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Abstract 

 

Climatic warming of the Arctic is leading to landscape change through cascading biophysical 

feedbacks; development, such as oil and gas exploration and extraction, can accelerate or worsen 

these impacts.  Due to restricted access to oil and natural gas fields, in situ environmental impact 

studies are only allowed in some regions.  Satellite imagery analysis provides a mean for 

assessing impacts in areas with limited access.  The Yamburg oil and gas field in western Siberia 

serves as a case study to assess the effects of infrastructure on an Arctic landscape.  

  

This project quantifies the land-cover disturbance that occurred during the development and 

expansion of the Yamburg field.  Google’s recently developed, cloud-based image processing 

platform, Google Earth Engine, was used in conjunction with traditional Geographic Information 

System (GIS) analysis to detect, map, and quantify the impacts of infrastructure on the Tazovsky 

Peninsula between 1983 and 2016, utilizing imagery from the Landsat 4, 5, and 8 satellites.   

Landscape fragmentation metrics, the Normalized Difference Vegetation Index (NDVI), and 

change analysis quantified the impacts of extraction infrastructure on the surrounding landscape.  

As distance from the infrastructure and time since field establishment increased, the associated 

impacts decreased.   
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Introduction 

 

Climatic warming of the Arctic is leading to increased warming and thawing of the 

permafrost underlying the tundra and taiga (Arctic Council 2004).  Permafrost (perennially 

frozen ground) is ground which has been colder than 0°C for at least two years, though typically 

much longer (Muller 1943).  Permafrost acts as an aquaclude, preventing water infiltration, and 

limiting biogeochemical cycling to largely above the permafrost table (French 2013).  Thawing 

permafrost begins a chain of hydrologic and biogeochemical feedbacks which are further 

impacted by development, such as natural resource exploration and extraction.  Gas and oil 

extraction are one such resource-driven encroachment.   

Oil, natural gas, and gas condensates are a major driver of the Russian economy (FinlandFinland Fin 

Chamber of Commerce 2016).  The Yamburg gas condensate field is one of the most productive 

in Russia (Gazprom Dobycha Yamburg 2016).  Located in the Tazovsky Peninsula, the Yamburg 

field sits on ice-rich permafrost (Yakushev et al. 2000).  Without careful engineering, oil and gas 

development on permafrost landscapes can have impacts such as impeded drainage and 

thermokarst development, potentially resulting in damage to infrastructure (Nelson et al. 2001; 

Mazhitova et al. 2004; Larsen et al. 2008; Raynolds et al. 2014; Shiklomanov et al. 2017). 

 Due to restricted access to oil and natural gas fields, which are considered national 

strategic resources in some locations and are private corporate holding in others, in situ studies 

assessing the environmental impacts of development are not permitted in some regions, 

especially by foreign researchers.  Remote sensing provides one means of performing studies in 
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these areas.  This study will utilize Google Earth Engine1, ArcGIS2, TerrSet 3software, and 

Landsat imagery to detect, map, and quantify landscape changes in the Yamburg field.   

In 2007, faculty member Anna Klene and graduate student Jesse Wallace were allowed 

access to the Yamburg field as part of an international academic field course.  Wallace used this 

as the field work for his thesis (2012) using satellite imagery to quantify Yamburg’s impact on 

the landscape between 1987 and 2007.  Wallace referenced field data and interpreted imagery to 

digitize the extent of infrastructure, and analyzed change within buffers at set intervals.  As the 

infrastructure expanded, the landscape became more fragmented, and differences in disturbance 

and recovery could be seen between buffers.  This study updates Wallace’s original work by 

extending the period of analysis to 2016, analyzing a larger study area, and using Google’s 

recently released raster-processing platform, Google Earth Engine, to incorporate additional 

satellite imagery.  Google Earth Engine allows for stacks of imagery to be easily analyzed 

instead of the single scenes which had traditionally been used.  The use of imagery stacks can 

“allow long-term changes to be detected with greater sensitivity and reliability by comparison to 

conventional two-date change detection” (Fraser et al. 2011) in both land-cover and vegetation 

(Röder et al. 2008; Huang et al. 2009; Broich et al. 2011; Stueve et al. 2011; Kontgis et al. 2015).  

 

 

 

 

 

 

 
 

                                                           
1 Google Earth Engine Team, 2015. Google Earth Engine: A planetary-scale geospatial analysis platform. 

https://earthengine.google.com 
2 Environmental Systems Research Institute (ESRI) “ArcGIS Release 10.4.” Redlands, CA (2017). 
3 Eastman, J. R. "TerrSet: Geospatial Monitoring and Modeling Software." Clark Labs, Clark University (2015). 
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Research Questions  

 These questions follow those of Wallace’s (2012) in terms of assessing landscape 

fragmentation, quantifying change in vegetation greenness, and comparing these values over 

time to identify periods of disturbance and recovery. 

1. To what extent has the landscape been fragmented by the development and expansion 

of the Yamburg oil and gas condensate field? 

 

2. Can the maximum seasonal Normalized Difference Vegetation Index (NDVI) detect 

any changes in greenness of tundra vegetation adjacent to infrastructure development 

on the Tazovsky peninsula?  

 

3. Can comparison of the changes in maximum seasonal NDVI values over time identify 

both the initial disturbance and recovery of vegetation following infrastructure 

development? 

 

Study Area 

 

 The Yamburg oil and gas condensate field is located within the Yamalo-Nenets 

Autonomous District (YAO) in west Siberia (Figure 1).  Spanning 750,300 km², the YAO has a 

population of 534,100; 446,900 live in urban centers and 87,200 in rural areas (Yamalstat.ru 

2016).  The urban centers originated primarily to serve the resource extraction industry.  Natural 

gas extraction is the primary economic driver in the region, which produces 34% of Russia’s 

total gas production (Gazprom Dobycha Yamburg 2016).     

The study area was constrained to a box surrounding the extent of the roads and pads 

associated with infrastructure of the Yamburg field (Figure 1).  The Tazovsky Peninsula is 

18,723 km² with the study area occupying 9,164 km² or 49% of the entire peninsula.  The region 

is underlain by permafrost, with vegetation a mix of moss, lichen, sedges, and dwarf shrubs 

(Forbes 1997).  The mean monthly temperatures within this region ranges from -24°C in January 

to +14°C in July, with mean precipitation of 209 mm/yr (Russian Climate Server, 2016). 
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 Anthropogenic impacts in the region have been of interest since the establishment of 

natural resource extraction infrastructure. Pollution, mining waste, oil spills, and loss of habitats 

are among the main impacts caused by extraction industries (Rees and Williams 1997).   A series 

of studies have been performed to assess impact of pollution on vegetation in the region, 

primarily on the neighboring Yamal Peninsula (Rees and Kapitsa 1994; Rees and Williams 1997; 

Saich et al. 2001; Toutoubalina and Rees 2010; Bashkin et al. 2017).  Though there are not 

studies within the Tazovsky Peninsula, it can be assumed that similar pollution is occurring 

within the Yamburg field and impacting land cover as in other parts of Siberia with similar 

development (Vilchek, 2000).   

Development of the Yamburg oil and gas field began in the early 1980s.  Local sand and 

soil from the Yamburg area was used for much of the construction and maintenance material.  

Thus the spectral signature of roads, construction pads, bare soil, and sand bars will be 

essentially identical, making differentiating roads and pads from the natural surrounding 

landscape difficult based upon spectral information alone. 

Methods  

 
 The following sections outline the methods used in this research.  Background 

information for each research question is given at the beginning of its section.  The techniques 

used to gather, create, and analyze the vector data, and the fragmentation metrics and analysis are 

discussed first.  Then the gathering, processing, and analysis of the raster NDVI datasets follows.   
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Figure 1.  The study area on the Tazovsky Peninsula, Siberia.  Infrastructure in 2016 is shown in yellow on top of the 10 July 2016 
Landsat 8 true-color image (bands 2, 3, and 4). 
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Vector Infrastructure Data 
 

 Since this study is an extension of earlier research by Wallace (2012), his initial vector 

data were available for comparison and updated using the following protocol for each year.  

Based on visual interpretation of the Landsat imagery, roads, drilling pads, and refining facilities 

were hand digitized in ESRI’s ArcMap.  The Yamburg field has over 1000 km of feeder 

pipelines about 0.5 m in diameter, and almost 500 km gathering pipelines ~1.0-1.4 m in 

diameter, which may be elevated on pilings, laid on the ground and covered with soil, or buried 

up to 2 m deep (Seligman, 2000).  However, due to the 30 m resolution of the imagery, pipelines 

were not included since they could not be seen clearly enough to map and might or might not 

change the land-cover due to their installation.  Visible pads for drilling, buildings, and similar 

infrastructure were digitized as polygons.  Roads were digitized as lines along the center, then 

buffered by 15 m to a width to 30 m, and then merged with the pads and refining facilities.  

Repeated for each year of study, the resulting vector data comprised the infrastructure 

“footprint”.   

A series of seven, ringed buffers were created around each years’ infrastructure footprint 

at 30 m intervals (30, 60, 90, 120, 150 m), with coarser buffers at 300 and 600 m intervals 

(Wallace, 2012).  This followed Walker and Everett. (1987) and Myers et al. (2006) who 

examined the impact of road dust on the physio-chemical characteristics of the soil and 

vegetation community composition on Alaskan tundra, finding impacts on vegetation 

composition and soil pH extending 300 m from roads.   

Four, 100 km² control areas were placed around the furthest extent of the infrastructure 

footprint in 2016 in areas believed to be undisturbed.  The control areas were placed based upon 

visual interpretation in areas across a gradient ranging from dry to wet (Figure 2).  
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Figure 2. Map of study area boundary (orange outline) and control sites (purple outline).  The infrastructure footprint as of 10 
July 2016 is shown in yellow on top of the 2016 Landsat 8 true color (bands 2, 3, and 4) image. 
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Fragmentation Analysis 

 

Landscape ecology studies the interaction between environmental patterns and ecological 

processes (Turner 1989).  These spatially distributed patterns connect an organism’s actions to its 

surrounding habitat.  Anthropogenic development can “disrupt the structural integrity of 

landscapes and is expected to impede ecological flows” (McGarigal 2015).  FRAGSTATS, a 

spatial pattern analysis program, can be used to calculate metrics which quantify the structure 

and spatial heterogeneity of the landscape (McGarigal 2015).  This research attempts to quantify 

the extent and magnitude of change over time on the entire Tazovsky Peninsula using a binary 

categorization of undeveloped land and infrastructure. 

Fragmentation studies primarily address the influence of anthropogenic activities on 

habitats (Andren 1994; Fahrig 1997; Harrison et al. 1999; Schneider 2001).  Weller et al. (2002) 

used fragmentation analysis to quantify the impact of oil and gas extraction infrastructure within 

the Upper Green River Basin of Wyoming.  By combining available reference data and hand 

digitization, an infrastructure footprint (pipelines, roads, drilling pads, etc.) was created.   The 

results of the analysis quantified the impacts of infrastructure with a total habitat loss of four 

percent in the basin, covering 18 km² (7 mi2) of the 430 km² (166 mi2) study area. 

Southworth et al. (2004) compared using land-use classification techniques and 

vegetation indices for mapping land cover and land fragmentation in western Honduras.  A series 

of four Landsat 5 images were used.  NDVI of each image was analyzed for threshold values 

which distinguished between forested and non-forested areas.  The study concluded that patch 

size, clustering, and characteristics reflected the increase or decrease of economic activity in the 

region.   
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Cushman and Wallin (2000) examined the rate and amount of landscape change between 

1972 and 1992 using Landsat imagery in the Sikhote-alin Mountains, Russia.  Single images 

from 1972 and 1992 were classified for dominant land-cover.  Eleven metrics were used to 

quantify change between the two years, resulting in an average of 0.66% of the landscape 

disturbed each year between 1972 and 1992.  

This study will utilize a combination of methods and metrics (Table 1) from Cushman 

and Wallin (2000), Southworth et al. (2003), and Weller et al. (2002) to examine fragmentation.  

These metrics were selected because of their ability quantify and describe the fragmentation due 

to infrastructure growth.  Class Area, Landscape Percentage, Patch Count, Edge Density, 

Largest Patch, and Correlation Length (radius of gyration in FRAGSTATS) are area metrics 

which deal with the number and size of the patches. Core Area quantifies the area within the 

patches, but because of the binary categorization used here, this will be the same as Class Area.  

Edge Density is the total length of all the patches, and due to the binary categorization used will 

have the same length for both categories as the only boundary is between them. 

 

 

 

 

 

 

 

Metric Description 

Class Area (CA) Total area occupied by each class 

Core Area* Total area within each patch 

Landscape Percentage (PLAND) Percentage of analysis area occupied by given patch type 

Patch Count (NP) Total number of individual patches by class 

Largest Patch Index (LPI) Area of the largest patch in the analysis area 

Edge Density Edge length of a given patch 

Correlation Length Physical connectedness of the landscape 

* Because only 2 categories were used Class Area and Core Area are the same. 

Table 1. Fragmentation metrics calculated in this study using Fragstats (2012).  
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Raster Data Preparation 

 

Google Earth Engine 

 

Google Earth Engine (GEE) is a powerful cloud-based raster analysis platform coupled to 

a growing archive of imagery gathered from NASA’s Earth Observing Satellites (Landsat, 

MODIS, etc.) and ESA’s Sentinel satellites, among other sources.  This free, highly accessible 

system provides a user-friendly interface to “enable petabyte-scale, scientific analysis and 

visualization of geospatial datasets” (Gorelick 2013).  Though it is mainly being used to perform 

time-series analysis, the computational power of Google’s cloud network can calculate complex 

algorithms in minutes.  The system enables researchers to allocate more time to analysis rather 

than gathering and preparing data.  Because of its recent and on-going development, published 

GEE-based research is scarce.  As of May 2016, there was a large library of standard processing 

and analysis tools built into the platform.  Once coded, additional processing and analysis tools 

will be implemented, increasing the overall functionality of GEE. 

Initial GEE-based studies generally produce comparable results to traditional methods, 

but allowing for larger datasets to be included in analyses.  Dong (2016) examined shifts in rice 

phenology to map and inventory paddies in northeast Asia with similar accuracies compared to 

traditional methods.  In Australia, Johansen (2015) found that GEE was comparable to traditional 

methods for mapping land-cover categories.  Several studies have found that GEE was an 

effective method for mapping human movements and settlement development (Patel 2014; 

Trianni 2014). 

For this research, Google Earth Engine served as the main data repository and image 

stack manipulation software, allowing for the query, processing, and download of required 

imagery.  Imagery spans 28 years in roughly 10 year intervals from 1988 to 2016.  Each interval, 
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or time slice, used one composite image representing maximum seasonal greenness for that slice.   

 

Vegetation 

 

Phenology is the study of the seasonal life stages of plants and animals (Morren 1843).  

In arctic tundra environments, vegetation is dominated primarily by low-growing shrubs, mosses, 

and lichen (Walker et al. 2002).  Due to specific arctic plant adaptations, snow cover and 

temperature are integral to phenological cycles (Chapin et al. 1983; Billings 1987).  For many 

Arctic plants, photosynthesis begins as low as 0°C and reaches optimum productivity at 15°C 

(Billings 1987).  During the transition into spring, an onset of photosynthesis called the “green 

wave” begins.  By end of summer, the wave peaks and begins to decline as the growing season 

comes to a close and plants undergo senescence.  This rise and fall of greenness can be detected 

by satellite sensors (Schwartz 1998; Reed et al. 2009).   

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor captures daily 

images of the Earth at a pixel resolution of 250 to 1000 m over a range of wavelengths useful for 

detection of regional phenological shifts, such as the green wave (Cihlar et al. 2001; Kawamura 

et al. 2005; Brown et al. 2006).  Previous studies utilized the MODIS 16-day NDVI product 

(Karlsen et al. 2007; Robin et al. 2008; Narasimhan et al. 2010; Zeng et al. 2011) and MODIS 

Daily Snow Cover Product (Narasimhan et al. 2010) to determine growing seasons in high 

latitudes.  For the Yamburg study area, these two MODIS products, as well as the MODIS Land 

Surface Temperature product, were analyzed within GEE.  The 15-year (2001–2016) record of 

each of these was examined and the mean for the respective daily or 16-day period over that time 

was calculated for the rectangular study area (Figure 2), graphed within GEE, and visually 

examined (Figure 3) to identify dates of the growing season.  Julian dates 153 to 265 (June 2 to 
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September 22 most years) included the full growing season and were used as the beginning and 

end dates of potential Landsat imagery to be analyzed within GEE. 

 

 

Figure 3. Graph of 2002 to 2016 MODIS land surface temperature (LST), MODIS snow cover, and MODIS NDVI values used to 
estimate growing season onset and cessation. 

 

 

Landsat Imagery 

  

 To assess vegetation change surrounding the hydrocarbon extraction infrastructure, 

imagery from the Landsat program provided the longest archive, spanning from 1972 (Landsat 1) 

to present (Landsat 8).  Due to Landsat’s consistent spatial resolution of 30 m (from 1982 to 

present), similar spectral resolution between satellite versions, and wide use for mapping arctic 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-40

-20

0

20

40

60

80

100

0 50 100 150 200 250 300 350

N
D

V
I 

%
 S

n
o

w
 C

o
ve

r
an

d
 L

ST
 (

°C
)

Day of Year

Land Surface Tempurature % Snow Cover NDVI Value



13 
 

land cover (Walker et al. 1987; Fuller et al. 1994; Rees et al. 2003; Gong et al. 2012), robust 

comparisons through time can be made.  Wallace’s 2012 project included four time slices.  This 

project added another, for a total of five slices: 1983, 1988, 1998, 2007, and 2016, spanning 

initial field development through current production (Table 1).  These years were selected due to 

mid-season images being available at approximately 10-yr intervals.  Imagery was queried and 

filtered to the growing season defined above.  Landsat 7 imagery was not utilized because of the 

Scan-line Corrector (SLC) error on the sensor which resulted in missing data on every scene 

after May of 2003.   

 

 

 

     

 

 

Normalized Difference Vegetation Index 

 

One of the earliest and the most widely used ways of quantifying vegetation greeness is 

the Normalized Difference Vegetation Index (NDVI; Rouse et al. 1974).  NDVI is the ratio of 

the difference between red and near-infrared (NIR) wavelengths,   

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

such that pixels with less green vegetation have values closer to 0 and more green vegetation are 

closer to +1.  Values close to or just below 0 are typically water, and synthetic surfaces are 

between 0 and -1 (Rouse et al. 1974; Weier et al. 2000).   

Satellite Sensor Year Number of scenes 

Landsat 4 MSS 1983 1 

Landsat 4 TM 1988 24 

Landsat 5 TM 1998 29 

Landsat 5 TM 2007 29 

Landsat 8 OLI 2016 48 

Table 2. Satellite, sensor, year, and number of total scenes used of imagery used for analysis.  The 1983 MSS image serves as a 
base year with only initial staging of equipment and material at a site on the west coast as development was beginning. 
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NDVI has been used to monitor disturbance and recovery in a variety of land-cover types 

(Viedma et al. 1997; Goetz et al. 2006; Masek et al. 2008; Beck et al. 2011; Schroeder et al. 

2011; Lanorte et al. 2014).  It was selected for this analysis due to its widespread, reliable 

application and known performance in the high latitudes.  Goetz et al. (2005), Raynolds et al. 

(2008), and Zhou et al. (2003), among others, utilized NDVI in their studies looking at the 

impacts of regional warming trends on vegetation.   

 

 

Image Analysis 

 

 

The NDVI scenes within the growing season for each year were processed to select the 

maximum NDVI value, NDVImax, for each pixel from the Landsat images available (Figure 4) 

within GEE.  Maximum NDVI was selected for analysis because of its ability to “capture the 

dynamics of green vegetation and minimize problems with single-date data” (Agriculture and 

Agri-Food Canada) including clouds, haze, and scattering (Holben 1986; Mynenl et al. 1997; 

Zhou et al. 2001; Martinez and Gilabert 2009).  Figure 5 shows the workflow used in GEE to 

select the highest NDVI value from each stack of imagery.  The furthest edges of the control 

sites and the infrastructure layer were used to generate an area extent which eliminated the large 

stretches of undisturbed land north of the Yamburg field.  This extent was exported and 

downloaded from GEE, generating the bounds of the study area (Figure 2).   

In ArcMap, the vector data, including the infrastructure layer, buffers, and control sites 

were overlaid on the study area’s NDVImax image (Figure 6).  To address potential variability of 

NDVI values (Zhou et al.  2001), the mean of the NDVImax values, 𝑁𝐷𝑉𝐼𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  was calculated for 

each buffer and control site.  These buffer values were graphed for comparison within each time 

slice. 
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Figure 4. Illustration of selecting the maximum 
NDVI value per pixel from 3 scenes. 
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Figure 5. Illustration of mosaicking the imagery together based upon the maximum seasonal NDVI value. First all 
imagery within the growing season are selected. Clouds and water pixels are then masked out (second tile). NDVI 
was then computed for all  images (third tile). Finally, a mosaic is created by selecting the maximum NDVI value 
per pixel from the stack of images.  
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Figure 6.  Image of maximum NDVI for 1988 showing infrastructure, buffers (to 600 m), and control areas. 
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Change Analysis 

 

 

 No attempt to do a traditional land-cover classification was performed because of 

restricted access to the site to gather ground-truth data, known confusion between the spectral 

signature of infrastructure and undisturbed bare ground, changes in lake color observed 

previously (Wallace, 2012), lack of a 30×30 m or finer land-cover map for the region, and 

Landsat’s established diminishing land-cover classification accuracy finer than Anderson Level 1 

categorization (tundra, desert, forest, etc.) in arctic regions (Anderson 1972; Nelson et al. 1984; 

Moore and Bauer 1990; Johnston and Barson 1993; Klemas 2001; Reese et al. 2002).  

Instead, TerrSet’s cross tabulation module was used to compare change in the normalized 

NDVI pixel values through time.  To account for seasonal differences between years, the mean 

value of all the NDVImax pixels within the rectangular study area (0.43825, 0.46977, 0.45820, 

and 0.53420, for 1988, 1998, 2007, and 2016, respectively) was subtracted from each individual 

NDVImax pixel for that year.  This normalized the data such that a wet year should not 

overwhelm the differences in greenness compared to a subsequent dry year.  For this study, 

Terrset software was used to cross tabulate the change in normalized NDVImax pixel values 

between one time slice and the next.  These were also aggregated within each buffer.   

To aid analysis and see if changes in the extent of water were causing substantial changes 

in NDVI values through time, each normalized image was sliced by user-defined pixel values 

(based on manually sampling the imagery) into several land-cover categories broader than an 

Anderson Level 1 (Table 3).  The resulting images were compared by cross-tabulation to the 

corresponding one for the next time slice.  These classified change images were brought back 

into ArcMap and recategorized into positive (more greenness), negative (less greenness), or no 

change (Table 4) between years.  This allowed visualization of change between time slices 
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(Figure 7; all change maps are shown in Appendix B).  However, because of the known issues 

mentioned above, analysis and interpretation was limited to the areas within the buffers around 

infrastructure and the control areas. 
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From Class To Class Change 

1 3 Positive 

1 4 Positive 

1 5 Positive 

2 3 Positive 

2 4 Positive 

2 5 Positive 

0 2 Negative 

3 2 Negative 

4 2 Negative 

5 2 Negative 

2 1 Negative 

3 1 Negative 

4 1 Negative 

5 1 Negative 

0 1 No Change 

0 3 No Change 

0 4 No Change 

0 5 No Change 

1 0 No Change 

3 0 No Change 

4 0 No Change 

5 0 No Change 

4 5 No Change 

5 4 No Change 
 
Table 4. Reclassification of pixel change between land-cover classes.  Categories of positive (more greenness), negative (less 
greenness), or no change were used for visualization of relative differences between years. 

Table 3. Normalized NDVImax pixel values were reclassified into six land-cover classes by visual inspection of each time slice.  
Class 0 was when a pixel was not in a previous or subsequent buffer as the infrastructure was not yet or no longer present. 

Class Description 
Normalized NDVImax Values 

1988 1998 2007 2016 
1 Water -0.84 to -0.45 -1.11 to -0.42 -0.92 to -0.43 -1.07 to -0.46 
2 Sand/ Infrastructure -0.45 to -0.20 -0.42 to -0.15 -0.43 to -0.13 -0.46 to -0.17 
3 Sparse Vegetation -0.20 to 0.00 -0.15 to 0.00 -0.13 to 0.00 -0.17 to 0.00 
4 Light Green Vegetation 0.00 to 0.20 0.00 to 0.16 0.00 to 0.16 0.00 to 0.15 
5 Dark Green Vegetation 0.20 to 0.45 0.16 to 0.38 0.16 to 0.44 0.15 to 0.33 
0 Non-infrastructure No Data No Data No Data No Data 
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Figure 7. Example of a reclassified image of change between 1988 and 1998.  Positive change (green) and negative change (red) 
based on categories in Table 7. 
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Results and Discussion 

 

 

Fragmentation Results and Discussion 

 

Landscape fragmentation analysis was performed on the full area of the Tavozsky 

Peninsula to gain insight on how infrastructure expansion impacted the landscape (Figure 8).  

Because of the lack of a suitable spatial resolution land-cover map, assessment of a land-cover-

class fragmentation could not be performed beyond the binary categorization.  

The fragmentation analysis (Table 5) showed that as the infrastructure spreads, the 

previously undeveloped landscape is increasingly patchy.  In 1983 there was no visible 

development while resources for the establishment and expansion of the field were being 

stockpiled at the port in a “sub-surface tunnel which would be difficult to detect” (Wallace 2012) 

on Landsat imagery.  After the initial field growth by 1988, the outward growth gradually slowed 

but continued, while infilling expanded, connecting the road and drilling pad network within the 

footprint (1998, 2007, and 2016).  Some roads used during initial construction were abandoned 

and revegetated (Figures 7 and 9; Walker et al. 1987, Walker 1996, National Research Council 

2003, Walker et al. 2014).   

Class Area (CA) is the total area for each class (undeveloped and infrastructure).  

Between 1983 and 1988, the initial area of the field was 70.4 km² (Table 5 and Figure 8).  By 

1998, the area increased to 84.0 km², and the rate of expansion decreased such that in 2016 the 

area was 93.7 km².  The Landscape Percentage (PLAND) metric reflects the gradual increasing 

trend of occupied area, from 0.38% of the entire peninsula in 1988 to 0.50% in 2016.  The 

number of patches, or areas of disconnected classes, shows a doubling of infrastructure patches 

between 1988 and 1998, but a decrease to three patches in 2016.  The Largest Patch Index (LPI) 

details the percent of landscape covered by the largest patch of each class.  Edge Density 
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compares the length of edges of each category divided by the total landscape area, allowing 

comparison to other regions.  This reflects increasing development at a slowing rate through 

time, with the same values for both classes because the edge boundary is between the two 

defined classes.  Correlation Length “gives the distance one might traverse while staying in any 

patch from a random starting point” (McGarigal 2000).  The increasing correlation length for the 

infrastructure class continued from 1988 to 2007 and then stabilized to 2016; in contrast, the 

distance one could travel without leaving the undisturbed class decreased (Figure 10).  Over the 

28-year period, the correlation length for infrastructure increased by 6.08 km.   

The Class Area and Core Area both quantify the expansion of infrastructure through time 

relative to the entire peninsula.  The variation in the number of patches reflect the inconsistent 

growth of the field and recovery of some of the early roads which were then abandoned.  Lastly, 

increasing correlation length over time reflects what is already shown in the class area metric 

that as infrastructure expands, so too does the distance one could travel within an infrastructure 

patch. 

As discussed earlier, this study only compared developed and undeveloped categories.  

Because of this binary assessment, assessment of a land-cover class specific fragmentation could 

not be performed.  Differences in the extent used in Wallace’s fragmentation analysis, meant 

direct comparisons could not be made between those metrics based upon area.  For instance, 

Wallace reported 5% (2012), but that was based upon a constrained area of just infrastructure 

and buffers.   

This study assessed the total impact of infrastructure development on most of the 

Tazovsky Peninsula.  The overall 0.5% of landscape disturbed by infrastructure is well below the 

4% reported by Weller et al. (2002), who included pipelines as well as roads and facilities, and 
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used ~1 m aerial imagery.  Khitun and Rebristaya (2002) reported that Bykova (1995) found a 

total landscape disturbance of the Yamburg field at 1.5% of the entire Tazovsky Peninsula.  

However, that study included a broader definition of impacts, including heavy track vehicle 

paths, dumping of garbage, temporary camps, and exploratory drilling and they did not show the 

boundary which was used and could have included a larger area to the south (Khitun and 

Rebristaya 2002). If this study were able to map these other impacts from the Landsat imagery, 

the percent of disturbed landscape would most likely be similar to the 1.5% from Bykova (1995). 

However, this study aligns more with Preston and Kim’s (2016) study of oil infrastructure 

landscape fragmentation within the Williston Basin.  Their study concluded that 0.4% of the 

entire basin was directly impacted by infrastructure (pads, wells, and roads).  

Comparison to Wallace can be made on several metrics.  In terms of mapped 

infrastructure extent, this study found a larger area of disturbance than Wallace (2012).  In 2007, 

for instance, Wallace mapped 71.4 km2 of infrastructure and this study found 92.1 km2.  This 

study had more undisturbed patches but fewer developed patches than Wallace (2012).  

Comparing 2007, he found 69 undeveloped and 17 developed patches while this study had 79 

undisturbed and 4 infrastructure patches.  These differences reflect slight changes in 

methodology, including using a seasonal NDVImax instead of one image per year, digitizing road 

centers and applying a uniform buffer, and digitization by a different  user.  However, the overall 

similarity in the magnitudes and trends supports the robustness and replicability of the approach. 
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Figure 8. Maps showing the expansion of infrastructure across in the Tazovsky Peninsula from 1988 to 2016. 
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Figure 9.  A road used during initial construction (1988), then abandoned (1998), and revegetated (2016).  The scar is still visible 
on these true-color Landsat images. This 2016 Landsat 8 image is pan-sharpened to a 15 m resolution.  
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Figure 10. Percent of Landscape shifts of undeveloped and infrastructure between 1983 and 2016. 
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Fragmentation Metric 1983 1988 1998 2007 2016 

Class Area (km²)           

 Undeveloped 18722.79 18652.38 18638.79 18630.70 18629.14 

 Infrastructure  0.00 70.44 84.03 92.12 93.68 

Landscape Percentage           

 Undeveloped 100.00 99.62 99.55 99.51 99.50 

 Infrastructure  0.00 0.38 0.45 0.49 0.50 

Patch Count           

 Undeveloped 1 88 82 79 85 

 Infrastructure  0 3 6 4 3 

Largest Patch Index (%)           

 Undeveloped 100.00 97.16 95.90 95.68 95.68 

 Infrastructure  0.00 0.38 0.45 0.49 0.50 

Edge Density           

 Undeveloped 0.00 0.81 1.08 1.28 1.37 

 Infrastructure  0.00 0.81 1.08 1.28 1.37 

Correlation Length (km)           

 Undeveloped 55.28 54.79 54.67 54.64 54.65 

 Infrastructure  0.00 14.57 17.56 20.16 20.65 

Table 5. Fragmentation metrics for each year based upon the digitized infrastructure.  Core Area is the same as Class Area 
because only two categories were used. 
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Figure 11. Change in Correlation Length for undeveloped and infrastructure between 1983 and 2016. 

 

 

 

 

 

NDVI Analysis Results and Discussion 

 

Analysis of the mean of the maximum NDVI values, 𝑁𝐷𝑉𝐼𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , within each buffer 

(Figure 9) shows that all time slices have a similar pattern as distance increases from 

infrastructure, with the lowest values within 30 meters of infrastructure, increasing to a slight 

peak, then decreasing slowly to the farthest buffer.  The values for 1988 begins low within 30 m, 

steadily increasing out to 120 m and then stabilizing, followed by with a slight decrease to 

600 m.  Compared to its control areas, the 𝑁𝐷𝑉𝐼𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  values near infrastructure in 1988 remains 

lower than those values.  For the 1998, 2007, and 2016 time slices, the 𝑁𝐷𝑉𝐼𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  values increase 

to the 60 and 90 m intervals but steadily decline past 120 m.  The 1998, 2007, and 2016 

𝑁𝐷𝑉𝐼𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  curves lie between those for control areas 1 and 3 (Figure 9).  
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For all years, the Landsat 𝑁𝐷𝑉𝐼𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  shows that less green vegetation occupies the buffers 

closest to infrastructure but returns to background values with increasing distance.  This trend 

aligns with the results found by Walker and Everett (1987) and Myers et al. (2006) of vegetation 

disturbance occurring closer to infrastructure and seeing a return to more natural land-cover as 

distance increases.  Examination of the 𝑁𝐷𝑉𝐼𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  values from 1988 suggests that during initial 

field development, disturbance was prevalent.  Photographs of the area (Figure 10) and the 

Landsat imagery, show that off-road and other vehicle tracks were very common during initial 

construction but less so once infrastructure was completed.  Construction practices in Yamburg 

were not as carefully limited just to the boundaries of the infrastructure footprint as they are in 

Prudhoe Bay, Alaska, for example (Klene, pers. comm.), nor are efforts utilized to mitigate the 

spatial extent of disturbance as they are in some other fields.    

Gradual recovery can be seen in 1998, 2007, and 2016 as 𝑁𝐷𝑉𝐼𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ values begin to 

increase within the buffers in comparison to the control sites.  The lower 𝑁𝐷𝑉𝐼𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  values 

directly next to the roads and pads suggests that vegetation in immediate proximity to the 

infrastructure is less green because it is less healthy, there is less of it, or that water pooling along 

the infrastructure is suppressing the values.  A combination of these factors is also possible.  The 

cause of the highest values between 60 and 90 meters may be the result of increased lush 

vegetation due to higher moisture because of changes in hydrology and drainage which can 

extend for 10s to 100s of meters away from infrastructure, and/or fertilization effects from road 

dust (Walker and Everett 1987 and Myers et al. 2006).  If regrowth was observed, due to the 

spatial and spectral limitations of Landsat imagery and lack of species-specific spectral 

signatures, it was not feasible to determine whether the new vegetation was native or invasive 

species.  
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The overall higher 𝑁𝐷𝑉𝐼𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  values in 2016 than in the other years (Figure 9) may be 

related to sensor differences between Landsat 5 and 8 (Li et al. 2013; Xu et al. 2014; Roy et al.  

2016).  Conversion and comparisons between these sensors is currently the focus of considerable 

effort in the research community (Roy et al. 2016). 

When compared to Wallace (2012), the resulting NDVI curves have similar shaping 

though the values for this study are consistently higher due to the use of 𝑁𝐷𝑉𝐼𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  values from a 

seasonal stack of imagery and differences in image processing.  Wallace (2012) used uncorrected 

imagery which may have larger pixel value inconsistencies between time slices than the L1T Top 

of Atmosphere (TOA) processed imagery used in this study (Yang and Lo 2000).   

 

Change Analysis Results and Discussion 

 

Changes in the categorized normalized NDVImax values (Table 4) between each time slice 

and the subsequent one were calculated using TerrSet’s CROSSTAB module (Table 7 and 

Figure 12; complete results are in Appendix C).  A summary of the changes within each buffer 

are discussed here. 

Overall, most land-cover change occurred directly adjacent to the infrastructure or within 

90 m.  Across all years, 0 to 30 m experienced the most change in normalized NDVImax.  From 

90 to 600 meters, the amount of change decreased and stabilized with increasing distance.  For 

all years, the 150 to 600 m buffer had the highest and most consistent percentage of “no change”.  

1988-1998 and 2007-2016 had the highest positive change (increasing greenness) and some of 

the lowest negative change (decreased greenness). 1998-2007 had the lowest positive change and 

highest negative change.  
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Change between classes (Table 3) was primarily between infrastructure, sparse 

vegetation, and light green vegetation.  Some of the largest negative change happens as 

undisturbed and sparse vegetation shifted to infrastructure.  A large shift of positive change 

happens when pixels in infrastructure shift to a vegetated state.  The largest shift of positive 

change was from sparse vegetation to light green vegetation.  The largest shift of negative 

change was seen when light green vegetation downgrades to sparse vegetation. 

The cross-tabulation results (Table 6 and Figure 13) lend insight into land-cover change 

within the buffers.  Infrastructure expansion can be seen when any class changed to 

infrastructure, particularly with undisturbed and sparse vegetation.  Class 0 was “non-

infrastructure” land-cover not included in a buffer in a previous or subsequent time; any changes 

from that undisturbed category to infrastructure indicated new infrastructure expanding into land 

which was previously not near infrastructure.  The reverse can also be said; when pixels move 

from infrastructure to non-infrastructure (class 0), abandonment had occurred.  This claim was 

supported by visually assessing the appearance of roads now abandoned following construction 

(Figure 8) and revegetated, buried pipelines (Figure 14).  Change from infrastructure to sparse 

vegetation indicates initial regrowth as the landscape moves from bare or disturbed to sparse 

vegetation.  Negative shifts from light green vegetation to sparse vegetation may be explained by 

one of two things.  First, results from Walker and Everett (1987) and Myers et al. (2006) on the 

impact of road dust may be acting in this region as well.  With frequent traffic along major 

corridors, dust deposition can be heavy, covering and hindering growth or killing the vegetation.  

Secondly, small linear ponds of water could also be suppressing these NDVI values but this 

cannot be visually detected due to the spatial resolution of Landsat, although these are found 

throughout the area (Figure 15; Vilchek, 2000).   
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Figure 12. Mean maximum NDVI values within each buffer surrounding the digitized infrastructure for each year (a-d).  Control 
areas 1-4 were selected to be progressively drier as shown in Figure 2. 
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Figure 13. Photographs show vehicle tracks cutting across undisturbed tundra (left) and the edge of a road with off-road vehicle 
tracks leading to the source of local sand used in road construction (right). 

              

 The road dust might also explain the positive shift from sparse vegetation to light green 

vegetation, as Walker and Everett (1987) and Myers et al. (2006) found that airborne dust can 

also cause a fertilization effect, increasing nutrients in the soil, allowing for enhanced vegetation 

growth. 

 Although change can be clearly seen between time slices, class-specific change, such as 

to or from water along roads, could not be seen because of the spatial resolution of the Landsat 

imagery.  Additionally, because of this constraint, species-level assessment of plant greening or 

browning could not be performed.  Studies within the region (Forbes 1997; Forbes 1999; Forbes 

and Jefferies 1999; Vilchek, 2000) found that during regrowth, non-native species or invasive 

species account for up to 40% of the plant community.  Though these studies were not done 

specifically within the Yamburg field boundaries, it can be inferred that regrowth in this area has 

similar proportions of non-native plants.  

 Comparison of results with Wallace’s study (2012) show that even though there were 

differences in calculation of the NDVI values (normalized NDVImax used in the present study vs 

single image NDVI by Wallace, as well as differences in the area used in subtraction between 
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layers) and more control areas utilized in this project, the general pattern is strikingly similar.  

Wallace also found the most impact closest to infrastructure, decreasing with distance.  The 

shapes of his curves was slightly less consistent between time slices, and the shift of increasing 

values within the buffers with time since the initial field construction was not as apparent.  This 

is consistent with what is expected from using the normalized NDVImax from the Landsat L1T 

TOA product (Yang and Lo 2000) instead of the single images used in Wallace (2012). 

  

 

 

  

 

 

 

 

 

 

 

 

Year Buffer Distance 
Positive 

% 
Negative 

% 
No Change 

% 

1
9

8
8

 t
o

 
1

9
9

8
 

0 to 30 28.20 16.23 55.57 

30 to 90 22.99 11.83 65.18 

90 to 150 14.98 8.98 76.04 

150 to 600 10.68 9.72 79.61 

1
9

9
8

 t
o

 
2

0
0

7
 

0 to 30 18.13 17.31 64.56 

30 to 90 15.23 13.25 71.52 

90 to 150 12.03 9.48 78.49 

150 to 600 9.83 10.21 79.97 

2
0

0
7

 t
o

 
2

0
1

6
 

0 to 30 24.45 9.28 66.28 

30 to 90 17.27 10.38 72.35 

90 to 150 9.15 12.31 78.54 

150 to 600 7.67 12.36 79.97 

 Table 6. Change in greenness category for each buffer surrounding the digitized infrastructure from one time slice to the next. 
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Figure 14. Change in greenness category (Table 6) for each buffer surrounding the digitized infrastructure from one time slice to 
the next. 
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Figure 15. A pipeline buried by locally sourced sand showing revegetation. 

 

Figure 16. Small, linear features of pooling water adjacent to a road Pooling is caused by road construction altering the height of 
the permafrost table and resulting changes in hydrology. 
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Google Earth Engine  

 

 

 Google Earth Engine provided a powerful entry point into land-cover analysis, 

specifically dealing with change over time.  GEE can query and preprocess imagery with similar 

ability to traditional methods but much more quickly.  Its ability to analyze stacks of images can 

provide researchers with a more robust dataset, such as in this study where instead of a single 

image from each year, the maximum value for each pixel was extracted from up to 29 images in 

minutes instead of hours as would have been necessary using traditional methods.  

However, GEE is still in development, and the platform has limitations.  Though GEE 

has a large image library and continuously ingests imagery from data providers, many image 

collections are incomplete.  Because of limited processing resources, the development team must 

prioritize more in-demand regions.  While all regions have some data, for this study area only the 

Landsat top of atmosphere reflectance L1T collection (mid-level processed data) was available, a 

significant improvement over unprocessed, raw satellite images, but not as desirable for some 

applications as the unavailable, more accurate surface reflectance collection.   

GEE is primarily a raster-processing platform, and its ability to handle complex vector 

data has not been developed as extensively.  The hand-digitized infrastructure footprint was a 

complex polygon that GEE could not properly display because it had more than the maximum 

allowed number of vertices in spring 2017.  Because of this limitation, accurate zonal values 

could not be extracted within GEE, preventing the entire analysis process from being done 

within one software.  Instead, ArcGIS, TerrSet, and FRAGSTATS were needed to handle the 

vector data analysis, change analysis, and landscape fragmentation analysis respectively.   
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Conclusions and Future Research  

 

Conclusions 

 

This study assessed the impacts of development on vegetation greenness across the 

Yamburg oil and gas field.  Fragmentation analysis quantified total landscape disturbance and 

showed that the rate of fragmentation reflects the growth of the field.  During initial field 

development, the infrastructure rapidly expanded and heavily fragmented the landscape.  As 

production continued, both growth and fragmentation slowed.  Analysis of nested buffers 

surrounding the infrastructure showed 𝑁𝐷𝑉𝐼𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  values within these buffers were lower closer to 

the infrastructure, with most of the impact within 150 m, and returned to nearly undisturbed 

values by 600 m away from infrastructure.  All of the buffer values became more similar to 

background levels with increasing time from initial field construction.  Change analysis was 

done (after normalizing to reduce the impacts of seasonality) by categorizing the normalized 

NDVImax values and cross tabulating these between time slices.  This analysis showed 

disturbance and recovery as the field grew.  Google Earth Engine served as an image repository 

and data manipulation resource which substantially improved these analyses compared to 

traditional methods.  Conclusions made from this case study not only further our understanding 

on the impacts of climatic warming and infrastructure development in the Arctic, but also 

explore a new method for future remote sensing studies of land-cover change. 

 

 Future Research 

 

This research presented methods for remote analysis of extraction infrastructure impacts 

on Arctic tundra.  Though the extent and magnitude of impact could be observed and quantified, 

a land-cover classification based analysis would provide better assessment of the magnitude of 
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the various types of disturbance.  Limiting factors included the spatial resolution of the Landsat 

data, a lack of previous land-cover mapping in the region, no access to existing maps of 

infrastructure, a lack of vector data manipulation tools within in Google Earth Engine, and little 

access to in situ validation data.   

 Although Landsat provides a long history of spatially and spectrally consistent imagery, 

the 30 m resolution limited the results.  Higher resolution imagery would better describe the 

changes on the landscape, more types of disturbance could be seen, allowing for more detailed 

classifications, improved footprint digitization, land-cover accuracy, and change assessment.  

Currently existing Landsat imagery with additional corrections beyond the L1T TOA product 

used here were not yet ingested into GEE for this region.  Future processing of imagery archives 

by USGS or other groups to systematically account for additional changes in sensor calibration 

and drift (Chander et al. 2009), BRDF correction (Buchhorn et al., 2016), differences in sensor 

design (Li et al. 2013) may be implemented and improve the reliability of the Landsat record for 

these types of time series analyses.   

 As mentioned earlier, due to the lack of high-resolution land-cover maps of the region, a 

binary categorization of developed and undeveloped was used for the fragmentation analysis.  

Access to land-cover maps would have facilitated more complex fragmentation analysis of 

impacts specific to each land-cover class.  Having ground truth data within each buffer would 

have allowed for an accuracy assessment, and NDVI values could have been interpreted with 

more confidence, such as determining if pooling water was suppressing NDVI values, and 

hopefully improved accuracy.   

 Google Earth Engine (GEE) is a powerful entry point into efficient manipulation of large 

volumes of imagery.  While it limited the vector data processing, presumably this will be 
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resolved soon.  One alternative way to handle the current limitation of the KML file input would 

be to convert the buffers and footprints to rasters, allowing for more of the analyses to be 

implemented within GEE.  The recent addition of shapefile support may also resolve the KML 

limitations. 

Finally, landscape trajectory analysis, which uses changes in spectral signatures of groups 

of pixels in the study area to assess changes in landscape patterns over time.  These work best 

with land-cover classifications finer than that used in this study but can provide, “rigorous, 

intuitive and highly interpretable description of interactions” of landscape change (Cushman and 

McMarigal 2007). 
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Appendices 

 
Appendix A. Mean NDVI values extracted from each buffer and control area. 
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Appendix B. Reclassified cross tabulation outputs. 1988-1998 (top left), 1998-2007 (top right), and 2007-2016 (bottom middle). 
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Appendix C. CrossTab Results. Green is positive change, red is negative, and yellow is no change. 

 


