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Voss, Morgan, A.E. M.S., Fall 2018            Geography 

    

Remote sensing of avalanche paths in Glacier National Park, Montana 

 

Committee Chair:  Dr. Anna Klene 

 

Snow avalanches are the common form of mass wasting in the high mountain 

environments of Glacier National Park (GNP), Montana.  These natural disturbances play 

important roles in mountain ecosystems by regularly disturbing montane systems, 

providing critical habitat for some species, transporting debris, and influencing vegetation 

and fire dynamics.  Since the 1900s, natural avalanche-related activity recorded along 

important transportation corridors within the park has frequently disrupted transportation. 

While many of the steep slopes of GNP are susceptible to avalanching, formal 

inventories exist only for small, critical portions of the park and they vary substantially 

from one another.  GNP’s protected status does not allow for avalanche mitigation, 

allowing this area to serve as a natural mountain environment for studying these processes.  

A current, high-resolution inventory of avalanche locations in the park is needed for the 

entirety of the Park.  

Imagery and digital elevation models (DEMs) were used to map the distinct 

biogeographic and topographic patterns left by avalanching using machine learning 

methods.  Mosaics of National Agricultural Imagery Program (NAIP) aerial photographs 

acquired in 2013 were segmented to map avalanche tracks.  Principal components from the 

imagery and derivatives of the DEM were used as input to a Random Forests algorithm 

which mapped the most likely class for each segment using a probabilistic approach.  

Avalanche paths were found to comprise approximately 5-12% of the park, along 

predominantly south and southeasterly facing slopes between 20° to 40°.  While this 

estimate is similar to previous studies, this work did not map starting or runout zones which 

would have increased the total area.  The paths predicted provide a comprehensive 

inventory that can be used to monitor shifts in vegetation and climate dynamics within the 

disturbance regime.  Changes were clearly seen in the contraction and expansion of trim 

lines of some avalanche paths in recent imagery.  Future research could use this work as a 

baseline for time-series analysis.  
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1 INTRODUCTION 

 Avalanche disturbances are vital events in the natural dynamics of mountain 

ecosystems, especially the mountain ecosystems of Glacier National Park (GNP) in 

northwestern Montana (Fig 1).  Even casually observing the landscape of GNP reveals the 

prevalence of avalanche paths. Within the park, avalanches play an important role in 

disturbance ecology, serving as important habitat for many key ecosystem species, such as 

the grizzly bear and wolverine.  In addition to their importance in wildlife habitat, 

avalanches affect forest composition, carbon sequestration, and nutrient flows.  The 

amount of influence avalanches exert in this alpine ecosystem has been increasingly 

appreciated by land managers.  Monitoring avalanche frequency and magnitude contributes 

to many land management directives, informs park officials, transportation planners, 

recreationists, and others.   

Figure 1. Glacier National Park is located in northwestern Montana. 
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 Avalanches are a mass wasting process, in which the frequency and magnitude of 

large-scale events is controlled by snowpack, weather, and climate factors (Fagre & 

Peitzsch, 2010).  Declining snowpack is well documented through historic meteorological 

records, however, the impact of changing snowpack characteristics on avalanche frequency 

and magnitude is inconclusive in high alpine environments, likely due to the growth of 

explosive mitigation techniques in avalanche control (Schneebeli et al., 1997; Bellaire et 

al., 2016).  However, since GNP’s protected status does not allow for induced avalanche 

control measures, analyzing recent landscape dynamics allows for further understanding 

of the geomorphic, ecological, and societal impacts of avalanches in the GNP mountain 

environment in context of a changing climate.  

 Extreme weather events that trigger large magnitude avalanches may become more 

common with changing climate, affecting locations and frequency of the events (Fagre & 

Peitzsch, 2010).  In particular, changes in magnitude or frequency impact geomorphology 

by amounts of debris flow, land-cover in terms of forest and shrub cover, and forest 

characteristics including the locations, destruction, or regrowth of mature forest stands.  

These distinct swaths left by avalanche events are often described as “natural fire breaks” 

(Malanson & Butler, 1984) and can influence fuel distribution.  The effects on mature 

forest stands from avalanche events can substantially change forest stand dynamics and 

composition, a factor for land managers to consider concerning transportation 

infrastructure, fire ecology, and land cover management. 

 Snow avalanche disturbance regimes have left distinct imprints on mountain 

landscapes within GNP. Since the 1900s, natural avalanche-related activity has created 

numerous incidents involving transportation infrastructure on the southern border of GNP, 
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in addition to biogeomorphic impacts.  Many known snow avalanche paths exist on the 

Going-to-the-Sun Road (GTSR), and John F. Stevens (JFS) Canyon, along U.S. Highway 

2 on the southern border of the park (Fig. 2).  JFS Canyon, which separates GNP from the 

Bob Marshall Wilderness complex to the south, is home to the highway and railway and 

numerous wildlife corridors. The locations and characteristics of avalanche paths in these 

areas have been the focus of most previous studies. 

 Understanding the characteristics of these avalanche events (such as size and spatial 

distribution) is crucial for assessing disturbance regimes and their link to social-ecological 

systems.  A complete dataset documenting the locations and frequencies of events in snow 

avalanche paths in GNP would be extremely useful for monitoring for change through time.  

While several studies document locations of avalanche paths throughout the park (Butler, 

1979; Butler, 1990; Carrera, 1990; Hamre & Overcast, 2004; USGS, 2007; Steiner et al., 

2012; Peitzsch & Fagre, n.d.), a park-wide inventory has not been completed.   

Perhaps the closest to an inventory comes from a land-cover classification (1999, 

updated in 2007) which contained an “avalanche-burial” class, described as shrublands 

identified in an avalanche/snow burial zone, or shrublands where the density of plant 

growth decreases as elevation increases including vegetation associated with a gradational 

or transitional pattern (USGS, 2007).  This dataset was a decade old when this current effort 

began, did not have an accompanying accuracy assessment of this category, and did not 

reflect recent changes in avalanche ecology, or any other disturbances in the park.  Because 

of potential changes in avalanche ecology, magnitude, and frequency, creating a park-wide 

easily replicable inventory of avalanche tracks in GNP in order to establish baseline 

measurements for future studies is important.    



 

4 

 

 

Figure 2.  The two most studied avalanche areas in GNP (represented as area within grey polygon) are along the 

two transportation routes crossing the park (Going-to-the-Sun Road and US Highway 2), which present the most 

risk to GNP personnel and the public.  Continental Divide is shown as a white line.  

 

 

 



 

5 

 

2 STUDY AREA 

 GNP, in northwest Montana’s Rocky Mountains, is over 4000 km2 (1 million 

acres), and made up of steep, rugged terrain with substantial relief above and below 

treeline. The landforms were carved from Pleistocene and Holocene glaciations.  Glacial 

valleys in the park align northeast to southwest, with slopes in the valley bottoms typically 

around 30° to 40° (Butler, 1986).  The steep slopes within GNP are prime avalanche terrain, 

and tend to follow a directional control aligned with Pleistocene glaciated valleys (Butler, 

1979).   

The continental divide passing through the park creates two distinct climate zones 

– one with Pacific maritime influence to the west, and one with Arctic continental influence 

to the east (Finklin, 1986).  The west has moderate temperatures and more precipitation, 

the east has windier, drier, and extreme temperature conditions.  Precipitation across the 

park is particularly variable at higher elevations.  The GTSR crosses the Continental Divide 

at Logan Pass at 2,026 m (6,646 ft) and JFS Canyon is just west of the Continental Divide 

and Marias Pass at 1,589 m (5,213 ft).  Both regions are exceptionally avalanche prone 

areas with steep topography (Martinka, 1972). 

 

3 BACKGROUND 

 Avalanches are destructive, natural events which dramatically impact landscapes. 

Early avalanche research took place largely in Europe, although recently more countries 

have expanded their research into avalanche dynamics (Ancey, 2016).  
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 Geomorphology and Ecology of Avalanches  

 During the 1960s, North American researchers became very attentive to hazard 

assessments due to the advancement of transportation framework across the west 

(Luckman, 1978). These hazard-targeted studies largely focused on avalanche causes, 

hazard, magnitude, and frequency, but seldom on the underlying geomorphic or ecologic 

processes.  However, Rapp (1960) proposed that “dirty” avalanches capable of impacting 

landscapes by carrying plant and rock material with debris flows, while “clean” avalanches 

did not affect the landscape.  Luckman (1977) identified topographic conditions, snow, 

vegetation cover, and debris availability as factors controlling the geomorphic impacts of 

snow avalanches.  He tested the influence of these factors in the Canadian Rockies (1978) 

and concluded that the geomorphic effects and depositional landforms resulting from 

avalanche activity demonstrated their role in debris transfer.  Using tree-ring 

dendrochronology and avalanche-scarred trees in the Canadian Rockies, Johnson (1987) 

found a correlation between density and heights of vegetation and trees in avalanche paths 

and the frequency of persistent avalanches. Patten and Knight (1994) found similar results 

in Cascade Canyon, Grand Teton National Park, Wyoming. 

 Using tree-ring analysis to discover the frequencies of avalanche events has become 

a standard practice, especially in areas with few historical avalanche records (Pederson et 

al., 2006; Schläppy et al., 2013; Ballesteros-Cánovas et al., 2018).  Studies in GNP have 

sought to characterize frequency largely near the southern park boundary (e.g. Butler & 

Malanson, 1985; Pederson et al., 2006; Butler et al., 2010).  
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 Remote Sensing of Avalanche Paths  

Applied GIS technologies allow researchers to study both larger and more remote 

areas using aerial photos, satellite imagery, and/or digital elevation models (DEMs) from 

imagery or LiDAR.  The increasing availability of remotely sensed imagery (particularly 

low-cost) has made it possible to study spatial patterns over larger areas and change 

through time, allowing for landscape-scale analyses (Turner et al., 2001).   

Considered a key ecosystem disturbance (Walsh et al., 2004; Turner, 2010), 

avalanches often carry debris and/or erode the landscape.  These “scars” are noticeable and 

well suited for studying the spatial arrangement and influences involved in the spread of 

disturbance processes (Gökyer, 2013).  Avalanche tracks typically consist of elongated 

patches of shrub and forb regrowth, clearly noticeable on the ground and in imagery of 

~30 m resolution or finer.   

The green, elongated patches (a mix of shrubs and deciduous trees) are far from the 

most common vegetation cover within GNP (USGS, 2007), but are obvious when viewed 

in both satellite and oblique imagery.  However, the spectral signatures of shrubs and forbs 

in avalanche tracks are to those same species found in low elevations and near river 

channels.  Previous avalanche track maps in GNP have been field based, focusing on 

dendrochronology, hazards, or snow science principles (e.g. Peitzsch et al., 2015; Fagre & 

Peitzsch, 2010; Butler & Sawyer, 2008; Reardon et al., 2008; Pederson et al., 2006; Hamre 

& Overcast, 2004; Butler & Walsh, 1990). 

Advances in remote sensing classification methods have shifted towards machine 

learning, offering algorithms well suited for complex population distributions.  One of 

these machine learning algorithms (MLAs), the random forest classifier, is an ensemble 

classifier utilizing multiple decision trees with a subset of training data and predictor 
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variables (Breiman, 2001).  Despite limited availability in remote-sensing software, 

decision tree and random forests methods are becoming more common within remote 

sensing literature (e.g. Pal & Mather, 2003; Guan et al., 2012; Belgiu & Drăgut, 2016; 

Kulkarni & Lowe, 2016).  The increased usage of machine-learning algorithms is attributed 

to the capabilities of the algorithms to model complex class signatures, accept and evaluate 

many predictor variables, return higher accuracies, estimate individual variable 

importance, and the ability to accept data of different distributions (e.g. non-parametric vs. 

parametric; Kulkarni & Lowe, 2016; Maxwell et al., 2018).  

MLAs, paired with other techniques, such as image segmentation (which partitions 

pixels into groups or objects based on similar characteristics), and land-cover 

classifications are increasingly able to focus on spectrally significant, complicated patterns 

with object-oriented analysis. The distinct patches and shape dynamics of avalanche tracks 

are well suited for segmentation and MLAs.   

 

 Avalanche Studies in Glacier National Park 

Although studies of avalanche activities within GNP increased in the 1980s and 

1990s, research gaps remain.  Using ground-based photographs and topographic maps, 

Butler and Walsh (1990) investigated the lithologic, structural, and topographic constraints 

on the avalanche paths in eastern GNP, concluding that more than 50% of these paths 

started under an erosion resistant diorite sill typically at the contact with the softer, 

underlying Helena limestone.  These paths exhibited patterns in slopes and aspect, with 

many on slopes between 25° and 35°, aligning with many Pleistocene glaciated valleys in 

a concentration of south, southeast, and northwest facing aspects, (Butler, 1979).  
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In addition to geologic influences, by looking at the Normalized Difference 

Vegetation Index (NDVI) and Tasseled Cap transformation vegetation indices, Walsh et 

al. (2004) found snow avalanches alter the vegetation structures and contribute to post 

disturbance regeneration in the paths, suggesting different vegetation patterns occur in 

avalanche paths compared to adjacent forests.  Butler (1979) also identified patterns in  the 

distribution of vegetation within these paths, describing the main tree types (Abies 

lasiocarpa, Alnus spp., and Acer glabrum), and finding the number of conifers in relation 

to deciduous trees decreases upslope as ground cover vegetation is related to moisture 

conditions in the lithology.  

The Continental Divide influences many of the climate and weather controls on 

avalanches, especially in GNP.  Schweizer et al. (2003) advocated two main constraints on 

snow avalanche events: fresh snow accumulation and air temperature increase (causing 

related freeze-thaw cycles).  Butler (1986) reported these meteorological controls as 

triggering of avalanche events in GNP.  Microclimatic conditions contribute to the type of 

avalanching present on either side of the divide, but regional circulation patterns can result 

in winters with synchronous, wide-spread avalanches (Butler, 1986; Reardon et al., 2008).  

Butler et al. (1986) concluded that years of anomalously high snow pack levels combined 

with Arctic air intrusions and advection of moist Pacific air created heavy snowfalls, rain-

on-snow patterns, and large magnitude avalanche events through dendrochronological 

analysis of trees within avalanche paths.    

Butler and Malanson (1985) performed a dendrochronological study of 48 trees to 

determine a historic index of high magnitude avalanche events, finding high magnitude 

events in this region were not isolated, and frequently occurred in temporal and geographic 
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clusters. Butler (1986) used a historic chronology of major avalanche winters to establish 

hazard zones, largely along U.S. Highway 2, which were more extensive and more frequent 

than initially perceived by National Park Service employees.  Although limited in their 

sample size, using the sites of two avalanche paths along U.S. Highway 2.  

Butler (1979) had performed initial studies of terrain and vegetation within the 

snow avalanche paths in the southern and eastern portions of the park.  After multiple 

destructive avalanche events within and adjacent to the park, an avalanche hazard and 

forecasting program began in 2004 for the transportation corridor in JFS Canyon (Reardon 

et al., 2004).  This avalanche program along U.S. Highway 2 used avalanche cycles from 

the previous 28 winters, snow telemetry (SNOTEL) data, field observations, and weather 

data to derive a history of events for forecasting and hazard mitigation purposes (Reardon 

et al., 2004).  They found that avalanches large enough to disrupt highway and railway 

operations occur predominantly after rain-on-snow events, during periods of dramatic 

warming, when temperatures clustered near freezing, or when snowfall buried a near-

surface faceted layer.  This study was crucial in the development of avalanche mitigation 

programs for the Burlington Northern Santa Fe (BNSF) Railway.   

Hamre and Overcast (2004) created an avalanche path atlas for the JFS Canyon 

area (including attributes such as starting zone elevation, slope angle, runout length, etc.) 

for the BNSF Railway as part of the 2004 environmental impact statement for avalanche 

hazard mitigation in GNP.  Steiner et al. (2012) created an avalanche path inventory along 

U.S. Highway 2 and would later utilize this atlas for their risk-assessment interactive web 

GIS tool in the JFS Canyon area.  An atlas focusing on similar characteristics was produced 

by Peitzsch and Fagre (n.d.) for hazard mitigations involving snow removal operations 
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along the GTSR in the park during the spring.  The design of the atlas focused on 

illustrating the spatial distribution of paths and providing a baseline for avalanche research 

and analysis in the park.   

 

4 METHODOLOGY 

Avalanche paths (Fig. 3) typically consist of three zones with very heterogeneous 

composition, (e.g. rock to shrub to woody debris): the starting zone, track, and runout zone.  

This study focuses on mapping the area in the track of avalanche paths.   

 

Figure 3. Components of an avalanche path (image courtesy of the University Corporation for Atmospheric 

(UCAR) at https://www.meted.ucar.edu/afwa/avalanche/media/graphics/avPaths_partsLabeled.jpg 

 



 

12 

 

 Data Processing  

 

Imagery from the 2013 National Agricultural Imagery Program (NAIP) 

orthorectified, 1-meter 4-band (R, G, B, NIR) was mosaicked, and clipped to the GNP 

boundary using Google Earth Engine, a cloud-based remote-sensing platform (Gorelick et 

al., 2017).  The 2013 NAIP imagery acquisition dates for GNP range from early June to 

early September.  Although NAIP imagery is typically collected every two years and made 

publically available, 2015 was an especially intense wildfire year in Montana prohibiting 

NAIP data collection over much of GNP.   Much of the imagery from 2017 contains snow 

at higher elevations because the imagery was collected in late October.  While higher 

resolution imagery exists (e.g., WorldView and Digital Globe), NAIP 1-meter imagery was 

chosen due to the combination of relatively high resolution and open source availability.  

NAIP imagery mosaics were resampled to match the resolution of the USGS National 

Elevation Dataset (NED) DEM (10 m).  

The landscapes of GNP consist of steep topography and substantial alpine terrain.  

In order to reduce shadowing, dimensionality, and correlation between bands while 

retaining information (Lillesand et al., 2014), a principal components analysis (PCA; Fig. 

4) was performed in ERDAS Imagine software (Hexagon Geospatial, 2018) on the NAIP 

mosaic of the park.  A majority of the variance was explained in PC1 (92%) while PC2 and 

PC3 accounted for the other 8% (Table 1). 

Principal 

Component 

Eigen Value Percent of 

Variance 

1 12995.5 92.47 

2 956.54 6.81 

3 102.14 0.72 
Table 1. Principal Components of 4-band 10-m NAIP imagery from 2013.  
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Figure 4.  Map of the principal component bands 1, 2, and 3 from resulting from PCA on the 4-band 2013 

NAIP imagery after it was coarsened to 10 m.  It is a composite RGB image where R is PC1, G is PC2, and 

B is PC3. Continental Divide is shown as dark gray line.  
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 Using algorithms available in eCognition software (Trimble Geospatial, 2018), 

segmentation was performed on the first three PCs of resampled 4-band NAIP imagery to 

extract patches representing avalanche tracks in addition to other land-cover classes. 

Segments were delineated using multiresolution segmentation, which bases segments on 

homogeneity definitions in combination with local and global optimization techniques 

(Baatz & Schäpe, 2010).   Segmentation inputs included shape compactness parameters 

(meaning the closeness or spread of pixels clustered in an object), spectrally similar nearby 

pixels, and a minimum segment size of 5 pixels.  These were exported as vectors in 

shapefile format, and brought into ArcGIS software (ESRI, 2018) for creation of training 

and validation data.  Shape metrics including a length to width ratio and dispersion (both 

mean and standard deviation of distances from the segment’s centroid) were calculated for 

each segments. 

 The elevation data from the NED was mosaicked and clipped to match the NAIP.  The 

DEM was used for elevation and also to calculate derivatives (Table 2) recommended by 

Maggioni and Gruber (2003).  

DEM Raster/Derivative Purpose 

Elevation Topography 

Aspect Map slopes with more or less solar insolation  

Beers Aspect  Aspect transformed into a continuous variable  

Slope Quantifies slope angle  

Planar Curvature Quantifies amount of convexity or concavity  

Table 2. Derivatives created from the NED 10-m elevation model used as potential variables in random forest. 

Beers aspect is a transformation of aspect (when aspect is 0° to 360°) into a continuous variable that ranges 

from 0-2 with 0 = SW, 1 = NW & SE, and 2 = NE aspects as: Beers aspect = 1 + Cos(45° – aspect) (Beers et 

al., 1966). 
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 Random Forest in the Rocky Mountain Research Station (RMRS) Toolbar 

4.2.1 Training Data  

While random forests and other MLAs offer statistically robust methods aptly 

suited to handle data of high dimensionality, possible correlation, and complex signatures 

(Maxwell et al., 2018), each class must be represented in the training data for accurate 

predictions.  Segments were initially selected randomly for training sites for 10 land-cover 

classes (Table 3).  To account for widely differing class frequency, Congalton and Green 

(2008) recommend a minimum sample size of 50 per class, and an equalized stratified 

sampling design was used to add samples.  The author utilized GNP’s prior land-cover 

classification, photo interpretation, and field visits to increase the total number of training 

sites for each category to 100 segments between random and user-selected segments.   

Class ID Random  User Selected  

Avalanche Track 1000 9 91 

Barren Rock 2000 70 30 

Coniferous Forest (Older) 3000 90 10 

Fire Scar/Burn 3500 56 44 

Shadow 4000 36 64 

Shrub/Meadow/Deciduous 5000 41 59 

Snow/Glacier 6000 3 97 

Water 7000 22 78 

Dry Herb/Grassland 8000 36 84 

Young Forest/Regeneration 10000 26 74 
Table 3. Land-cover classes and the number of training segments selected randomly and those added to 

reach the minimum number recommended. 

 

4.2.2 Variable Selection 

Variables initially considered for prediction and those used in the final random 

forest classification are in Table 4.  The Rocky Mountain Research Station (RMRS) Raster 

Utility, an ArcGIS add-on software (Hogland & Anderson, 2017) processed the random 

forest algorithm.  The RMRS Raster Utility is an object-oriented coding library that allows 
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for spatial and statistical analysis using function modeling.  Function modeling is raster 

processing methodology used to create and store transformations of raster datasets that 

substantially reduces memory usage, processing time, and storage of intermediate steps in 

large datasets (Hogland & Anderson, 2017).  The RMRS Raster Utility’s random forest 

algorithm used zonal statistics to sample the standard deviation and mean values of the 

variables (Table 4) of the training segments to build a series of decision trees.  34% of the 

original training data was withheld (“out-of-bag”) from the construction of each tree and 

used for model performance statistics and cross-validation.  The remaining data (66%) was 

utilized to build 500 decision trees.  Using the resulting random forest, the RMRS Raster 

Utility toolbar predicted the most likely class in the defined land-cover categories (Table 

3) for all the remaining non-training segments in GNP.  

The random forest algorithm generated statistics describing the relative importance 

of each variable using out-of-bag estimates of classification errors from the withheld 

training data.  All variables were initially modeled and then excluded by relative 

classification error values (Fig. 5).  Final selection of which variables to use to construct 

the park-wide prediction was based upon assessing how much the relative classification 

error increased when a variable was excluded from the model.  Only one form of each 

variable was retained, for instance the mean of elevation was statistically more important 

the standard deviation of elevation, so the mean of elevation was ultimately retained and 

standard deviation excluded.  After removing variables which were below the saturated 

relative classification error value, a 10.9% relative classification error was achieved.   
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Category Variable 

Imagery PC1, PC2, PC3, NDVI* 

Terrain Elevation, slope, aspect, planar curvature, re-classed planar curvature 

(highlighting convex slopes), Beers aspect 

Shape 

Metrics 

Length/width ratio, dispersion (standard deviation of distances 

from centroids), dispersion (mean deviation of distances from 

centroids) 
Table 4.  List of variables initially used for prediction in random forest modeling. Those in bold contributed 

the most to avalanche track relative classification accuracy.  

*NDVI is a vegetation index that uses near infrared and red wavelength bands. NDVI = (NIR – Red) / (NIR 

+ Red). 

0.115 0.120 0.125 0.130 0.135 0.140 0.145 0.150

Aspect (mean)

Beers Aspect (mean)

Slope (st. dev.)

Beers Aspect (st. dev.)

PC 1  (st. dev.)

Reclassed Curvature  (st. dev.)

Reclassed Curvature (mean)

PC 3  (st. dev.)

PC 1 (mean)

Planar Curvature  (st. dev.)

Dispersion (mean)

Dispersion (st. dev.)

PC 2  (st. dev.)

Aspect  (st. dev.)

Slope (mean)

Elevation  (st. dev.)

Length Width Ratio of Segments

Planar Curvature (mean)

NDVI (mean)

NDVI  (st. dev.)

PC 2 (mean)

PC 3 (mean)

Elevation (mean)

Saturated Relative Classification Error

RELATIVE CLASSIFICATION ERROR

V
A

R
IA

B
LE

Random Forest Variable Importance
Based on Relative Classification Error when Excluded from Model

Figure 5. Variable importance in random forest modeling. Variables above the saturated value for relative 

classification error were included in final modeling.  Only the highest of either standard deviation or mean was 

retained for similar variables. Green bars indicate modeled variables; yellow bars indicate excluded variables. 
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The segments were classified using thresholds based on the number of times out of 

500 iterations that a decision tree predicted the segment to be an avalanche track (e.g. 10%, 

20%, 30%, 40%, or 50%).  In other words, several layers generated with segments with the 

most likely category of avalanche track above each of several thresholds (segments where 

p_1000 > 0.3, 0.4, and 0.5).   

 

 Accuracy Assessment 

4.3.1 Existing Land Cover Inventories and Atlases 

The most previously studied and frequently avalanching areas within the park, (i.e. 

the JFS Canyon area and the GTSR) were intentionally not utilized to create training data 

to allow their use in accuracy assessments because they contain the most well-documented 

avalanche paths.  Since training data were not truly random, out-of-bag statistics, cross 

validation, and relative classification errors do not suffice for the requirements in a standard 

accuracy assessment (Maxwell et al., 2018).   

Accuracy assessments were calculated using the RMRS Raster Utility, and to assess 

model performance and the climatic influence of the Continental Divide, output 

classifications were separated on the east and west sides of the divide.  Accuracies were 

compared for the 30%, 40%, and 50% thresholds (Appendix A).  Assessments were made 

using validation datasets from prior field work, photo interpretation of prominent 

avalanche tracks, and from prior inventories listed in Table 5. 

 

4.3.2 Digitized Avalanche Tracks  

Prior inventories from Butler and Walsh (1990), Carrera (1990), and GNP’s 

previous land-cover dataset (1999/2007) were consulted during the creation of a hand-
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digitized avalanche dataset.  The stark contrast in adjacent vegetation patterns between 

mature forest and the herb/shrub cover of avalanche tracks allows such tracks to be easily 

identified in ground-based and/or aerial photography (Butler & Walsh, 1990).  Only 

segments which were clearly tracks were selected using the previously generated vectors 

from segmentation and the NAIP mosaics used in the classification.  All segments were 

selected when viewed at a 1:2,500 scale.  Selected segments were exported as vector 

shapefiles to produce an additional layer used for quantifying the disturbance based on 

image interpretation.  Accuracy assessments were performed against this dataset 

(Appendix A Table 10). 

 

5 RESULTS 

 Predicted Avalanche Track Locations 

The 10 and 20% intervals had substantial errors based on visual assessment and 

comparison to prior inventories and were not further analyzed, yielding three land-cover 

datasets for further evaluation.  The three different land-cover datasets for avalanche tracks 

at the 30%, 40%, and 50% probability thresholds are shown for the entirety of GNP in Fig. 

5, and for five different regions of GNP in Figs. 6 through 10.    Distinct tracks were missed 

by even the most accurate random forest prediction, particularly on northerly, shadowed 

aspects (Fig. 6).  In certain southerly aspects, over-inclusion occurred (Fig. 7).  Depending 

upon the probability threshold utilized, this analysis found between 5% to 12% of GNP’s 

area to be avalanche tracks (Figure 11).  This estimate excludes most starting zones and 

some runout zones because they spectrally differ compared to tracks, and were not included 

in training data.  The locations of avalanche tracks provide a baseline spatial dataset for 
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quantifying and detecting change for this disturbance within the park.  This and previous 

avalanche inventories are summarized in Table 5.  

Inventory Hectares  Acres Year 

Random Forest (RF) Land-Cover 20,405 –   

52,649  

50,424 – 

130,100 

2013 

Digitized  11,443  28,277 2013 

GNP Land-Cover “Avalanche-Burial 

Class” 

19,808  48,949 1999/2007 

Peitzsch and Fagre (Partial - GTSR) 2,120  5,241 No Date 

RF Land-Cover (Partial – GTSR) 868  2,147 2013 

Hamre and Overcast (Partial – JFS 

Canyon) 

1,048  2,590 2004 

RF Land-Cover (Partial - JFS 

Canyon) 

964 2,383 2013 

Table 5. Summary of avalanche track area mapped in each current and previous avalanche inventory, 

including partial atlases and land-cover classifications which contained an “avalanche burial path” category.  
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Figure 6. Map of the predicted avalanche track locations (red) using the 30% probability threshold from 500 iterations 

of a random forest algorithm and variables in Table 4. The Continental Divide is shown as a dark gray line. 
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Figure 7. Map of the Goat Haunt area with avalanche tracks shown using 30%, 40%, and 50% probability 

thresholds. 
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5.1.1 Overall Accuracy 

The prediction using the 30% probability threshold most accurately mapped 

avalanche tracks based upon visual assessment and overall performance statistics (Fig. 6, 

Table 6).  While the overall accuracy was 76%, the east and west sides of the divide differed 

substantially.  The shrub/deciduous class tended to be the most confused with avalanche 

tracks, along with coniferous forest and burn scars.  Confusion matrices are in Appendix 

A.   

 
Figure 11. Area predicted as avalanche tracks using the 10%, 20%, 30%, 40%, and 50% class thresholds, 

from 500 random forest iterations on the selected variables (Table 4). 
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5.1.2 Probabilistic Thresholds  

The western side of the continental divide contains substantially more avalanche 

tracks than the east side (Fig. 12, Table 6).  Examples of each most likely class threshold 

(30%, 40%, and 50%) are in Figs. 13 through 15.  

Figure 12.  Area of predicted avalanche tracks on either side of the Continental Divide. 

 

 
Threshold Hectares Acres Percentage 

of Park 

User 

Accuracy 

Producer 

Accuracy 

Overall 

Accuracy 

10% 148,290 366,433 36.2 NA NA NA 

20% 84,465 208,719 20.6 NA NA NA 

30%  52,649 130,100 12.8 95% 62% 76% 

40%  33,363 82,442 8.14 95% 56% 73% 

50%  20,405 50,424 4.98 95% 55% 72% 

Table 6.  Estimates of avalanche track extent and overall, user, and producer accuracies for three avalanche 

track probability thresholds. 
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Figure 13. Tracks predicted at the 30% probability threshold from random forest algorithm near Waterton 

Lake. 
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Figure 14. Tracks predicted at the 40% probability threshold from random forest algorithm near Waterton 

Lake. 
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Figure 15. Tracks predicted at the 50% probability threshold from random forest algorithm near Waterton 

Lake. 
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5.1.3 Accuracy Assessments for Existing and Digitized Avalanche Inventories 

Accuracy assessments for three probability thresholds of the most likely class being 

avalanche track (30%, 40%, and 50%) were conducted using the validation dataset created 

from prior inventories, field work, and photo interpretation.  The 30% probability threshold 

achieved the highest accuracy at 76% (Appendix A, Table 1) and was used for further 

comparisons.  In addition, predictions were assessed for east and west of the Continental 

Divide to examine model performance.  Although more of a conservative estimation of 

predicted area due the exclusion of runout and starting zones, the digitized avalanche track 

dataset had 85% overall accuracy (Fig. 16; Table 10).  The accuracy assessments for the 

park, and both sides of the continental divide at the 30% threshold are shown in Appendix 

A (Tables 1, 2, and 3).    

While the accuracy for the overall park using the 30% threshold was 76%, the 

eastern side of the divide had a higher accuracy (82%), and the west side a lower accuracy 

(72%; Appendix A, Tables 2-3).   Examples of predicted tracks compared to the prior 

GTSR and JFS Canyon atlases are shown in Figs. 17 and 18.  Examining the differences 

in predicted tracks against inventory atlas paths reveal two very different types of mapping 

campaigns, one focusing on ecologic signature and one focusing on the entirety of the path, 

including starting zones at the top of the ridge.  
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Figure 16. The image above displays the digitized avalanche track locations (orange) using photo 

interpretation, field visits, and prior land-cover data. The Continental Divide is shown in dark gray through 

the middle of the park. 
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 Geomorphic Characteristics 

The avalanche tracks predicted at the 30% probability threshold were found on 

south and southeast facing slopes largely between 20° to 40° (Figs. 16-20).  This was 

similar on either side of the divide, although the west side was predicted to have a much 

larger area of avalanche tracks while the east appears to have more area in the 20° to 35° 

range.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19.  Mean slope of avalanche tracks predicted on the west side of the Continental Divide. 

Figure 20.  Mean slope of avalanche tracks predicted on the east side of the Continental Divide.  Note the 

difference in y-axis compared to Fig. 19. 
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Figure 21.  Aspect of avalanche tracks on the western side of the Continental Divide. 

 
 

Figure 22.  Aspect of avalanche tracks on for the east side of the Continental Divide. 
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 Fire, Lakes, and Vegetation 

Approximately 9,924 hectares (24,524 acres) or 18% of the predicted avalanche 

track corridors were in a fire-burn scar (Fig. 23).  Of the 9,924 hectares, 69% of the 

predicted avalanche track areas were in burn scars from the 2003 fire year (Fig. 24).  There 

is confusion in the accuracy assessments between regenerating forests and avalanche tracks 

(Appendix A, Tables 1-3).  Fires younger than five years old are shown on the map, but 

were not considered because they occurred after the 2013 NAIP imagery was acquired.  

In addition to avalanche tracks predicted in fire scars, many avalanche paths may 

possess the capability to transport material into or near lakes.  Avalanches can transport 

debris flow, woody debris, and nutrients to bodies of water.  Predicted tracks within 

100 meters of a lake were mapped resulting in 776 hectares (1,919 acres) of avalanche 

tracks on the western side of the divide and 664 hectares (1,641 acres) on the eastern side 

of the divide (Fig. 25). 
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Figure 23.   Map of predicted avalanche tracks (red) within recent fire scars in GNP.  The Continental Divide is shown 

as a dark gray line. 
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Figure 24.  Graph of area of avalanche tracks within fire scars plotted against time since the fire.  Fires less than five 

years old were excluded due to imagery acquisition in 2013.  
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Figure 25.  Map of avalanche tracks located within 100-meters of a lake (red) and predicted tracks in yellow. The 

Continental Divide is shown as a dark gray line. 



 

41 

 

6 DISCUSSION 

 Predicted Avalanche Track Heterogeneity and Model Accuracy  

Over inclusion and exclusions existed within the maps of each probability threshold 

of avalanche tracks.  Sampling and training data are crucial to the accuracy and 

performance of classifications.  Random sampling implies that rarer land-cover classes 

(e.g. avalanche tracks), will be less represented overall, and it is common that 

classifications will under-predict less abundant classes relative to the true proportion of the 

land-cover class (Maxwell et al., 2018).  Random sampling initially selected 9 segments as 

avalanche tracks compared to 26 for young forest/regeneration (Table 3).  An equalized 

stratified sampling design was used to achieve an equal number of training samples for 

each class.  

Out-of-bag (OOB) error in random forest models was calculated at 10% with 

accuracy of 90%.  However, accuracy assessments of the 30%, 40%, and 50% probability 

thresholds revealed larger error estimates  with accuracies between 72% to 76% (Appendix 

A, Tables 1, 4, and 7).  The difference in error likely has to do with the use of segments, 

which are not fully statistically independent, leading to bias in the OOB error (Cánovas-

García et al., 2017).  Selecting additional training sites had the potential for imbalances in 

training data (Maxwell et al., 2018), however, this training data allowed the classifier to 

find significant patterns within the rarer land-cover class and differentiate it from the other 

land-cover categories.  

Problems with overestimation and underestimation of tracks may be inherent from 

the heterogeneous nature of avalanche paths and their structure (Fig. 26) as well as the 

importance and influence of certain variables in random forest predictions. Confusion 

matrices indicated the most error between shrub classes and avalanche tracks, which are 
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spectrally similar since the vegetation is essentially the same (Fig. 27 and Appendix A, 

Tables 1-3).  The floristic patterns of avalanche paths vary in structure based on the 

predominant type of avalanching (Malanson & Butler, 1986).  Mapping strictly from 

vegetative and topographic data does not allow differentiation of fine-scale spatial patterns 

present in avalanche tracks.  In theory, random forest modeling can decipher complex 

classes (i.e. the differences between shrubs on flat ground and shrubs on avalanche slopes) 

by finding patterns in slopes, aspects, and curvatures.  However, based upon the variable 

classification errors and confusion matrices, confusion remained.   

Shadow effects as well as the importance of variables such as elevation, PC2, PC3, 

and NDVI are probable contributors to modeling error.  Attempts to reduce shadow effects 

by band ratios and PCA improved the results, but are so prominent in the steep topography 

of GNP that they could not be fully removed.  The variance of elevation across the park is 

likely contributing to confusion as well; east and west of the divide elevations differ, 

perhaps causing confusion in pattern detection for the common elevations of avalanche 

tracks. Temporal limitations due to the dates of NAIP imagery used for this analysis also 

contributed to error.  NAIP imagery from 2017 was recently released, however the dates of the 

imagery are much later in fall season than the 2013 year, resulting in many tracks with low 

NDVI values outside of peak greenness dates or tracks already covered in snow, making 

segmentation ineffective. 
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Accuracies on the western side of the Continental Divide were lower than the eastern 

side, but more avalanche track area was predicted on the west side (Fig. 12).  The higher 

western predictions, however, are consistent with Butler’s (1979) observations that avalanche 

paths are more concentrated in the west, in higher relief and areas receiving more precipitation.  

 

 Trends in Ecology and Geomorphology 

6.2.1 Fire History and Compound Disturbance 

In addition to shrubs and forbs being confused with avalanche tracks, coniferous 

forest and previous fire scars were consistently confused with avalanche tracks.  The 

confusion between coniferous forests stems from a lack of spectral difference in the 

vegetation signatures between forest and avalanche track (maple, alder, fir, etc.) in GNP 

(Joint Fire Science Program, 2018).  A considerable number of tracks were predicted in the 

Roberts Fire scar of 2003 while other inventories, such as Carrera’s (1990) surficial 

geology map, and GNP’s land-cover classification do not necessarily classify avalanche 

tracks within this area. With no documentation available for the occurrence of avalanche 

events or not, it is hard to describe if these areas actually are avalanching or are susceptible 

to future avalanche hazards.  In a study on the post-fire avalanching, Germain et al. (2005) 

found a lack of synchronicity for avalanche events in disturbed versus undisturbed areas 

following disturbance events such as fire or logging, suggesting an increase in avalanche 

events is possible post-disturbance events.    

The majority of avalanche tracks predicted in fire scars happen to be in fires from 

the 2003 fire season.  The 2013 NAIP imagery was acquired 10 years after these fires, with 

the scars very visible in RGB imagery and the PCA.  It is not likely that these burn scars 
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suddenly have an abundance of unknown avalanche tracks – rather it is likely that the 

development and regrowth of understory and regenerating forest stands are heavily 

contributing to spectral confusion with avalanche tracks in these areas.  

Avalanche tracks predicted in fire scars may also indicate the potential for post-fire 

avalanche events.  The prediction may be mapping avalanche susceptibility in certain areas, 

as with high severity fire there is commonly a loss of mature forest, in other words past 

tree anchors that may have inhibited avalanches in the past.  It is possible that these burn 

scars are experiencing avalanche events, but do not fit the typical elongated track structure 

present in many of the other tracks in the park.  Of particular interest may be the Thompson 

Fire from 2015 (Fig. 23), which appears to have predicted avalanche tracks, but occurred 

after the 2013 imagery acquisition.  Newer imagery would be needed to effectively observe 

the changes in avalanche tracks in this location post-fire.  

As fire frequency continues to increase all over the western U.S. (Flannigan et al., 

2009), but with varying degrees of severity (Parks et al., 2016), research to study the advent 

of avalanching post-fire disturbance is a topic to be considered with climate change 

impacts. An area that may be of particular interest mapped with random forest modeling 

are the avalanche slopes below Stanton Mountain, an avalanching area in GNP near Lake 

McDonald. Following the Howe Ridge Fire in 2018, these avalanche slopes experienced 

the burning and torching of many trees, leaving unstable slopes. Future attention should be 

directed to the magnitudes of avalanches in this area this winter to examine any compound 

disturbances. With the loss of mature forest trim line on parts of the avalanche slopes, it is 

possible avalanche events will be able to extend farther than they previously have as it is 

possible for disturbances to interact with one another as one can trigger others (Paine et al., 
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1998; Dale et al., 2001).  Disturbance effects after high severity fires may prove to exhibit 

higher impacts of more frequent snow avalanching rather than the possible growth and 

decline of avalanching with changing alpine treelines. 

 

6.2.2 Geomorphology 

Tracks were consistently in south and south easterly aspects with slopes in potential 

(although not the most common) avalanche ranges at 20 to 40°.  This is consistent with 

previous work describing possible avalanche terrain (McClung & Schaerer, 2006; 

Maggioni & Gruber, 2003; Armstrong & Williams, 1992) and previous geomorphic studies 

in the park (Butler, 1979; Butler & Walsh, 1990).  The aspects also align with formally 

glaciated Pleistocene valleys, following the general topography of the park.  While this 

could also be associated with error on the western side of the continental divide, the western 

patterns in aspect displayed a trend toward southwest aspects much more than the eastern 

side.  It is also likely that the northerly aspect estimates are underrepresented, as even with 

image correction and the reduction of redundant information, notable tracks were still 

missed by modeling or shadow effects.  The shadow effects are an unfortunate consequence 

of the steep topography in GNP and time of imagery acquisition.  

Expansion of avalanching areas is already evident in the Little Granite avalanche 

track along the GTSR (Fig. 31; Fagre & Peitzsch, 2010), although contraction of tracks and 

regrowth of forest is illustrated in areas of the park (Figs. 28 and 29).  Because the impact 

of changing snowpack on the frequency and magnitude of avalanches in high alpine 

environments, is inconclusive (Schneebeli et al., 1997; Bellaire et al., 2016), GNP will 
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continue to be an excellent environment to observe the impacts and potential changes of 

avalanche disturbance regimes due to its pristine, non-mitigating state.   
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7 CONCLUSIONS AND FUTURE RESEARCH 

 Conclusions  

This analysis found that 5%-12% of GNP consists of avalanche tracks, depending 

on choice of probabilistic threshold.  This is consistent with past literature and provides a 

baseline inventory for quantifying this specific type of disturbance in the park.  The 

avalanche tracks most hazardous to the public lie adjacent to the two main transportation 

corridors in the park, the GTSR and JFS Canyon.  However, the abundance of avalanche 

tracks in GNP’s more remote regions should not be dismissed, as they contribute to a 

common disturbance regime.  

Probabilistic thresholds from 30% to 50% of a segment’s most likely class being 

an avalanche track were evaluated.  The 30% threshold had the highest accuracy at 76%.  

This methods offers a simple, yet effective and repeatable method to quickly map 

avalanche tracks over a large area using freely available data.  Further analysis of this 

dataset found substantial differences in predicted avalanche track area on either side of the 

Continental Divide, consistent with previous work in avalanche climate studies in the park.  

In addition, this dataset also predicted avalanche tracks on south and southeast facing 

slopes, most frequently between 20° to 40°.  These results were similar on either side of 

the divide, although the east appears to have a smaller area concentrated in the 30° to 35° 

range. 

 

 Suggested Future Research  

With a baseline inventory of avalanche tracks in GNP available, time-series 

analysis could reveal if patterns occurring across the ecosystem, such as the contracting 

avalanche tracks shown in the Lake Janet and Middle Fork of the Flathead River areas or 
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the expanding avalanche tracks seen in the upper McDonald Creek and Gunsight Lake 

areas, are happening at similar rates or one is more common than the other.  With changing 

fire regimes, more research on the changes in avalanche path size or post-fire avalanche 

frequency could aid in understanding ecologic trends.  

Advancements in resolution, both spatial and temporal, of predictors could greatly 

enhance future classifications.  For instance, LiDAR data exists in only the southern portion of 

the park, but if it existed for the entirety of GNP, tracks could be mapped based upon 

topography alone by examining gaps in tree canopy on specified slopes, similar to the 

techniques employed by Breschan et al. (2018).  Acquisition of more recent imagery with 

perhaps more spectral bands (e.g. Sentinel-2) could also potentially detect some of the hard to 

distinguish trends in avalanche tracks as well, prompting room for further analyses. 
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APPENDIX A 
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Water 
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Glacier 
Shadow 

Barren 

Rock 
Burn 

Shrub/ 
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Young 

Forest 

Dry Herb/ 

Grassland 

Avalanche 

Track 
UA 

Older 

Forest 
98 0 0 0 0 0 1 7 0 23 76 

Water 0 88 0 0 0 0 0 0 0 0 100 

Snow/ 

Glacier 
0 0 98 0 4 0 0 0 0 1 95 

Shadow 0 0 0 101 0 0 0 0 0 8 93 

Barren 

Rock 
0 0 0 0 77 0 0 0 0 25 75 

Burn 0 0 0 0 4 88 0 0 5 85 48 

Shrub/ 

Deciduous 
0 0 0 0 0 0 33 2 0 172 16 

Young 

Forest 
5 0 0 0 0 0 2 60 0 1 88 

Dry Herb/ 

Grassland 
0 0 0 0 0 1 4 0 44 11 73 

Avalanche 

Track 
3 0 0 0 2 0 17 6 1 527 95 

PA 92 100 100 100 89 99 58 80 88 62 76 

Table 1.  Accuracy assessment for the 30% threshold for all of Glacier National Park.  User’s accuracy (UA) 

and producer’s accuracy (PA) are in percentages. Overall accuracy in bold.  
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Young 
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4 0 0 0 0 0 1 10 0 0 67 

Dry Herb/ 

Grassland 

0 0 0 0 0 0 1 0 5 2 63 

Avalanche 

Track 

2 0 0 0 0 0 5 0 0 195 97 

PA 89 100 100 100 90 100 70 91 83 68 82 

Table 2.  Accuracy assessment for the 30% threshold for east of the Continental Divide in Glacier National 

Park. Overall accuracy in bold. 
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Table 3.  Accuracy assessment for the 30% threshold for west of the Continental Divide in Glacier National 

Park. Overall accuracy in bold. 
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Burn 

Shrub/ 

Deciduous 

Young 

Forest 

Dry Herb/ 

Grassland 

Avalanche 

Track 
UA 

Older 

Forest 
99 0 0 0 0 0 1 7 0 30 72 

Water 0 88 0 0 0 0 0 0 0 0 100 

Snow/ 

Glacier 
0 0 98 0 4 0 0 0 0 1 95 

Shadow 0 0 0 101 0 0 0 0 0 8 93 

Barren 

Rock 
0 0 0 0 77 0 0 0 0 25 75 

Burn 0 0 0 0 4 88 0 0 5 88 48 

Shrub/ 

Deciduous 
0 0 0 0 0 0 37 2 0 214 15 

Young 

Forest 
5 0 0 0 0 0 2 60 0 1 88 

Dry Herb/ 

Grassland 
0 0 0 0 0 1 4 0 45 12 73 

Avalanche 

Track 
2 0 0 0 2 0 13 6 0 474 95 

PA 93 100 100 100 89 99 65 80 90 56 73 

Table 4. Accuracy assessment for the 40% threshold for all of Glacier National Park. Overall accuracy in 

bold. 
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Older 

Forest 

Water Snow/ 

Glacier 

Shadow Barren 

Rock 

Burn Shrub/ 

Deciduous 

Young 

Forest 

Dry Herb/ 

Grassland 

Avalanche 

Track 

UA 

Older 

Forest 

52 0 0 0 0 0 1 1 0 14 76 

Water 0 42 0 0 0 0 0 0 0 0 100 

Snow/ 

Glacier 

0 0 51 0 3 0 0 0 0 1 93 

Shadow 0 0 0 61 0 0 0 0 0 1 98 

Barren 

Rock 

0 0 0 0 44 0 0 0 0 3 94 

Burn 0 0 0 0 2 30 0 0 1 30 48 

Shrub/ 

Deciduous 

0 0 0 0 0 0 21 0 0 66 24 

Young 

Forest 

4 0 0 0 0 0 1 10 0 0 67 

Dry Herb/ 

Grassland 

0 0 0 0 0 0 1 0 5 2 63 

Avalanche 

Track 

1 0 0 0 0 0 3 0 0 169 98 

PA 91 100 100 100 90 100 78 91 83 59 78 

Table 5.  Accuracy assessment for the 40% threshold for east of the Continental Divide in Glacier National 

Park. Overall accuracy in bold. 
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Older 

Forest 

Water Snow/ 

Glacier 

Shadow Barren 

Rock 

Burn Shrub/ 

Deciduous 

Young 

Forest 

Dry Herb/ 

Grassland 

Avalanche 

Track 

UA 

Older 

Forest 

47 0 0 0 0 0 0 6 0 16 68 

Water 0 46 0 0 0 0 0 0 0 0 100 

Snow/ 

Glacier 

0 0 47 0 1 0 0 0 0 0 98 

Shadow 0 0 0 40 0 0 0 0 0 7 85 

Barren 

Rock 

0 0 0 0 33 0 0 0 0 22 60 

Burn 0 0 0 0 2 58 0 0 4 58 48 

Shrub/ 

Deciduous 

0 0 0 0 0 0 16 2 0 148 10 

Young 

Forest 

1 0 0 0 0 0 1 50 0 1 94 

Dry Herb/ 

Grassland 

0 0 0 0 0 1 3 0 40 10 74 

Avalanche 

Track 

1 0 0 0 2 0 10 6 0 305 94 

PA 96 100 100 100 87 98 53 78 91 54 69 

Table 6.  Accuracy assessment for the 40% threshold for west of the Continental Divide in Glacier National 

Park. Overall accuracy in bold. 

 

 

 

 

 

 



 

63 

 

 

 
 Visual Assessment 

R
a

n
d

o
m

 F
o

re
st

 P
re

d
ic

a
ti

o
n

 

 Older 

Forest 
Water 

Snow/ 

Glacier 
Shadow 

Barren 

Rock 
Burn 

Shrub/ 

Deciduous 

Young 

Forest 

Dry Herb/ 

Grassland 

Avalanche 

Track 
UA 

Older 

Forest 
99 0 0 0 0 0 1 7 0 30 72 

Water 0 88 0 0 0 0 0 0 0 0 100 

Snow/ 

Glacier 
0 0 98 0 4 0 0 0 0 1 95 

Shadow 0 0 0 101 0 0 0 0 0 8 93 

Barren 

Rock 
0 0 0 0 77 0 0 0 0 25 75 

Burn 0 0 0 0 4 88 0 0 5 88 48 

Shrub/ 

Deciduous 
0 0 0 0 0 0 37 2 0 221 14 

Young 

Forest 
5 0 0 0 0 0 2 60 0 1 88 

Dry Herb/ 

Grassland 
0 0 0 0 0 1 4 0 45 12 73 

Avalanche 

Track 
2 0 0 0 2 0 13 6 0 467 95 

PA 93 100 89 100 100 99 80 90 55 65 72 

Table 7.  Accuracy assessment for the 50% threshold for all of Glacier National Park. Overall accuracy in 

bold. 
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Older 

Forest 

Water Snow/ 

Glacier 

Shadow Barren 

Rock 

Burn Shrub/ 

Deciduous 

Young 

Forest 

Dry Herb/ 

Grassland 

Avalanche 

Track 

UA 

Older 

Forest 

52 0 0 0 0 0 1 1 0 14 76 

Water 0 42 0 0 0 0 0 0 0 0 100 

Snow/ 

Glacier 

0 0 51 0 3 0 0 0 0 1 75 

Shadow 0 0 0 61 0 0 0 0 0 1 98 

Barren 

Rock 

0 0 0 0 44 0 0 0 0 3 94 

Burn 0 0 0 0 2 30 0 0 1 30 48 

Shrub/ 

Deciduous 

0 0 0 0 0 0 21 0 0 70 23 

Young 

Forest 

4 0 0 0 0 0 1 10 0 0 67 

Dry Herb/ 

Grassland 

0 0 0 0 0 0 1 0 5 2 63 

Avalanche 

Track 

1 0 0 0 0 0 3 0 0 165 98 

PA 91 100 100 100 90 100 78 91 83 58 78 

Table 8.  Accuracy assessment for the 50% threshold for east of the Continental Divide in Glacier National 

Park. Overall accuracy in bold. 
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Older 

Forest 

Water Snow/ 

Glacier 

Shadow Barren 

Rock 

Burn Shrub/ 

Deciduous 

Young 

Forest 

Dry Herb/ 

Grassland 

Avalanche 

Track 

UA 

Older 

Forest 

47 0 0 0 0 0 0 6 0 16 68 

Water 0 0 0 0 46 0 0 0 0 0 100 

Snow/ 

Glacier 

0 0 47 1 0 0 0 0 0 0 98 

Shadow 0 40 0 0 0 0 0 0 0 7 85 

Barren 

Rock 

0 0 0 33 0 0 0 0 0 22 60 

Burn 0 0 0 2 0 58 0 0 4 58 48 

Shrub/ 

Deciduous 

0 0 0 0 0 0 16 2 0 151 9 

Young 

Forest 

1 0 0 0 0 0 1 50 0 1 94 

Dry Herb/ 

Grassland 

0 0 0 0 0 1 3 0 40 10 74 

Avalanche 

Track 

1 0 0 2 0 0 10 6 0 302 94 

PA 96 100 100 87 100 98 53 78 91 53 69 

Table 9.  Accuracy assessment for the 50% threshold for west of the Continental Divide in Glacier National 

Park. Overall accuracy in bold. 
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 Non-Avalanche Track Avalanche Track UA 

Non-Avalanche Path 256,889 3,843 99 

Avalanche Path 40,837 5,638 88 

PA 86 60 85 

Table 10.  Accuracy assessment for the digitized set of avalanche tracks vs. the random forest model 

prediction at the 30% most likely class threshold. Classes were set in an avalanche track or not Boolean 

system for the accuracy assessment.  
 


