and is thought to be of late Cretaceous age. 
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Figure 7.  Geologic map of the study area.  
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2.  Faults 

The faults attribute layer was digitized from the same sources as the geological 

layer.  Appropriate symbols and labels were then added to produce the final result as seen 

in Figure 9.  

Several major active fault systems traverse northern India and western and 

northern Pakistan.  The earthquake occurred along the Hazara-Kashmir Syntaxis, a 

tectonic boundary which is historically characterized by high seismic activity.  Within 

this boundary, geological formations and the broader geological structures of the 

Himalayas make an abrupt bend (Kazmi, 1998).  The syntaxis was formed by the 

interactions of the Indian, Arabian and Eurasian plates.  The Indian plate moves in a 

northward direction at a rate of about 40 mm/year (Pararas, 2007).  Compression along 

these boundaries results in thrust and reverse faults often resulting in colossal amounts of 

deformation of the terrain and destruction of human infrastructure.  The area surrounding 

Muzaffarabad and extending to the NW is known as the Indus-Kohistan seismic zone and 

is host to a number of earthquakes in the last 100 years (Figure 8). 

 

 
 

Figure 8.  Profile of collision zone between Indian and Eurasian plates with Indus-Kohistan seismic zone 

(Bendick et al., 2007). 
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 The October 8, 2005 earthquake occurred near the Main Boundary Thrust (MBT), 

a region of major tectonic plate collision that includes Northern Pakistan.  Its focal 

mechanism and slip-strike components are consistent with the compressive type of thrust 

faulting which is characteristic of the Hazara-Kashmir Syntaxis (Pararas, 2007).  The 

MBT is clearly evident within the study area (Figure 9) as it incorporates the Jhelum 

Fault and the Muzaffarabad Fault on the western portion of the study area and the Panjal 

and Parachinar faults (also known as Murree-Parachinar Fault) in the east. Another major 

fault in the study area, the Balakot-Bagh Fault runs right through the city of 

Muzaffarabad from the north and then southeast down the Jhelum Valley.  The Balakot-

Bagh Fault or Kashmir Boundary thrust (KBT) is primarily responsible for the Hattian 

landslide
4
. A buffer zone of 300 m surrounding the fault lines was reported as seeing the 

most uplift and landsliding activity (Hussain, 2006), while almost all mass movement 

occurred within a 10 km buffer zone of the fault lines.  Synthetic Aperture Radar (SAR) 

data showed a 90 km-long belt of deformation along the KBT (See Figure 9).  This 

deformation had a vertical displacement of greater than 1 meter, with uplift as great as 6 

meters (Fujiwara et al., 2006). This extreme and rapid upheaval originating from fault 

lines causes many hill slopes to weaken and/or fail.  

 

                                                 
4
 Large sturzstrom that occurred near the town of Hattian 40km SE of Muzzafarabad in the Jhelum valley.  

Head to toe measured 2.9 km and had an estimated volume of 1-2 million cubic meters (EERI, 2005). 
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Figure 9.  Fault lines within study area. 
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3.  Land Cover 

 

 The land cover attribute was the most intricate and complicated layer to produce.  

Images were first needed to be converted from an ESRI grid to a format that was readable 

by the IDRISI software to produce a land cover classification.  Eight classes were created 

representing the various land cover types found within the study area.  They include: 

water, urban
5
, snow and ice, forests, shrub land and grassland, agriculture, and two 

landslide type categories.  The landslide classes were necessary since there was extensive 

pre-existing and post-earthquake failures that represented a substantial portion of the 

image.  The failures occurred in different lithological settings which produced different 

spectral signatures.  Thus, two landslide categories were identified: (1) landslides 

occurring in and around the Muzaffarabad area, which contain mostly alluvium and 

dolomite causing a very high reflectance resulting in a white chalky appearance in the 

ASTER image; (2) landslides occurring mainly in the Murree Formation which gave 

pixels a lower reflectance value that appeared light blue.  Finally, these two landslide 

classes were consolidated into a single category and are displayed as “unclassified” in the 

final maps.   

Several supervised classification techniques are provided by the IDRISI software 

such as:  Parallel-piped, Maximum Likelihood, Fisher, and several neural network 

methods.  One such neural network method, Multi-layer Perception (MLP) produced the 

best overall results when compared with the Maximum Likelihood and the Fisher 

techniques.   

                                                 
5
 Urban areas were detected when dense amount of infrastructure and people were located in a common 

area giving a pixel reflectance of light to medium blue. 
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Several training sites were created for each of the eight land cover classes using 

field data that included GPS points, field book notes, and photographs.  The training sites 

were digitized and assigned a code number (1-8) so the software could identify each pixel 

with a number (Table 2).  This assigned a spectral signature to each class and allowed the 

classes to be set with a qualitative palette for easy identification.  Generally, there should 

be 10 times as many pixels for each training class as there are bands in the image to 

classify (Akgun, 2005).  Thus, more than 80 pixels were used per class in the creation of 

the training sites.  After the training sites were established, the MAKESIG operation in 

IDRISI was used to create the signature files, which contain the statistical information 

about the reflectance.  Once the signature files were created, it was then possible to test 

the three different land cover classifiers.   

Table 2: Land cover classes with associated with software identifying codes.  

Class Code 

Water 1 

Urban 2 

Snow/Ice 3 

Forests 4 

Shrubs/Grassland 5 

Agriculture 6 

Landslide Type 1 7 

Landslide Type 2 8 

 

After the creation of the eight land cover classes, accuracy assessments were done 

for each of the three classifiers (Maximum likelihood, Fisher, MLP).  The first step in this 

process was to identify random points to use as the ground truth points for the 

classification.  Twenty-six random points were chosen as ground truth locations from 
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among the 161 GPS points in the study area.  Each of the GPS points is accompanied by 

pictures from two different post-earthquake dates which were then used as ground truth 

mechanisms for each of the 26 points.  Each point was digitized in IDRISI by locating the 

exact pixel that contained the GPS coordinates found in ArcGIS 9.2.  Normally, the point 

would be marked with exact coordinates, but due to a technical problem, this pixel 

technique was substituted as an acceptable alternate method.  The points were then 

digitized at an estimated distance from the picture location using the angle that was 

included in the metadata.  Once this was complete, the vector layer containing the 26 

points was converted into a raster layer and then assigned as the feature definition file.  

The ERRMAT procedure was then run using that definition file on each of the land cover 

classifications.  A table containing commission, omission and overall errors was 

produced.  The Kappa (Index of Agreement) values were automatically calculated for 

upon the completion of each technique (Table 3).  These Kappa values indicate a 

statistical measure of inter-rater reliability for each method.
6
 

 

Table 3: Table showing overall error and Kappa index of agreement statistics for three land cover 

classification methods. 

Classifier Overall Error Kappa Value 

Maxlike 0.3615 0.6408 

Fisher 0.4000 0.5878 

MLP 0.2837 0.6678 

 

 

In this study, the MLP method was chosen for the final land cover classification 

since it produced the best results.  The MLP network is trained with a back propagation 

or related learning algorithm, which is frequently being used for image classification 

                                                 
6
 Kappa values less than 0.00 have a less than chance agreement, values between 0.00-0.20 have a slight 

chance, 0.21-.0.40 a fair chance, 0.41-0.60 a moderate chance, 0.61-0.80 a substantial chance and values 

between 0.81-1.00 an almost perfect chance of agreement (Landis and Koch, 1977). 
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(Day, 1997).  MLP consists of a set of simple processing units arranged in a layered 

architecture that can, once trained, transform the remotely sensed data into the desired 

classification.  The number of input and output units is determined by the characteristics 

of the remotely sensed data to be classified and the desired classification scheme (Foody, 

2004).  Each unit or pixel is connected by a weighted connection.  Once the analysis 

starts, the method runs through a series of iterations which take the found error and 

passed backwards through the network with the weights connecting the units adjusted in 

relation to the magnitude of the calculated error.   

Multiple trials were conducted using the designated training sites to attain the best 

overall accuracy.  The best trial ran through 2,390 iterations giving an accuracy of 

71.63 %
7
.  In the study area, the three classes “Forest” (45%), “Shrub land and 

Grassland” (~42%), and “Agriculture” (6.4%) dominate the landscape (Figure 11).  The 

“Water” class (1.4%) includes only rivers since no large lakes exist.  “Snow and Ice” 

(1.1%) can be found only in the north, where no field GPS points exist.  “Urban” areas 

(0.5%) are mainly constituted along the rivers, and three larger urban areas exist within 

the area: Muzaffarabad, Balakot, and Hattian.  The results of our land cover classification 

closely  parallels that of the AJK Forest Department (2001), which defined 42% forest, 

42% uncultivable land mainly for grazing, 13% cultivated land and 3% urbanized area.
8
  

                                                 
7
 Thomlinson et al. (1999) set a target of an acceptable overall accuracy of 85% and no less than 70%.  
8
 Area in AJK Forest Department (2001) is not identical to the study area of this thesis. Study area is 

included within and represents approximately 20% of AJK. 
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Figure 10:  Land cover distribution within study area. 
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Figure 11: Land Cover classes within the study area. 
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4.  Elevation 

 The attributes elevation, slope, and aspect were derived from the 15 m ASTER 

DEM using SPATIAL ANALYST in ArcMap.  Elevation in the study area ranged from 

447 meters asl. mainly in river beds and surrounding flood plains to 4,446 m in the north 

central portion of the region.  A contour map with 500 m intervals was generated from 

the DEM.  The majority (54%) of the study area lies between 1,000 and 2,000 m asl; 28% 

lies between 2,000 and 3,000 m asl; only 12% is at an elevation of < 1,000 m asl; and a 

small portion (~ 6%) is higher than 3,000 m asl. (Figure 12).  

  

Figure 12:  Bar graph indicating a percentage breakdown of elevation within the study area at 500 meter 

contour interval. 

 

 

5.  Slope 

Slope is one of the most important factors in mass wasting (Ayalew, 2004; Lan, 

2004; Neuhauser, 2006).  There is an understandable and obvious link between slope and 

landslide activity.  Movement occurs when slopes are steeper than the natural angle of 

repose of the material. The angle of repose is the steepest angle that a slope can maintain 
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without failing, and is typically 25-40 degrees for unconsolidated materials.  The average 

slope for the study area is 16 degrees.  The majority (31%) of all slopes falls within the 

range of 25 and 35 degrees, while only very few (~2%) of the area has a slope > 45 

degrees (Figure 13).  Nearly a quarter (22%) of all land has gentler slopes of < 15 

degrees.  Most of the lands with gentle slopes are utilized as urban or agricultural areas, 

including valley bottoms and slope terraces.  Slopes with angles of 25-35 degrees were 

the most susceptible to landsliding with 41% of all failures occurring within that range.   

 
Figure 13:  Bar graph indicating a percentage breakdown of slope within the study area. 

 

 

6.  Aspect 

 

Slope aspect also has an influence on slope failure due to the amount of direct 

sunlight hitting each slope face.  This in turn corresponds to the amount of snow melt and 

water infiltration into the slope.  Also, during the winter and spring months the water 

infiltration is subjected to freeze-thaw cycles, breaking up packs of unconsolidated 

material and bedrock increasing the risk of potential mass wasting events.  Within the 

study area, slope aspect was dispersed evenly, with the southern and eastern faces 
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recording only a marginally higher percentage of slope aspect (13%) than the northern 

and western faces (12%) (Table 4). 

 

Table 4. Table indicating a breakdown of slope aspect within the study area. 

Aspect Area    

(km
2
) 

Area  

(%) 

North 307 12.0 

Northeast 327 12.8 

East 323 12.7 

Southeast 325 12.7 

South 326 12.8 

Southeast 328 12.9 

West 299 11.7 

Northwest 314 12.3 

Total 2,549 100 
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Figure 14. Elevation intervals within the study area. 
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Figure 15. Slope classes within study area. 
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Figure 16. Slope Aspect classes within study area. 
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7.  Roads, Rivers, and Tributaries 

 

 Attribute data for roads, rivers, and tributaries were obtained from the United 

Nations (U.N.) databank and covered most of study area, except a small portion of the 

north-western study area for the tributaries attribute, and the south-western study area 

west of the Jhelum River for both the road and tributaries attributes.  Unfortunately, the 

datasets for roads and tributaries were found to be highly inaccurate when zoomed into a 

scale larger than 1:100,000.  To correct for this inaccuracy each line segment was 

manually edited in ArcMap and aligned to its proper geographic location.  This was 

difficult for roads because their spectral reflectance and the 15 m satellite imagery 

resolution did not allow for unambiguous identification.  Digitizing tributaries was 

relatively easy because of the natural geomorphic paths they follow, i.e., digitizing using 

the ASTER imagery and DEM by following major valley arteries was possible (see 

Figure 20).   

The rivers attribute layer consists of the Jhelum, Kunhar and Neelum rivers, 

which were digitized from the ASTER imagery (Figure 19).  The Jhelum, Neelum and 

Kunhar rivers flow very rapidly with annual discharges of 11.85, 6.10, and 2.00 million 

acre-feet (MAF
9
), respectively, which leads to high river incision and erosion rates 

(Pakistan Water Gateway, 2007).   

The study area contains a dense network of roadways that weave throughout the 

mountainous region (Figure 21).  Road conditions range from paved two lane highways 

                                                 
9
 MAF, million acre-feet, is a unit used to describe the annual discharge of a river.  One acre–foot is 

equivalent to the amount of water which would flood one acre to a depth of one foot (International Rivers 

Network, 2007). 
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to the more common one lane dirt or gravel lane.  These roads often follow the banks of 

rivers, further undercutting and weakening the hill slope.   

 

Figure 17. Effects of road and river cuts on hill slope stability (Earth Science Australia, 2007). 

 

Modification of a slope by humans (road cuts) or natural causes (rivers and 

tributaries) changes the slope angle so that it is no longer at the angle of repose.  This 

makes the slope more susceptible to mass-wasting events which can then restore the 

slope to its angle of repose (Figure 17).  Observations in the field revealed many slope 

failures along road cuts and river banks.  These observations suggest that the large 

removal of base materials by both road cuts and river incision create highly unstable 

slopes, which in turn may create hazardous road blocks that prevent the flow of people 

and resources (Figure 18). 
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Figure 18.  Landsliding along a road that was cut into a steep slope.  In many cases such landsliding caused 

road blockages, sometimes making them impassable for days until emergency crews could respond. 
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Figure 19. Rivers found within the study area. 
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Figure 20. Tributaries found within the study area. 
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Figure 21. Roads found within the study area. 



  

 47  

VII.  PRE- AND POST-EARTHQUAKE LANDSLIDING 

The results from the landslide inventories of 2005 and 2001 were analyzed against 

the nine attributes known to influence slope failure rates.  This comparison was done for 

two reasons: first, to obtain data to standardize the attribute rankings for the Multi-

Criteria Evaluation (MCE) and second, to compare and contrast how the different 

attributes affected slope failure immediately after an earthquake event and during times 

of relative stability.  The final landslide inventory results for the post-earthquake image 

covered an area of 60.83 square kilometers with an average area of 0.027 km².  The pre-

earthquake failures combined to cover 8.33 square kilometers and an average area of 0.02 

square kilometers.  Approximately 371 failures in 2001 and 2,252 failures occurred in 

within the 2549km
2 
study area. 

1.  Geology  

The Murree formation contained the majority of failures in both the pre and post 

earthquake images containing 63.40% and 42.01% of the total failures respectively.  The 

post-earthquake image shows the most impacted formation is the Kingriali with 4.26% of 

the formation area destroyed by failures averaging 35,904 m
2
. Tanawai has the highest 

density of failures of any formation.    

The pre-earthquake image shows the most impacted formation is the Kingriali 

with 3.26% of the formation area destroyed by failures. The Murree formation had the 

highest density of failures in the pre-earthquake image.  The results show that some 

formations within the study area, namely Kingriali, Tanawai, Murree and Salkhala have a 

higher risk for slope failure.  Tables 5A and B below show the results for all the landslide 

lithology analysis.  
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Tables 5A & B. 

Results of the landslide inventory and the geologic attribute for the both the 2005 (A) and 2001 (B) 

earthquake analysis.  

 

2001 

 

 

2005 

 

 

2.  Faults 

Tables 7 and 8 show the slope failure results for both pre and post-earthquake 

analyses.  Three 100 meter buffer intervals were established around each of the fault 

Formation 

Area 

(km²) 

# of  

LS 

LS Area 

(km²) 

LS  

(%) 

Mean LS Area   

(thousand m²) 

LS area in formation 

area (%) 

LS per  

 km² 

Murree 1,314 155 3.4 42.0 21.7 0.3 0.1  

Hazara 284 61 1.7 16.5 28.7 0.6 0.2  

Kamlial 206 19 0.3 5.2 16.9 0.2 0.1 

Kingrali 74 42 0.9 11.4 20.9 1.2 0.6  

Manshera 145 11 0.2 3.0 16.1 0.1 0.2 

Panjal 79 15 0.2 4.1 16.5 0.3 0.2 

Salkhala 348 53 1.2 14.4 21.9 0.3 0.2  

Tanawai 4 5 0.1 1.4 26.2 3.3 1.3  

Samana 

Suk 8 2 >0.0 0.5 3.2 0.1 0.3 

Kawagarh 4 0 0.0 0.0 0.0 0.0 0.0 

Alluvium 50 6 0.2 1.6 35.2 0.4 0.1  

Formation 

Area 

(km²) 

# of  

LS 

LS Area  

( km²) 

LS  

(%) 

Mean LS Area   

(thousand m²) 

LS area in formation 

area (%) 

LS per  

 km² 

Murree 1,314 1327 30.6 63.4 23.1 2.3 1.0  

Hazara 284 123 2.0 5.9 16.4 0.7 0.4  

Kamlial 206 75 1.4 3.6 18.8 0.7 0.4  

Kingrali 74 88 3.2 4.2 35.9 4.3 1.2  

Manshera  145 66 0.7 3.2 11.0 0.5 0.5  

Panjal 79 86 2.5 4.1 28.5 3.1 1.1  

Salkhala 348 308 6.9 14.7 22.5 2.0 0.9  

Tanawai 4 13 0.1 0.6 6.1 2.0 3.3  

Samana 

Suk 8 0 0.0 0.0 0.0 

0.0 

0.0  

Kawagarh 4 0 0.0 0.0 0.0 0.0 0.0  

Alluvium 50 7 0.1 0.33 14.7 0.2 0.1  
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lines.  These intervals were set up due to a “zone of destruction” 200-300 meters from the 

major fault lines, indicating the possible extent of their influence in slope failure 

(Hussain, 2006).  The difference between the pre and post earthquake fault lines results 

was only 2.22%, which suggest that fault lines have a similar influence in mass 

movement regardless of an earthquake event.  About 254 or 11.28 percent of all slides 

were accounted for in the post-earthquake 300 meter buffer analysis.  The same analysis 

for the pre-earthquake image yielded 50 or 13.55% of all failures. 

Tables 6A & B. 

Results of the landslide inventory and the fault lines attribute for the both the 2001 (A) and 2005 (B) 

earthquake analysis.  
 

2001 
Fault Lines 

buffer zones # of Slides 

Percent 

(%) 

Mean LS Area   

(thousand m²) 

Sum Area of Slides 

(km²) 

0-100m 26 7.1 32.8 0.9 

0-200m 35 9.5 28.2 1.0 

0-300m 50 13.6 31.6 1.6 

 

2005 
Fault Lines 

buffer zones # of Slides 

Percent 

(%) 

Mean LS Area   

(thousand m²) 

Sum Area of Slides 

(km²) 

0-100m 141 6.3 70.7 10.0 

0-200m 207 9.2 63.1 13.1 

0-300m 254 11.3 56.1 14.3 

 

 

3.  Land Cover 

 

An overwhelming majority of slope failures, about 67% in 2005 and 59% in 2001, 

were found to be located within the shrubs/grassland class. At approximately 20% and 

18%, agricultural areas were found to be the second most susceptible land cover class; 

only < 3% of all failures occurred under forest cover despite being the land cover class 

with the most overall area covering approximately 45% of the study area.  The post-
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earthquake image showed that the 2.4% of the study area was devastated by landslides.  

In the pre-earthquake image only 0.3% is attributed to landslides; an increase of 2.1% 

after the 7.6 magnitude earthquake struck. 

Tables 7A and B. 

Results of the landslide inventory and the land cover attribute for the both the 2001 (A) and 2005 (B) 

earthquake analysis.  

  

2001 
Land Cover classes Area 

(km²) 

Area 

(%) 

LS Area 

(km
2
) 

LS Area 

(%) 

LS Area in 

Land Cover (%) 

Water 35 1.4 0.0 0.0 0.0 

Urban 14 0.5 0.0 0.0 0.0 

Snow/Ice 27 1.1 0.3 4.0 0.2 

Forest 1148 45.0 1.4 17.0 0.1 

Shrub/Grassland 1068 41.9 5.0 59.0 0.4 

Agriculture 164 6.4 1.6 18.0 1.6 

Unclassified 94 3.6 0.3 2.0 --- 

Total 2549 100 8.5 100 0.3  

 

2005 
Land Cover classes Area 

(km²) 

Area 

(%) 

LS Area 

(km
2
) 

LS Area 

(%) 

LS Area in 

Land Cover (%) 

Water 35 1.4 0.0 0.0 0.0 

Urban 14 0.5 0.0 0.0 0.0 

Snow/Ice 27 1.1 0.2 0.3 0.8 

Forest 1148 45.0 1.4 2.3 0.1 

Shrub/Grassland 1068 41.9 41.1 67.3 3.8 

Agriculture 164 6.4 12.0 19.7 7.3 

Unclassified 94 3.6 6.3 10.4 --- 

Total 2549 100 61.1 100 2.4 

 

4.  Elevation 

Roughly 48% of the slope failures resided in the 1000-1500 meter class in the 

post-earthquake image and ~53% in the pre-earthquake image.  The elevation attribute 

shows very similar results for both time frames with an average of 88.17% of all 

movements occurring between elevations of 500 and 2000 meters.  Little to no mass 

wasting occurred in at an elevation above 3000 meters for either image. 
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Tables 8A and B. 

Results of the landslide inventory and the elevation attribute for the both the 2001 (A) and 2005 (B) 

earthquake analysis.  

 

2001 
Elevation 

(m asl)  

Area 

(km²) 

Area 

(%) 

LS Area 

(km
2
) 

LS Area 

(%) 

LS Area in 

Elevation (%) 

0-500 0.2 >0.0 >0.0 >0.0 0.1 

500-1000 311 12.2 2.1 24.7 0.7 

1000-1500 710 27.9 4.4 53.0 0.6 

1500-2000 667 26.2 0.9 10.5 0.1 

2000-2500 443 17.4 0.5 6.5 0.1 

2500-3000 263 10.3 0.3 3.7 0.1 

3000-3500 106 4.2 0.1 1.7 0.1 

3500-4000 35 1.4 0.0 0.0 0.0 

4000-4446 14 0.5 0.0 0.0 0.0 

Total 2549 100 8.5 100.0 0.3 

 

2005 
Elevation 

(m asl)  

Area 

(km²) 

Area 

(%) 

LS Area 

(km
2
) 

LS Area 

(%) 

LS Area in 

Elevation (%) 

0-500 0.2 >0.0 >0.0 >0.0 5.7 

500-1000 311 12.2 11.5 18.9 3.7 

1000-1500 710 27.9 29.3 48.0 4.1 

1500-2000 667 26.2 13.0 21.2 1.9 

2000-2500 443 17.4 3.6 5.8 0.8 

2500-3000 263 10.3 2.4 3.9 0.9 

3000-3500 106 4.2 1.3 2.1 1.2 

3500-4000 35 1.4 >0.0 >0.0 >0.0 

4000-4446 14 0.5 >0.0 >0.0 >0.0 

Total 2549 100 61.1 100 2.4 

 

5.  Slope 

Analysis of the post-earthquake slope layer shows a vast majority (~41%) of the 

landslide pixels fall between 25 and 35 degrees with the two flanking classes containing 

most of the remaining pixels (~49%) (Tables 13 and 14). The pre-earthquake image 

shows similar results with about 46% of landslide pixels falling in the 25-35 degree slope 

range and about 44% of the pixels falling in the categories falling on either side of the 25-

35 degree slope category. Little landsliding occurred on slopes with angles greater than 

45 degrees. 
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Tables 9A and B. 

Results of the landslide inventory and the slope attribute for the both the 2001 (A) and 2005 (B) earthquake 

analysis.  

 

2001 
Slope  

(degrees) 

Area 

(km²) 

Area 

(%) 

LS Area 

(km
2
) 

LS Area 

(%) 

LS Area in 

Slope (%) 

0-15 566 22.2 0.8 9.1 0.1 

15-25 637 25.0 2.0 23.7 0.3 

25-35 795 31.2 3.7 45.5 0.5 

35-45 455 17.8 1.7 19.8 0.4 

45-90 96 3.8 0.2 1.9 0.6 

Total 2549 100 8.5 100 0.3 

 

2005 
Slope   

(degrees) 

Area 

(km²) 

Area 

(%) 

LS Area 

(km
2
) 

LS Area 

(%) 

LS Area in 

Slope (%) 

0-15 566 22.2 4.3 7.1 0.8 

15-25 637 25.0 18.1 29.7 2.8 

25-35 795 31.2 25.1 41.0 3.2 

35-45 455 17.8 12.7 20.7 2.8 

45-90 96 3.8 0.9 1.5 0.9 

Total 2549 100 61.1 100 2.4 

 

6.  Aspect 

 

About 71% of all slope failures in the post-earthquake image fell between the 

southeast and southwest categories with the next highest categories falling on eastern and 

western slopes. A similar result for the pre-earthquake image (65%) was also shown to 

exist for all southern facing slopes.  Northward facing slopes only accounted for between 

seven and eight percent of all slope failures for both time periods. 
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Tables 10A and B. 

Results of the landslide inventory and the slope aspect attribute for the both the 2001 (A) and 2005 (B) 

earthquake analysis.  

 

2001 
Aspect Area 

(km²) 

Area 

(%) 

LS Area 

(km
2
) 

LS Area 

(%) 

LS Area in 

Aspect (%) 

North 307 12.0 >0.0 >0.0 >0.0 

Northeast 327 12.8 0.4 5.3 0.1 

East 323 12.7 1.6 19.4 0.4 

Southeast 325 12.7 2.2 26.4 0.5 

South 326 12.8 1.6 18.7 0.3 

Southeast 328 12.9 1.7 19.8 0.3 

West 299 11.7 0.6 6.9 0.2 

Northwest 314 12.3 0.3 3.5 0.1 

Total 2549 100 8.5 100.0 0.3 

 

2005 
Aspect Area 

(km²) 

Area 

(%) 

LS Area 

(km
2
) 

LS Area 

(%) 

LS Area in 

Aspect (%) 

North 307 12.0 0.2 0.3 0.1 

Northeast 327 12.8 2.7 4.4 0.8 

East 323 12.7 8.2 13.5 2.5 

Southeast 325 12.7 13.1 21.5 4.0 

South 326 12.8 12.3 20.1 3.8 

Southwest 328 12.9 18.1 29.7 5.5 

West 299 11.7 4.7 7.7 1.6 

Northwest 314 12.3 1.8 2.9 0.6 

Total 2549 100 61.1 100 2.4 

 

 

7.  Rivers, Tributaries, and Roads 

 Buffer zones for rivers, tributaries, and roads should be set to 50 meters (Van 

Westin et al., 2003).  However, buffer zones in IDRISI are assigned using the COST tool, 

which creates Boolean buffer zones using cost distances which must be integers.  These 

cost distances are measured as multiples of the pixel width or the resolution of the 

imagery (Eastman, 2003).  The resolution of the ASTER imagery is 15 meters; therefore 

the buffer zone must be a multiple of 15.  A distance of 60 meters was ultimately chosen 
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because of its congruency with the functionality of COST, and its relative proximity to 

the original distance of 50 meters obtained from the literature.  

For rivers, Tables 11a and 11b show the slope failure within a distance of 25, 50 

and 60 meters away from each major river.  For both 2005 and 2001, approximately 6.5% 

of all landsliding was detected within the specified 60 meter zone.  The 2005 post-

earthquake image showed a slightly higher percentage of landsliding within all three 

buffer zones and a much higher mean and sum of failures, due to the intense weakening 

and fissuring of the slopes caused by the earthquake.  In both images the sizes of the 

individual failures were on average larger within the smaller buffer zones indicating that 

the influence rivers has on slope failures diminishes with distance. Overall failures within 

the 60 meter buffer zone increased by 10.5 square kilometers or 1500 percent. 

Tributaries showed similar results for both images, however the tributaries 

attribute covers a much larger area, due to the numerous mountain streams funneling into 

the major rivers.  This is evident when viewing the number of slides as the tributaries 

shows about four times the amount of slope failure events than the rivers attribute (Tables 

12a and 12b).  However the larger more powerful flowing rivers indicate an average 

landslide area two to three times larger than those occurring within the buffer zone of 

tributaries alone. 

 
Tables 11A and B. 

Results of the landslide inventory and the rivers attribute for the both the 2001 (A) and 2005 (B) earthquake 

analysis.  
 

2001 
Buffer Zone 

(m) 

Slides  

(#) 

Slides 

(%) 

Mean Area of Slides 

(thousands m²) 

Sum Area of Slides  

(km²) 

25 11 2.98 42,9 0.5 

50 22 5.96 32,9 0.7 

60 23 6.23 31,9 0.7 
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2005 
Buffer Zone 

(m) 

Slides  

(#) 

Slides 

(%) 

Mean Area of Slides 

(thousands m²) 

Sum Area of Slides  

(km²) 

25 107 4.70 87,0 9.3 

50 154 6.76 69,6 10.7 

60 163 7.24 68,8 11.2 

 

Tables 12A and B. 

Results of the landslide inventory and the tributaries attribute for the both the 2001 (A) and 2005 (B) 

earthquake analysis.  

 

2001   

 

 

 

 

 

 

2005 

 

 

 

Road cuts in Azad Kashmir and most other parts of northern Pakistan are often 

created adjacent to major river conduits.  Tables 13a and 13b show the 25 meter buffer 

zone of the rivers attribute showing a larger mean area than the 50 and 60 meter buffers.  

These results suggest that the influence of road cuts on the stability of a slope is greater 

when in close proximity to the road. 

Tables 13A and B. 

Results of the landslide inventory and the roads attribute for the both the 2001 (A) and 2005 (B) earthquake 

analysis.  

 

2001 
Buffer 

Zone (m) 

Slides 

(#) 

Slides 

(%) 

Mean Area of Slides 

(thousands m²) 

Sum Area of Slides  

(km²) 

0-25  79 21.4 26,9 2.1 

0-50  102 27.6 26,0 2.7 

0-60  105 28.5 25,7 2.7 

 

Buffer Zone 

(m) 

Slides 

(#) 

Slides 

(%) 

Mean Area of Slides 

(thousands m²) 

Sum Area of Slides  

(km²) 

0-25  88 23.9 19,7 1.7 

0-50  122 33.1 20,2 2.5 

0-60 130 35.2 19,8 2.6 

Buffer Zone 

(m) 

Slides 

(#) 

Slides 

(%) 

Mean Area of Slides 

(thousands m²) 

Sum Area of Slides 

(km²) 

0-25 562 25.0 46,8 26.3 

0-50 655 29.1 44,2 29.0 

0-60 689 30.6 43,2 29.8 
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2005 
Buffer 

Zone (m) 

Slides 

(#) 

Slides 

(%) 

Mean Area of Slides 

(thousands m²) 

Sum Area of Slides  

(km²) 

0-25  478 21.2 55,5 26.5 

0-50  582 25.8 48,6 28.3 

0-60  618 27.4 46,7 28.9 

 

 

Immediately after the earthquake new road cuts were carved into the slopes to 

create a path for mitigation purposes and to create new supply and transportation routes.  

Based on field observations and past experiences we can expect that the spring melt water 

will increases the volume and flow of rivers and tributaries, intensifying the undercutting 

process along all major rivers and tributaries   
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VIII.  MULTI-CRITERIA EVALUATION (MCE) 

 

 Every day we make many decisions ranging from simple choices to complex 

assessments that require careful consideration of multiple factors.   “Decision making 

itself is defined as a selection of alternatives and is used in many fields in both the social 

and natural sciences, including GIS” (Elliot, 2004 pp.5).  Multi-Criteria Evaluation 

(MCE) is a decision support tool within the realm of GIS.  The decision is a choice 

between alternatives or identifying priorities (landslide susceptibility).  This particular 

study focuses on the latter and evaluates a set of factors (i.e. slope, land cover etc.) in 

order to generate criterion
10
.  MCE merely combines these criteria to construct a single 

composite of which to base decision(s) according to a specific objective
11
.  The stated 

objective for this MCE is to assess the designated study area to determine landslide 

susceptibility.   

 There are a number of various methods used in MCE, some of them qualitative in 

nature such as the Analytical hierarchy process (AHP) (Saaty, 1980) and weighted linear 

combination (WLC).  Other methods are purely statistical in nature such as Bivariate 

statistical analyses (BSA) and the multivariate statistical approach (MSA) (Ayalew, 

2005).  This study will make use of the AHP method because of its precision, ease of use 

and because it’s an integrated methodology within the software used to carry out the 

analysis. 

                                                 
10
 Criterion is considered a generic term that includes both the concepts of attribute and objective. 

(Malczewski, 1999). 
11
 “An objective is a statement about the desired state of the system under consideration which relates to, or 

is derived from a set of attributes.” (Malczewski, 1999). 
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 The analytical hierarchy process was developed by Thomas Saaty (1980) and is 

one of the most GIS-friendly methods available.  It is a built in component of IDRISI 

(Andes version).  Weights for each criterion are determined by a pair-wise comparison 

using a ratio matrix.  The pair-wise comparison will be discussed later in detail.  

 All nine attribute layers with the exception of land cover were developed and 

prepared using ESRI’s ArcMap 9.2 and ArcCatalog 9.2.  The land cover attribute map 

was created using IDRISI and then exported into ArcMap.  Once all the layers were 

spatially correct, they were then exported as either shapefiles or ASCII files, because of 

IDRISI’s ability to import those particular formats.  The next step in the process would be 

to standardize the scale of each attribute included in the MCE model, however before that 

work can commence; statistics were gathered on the various attributes influence or 

susceptibility to mass movement within the study area.  For instance, which of the 

formations within the geological attribute layer is most vulnerable to mass movement?  

To obtain these statistics, a landslide inventory map was produced using ESRI’s feature 

analyst extension, for both pre- and post earthquake images as shown in Chapter 7.  

 The first step in the MCE protocol was configuring the weights of the attributes 

and assigning the amount of influence each attribute has on the final susceptibility map.  

A pair-wise analysis developed by Thomas Saaty (1990) was used to accomplish this 

task.  This approach employs an underlying scale (Table 14) with values from 1 to 9 to 

rate the relative preference on a 1:1 basis of each criteria (Malczewski, 1999).  The 

rationalization behind choosing the values was based on previous landslide susceptibility 

and hazard mapping studies and expertise gained from the field campaign. 
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Table 14.  Pair-wise comparison rating scale with nine divisions. 

Intensity of 

Importance 

 

Definition 

 

Explanation 

1 Equal importance Contribution to objective is equal 

3 Moderate importance One attribute slightly favorable over 

another 

5 Strong importance Attribute strongly favored over another 

7 Very strong importance Attribute is favored very strongly over 

another 

9 Extreme importance Evidence favoring one attribute is of the 

highest possible order of affirmation 

2,4,6,8 Intermediate values When compromise is needed 

 

Taking hard quantitative values and assigning them linguistic expressions that 

translate into an imprecise terminology creates a vast area of ambiguity concerning the 

results.  However, “the linguistic expressions explain the fact that the state of knowledge 

is imperfect; while the numerical values are quantified translations useful for calculating 

factor weights.  Science still lacks a direct way of evaluating intuition or expressions, and 

the validity of the numerical values may best be judged by the factor weights and the 

consistency of the calculation process” (Ayalew, 2004 pp 79).  

 

Table 15.  Pair-wise matrix showing calculated factor weights for all nine attributes. 
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Table 16. Scaled weight of each attribute used in the final landslide susceptibility calculation. 

 

 

 

 

 

 

 

 

The result of the pair-wise comparison seen in Table 16 is the generation of scaled 

weight for each attribute which were then were calculated into the final MCE.  

Geology was identified as the most heavily weighted factor at 0.28, followed by 

Slope at 0.23 and Faults at 0.16.  Aspect, Elevation and Tributaries were the least 

contributing attributes with each only accounting for about 8% of the total weight.  Land 

cover, Rivers, and Roads held equal weight assuming equal importance in the final map.   

The consistency ratio (CR) indicates the probability that the matrix rating was 

randomly generated and ranges in scale from 0-1.  Saaty (1990) recommended a CR 

<0.10; the CR in this study was found to be 0.05  

 

 

Factor Weight 

Aspect 0.0267 

Elevation 0.0358 

Fault Lines 0.1607 

Geology 0.2840 

Land Cover 0.0790 

Rivers 0.0790 

Roads 0.0790 

Slope 0.2389 

Tributaries 0.0169 
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IX.  LANDSLIDE SUSCEPTIBILITY 

Now that the landslide inventories have been completed, and all attributes 

successfully scaled and weighted the final susceptibility zonation maps can be produced.  

The final susceptibility maps, created in IDRISI, were exported into ArcMap 9.2 for data 

analysis and thematic breakdown of risk levels.  First, the image was clipped to conform 

to the boundaries of the study area; then, the 0-255 susceptibility scale was broken into 

four easily read and understandable risk levels and assigned an appropriate corresponding 

color.   

 

1.  Susceptibility Success Rate 

A success rate curve was used to accomplish these tasks and is a common 

technique used in susceptibility mapping (Neuhauser, 2006; Lee, 2004; Van Westin, 

2001; Zezere, 2004).  The susceptibility analysis results were verified using the known 

landslide locations from the landslide inventory map compared with the landslide 

susceptibility map.  This generated a success rate curve that illustrated how well the 

susceptibility maps for 2001 and 2005 predict landslides and created a visual presentation 

of the suitability of the assessment.  The area under the curve allows for an evaluation of 

the prediction’s accuracy with 1 indicating 100% prediction accuracy.  Landslide 

susceptibility mapping accuracies according to success rate curves vary widely from 

study to study with results ranging from 61.9% to 93.2% (Lee, 2006; Vijith, 2007; Dahal, 

2008).  In this study, the accuracy of the 2005 susceptibility map (Figure 22 B) is 67% 

and thus, is acceptable. For the 2001 susceptibility map (Figure 22 A) the accuracy is 
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only 50% which puts the results in question.  This may be due in part to the relative small 

number and size of the individual landslide inventory training sites.  

Landslide Susceptibility Success Rate Curve 2001
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Landslide Susceptibility Success Rate Curve 2005
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Figure 22. (A) 2001; (B) 2005.  Landslide Susceptibility Curves  
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2.  Susceptibility Classes 

To obtain the boundaries for each risk level, the calculated index values of all 

cells in the susceptibility map were sorted in descending order. An excel sheet was 

constructed to hold these values along with the number of landslide pixels and associated 

area percentage for every classification value (0-245).  This list was used to determine 

where each class break would occur in each susceptibility map.  The final map values 

were then classified using the maps derived success rate curve. Four susceptibility levels 

were identified in this susceptibility mapping, ,with each level assigned a linguistic 

expression of low, moderate, high, or very high and colors of green, yellow, orange, and 

red (Ramakrishnan, 2002; Roa, 2007) (Tables 17 A and B).  Thresholds for the “very 

high” and “high” class were given a higher interval range in the classification breakdown 

since they are often underestimated.  This means that areas in the “very high” class have 

a landslide susceptibility probability of >70%. 

Table 17 (A) 2001; (B) 2005. Thresholds at which individual pixels were assigned their susceptibility class. 

2001 Threshold Risk Level Breaks 
Cumulative landslide occurrence to be 

predicted (%) Threshold at index value 

Assigned 

susceptibility class 

[0 – 20] up to77 LOW 

[20 – 40] up to 85 MODERATE 

[40 – 70] up to 100 HIGH 

[70 – 100] over 100 VERY HIGH 

 

 

 

 

 

2005 Threshold Risk Level Breaks 
Cumulative landslide occurrence to be 

predicted (%) Threshold at index value 

Assigned 

susceptibility class 

[0 – 20] up to 105 LOW 

[20 – 40] up to 120 MODERATE 

[40 – 70] up to 137 HIGH 

[70 – 100] over 137 VERY HIGH 
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3.  Susceptibility Maps 

The final susceptibility maps were produced at a scale of 1:400,000 (Figures 23 

and 24).  The amount of area that falls into each susceptibility class differs greatly from 

2001 to 2005 (Tables 17 A and B).  The greatest change from 2001 to 2005 occurred in 

the “very high” (-15.9%) and “low” (+18.7%) classes.  The “moderate” (+3.2%) and 

“high” (-6.0%) classes fluctuated little between both years.  The overall trend was a large 

shift (~558 km
2)
 of “high” and “very high” susceptibility in 2001 to “moderate” and 

“low” susceptibility in 2005. 

Tables 18 (A) 2001; (B) 2005.  Amount of study area contained within each susceptibility class. 

 

 

SUSCEPTIBILITY MAP 2005 

Susceptibility Class Area (km²) Area (%) 

Low 969 38.0 

Moderate 737 28.9 

High 577 22.7 

Very High 266 10.4 

Total 2549 100 

SUSCEPTIBILITY MAP 2001 

Susceptibility Class Area (km²) Area (%) 

Low 492 19.3 

Moderate 656 25.7 

High 731 28.7 

Very High 670 26.3 

Total 2549 100 
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Figure 23 Final Susceptibility map for 2001. 
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Figure 24 Final Susceptibility map for 2005. 
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  In 2001, all four susceptibility classes are evenly represented,  while 2005 shows 

about 67% of the study area was classified as being of either “low” or “moderate” 

susceptibility to future landsliding (Table 18 B).  Both maps underline the strong impact 

of the geological formations on landsliding; thus, supporting the results from many other 

studies (Brabb, 1984).  A majority of the area within the Murree and Hazara formations 

falls into the “moderate” and “high” susceptibility classes.  These two formations contain 

shale and slate, respectively, which are relatively weak rocks.  In general, the results from 

the susceptibility mapping match the outlines of several formations.  For instance, both 

susceptibility maps delineate the Manshera Formation in the north-east portion of the 

study area: its granitic composition commands a low level of susceptibility.  In the same 

manner, the Kingriali and Tanawai formations are both categorized in the “very high” 

susceptibility classes.  One key difference concerning geology is the “low” susceptibility 

outline of the Kamlial Formation in the south-east portion of the 2005 map, which is not 

present in the 2001 map.  This phenomenon is not a result of the influence of the 

lithology but rather the large decrease in the importance of the surrounding Murree 

Formation from 2001 to 2005.  In addition to geologic formations and slope, areas 

adjacent fault lines are of high susceptibility.   

The city of Muzaffarabad is settled on a large flat area of land, thus, is 

characterized by “low” susceptibility to landsliding in the 2005 map.  However, the 

surrounding area of Muzaffarabad partly lies adjacent to the Kingriali Formation and the 

Balakot-Bagh fault; thus, it is part of the “high” susceptibility class.  This surrounding is 

densely populated and many people commute to and from the city on a daily basis.  The 
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2001 map places patches of every risk level around Muzaffarabad, most likely due 

surrounding geology, presence of major rivers and faults and the dramatic changes in 

relief.   

Balakot, a smaller city northwest of Muzaffarabad, was completely devastated by 

the earthquake.  The 2001 map presents a moderately susceptible city area that is 

surrounded by areas of high and very high susceptibility.  In the 2005 map, the city area 

is characterized by only low susceptibility; the city, however, is adjacent to an area of 

very high susceptibility. 

Hattian is the smallest of the three urban areas portrayed on the map and is also 

the closest in proximity to the largest mass movement in the study area.  Both 2001 and 

2005 maps place Hattian surrounded by very high susceptibility levels.  In addition, the 

city is surrounded by areas of high susceptibility. 

 

4.  Landslide Inventories versus Landslide Susceptibility 

In addition to the success rate curves generated to evaluated the susceptibility 

results, for both years 2001 and 2005 the landslide inventory maps were laid over the 

susceptibility maps to acquire how many slope failures fall into each of the susceptibility 

classes.  This approach produced three different scenarios: (i) 2001 landslide inventory 

map versus 2001 susceptibility map; (ii) 2005 landslide inventory map versus 2005 

susceptibility map; (iii) 2005 landslide inventory map versus 2001 susceptibility map.  

Scenarios (i) and (ii) generated very similar results with about 13% of failures falling in 

the “low” susceptibility class, ~26% in the “moderate” susceptibility class, ~37% in the 
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“high” susceptibility class, and ~24% in the “very high” susceptibility class (Tables 19 

and 20).   

The 2005 susceptibility map shows a much higher percentage of the study area in 

the low susceptibility class (38.9%) compared to the 2001 map (19.3%), yet, landslide 

occurrence within this class remained relatively constant at ~13%.  This may indicate that 

the 2005 map represents a more refined risk level assessment, or predicting power.  This 

result is at least partially due to the superior landslide inventory from which the 2005 

susceptibility map was created.   

 

Table 19 Scenario i 2001 landslide inventory overlaid on the 2001 Susceptibility map. 

  

 

 

 

 

Table 20 Scenario ii  2005 landslide inventory overlaid on the 2005 Susceptibility map. 

 

 

 

 

 

Scenario (iii) represents an evaluation of the predicted landslide susceptibility in 

the 2001 map, since actual slope failures in the 2005 inventory map were compared 

against the 2001 susceptibility map.  As shown in Table 21, ~75% of all 2005 landslides 

2001 LS Inventory vs. 2001 Map 
Susceptibility 

Class 

Landslide 

Pixels (#) 

LS Area 

(km
2
) 

Landslides 

(%) 

Low 4886 1.1 13.3 

Moderate 9837 2.2 26.7 

High 13870 3.1 37.7 

Very High 8250 1.9 22.4 

Totals 36843 8.3 100 

2005 LS Inventory vs. 2005 Map 
Susceptibility 

Class 

Landslide 

Pixels (#) 

LS Area 

(km
2
) 

Landslides 

(%) 

Low 34223 7.7 12.7 

Moderate 68899 15.5 25.5 

High 97175 21.9 36.0 

Very High 69936 15.7 25.9 

Totals 270233 60.8 100 
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occurred in the “high” or “very high” susceptibility classes of the 2001 susceptibility 

map.  This high percentage translates into a high prediction success rate for the 2001 

susceptibility map.  Therefore, it is assumed that the 2005 susceptibility map is of similar 

quality for the prediction of future landsliding. 

 

Table 21. Scenario iii  2005 landslide inventory overlaid on the 2001 Susceptibility map. 

2005 LS Inventory vs. 2001 Map 
Susceptibility 

Class 

Landslide 

Pixels (#) 

LS Area 

(km
2
) 

LS 

 (%) 

Low 19053 4.3 7.1 

Moderate 49884 11.2 18.5 

High 130688 29.4 48.4 

Very High 70608 15.9 26.1 

Totals 270233 60.8 100 
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Figure 25  Map showing the 2005 landslide inventory overlaid on top of the 2001 susceptibility map. 
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The produced results illustrate several important trends.  First, they show that the 

rates at which landsliding occurs within the individual attributes went largely unaffected 

by the cataclysmic event of October 8, 2005.  Rates of 2005 post-earthquake failure 

varied only slightly from the pre-earthquake failure background rates in 2001 (Table 22).  

For example, 28.5% (105) of all landslides occurred within a 60 meter buffer of all major 

roads in 2001.  In 2005 27.4% (618) of all landslides occurred within this same buffer.  

The earthquake caused the number of individual slides to increase but they were 

occurring at about the same rate.  The average differences between failure rates for 2001 

and for 2005 for each attribute are generally very low.   

Table 22.  Average difference in landslide occurrence rates for each attribute between the 2001 and 2005.  

Attribute 
Avg. Difference 

(%) 

Roads (60m) 1.0 

Rivers (60m) 1.0 

Tributaries (60m) 4.6 

Faults (300m) 2.3 

Geology 4.0 

Slope 2.8 

Aspect 3.1 

Elevation 2.5 

Land Cover 5.2 

 

 

For some attributes, however, interesting changes are noticeable.  For example, in 

the Murree Formation failures related to slope increased from 42% in 2001to 63% in 

2005, while in the Hazara Formation they decrease from 17% to 6%. Within the land 

cover attribute, the shrub land/grassland class absorbed most of the failures, while in 

forested areas, failures dropped from 17% in 2001 to 2% in 2005.   
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X.  POST-SNOWMELT LANDSLIDING; REPEAT PHOTOGRAPHY 

 

  

The susceptibility analysis evaluated the study area from ASTER imagery taken 

in November, 2005 approximately one month after the earthquake struck.  During the 

ensuing six months these already weakened hill slopes are subject to the winter freeze 

and spring thaw, both of which can further weaken the hill sides.  Field research was 

undertaken in that region six months after the earthquake to perform a repeat 

photography analysis.   

Before leaving for the field, two bound books were created that contained every 

picture that was taken in the first field study (Owen et al, 2007).  Accompanying each 

photograph was the GPS coordinates and the angle at which the picture was taken.  This 

provided the researchers with a visual to compare against the scenes they would see in 

the field. The locations were accessed by jeep and foot and the proper angle was found 

using a compass set at a 2½ degree declination. All information gathered from the sites 

was recorded in a field book and includes GPS coordinates, GPS location number and 

picture number and any other relevant information that may prove useful later in the 

research, such as, contact zones, areas of extensive fissuring etc.  The following will first 

explicate the results of the repeat photography and then illustrate several examples of 

increased slope failure.  

 The repeat photography method examined 258 photo pairs gathered from 138 

locations.  Most of these locations were located along major roadways as access to a large 

portion of the study area was inaccessible or extremely difficult to access.  There is no 

way to separate the mass movements that were a direct effect of the October 8, 2005 
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quake.  However, the purpose is not to generate a number of earthquake caused 

landslides, but develop multi-temporal data on additional mass movements caused by 

freezing temperatures and spring thaw of the winter and spring months. A total of 1,329 

mass movements were recorded for the photos taken one month after the earthquake in 

November of 2005.  The 2005 photos used in this study were taken during the field 

campaign of Owen et al. (2007) but are not the same photos used in that paper’s analysis, 

so a direct comparison of the two studies is not possible.  The photos from May/June 

2006 revealed 1,484 slides an increase of 155 additional slides.  Of the 258 photos 

examined, approximately 29% (75) showed either additional slides or slides that had 

reactivated within the six month time span. About 78% or 202 pictures in the analysis had 

two or more landslides in the photograph with the max found in any single scene being 

30.  The average number of mass movements detected in any single photograph jumped 

from 5.15 in 2005 to 5.75 in 2006.  The following are a few examples of the findings 

during the repeat photography analysis.  The first example (shown in Pictures 1A and B) 

is an area located directly above a road where seismic activity was the probable initial 

cause of major fissures and a slight translational slide.  This situation created a potentially 

dangerous situation for travelers and knocked a building from its foundation directly 

below the road.  After the spring thaw, water infiltrated these fissures and caused a large 

translational slide blocking the road and reeking havoc on additional structures below.   
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Picture 1A Site 205, 2005 

Picture 1B Site 205, 2006 

 

Pictures 2 A and B demonstrate a similar scenario as fissures on the hill side warn 

of an impending road block.  This type of scenario is all too common and particularly 
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treacherous; as much of Northern Pakistan’s mountainous narrow roadways weave in and 

out of steep slopes creating dangerous blind curves. 

 
Picture 2A Site 140, 2005. 

 
Picture 2B Site 140, 2006. 
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Picture 3A Site 095, 2005. Picture 3B Site 095, 2006. 
 

 

This is yet another example of a slope failure (Pictures 3A and B) presaged by 

extensive fissuring.  It is important to note how after the section of road was destroyed, it 

was simply re-cut deeper into the cliff without any preventative measures or support 

structures put into place.  This action only further destabilizes the slope and makes it 

more susceptible for future reactivation. 

The next example is of a large debris fall shown in Pictures 4A and B.  This type 

of failure is common and many times includes farmland and human settlements.  The 

slope failure appears to be shallow, but covers a very large area which can block roads, 

destroy power lines, and dam rivers.  Pictures 5A and B depict a reactivated failure 

positioned above a major river which completely stripped one aspect of the hillside.  This 

is yet another example of how rivers can destabilize a slope by the removal of base 
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material.  This is a low elevation slope failure which again was a very common sight 

when traveling along major roadways (adjacent to rivers) in the area. 

 
Picture 4A Site 038, 2005. 

 
Picture 4B Site 038, 2006. 



  

 79  

 
Picture 5A Site 183, 2005. 

 

 

 
Picture 5B Site 183, 2006. 
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Picture 6. Multiple mass movements destroying a farmer’s agricultural terraces.  

 

 

 Figure 25 shows a photo taken in June, 2006 and exemplifies the effects mass 

movement can have on the people.  The orange circle shows the location of a farm house 

with the light blue circles showing slope failures that have destroyed areas used for 

farming.  Areas of flat land are a rare commodity in the steep landscape forcing locals to 

practice what is known as steep farming.  With areas of the slope failing, structures and 

farmland are in danger of being partial damaged or completely destroyed.  This photo 

illustrates how mass movement can have a severely negative effect on the culture and 

lively hood of the local people. 
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XII.  CONCLUSION 

 

This study utilized GIS and remote sensing technology, combined with field 

techniques to assess landslide activity for the 2005 Kashmir earthquake region.  The 

collection of the slope failure data led to the creation of a GIS Landslide Susceptibility 

Zonation map, which can now be utilized for future hazard and risk assessment, planning 

and mitigation.  This study contributes landslide data in an area highly prone to landslide 

and earthquake activity.  This thesis shows that landslide controlling elements can be 

researched and established geospatially to better understand and predict landslide 

occurrence.  

The study revealed that a strong relationship exits between the environmental 

setting of a location (attributes) and landsliding activity in the event of an earthquake.  

For instance, 67% of the landsliding occurred in shrub land/grassland; 48% occurred 

between elevations of 1000-1500 m asl; 41% occurred on slopes between 25 and 35 

degrees; and over 70% occurred on slopes that had a southern exposure.  These areas, 

therefore, can be associated with a higher susceptibility for future slope failure.   

These ascertained localized settings are associated with higher susceptibility 

levels, which is most evident in the 2005 susceptibility map.  For instance, the map 

demonstrates how influential the local geology is in predicting slope failure.  Areas 

comprising the Kingriali and Panjal formations, which have the highest landslide density 

within formation, were almost exclusively classified as having a very high susceptibility 

level.  Similar conclusions can be inferred from the map concerning other attribute’s 

characteristics including, but not limited to slope, roads, and fault lines.   
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Rates at which landsliding occurs within each attribute remained remarkably 

similar in both the 2001 and 2005 analysis in all attributes with one noticeable difference, 

geology.  The heavily weighted geologic attribute showed noticeable differences in the 

landslide activity derived from the landslide inventory analysis for the Murree, Hazara 

and Kingriali formations which constitute 65.6% of the entire study area.  These 

differences in secondary attribute weights show when comparing the final susceptibility 

maps ultimately giving the 2005 landslide susceptibility map an overall lower risk 

assessment.  The difference in landslide activity within each formation can be attributed 

to the lack of training sites in the 2001 ASTER image which in turn may have impeded 

the feature extraction done by the Feature Analyst extension. 

 These results may be consulted when planning new infrastructure or mitigating a 

future earthquake hazard.  Certain geologic formations can be circumvented when 

planning new construction and strategies can be prepared for accessing remote areas 

where highly susceptible roads and landscape may make passage impossible. 

This study also shows that a continuing threat of slope failure exists immediately 

and at the very least six months after an earthquake event.  In the six month time span 

between November 2005 and May 2006, freezing conditions in winter and thawing in 

spring had a strong impact on slope stability.  The repeat photography analysis of 138 

locations revealed an increase of 155 failures.  Many fissures that resulted from the initial 

earthquake and the numerous aftershocks developed into full-fledged slope failures, often 

producing structural damage of infrastructure, transportation routes, and agricultural 

lands.  The majority of the new or reactivated slope failures were found along roadways, 

which supports the view that human interference, particularly deforestation and the 
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construction and maintenance of roads, has a considerable impact on the stability of hill 

slopes. This study shows that there is a significant cause and effect relationship between 

the above mentioned anthropogenic activities and slope failure.  The rebuilding effort in 

Northern Pakistan should take these conclusions into account during the planning and 

reconstruction phases after the earthquake.  

 

Limitations of Study 

 There are several potential sources of error in the process of landslide 

susceptibility mapping.  The attribute layers were gathered from various sources and 

several of them were digitized from a hard copy source.  There is inevitably always a 

margin of error when geo-referencing and digitizing a geographic layer within the GIS.  

In this research four layers (geology, fault lines, rivers, roads, and tributaries) were 

digitized either using scanned hard copy maps or the 15 meter resolution ASTER satellite 

image.  The rivers, tributaries and roads layers that were obtained from the United 

Nations in Islamabad were incomplete and inaccurate.  Although it was possible to 

manually edit the rivers and tributaries, they were not easily identified on the ASTER 

imagery.   

Another potential error that might have caused incorrectness of the final 

susceptibility maps is the existence of mixed pixels.  This possibility of error could have 

occurred several times during the course of the research. The first instance was the 

creation of the landslide inventories; the second the land cover classification and finally 

the assigning of susceptibility classes to the study area.  In the susceptibility classification 

for example the pixels (15m by 15m) often contained more than one type of susceptibility 
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class.  This averaging of pixels values caused many pixels to be rounded, lowering the 

total number in the zonal statistics tool used to extract them ultimately affecting the 

susceptibility level assigned to them. 

A bias was introduced to the study when all GPS points, used as ground truths, 

were taken along road and waterways due to the inaccessibility of the mountainous 

terrain found throughout the study area.  This bias could possibly lead to lower 

susceptibility levels in areas which are not adjacent to roads or rivers. 

The heuristic approach is an expert driven technique which is subject to the 

possibility of human error. The pair-wise comparison within the MCE relies on the 

opinions of the researcher to evaluate the importance of each attribute.  The final 

decisions were made based mainly on observations and notes from the field and also 

previous studies done in the Himalaya region. 

 

Further Research 

 There are three main topics to expand upon within this research.  The first would 

be a more precise analysis of existing background landsliding activities in earthquake-

prone regions.  The results from such studies would help to better separate pre-earthquake 

and post-earthquake landsliding, which is essential for reliable landsliding prediction. 

The second is an analysis of the effects of the snowmelt and summer monsoon seasons on 

slope stability and landscape evolution.  The third area of future study would be an 

analysis of how fast the landscape re-adjusts to its background landslide activity after an 

earthquake event.  This type of analysis would require several more pre-earthquake 
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imagery scenes and would be most beneficial if worked congruently with the analysis of 

background landsliding rates of the region mentioned earlier. 
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