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environments in the United States 
 
Chairperson:  Ulrich Kamp 
 

Geomorphological mapping is the attempt to depict the physical setting of the surface 

of the earth by mapping the landforms present and the processes responsible for their 

appearance, and is method that is practiced worldwide.  Currently, there is no universally 

accepted legend for mapping the geomorphological features of all environments, though 

there have been several attempts made to develop such a legend.  Instead, many different 

European nations have developed their own geomorphologic mapping legends for 

mapping the landscapes that exist within their national boundaries.  In addition, certain 

countries have even developed highly specific geomorphologic mapping legends for 

specific geomorphologic environments.  The United States has neither a 

geomorphological mapping legend suitable for mapping the entirety of landscapes that 

exist within the United States’ boundaries, nor geomorphologic mapping legends suitable 

for mapping specific environments.  This thesis was an attempt to develop the first 

geomorphologic legend for mapping the geomorphologic setting of high mountain 

environments in the United States.   
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1. INTRODUCTION 

 

 Landforms are ubiquitous elements existing on the surface of the earth.  The 

shape and appearance of each landform is generally unique to the environment in which it 

exists and the processes that are responsible for creating it.  From the Himalayas of Asia 

to the Sahara desert of Northern Africa, and from the limestone cliffs off the coast of 

Greece to the great plains of North America, landforms of all different shapes and sizes 

can be observed.   

 Geomorphological mapping is the attempt to depict the physical setting of the 

surface of the earth by mapping the landforms present and the processes responsible for 

their appearance.  Currently, geomorphological mapping is an approach within the sub-

discipline of geomorphology that is practiced worldwide.  However, there is no 

universally accepted system for mapping the geomorphological features of all 

environments, though there have been several attempts made to develop such a system.  

Instead, many different geomorphologic mapping legends have been developed by 

European countries such as Germany, France, Austria, and Switzerland, which have been 

used for mapping the landscapes that exist within their national boundaries.  In addition, 

certain countries have even developed highly specific geomorphologic mapping legends 

for specific geomorphologic environments.  For example, Kneisel et al. (1998) introduced 

a German geomorphologic mapping system for high mountains to be used by researchers 

from Austria, Germany, and Switzerland. 

Historically, the agencies within the United States government, such as the United 

States Geologic Survey (USGS) and the Federal Geographic Data Committee (FGDC), 
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have had little interest or input in the development of geomorphological mapping as an 

emerging field.  As a result of this, the United States has neither a general 

geomorphologic mapping system, like those used by European countries for nationwide 

geomorphologic mapping, nor specific geomorphological mapping systems, like that 

used by Kneisel et al. (1998) for mapping high mountain environments.  With the unique 

variety of landscapes that exist within the United States, from coasts to plains, to 

mountains and deserts, the development of a nationally unified series of 

geomorphological mapping systems for mapping specific environments, each capable of 

mapping large- to medium-scale areas, is necessary for the production of a nationwide 

geomorphological map. 

This thesis was an attempt to answer the question, how does one effectively 

represent geomorphological features that exist within high mountain environments in the 

United States?  Though there are legends in existence that may be used for mapping the 

geomorphology of these environments, such as the highly detailed legend developed by 

Kneisel et al. (1998) specifically for high mountain environments, or the legend 

developed by Pavlopoulos et al. (2009) for general geomorphological mapping of all 

environments, they are not entirely appropriate for reasons such as complex symbology 

that is often difficult to differentiate, or a legend that lacks the ability to represent certain 

features on the surface.   

This thesis had two objectives: 1) to develop a legend specifically for mapping the 

geomorphology of high mountain environments in the United States, and 2) to produce 

multiple geomorphological maps at different scales using this legend to demonstrate its 

ability to effectively represent these environments.  To accomplish this, extensive 



 3 

research was performed regarding different aspects of geomorphological mapping as well 

as principles of visual design.  Fieldwork was then performed in a designated study area 

in the Rocky Mountain National Park in the summer of 2012; the case study is used to 

provide an example of the capability of the newly developed legend for representing 

geomorphological landforms and processes.  The result of the thesis is the first 

geomorphological mapping system specifically for mapping high mountain environments 

in the United States. 
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2. BACKGROUND 

 

2.1 The History of the Study of Geomorphology 

 

 Geomorphology is described as “the scientific investigation of landscapes, the 

processes that have formed them over time, the materials which they are composed of, 

the individual elements that combine to create them, and the way they will evolve 

through time” (Griffiths et al., 2011: 3), or simply the scientific investigation of 

landforms and the processes that shape them over time.  The term geomorphology, first 

used in the late 1880s, is comprised of three Greek terms, ge meaning “earth,” morphe 

meaning “form,” and logos meaning “to write about,” thus literally meaning to write 

about the form of the earth. 

Though the discipline geomorphology is a seemingly young science, emerging in 

the late 19
th

 century, people have long thought about the landscapes that surround them 

and the processes responsible for their physical appearance.  “s landforms are the most 

widespread geologic phenomena, speculation as to their origin has gone on since the days 

of the ancient philosophers” (1969: 2).  Some of the earliest writings concerning the 

surface of the earth and the processes that have formed it date back to ancient Greece and 

Rome.  Xenophanes of Colophon (c. 580-480 BC) hypothesized that the earth’s surface 

had risen and fallen throughout history, as there were seashells that existed on 

mountaintops (Huggett, 2011).  Herodotus (c. 484-425 BC) considered the formation of 

the Nile delta, believing it to have formed due to the deposition of the mud from the Nile 

in the Mediterranean Sea (Martin, 2005). Aristotle (c. 384-322 BC) believed that both 
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land and sea exchanged places over time (Hugget, 2011).  Strabo (c. 54 BC – 25 AD) 

concluded that the origin of Mt. Vesuvius was caused by volcanic activity because of the 

nature of its summit.  Seneca (c.? BC - 65 AD) recognized that rivers and streams were 

responsible for creating the valleys which they lied in. 

Following this period of substantial thought concerning the physical world around 

us, many centuries passed having with little to no scientific thinking in Europe.  In fact, 

Thornbury (1969: 4) stated, “so little progress was made in Europe from the days of the 

first century AD until the opening of the sixteenth century that little need to be said about 

it.” Leonardo da Vinci (1452 – 1519) would break this stalemate of scientific thought, as 

he came to recognize that valleys were formed by fluvial incision and that the rivers and 

streams that lie in them were responsible for transporting and depositing eroded material 

elsewhere.  Buffon (1707 – 1788) recognized the ability for rivers and streams to alter the 

landscape due of their erosive ability (Thornbury, 1969).  Horace Bénédict de Saussure, 

from Switzerland (1740 – 1799), was one of the first true mountain geomorphologists, 

though technically a geologist.  Saussure recognized the ability for streams and glaciers 

to sculpt mountains (Thornbury, 1969). 

Concepts of modern geomorphology began to evolve at the end of the 18
th

 century 

with the work of James Hutton (1726 – 1797).  Of Hutton’s many contributions to the 

discipline of geomorphology, it was his explanation of the concept, “the present is the 

key to the past” (in his work Theory of Earth, with Proofs and Illustrations in 1795), that 

was most notable.  Hutton’s work would have a profound impact on the discipline of 

geomorphology as many of the basic concepts of modern geomorphology can be found in 

his theory (Thornbury, 1969).  The ideas and conclusions presented by Hutton had a 
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profound impact on Charles Lyell (c. 1797 – 1875), who “became the great exponent of 

uniformitarianism…and probably did more to advance this principle and geologic 

knowledge in general than any other man” (Thornbury, 1969: 8).  Lyell’s greatest 

contribution to geology and geomorphology was his book, the Principles of Geology. 

Thornbury (1969: 10) referred to the period between 1875 and 1900 as the “heroic 

age in American geomorphology.”  Thornbury (1969) stated that three individuals were 

largely responsible for laying the framework from which modern geomorphology would 

ultimately be built upon: John Wesley Powell (1834 – 1902), Grove Karl Gilbert (1843 – 

1918), and Clarence Edward Dutton (1841 – 1912).  Powell’s most notable contribution 

to geology and geomorphology was the concept of a base level, or the lowest level that 

the land surface can be reduced to.  “rove Karl Gilbert merits the recognition as the first 

true geomorphologist produced in this country [United States]…to him we are indebted 

for a keen analysis of the processes of subaerial [above sea level] erosion and the many 

modifications which valleys undergo as streams erode the land” (1969: 11).  Dutton is 

probably most known for his analysis of individual landforms and his work regarding 

“the great denudation” (Thornbury, 1969).  The work of these three individuals 

effectively initiated the development of geomorphology into its modern state. 

It is unlikely that any other individual in the history of the discipline of 

geomorphology has had a more profound effect than William Morris Davis (1850 – 

1934) (Thornbury, 1969). Of his many contributions to the discipline, his most notable 

was his theory of landscape evolution, which he referred to as the “geographic cycle.” 

Most importantly, Davis was responsible for systematizing, or bringing together, the 

work of those before him (Engeln, 1942). 
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Up until this point, the discipline of geomorphology had been largely a 

descriptive or qualitative science, primarily concerned with understanding the history of 

the landscape and the landforms that comprise it.  However, it was in the middle of the 

20
th

 century that the discipline of geomorphology became more quantitative, being 

concerned primarily with the processes responsible for the development of landforms 

within the landscape.  This came to be known as Process Geomorphology. 

Process geomorphology was established largely by Arthur N. Strahler in 1952 

with his publication of the Dynamic Basis of Geomorphology.  In it, he “proposed a 

system of geomorphology grounded in basic principles of mechanics and fluid dynamics 

that he hoped would enable geomorphic processes to be treated as manifestations of 

various types of shear stresses, both gravitational and molecular acting upon any type of 

earth material to produce varieties of strain, or failure, which we recognize as the 

manifold processes of weathering, erosion, transportation, and deposition” (Hugget, 

2011: 12).  Strahler, among others such as Luna B. Leopold and M. Gordon Wolman, 

were fundamental in the development of geomorphology as an empirically based and 

driven science. 

The latter half of the 20
th

 century gave rise to the further quantification of the 

geomorphologic discipline.  Detailed field measurements and the use of mathematical 

and statistical models became prominent in the 1970s and 1980s.  One of the most 

important contributions in this era of geomorphologic thought was the introduction of the 

concept of geomorphologic thresholds from Stanley A. Schumm.  This concept holds that, 

“episodes of abrupt change can occur in geomorphic systems as thresholds are 

transcended” (Rhoads and Thorn, 2011: 69). 
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Contemporary geomorphological studies have been witnessed several trends.  

These are, “ (1) an increasing concern with complexity and nonlinear dynamics, (2) rapid 

advances in measurement technology, (3) increasing computation and information-

processing capabilities, (4) enhanced collaborations with other disciplines, especially 

engineering and the life sciences, (5) interest in philosophical issues, (6) concern about 

practical aspects of human impacts of geomorphological systems, and (7) a renewed 

focus on landform development over geological time scales” (Rhoads and Thorn, 2011: 

70). 

 

2.2 Geomorphological Mapping 

 

 Geomorphology is a science that is concerned with the landforms existing on the 

surface of the earth and the processes that are responsible for their formation.  According 

to Hugget, “form, process, and the interrelationships between them are central to 

understanding the origin and development of landforms” (2011: 3).  Form refers to the 

shape, or appearance of a landform, also known as a geomorphological unit, in the 

landscape.  Process is defined as the “action involved when a force induces a change, 

either chemical or physical, in the materials or forms at Earth’s surface” (Ritter et al., 

2002: 2).  Geomorphological mapping is the process of attempting to map earth’s 

landforms and the processes that are responsible for their appearance. 

 Paron and Claessens state, “geomorphology is a young discipline compared to 

geology and soil science emerging from earth science and geography, and systematic 

geomorphological mapping is even younger” (2011: 75).  Geomorphological mapping as 
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we know it today dates back to the early 20
th

 century when, in 1914, Siegfried Passarge 

(1866-1958) published what is considered to be the first detailed geomorphological map 

in a morphological atlas, which included eight separate maps describing “describing 

topography/vegetation, slope gradients (in five classes), valley forms, stratigraphy, 

physical resistance, chemical resistance, petrography and relief development” 

(Gustavsson, 2005: 9).  However, the history of mapping the physical environment dates 

back far beyond the beginning of the 20
th

 century, because, as Smith states, “mapping of 

landforms is probably as old as the making of maps” (Smith and Pain, 2011: 142). 

 Many of the earliest known maps contain information related to the topography of 

the earth.  Early Babylonian maps produced c. 4500 years ago depicted the physical 

landscape using different symbolic elements, such as mounds representing mountain 

ranges or lines representing hydrographic elements (Gustavsson, 2005).  Though these 

early maps were not scientific in nature, they still provided information regarding the 

physical landscape. 

Over time, the way in which people have represented the physical landscape has 

evolved.  As stated earlier, the first maps produced used the mound method to represent 

topography.  This technique eventually gave way to the hachure method.  The hachure 

method was adopted in the 18
th

 century (Gustavsson, 2005); it depicts relief using parallel 

lines, in which the relative distance between the lines represents the steepness of the 

slope.  In the 19
th

 century, the hachure method was replaced by the use of contour lines 

and shaded relief maps to represent topography.  Though contour lines and shaded relief 

maps can be used for the basic interpretation of the physical landscape, they fail to 

provide detailed information regarding the geomorphology of a landscape. 
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 Modern geomorphological mapping is rooted in the physiographic descriptions 

and illustrations of the late 19
th

 century.  Pavlopoulos et al. state, “throughout the 19
th

 

century and into the early years of the 20
th

 century, the principal method for studying 

landforms was through static descriptive physiography” (2009: 7).  Descriptive 

physiographical research consisted of written descriptions of the geomorphological 

processes at work in a landscape and was often accompanied by illustrations such as 

sketches or block diagrams.  Though many of these artistic renditions of the landscape 

and the geomorphological units and processes acting within it were excellent illustrations, 

they tended to be primarily pieces of art, offering qualitative descriptions rather than 

quantitative information (Pavlopoulos et al., 2009).  

 Physiographical descriptions and illustrations of a region’s geomorphology gave 

way to early geomorphological maps at the beginning of the 20
th

 century. 

Geomorphological maps published at this time, such as Passarge’s from 1914, were very 

basic, depicting only specific or selected geomorphologic features or processes 

(Gustavsson et al., 2008).  Geomorphological mapping would remain stagnant from this 

point, changing little, until after World War II.  It was in the 1950s that the concepts of 

geomorphological mapping would begin to evolve into their current state. 

According to Pavlopoulos et al., “in the 1950s and 1960s, the science of 

geomorphology developed into analytic physiography of the Earth’s surface and the 

detailed geomorphological map became the research tool in geomorphology” (2009: 8).  

Technological advancements in remote sensing which were brought about due of the 

“very dynamic warfare style of World War II” changed the way in which 

geomorphological research was conducted.  Remote sensing is defined as the “science 
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and art of acquiring information about an object or phenomena without physically 

coming in contact with it” (Rao, 2002: 2), and it provides specific advantages for 

geomorphologic studies: multi temporal capabilities, multispectral capabilities, multi 

spatial capabilities, and the capability for remote sensors to obtain elevation data (Rao, 

2002).  Though the technological advancements of remote sensing greatly affected the 

ways in which geomorphological research was conducted, it was in the 1950s and 1960s 

that geomorphological mapping experienced its most notable development. 

In 1956, M. Klimaszewski initiated a countrywide effort to map the 

geomorphology of the entirety of Poland at the 1:50,000 scale (Verstappen, 2011).  This 

was the first effort to systematically survey the geomorphology of a country at such a 

large scale.  Following shortly after, several other European countries developed similar 

geomorphological maps, such as France, Denmark, Germany, and Switzerland (Embleton 

and Verstappen, 1988; Verstapppen, 2011).  As many European countries began to 

produce large-scale (detailed) geomorphological maps, a great variety of different 

geomorphological mapping systems were developed.  Because of the many different 

geomorphological mapping systems that existed, several attempts were made in the 1960s 

by the International Geographic Union (IGU) and its Working Group on 

Geomorphological Survey and Mapping to develop an international standard system for 

geomorphological mapping (Embleton and Verstappen, 1988).    

In 1962, representatives from fifteen different countries gathered in Krakow, 

Poland with the specific task of establishing certain guidelines for the production of 

geomorphological mapping.  The guidelines, as described by Pavlopoulos et al., 2009, 

stated that: 
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 fieldwork, in conjunction with the use of aerial photo interpretation, is a 

basic necessity;  

 maps produced should be in at a scale between 1:10,000 and 1:100,000;  

 maps should contain information regarding morphography, morphometry, 

morphogenesis, and morphochronology “in order to study relief’s past, 

present, and future development” (Pavlopoulos et al., 2009: 10);  

 color and symbols should both be used for cartographic representation;  

 the chronological order of landform development should be apparent;  

 lithological data should be included;  

 the legend should be arranged in a genetic-chronological order  

In 1968, the IGU Working Group on Geomorphological Survey and Mapping, 

headed by J. Demek, presented the IGU Unified Key in the Manual of Detailed 

Geomorphological Mapping (Gustavsson, 2005).  Shortly after, the Working Group 

developed similar versions of the original IGU Unified Key for medium- and small-scale 

geomorphological mapping.  At the same time, the International Institute for Aerial 

Survey and Earth Sciences (ITC) was also developing a comprehensive system for 

geomorphological mapping at all scales. These two systems were the first attempts at the 

development of an international standard system for geomorphological mapping; 

however, since then, “the number of legends, representing different approaches and 

methodologies, has proliferated” (Pavlopoulos et al., 2009: 10). 

  Since the 1970s, development in the field of geomorphological mapping has 

primarily been because of technological advancements.  As Smith and Pain (2011: 144) 

stated, “the biggest driver of geomorphic mapping has been technology: the availability 
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of new data sources has allowed new insights and rapid mapping to be performed, 

organized under within the framework of a GIS [Geographic Information System]”.  

Advances in remote sensing, aerial photography, radar imagery, and computer science are 

having a profound impact on geomorphological mapping.  “Satellite imagery remains an 

important ongoing data source with an increasing trend towards longer archives, higher 

spatial resolution and greater data volumes; however, it has been the DEM [Digital 

Elevation Model] that has been at the forefront of much recent research” (Smith and Pain, 

2011: 144).  Contemporary geomorphological studies have been primarily concerned 

with methodological refinement.  Many studies that have been recently conducted have 

attempted to reduce, or even remove, the subjective element of geomorphological 

mapping: human interpretation of landforms within the landscape. There has been a 

considerable amount of research conducted concerning automated and semi-automated 

techniques for identifying and delineating landforms using remotely sensed data. 

 

2.3 Geomorphological Map Content 

 

 The content depicted in geomorphological maps provide the reader with 

information related to five fundamental landform concepts; these concepts are 

morphology, morphometry, morphogenesis, morphochronology, and morphodynamics  

(Pavlopoulos et al., 2009).  Morphology refers to the appearance and or shape of the 

landscape.  Morphometry is a concept regarding the geometric measurements of a 

landscape, such as slope, elevation, or curvature.  The concept of morphogenesis refers to 

the origin or formation of a landform or landscape.  Morphochronology is a concept 
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dealing with the absolute or relative age of the landscape or landforms in the landscape.  

Morphodynamics refers to the current geomorphologic processes that are influencing the 

shape of the landscape and the landforms within it. 

 Dramis et al. (2011) stated that there are two different categories of 

geomorphological maps: basic geomorphologic maps, and derivative geomorphological 

maps.  Basic geomorphological maps, also known as analytical maps, are 

geomorphological maps created using data collected directly from fieldwork, aerial 

photograph interpretation, or existing geologic, soil, vegetation, or land use maps.  Basic 

geomorphological maps can be produced from two different perspectives.  They may be 

made from a morpho-evolution perspective, or a morphodynamic perspective. 

 Morpho-evolution geomorphological maps are “concerned with the evolution of 

the landscape over geological timescales” (Dramis et al., 2011: 41).  These maps are 

generally produced at smaller scales and provide a more general view of the 

geomorphology of a landscape.  “Morpho-evolution maps represent Earth surface 

evolution in relation to endogenous agents (such as large-scale crustal vertical 

movements, surface tectonics and volcanism) and exogenous processes connected with 

past to modern climates” (Dramis et al., 2011: 41). 

 Morphodynamic geomorphological maps are concerned with the present 

geomorphology of Earth’s surface.  Morphodynamic maps are generally produced at 

larger scales and, hence, attempt to depict all landforms, surficial deposits, and processes 

related to the geomorphology in the landscape.  In addition, morphodynamic 

geomorphological maps also may include non-geomorphological elements of the 

landscape, such as soils, landcover, hydrology, or landuse. 
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 According to Dramis et al., “derivative geomorphological maps are obtained 

through selection, generalization and reuse of data reported in basic maps with the 

purpose of zoning the spatial/temporal distribution of significant geomorphological 

processes” (2011: 42).  Derivative geomorphological maps, also known as pragmatic 

geomorphological maps, are more easily readable than basic geomorphological maps, 

thus making them capable of being read by specialists and non-specialists alike.  

Derivative geomorphological maps are often used by engineers, planners, and decision 

makers (Dramis et al., 2011). 

 

2.4 The Uses of Geomorphological Maps 

 

Dramis et al. claim that, “geomorphological maps are amongst the best tools for 

understanding the physical context of the Earth’s surface” (2011: 39).  As stated earlier, 

geomorphological maps provide detailed information regarding the landforms existing on 

the surface of the earth and the physical processes responsible for creating them.  They 

are currently used in many different applications, and it can be assumed that in the future, 

the number and importance of these applications will only increase (Smith and Pain, 

2011). 

Paron and Claessons (2011) stated that the makers and users of geomorphological 

maps can generally be placed into categories: national departments, private companies, 

and research and development institutions. 

Since the 1950s, many different countries, predominantly European, have 

produced nationwide geomorphological maps.  The purpose of an extensive nationwide 
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map, such as the Geomorphological Atlas of the People’s Republic of China, is to attempt 

to document all aspects of a region’s geomorphological setting, and thus is incredibly 

complex.  Nationwide geomorphological maps are not produced with the intention of 

answering specific questions, as are geomorphological maps produced by private 

companies and research and development institutions. 

Geomorphological maps produced by private companies and research and 

development institutions are produced to answer specific questions.  These kinds of 

geomorphological maps are often much simpler in their presentation than nationwide 

geomorphological maps, as they need only to present information directly related to the 

questions they are attempting to answer, such as “which area is most prone to flooding,” 

or “where is there the greatest risk of landslide activity?”  Private companies that often 

make and use geomorphological maps are insurance companies, engineering firms, and 

environmental agencies. 

In addition to these three broad categories, it is necessary to describe a fourth 

maker and user of geomorphological maps: academics.  Academic geomorphologists 

often produce geomorphological maps for the purposes of scientific inquiry, or for the 

advancement of the field through methodological refinement or technological 

improvement.  For example, Seong et al. (2009) published results concerning the 

geomorphological setting of the Skardu, Shigar, and Braldu Valleys in the Central 

Karakoram, Pakistan; several geomorphological maps were included in the publication to 

provide a visual aid for understanding the geomorphological setting of the region.  

Geomorphological maps are also often produced in order to demonstrate the use of a new 

method or technique for geomorphological mapping.  For example, research was 
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conducted on the expert-driven semi-automated geomorphological mapping of mountain 

environments (Asselen and Seijmonsbergen, 2006). 

 

2.5 Elements in Geomorphological Map Design 

 

In 2011, Jan-Christoph Otto, Marcus Gustavsson, and Martin Geilhausen 

published the article, Cartography: Design, symbolization and visualization of 

geomorphologic maps in the journal, Developments in Earth Surface Processes.  This 

article provides detailed information regarding the theory of cartographic design in 

relation to geomorphological mapping and was used as the basis for the theoretical 

background of cartographic design.  According to Otto et al., “geomorphological maps 

are highly complex thematic maps depicting the composition of the Earth’s surface and 

the processes working there” (2011: 254).  As the surface of Earth is highly complex and 

extremely dynamic, it should be the goal of the cartographer to depict this environment in 

a way that is detailed enough to “reduce subjective impressions” (Gustavsson et al., 2006: 

92), yet maintains an element of easy readability.  Unfortunately, it is not uncommon for 

geomorphological maps to be so detailed and complex that they lose their ability to 

convey relevant information to the reader, essentially rendering them useless.  It is the 

holistic design of the map, including the layout and different components, which affect its 

ability to communicate information effectively.  Elements in cartographic design include 

basic design principles, symbolization, and map layout and organization. 

 

2.5.1  Basic Design Principles 
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 There are four basic principles of cartographic design: legibility, visual contrast, 

figure-ground perception, and hierarchical organization.  These design principles affect 

the overall readability of a map, which ultimately affect how effectively the content of 

the map is communicated. 

 Legibility, as described by the New Oxford American Dictionary (2013), is the 

quality of being clear enough to read.  It is arguably the most important of the basic 

principles of cartographic design.  The legibility of a map determines its effectiveness at 

communicating information.  Geomorphological maps are especially prone to becoming 

illegible, as they attempt to depict highly complex environments using a great number of 

different symbols.  The readability of a geomorphological map is largely affected by 

symbol size and density.  Symbol size and density are determined by the scale of the 

mapped area and the actual size (or the physical dimensions) of the map. 

 Otto et al. state that, “[visual] contrast is the basis of vision” (2011: 259).  

Contrast is defined as the state of being strikingly different from something else (New 

Oxford American Dictionary, 2013).  Visual contrast, in the context of cartography, is 

referring to the ability for map users to differentiate objects in the map from one another; 

it can be achieved by implementing visual variation in the map. 

 Figure-ground perception, as described by Otto et al., is “a person’s ability to 

distinguish between an object and its surrounding” (2011: 259).  The “figure” refers to a 

specific object, while the “ground” refers to the background.  Figure-ground perception 

helps to convey the relative importance of mapped information.  In the context of 

geomorphological mapping, “figures” are the objects of interest, or the geomorphological 
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units or landforms, while the “ground” is the landscape.  Geomorphological units are the 

more important objects in this scenario, and thus need to draw the reader’s attention.   

 Differences, inter-relationships, and hierarchies that exist between objects are 

often depicted using hierarchical organization.  This principle of design is used only 

marginally in geomorphological mapping.  Hierarchical organization comes from the 

concept of visual hierarchy.  According to Hashimoto and Clayton, “When a design 

consists of many different areas of emphasis, the concept of hierarchy must be introduced.  

The idea of visual hierarchy is to organize each area of emphasis so that it does not 

conflict or take away attention from another area of emphasis” (2009: 48). 

 

2.5.2  Symbology 

  

Brewer states that, “the subtlest of details can determine how map data is read and 

interpreted.  The shape of a marker, the width of a line, the arrangement of a pattern – 

each conveys specific information” (2005: 143).  Cartographic representation is achieved 

by the use of three basic feature types: points, lines, and areas.  Otto et al. claim, “a 

differentiation of these basic representations, to express relationships among or 

differences between the data, can be achieved by variations of the basic visual variables: 

shape, size, orientation, texture, or color” (2011: 255). 

 A point is the most basic feature class that can be used to represent data.  Points 

are typically used in cartography to represent the geographic location of an object; 

however, they are not limited just to representing feature locations on a map.  The scale 

of a map will determine whether a point will be used to represent the specific geographic 
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location of an object, or an area.  Point symbols variations can be created using the visual 

variables size, shape, orientation, and color. 

 Lines are another basic feature class that is used to represent data on a map.  Lines 

are used in cartography to represent long, linear features, such as streams, rivers, or roads.  

Once again, map scale also determines whether a feature will be represented in a map 

using a line or a polygon.  A common example of the importance of scale can be 

observed when attempting to represent a river or stream in a map.  At a smaller scale, a 

river or stream is most effectively depicted using simple lines.  However, at larger scales, 

it may be more appropriate to represent the river or stream using an area, or polygon.  

Variations in linear symbols can be achieved using size, shape, orientation, texture, and 

color. 

 Areas, or polygons, are the third kind of basic feature class that can be used to 

represent geographic data on a map.  “Polygons on a map enclose areas that represent the 

shape and location of homogeneous areas, such as lakes, forest stands, and soil types” 

(Zeiler and Murphy, 2010: 51).  Variation in polygon design can be accomplished using 

size, shape, orientation, texture, and color.    

Shape refers to the form, or appearance, of a symbol.  According to Otto et al., 

“shape variation…is the most commonly applied visual variable in geomorphological 

maps because of the great number of different symbols for different landforms” (2011: 

257).  Symbol shapes used for representing data can be simple, such as circles, squares, 

or triangles, or they can be complex.  Size refers to the geometric dimensions of a symbol.  

Specifically, it refers to the symbol’s length, width, or area, and not the actual size of the 

object it represents.  The size of a symbol can be used to portray variations in the physical 
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size of an object, or the relative importance of the object.  Orientation refers to the 

relative position of an object in relation to others.  It is most commonly used to symbolize 

the direction of flow of an object, such as a debris flow or a rock fall.  Texture is a visual 

variable that affects the appearance of areal and linear objects.  It refers to the “shape, 

orientation or the spacing of components that generates a pattern” (Otto et al., 2011: 256). 

Textures can be randomly or systematically ordered. 

Gustavsson et al. states, “color is the most eye-catching graphic variable” 

(Gustavsson et al., 2006: 92).  Because of this, it is the most powerful way to differentiate 

objects from one another (Otto et al., 2011).  There are three characteristics of color that 

can be manipulated to create differences and relationships in cartographic representation, 

these are: hue, value (or lightness), and chroma (or saturation).  Hue refers to the pure 

color that we associate with color names, such as red or blue.  In actuality, hue refers to 

the dominant wavelength of the electromagnetic spectrum emitted from an object that is 

sensed by the human eye.  Hue, when used in different kinds of thematic mapping, is 

most often used to indicate or differentiate features (Brewer, 94).  Value is the inherent 

“lightness” or “darkness” of a hue.  Variations in the value, or lightness, of mapped data 

is usually used to represent a hierarchy or ranking within the data.  A hue’s value can be 

manipulated by adjusting its tint or shade.  Tint is affected by adding white to a hue; this 

causes the hue to appear lighter.  Shade is affected by adding black to a hue, causing the 

hue to appear darker.  Chroma, or saturation, is the “colorfulness” of a hue.  Cynthia 

Brewer described it as “a measure of the vividness of a color” (Brewer, 2005: 96).  

Chroma is the amount of color in proportion to the amount of grey. A completely 

saturated hue is one that contains no proportion of grey within it.  As the proportion of 
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grey is increased within the hue, it becomes desaturated.  Desaturated hues are greyer 

than saturated hues, and thus more neutral. 

 

2.5.3  Map Layout and Organization 

 

  According to Otto et al., “graphic communication, like maps, delivers all 

information at once.  This means information is not perceived sequentially, but 

instantaneously with respect to the location and relative position on the map sheet or 

screen.  Thus, the appearance and composition of graphical elements should be 

considered thoughtfully” (2011: 263).  In order for a map to be most effective in 

communicating information, it must be designed in a way that exploits human perception.  

Maps contain a series of components that give it context and provide the user with 

important information regarding the mapped data, the orientation of the map, and the 

relative location of the mapped data.  These components commonly include the legend, 

inset map, north arrow, coordinate grid, scale bar or text, information regarding the 

coordinate system and map projection, the map author, the date of production, and any 

other additional information.  According to Otto et al., “map components have to by 

systematically arranged to generate visual harmony and balance and to deliver the 

message of the map” (2011: 262). 

 “Map layout,” according to Otto et al., “consists of the arrangement of the map 

components into a functional composition and a meaningful and aesthetically pleasing 

design to facilitate the visual communication” (2011: 262).  In order to organize the final 

map document in a way that is not only effective at communicating important 
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information, but also aesthetically pleasing, concepts of planar organization must be 

adhered to.  Planar organization consists of three distinct concepts: focus, balance, and 

internal organization.   

 Focus refers to the location on a map that focuses the users attention.  This is 

sometimes called the focus of attention.  A map’s design must be arranged in such a way 

that it guides the attention of the reader towards the focus of the map, as in the main map 

rather than the components that give context to the main map.  Otto et al. claim, “the map 

reader tends to focus on the visual center, implying that the most important information 

should be positioned here” (2011: 262).  The visual center of the map is not the geometric 

center of the map; rather it lies slightly above the geometric center. 

 Hashimoto and Clayton state that, “the visual principle that a design is weighted 

equally is called balance” (2009: 49).  Balance, in the context of cartography, refers to the 

perceived visual weight of elements in the final map.  Visual weight is ability of an object 

or element in a graphic composition to draw the focus of the reader to itself.  The visual 

weight of an object depends on several properties: position, size, shape, and color; 

however, the most important of these properties determining the visual weight of objects 

concerning the layout and design of a map are position and size.  Position refers to the 

location of an object.  In the same way that one reads a book, maps are read in a 

particular direction.  The human eye will traverse an imaginary line that goes from the 

top left corner to the bottom right corner of a graphic composition.  Objects that are 

positioned in the upper left portion of this composition are “heavier” than those in the 

lower left portion.  Objects that are positioned in the center of a composition also have a 

lesser weight than those that are lying away from the center, as a component’s weight 
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increases proportionally to its distance from the center (Otto et al., 2011: 263).  The 

placement of the different components within a map should be arranged in a way that 

emphasizes the items importance. 

 Size refers to the geometric dimensions of an object.  Objects that have a greater 

size have a greater visual weight than smaller objects.  Thus, larger objects will tend to 

draw the readers attention more than smaller objects.  In regards to the layout and design 

of a map, the components that are more important for effectively communicating the 

map’s content should be greater in size than those that have lesser importance.  For 

example, the main map should be the largest item on the map.  The inset map that gives 

context to the main map should never hold a greater visual weight than the main map 

itself, as it is of less importance to the reader.  The size of the map components should be 

determined by their relative importance. 

Shape and color also affect the visual weight of an object in a map.  These 

variables are only used marginally in the design and layout of a geomorphological map 

and are more important regarding the design of a symbol, however they are important to 

consider in this process.  Shape refers to the form or appearance of an object.  Objects 

that have a regular or uniform shape have a lesser visual weight than objects that have 

irregular shape.  Regarding the design and layout of a geomorphological map, this 

variable is mainly applicable to the border of elements contained within the map, such as 

the main map or the inset map.  Applying borders to other map elements, such as the 

legend or scale bar “should be avoided as it borders separate objects and interrupt the 

flow of visual perception” (Otto et al., 2011: 263).   
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Color also can affect an object’s visual weight as well.  Though this is more 

important regarding symbol design, it is useful to consider when designing the layout or 

organization of the final map.  Otto et al. state, “colors draw the viewer’s attention 

strongly to certain areas…[they] should be used for the most important information” 

(2011, 263).  In a geomorphological map, the most important information is the main 

map and the legend, as they constitute the purpose of the map.  These are the only 

components in the map that should have color.  Applying color to other, less important, 

components within the map can cause them to draw the reader’s attention. 

 Internal organization is the third element of planar organization that affects the 

functionality and aesthetics of a map.  Internal organization refers to the underlying 

structure of the map.  A map’s structure provides it with a sense of visual order and 

generates harmony between the different components that create the whole.  Internal 

organization is mostly achieved through the alignment of the components of a map in 

relation to one another.  A common way to generate internal organization in a map is to 

use an imaginary grid for the positioning of different map components.  According to 

Otto et al., “the grid subdivides the map sheet into horizontal and vertical paces and 

generates sight-lines that create stability of the layout” (2011, 263). 

 

2.6 Issues in Contemporary Geomorphological Mapping 

 

 The purpose of geomorphological mapping is to produce a generalized and easily 

understandable visual representation of the physical setting of an area.  Today, 

geomorphological mapping is practiced worldwide, and thus there are a great variety of 
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different geomorphological mapping systems in existence.  Because of this, the 

appearance and content of many geomorphological mapping systems varies.  

 

2.6.1  The Lack of a Universally Adopted Geomorphological Mapping System 

  

Currently, there is no universally accepted system for geomorphological mapping 

in existence.  Though there have been numerous attempts since the 1960s to create and 

adopt a standard system for the geomorphological mapping of every environment at 

every scale, no such system is universally accepted. 

 

2.6.2  Diversity of Legends 

 

Though the overarching purpose of geomorphological maps and 

geomorphological mapping in general is to depict the physical surface of the earth, they 

often appear radically different.  Otto et al. state, “maps covering the same area but 

mapped by different geomorphologists using different mapping systems can…give 

completely different impressions, depending on whether the emphasis is on 

morphometry/morphography, chronology, lithology, or genesis/processes” (2011: 267).  

Since the development of the comprehensive geomorphological mapping systems (the 

IGU Unified Key and the ITC Geomorphological System), the pursuit of a universal 

system for geomorphological mapping has largely been abandoned (with certain 

exceptions, such as the system developed by Pavlopoulos et al., 2009) as it lacks 

practicality (Verstappen, 2011).  Instead, there have been many efforts to develop 
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standard geomorphological mapping systems at the national level.  Many countries, 

predominantly European, have developed systems specifically for the geomorphological 

mapping of their own environments, such as Germany, Spain, Switzerland, Sweden, and 

China among others (Otto et al., 2011).   

In addition to the development of standard geomorphological mapping systems 

for national use, some countries have even developed standard systems for mapping 

specific environments, for example, high mountain environments.  

 

2.7 Geomorphologic Legend by Pavlopoulos et al. (2009) 

 

 In 2009, Kosmas Pavlopoulos et al. published Mapping Geomorphological 

Environments, a highly descriptive textbook covering many different aspects of 

geomorphological mapping, including techniques, applications, and workflows.  In 

addition, Pavlopoulos et al. also developed an extensive general geomorphological 

mapping system legend containing two hundred and thirteen different symbols, capable 

of mapping all types of geomorphological environments in all scales.  This legend is 

owned and copyrighted by the academic journal publishing company Springer, which 

must be contacted in order to obtain permission to use the legend. 

The system uses the three basic feature types: points, lines, and areas (or 

polygons).  Though originally black and white, the authors demonstrate that the symbols 

can be modified in order to enhance their visual variance by applying color to them; this 

was demonstrated in five different case studies included in the text. 
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The system is subdivided into eight different categories: 1) fluvial; 2) coastal; 3) 

lacustrine; 4) glacial; 5) karstic; 6) volcanic; 7) aeolian; and 8) surface landforms, 

topography, lithology and tectonics.  Each category contains symbols to represent what 

the authors consider “main” geomorphologic landforms.  Though the system is seemingly 

comprehensive, as it contains symbols for each major geomorphological environment, it 

is lacking in is ability to represent the complete geomorphic environment.  For example, 

the glacial environment category contains thirty-six different symbols.  Several of the 

symbols included in the glacial environment category, which are considered by the 

authors to be main geomorphologic landforms in glacial environments, are not included 

in other geomorphologic mapping systems specific to high mountain environments, 

where alpine glaciation is highly prevalent.  Symbols included in Pavlopoulos et al.’s 

(2009) system that are frequently not included in other geomorphologic mapping systems, 

such as Kneisel et al.’s geomorphologic legend for high mountain environments (1998), 

include crevasses, cryoturbation, fjord, gelifluxion, gelivation, glacial striations, kames, 

loess, pinko (polygons made of stones), and seracs. 

Though the system developed by Pavlopoulos et al. is capable of mapping many 

different types of geomorphological environments, it is likely that it is not the most 

appropriate legend that can be used for the task of mapping high mountain environments 

due to its inherent lack of the ability to represent the geomorphological features that are 

present in high mountain environments.  However, the system does provide a good 

example of a complete and unified geomorphological mapping system that could be used 

for the production of a nation-wide geomorphological map.   
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2.8 Geomorphologic Legend for High Mountains by Kneisel et al. (1998) 

 

In 1998, a working group of German geomorphologists, under the direction of M. 

Richter, developed a standard legend specifically for geomorphological mapping of high 

mountain environments (Kneisel et al., 1998).  This legend differs greatly from the 

system developed by Pavlopoulos et al. (2009), as it is highly specific, capable only of 

representing geomorphologic units features and processes that exist within high mountain 

environments.  It is comprised of a total of fifty-five different symbols, and also uses the 

three basic feature types: points, lines, and areas (polygons).   

The legend developed by Kneisel et al. (1998) is divided into eight different 

categories which contain symbols relating to each category; these are: 1) fluvial forming 

areas, 2) periglacial-nivation forming areas, 3) glacial forming areas, 4) geomorphic 

processes, 5) hydrology, 5) permafrost, 6) bedrock/sediment sizes, 7) dating of forming 

elements, and 8) edges, steps, and other forms. 

A major difference between this legend and the legend developed by Pavlopoulos 

et al. (2009) is that it does not use color, with the exception of the use of the hue blue for 

representing rivers, streams, and lakes. 

 As mentioned above, the legend developed by Kneisel et al. (1998) is highly 

specific and focuses on geomorphological landforms, dynamics, and processes that exist 

and occur within high mountain environments.  Symbols included in this legend are very 

descriptive and allow the user to obtain a great deal of information regarding the 

geomorphologic features and processes present in the environment.  For example, the 

system includes three different symbols for representing rock glaciers.  Each of the three 
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symbols represents the state of the rock glacier, whether active, inactive, or historic, and 

only marginally differs in appearance.  Another example of the highly specific nature of 

this system can be observed in the two different symbols used to represent precipices 

based on relative elevation differences. Once again, the appearance between the symbols 

only differs marginally. 

 As the system developed by Kneisel et al. (1998) is so specific, it is well suited 

for the geomorphological mapping of large and very large-scale environments.  However, 

it is limited to a single environment that it is capable of representing. 
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3. PROJECT OBJECTIVES 

 

Historically, geomorphological mapping has been predominantly a European 

tradition, with little involvement from the United States in the development of the field.  

While many western European countries have developed standard geomorphological 

mapping systems for their environments, such as Germany and Greece, government 

agencies within the United States, such as the USGS, have made no attempt to develop a 

standard system for mapping general geomorphological environments, let alone specific 

geomorphological environments, such as high mountain environments or coastal 

environments.   

While the United States currently lacks its own geomorphological mapping 

system, it does possess a standard geologic mapping system.  The Federal Geographic 

Data Committee (FGDC) and United States Geologic Survey (USGS) have comprised an 

extensive collection of cartographic symbols for use in mapping geologic environments.  

Geologic maps are designed to provide “complex information regarding the geology of 

an area, such as composition, age, genesis, and extent of an area's geologic materials, as 

well as the geometry, orientation, and character of the geologic structures that have 

deformed them” (FGDC, 2006: 11).  The symbology used for producing geologic maps 

presents a significant problem for accurately representing the geomorphological aspects 

of a landscape.  For example, Kellerlynn (2004) conducted a Geologic Resource 

Evaluation for Rocky Mountain National Park, Colorado.  In her report Kellerlynn (2004: 

14) stated, “Rocky Mountain National Park abounds in geologic features that may be of 

concern for park planning, public safety, or resource protection. Geologic features (or 
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landforms) and processes have scientific and aesthetic significance, as well as continually 

affecting human beings and other living things. These features and processes may not be 

readily apparent on the park’s geologic map”. 

 

3.1  Project Objectives 

 

The primary objective of this project was the development a geomorphological 

mapping legend for use in high mountain environments in the United States.  The legend 

developed in this thesis was specifically developed for representing the landforms and 

processes existing in the high mountain environments of the United States, though it is 

likely to be appropriate for use in other countries that contain similar topography.  The 

legend will be based on two existing geomorphological mapping legends: the legend 

developed by Kneisel et al. (1998) and the legend developed by Pavlopoulos et al. (2009), 

which are not entirely appropriate for mapping the geomorphological features present in 

high mountain environments in the United States.  These legends were selected as they 

present two different approaches to geomorphological mapping: the legend by Kneisel et 

al. (1998) is highly detailed and was developed specifically for high mountain 

environments, while the legend by Pavlopoulos et al. (2009) is much more generalized 

and was developed for geomorphological mapping of all environments.   

In addition, the project aimed to test the ability of the newly developed legend to 

depict the geomorphological setting of a high mountain environment in the United States 

by producing multiple geomorphological maps using the newly developed legend.  While 

the accuracy of the created geomorphological map is of obvious important, it is not the 
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objective of the project to create a completely accurate geomorphological map of the 

study area; rather it was to develop a legend for the geomorphological mapping of high 

mountain environments in the United States and to test its ability to effectively 

communicate information related to the geomorphological features within a landscape. 

 

3.2  High Mountain Environments 

 

Currently, there is no international standard definition for a high mountain 

environment, or Hochgebirge.  Barsch and Caine (1984: 288) stated that there are four 

fundamental characteristics of mountain terrain: “elevation; steep, even precipitous, 

gradients; rocky terrain; and the presence of snow and ice”.  Carl Troll (1899 – 1975) 

proposed that mountains can also be characterized by “vegetative-climatic zones; high 

potential energy for sediment movement; evidence of Quaternary glaciation; and tectonic 

activity and instability” (in Owens and Slaymaker, 2004: 4).  For this project, a high 

mountain environment will be defined using characteristics from both, Barsch and Caine 

(1984) and Troll (in Owens and Slaymaker, 2004). 
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4. STUDY AREA 

 

The study area, Glacier Creek watershed, is located within Rocky Mountain 

National Park, 70 miles northwest of Denver, Colorado.  Rocky Mountain National Park 

straddles the Continental Divide and is located at the junction of four different counties in 

Colorado: Boulder, Grand, Jackson, and Larimer.  The park contains an area of 

approximately 416 square miles with elevations ranging from 7,800 feet above sea level 

(a.s.l.) to the summit of Longs Peak, the tallest peak in the Colorado Front Range, at 

14,255 feet a.s.l.  Rocky Mountain National Park was selected because all forms of 

geomorphological landforms and processes related to high mountain geomorphology 

exist within the park: glacial, fluvial, eolian, and those related to mass movements. 

 The Glacier Creek watershed has an area of approximately 12.9 miles
2 

and lies in 

the southeastern region of the park and is comprised of a series of glacially carved valleys 

extending eastward from the Continental Divide.  The Glacier Creek watershed was 

selected as the study area as it was contained all of the characteristics of a “high mountain 

environment,” as defined by both, Barsch and Caine (1984) and Troll (in Owens and 

Slaymaker, 2004).  In addition, this region of Rocky Mountain National Park is highly 

accessible, which allowed for easy and efficient access to different geomorphological 

units in the field. 
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Figure 1:  Map displaying the study area relative to Rocky Mountain National Park 
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4.1 Geology 

  

Rocky Mountain National Park is located in the Front Range, a mountain range 

rising west of Denver, Colorado.  The Front Range is longitudinally oriented and extends 

from the Arkansas River in Colorado to the Northern extent of the Laramie Range in 

Southern Wyoming. 

 The geologic setting of Rocky Mountain National Park can be divided into three 

different periods spanning nearly 2 billion years (Kellerlynn, 2004).  In this span of time, 

Rocky Mountain National Park has undergone significant and dramatic geologic change, 

as “it has had a long history of tectonic activity indicated by the elevation of the basement 

rocks – the Precambrian gneisses, schists, and granites – that are now exposed in the 

Front Range” (Harris and Tuttle, 1990: 265).  Of the three periods, only the most recent 

will be discussed here, as it is responsible for the current state of the Rocky Mountain 

region.  A detailed geologic history of Rocky Mountain National Park can be found in 

Geology of the National Parks (Harris and Tuttle, 1990).  

 The third and most recent period of major tectonic uplift in the Rocky Mountain 

region occurred in the beginning of the Cenozoic Era.  Fault-blocks, composed of 

Precambrian basement rock, experienced uplift and were brought to the surface by the 

Laramide Orogeny at the beginning of the Tertiary Period (Harris and Tuttle, 1990).  

These fault-blocks gradually became exposed as the shale beds left after the 

disappearance of the shallow seas were worn down due to ongoing weathering and 

erosion.  During this time, the region also experienced widespread volcanism in the 

Oligocene Epoch, roughly 36 to 24 million years ago (Kellerlynn, 2004).  “In late 
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Tertiary time, successive uplifts that were part of a broad regional uparching” (Harris and 

Tuttle, 1990: 272) occurred and caused the Rocky Mountains to be uplifted to their 

current height. 

 

4.2 Geomorphology 

  

The Rocky Mountain region has undergone significant geomorphologic change 

throughout its history.  Glaciers that once existed within the boundaries of Rocky 

Mountain National Park are primarily responsible for the dramatic scenery that can be 

seen today.  “At their maximum extent, the glaciers of the Front Range coalesced to form 

a small ice cap with the high peaks jutting up through the perennial snowfields and 

glacial ice” (Harris and Tuttle, 1990: 267).  It was these glaciers that “did the major 

shaping of the alpine scenery that we see in Rocky Mountain National Park today” 

(Harris and Tuttle, 1990: 267). 

Rocky Mountain National Park experienced numerous periods of glaciation 

throughout the Quaternary Period that can be divided into four major episodes: early 

glaciation, Bull Lake glaciations, Pinedale glaciations, and Neoglaciation. 

The earliest glaciation, referred to as the Pre-Bull Lake glaciation (Kellerlynn, 

2004), to affect the region surrounding Rocky Mountain National Park occurred ~1.5 

million years ago.  This episode involved at least two major glacial advances; however, 

nearly all evidence of the Pre-Bull Lake glaciers existing within the park boundaries has 

been destroyed by later glaciations (Harris and Tuttle, 1990). 
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The next episode was the Bull Lake glaciation between 500,000 and 80,000 years 

ago.  It “deepened the same cirque basins, enlarged canyons, joined together tributary 

glaciers, and left prominent end moraines” (Harris and Tuttle, 1990: 274). 

The Pinedale glaciation began ~30,000 years ago and experienced its maximum 

between 23,500 and 21,000 years ago, before deglaciation occurred ~15,000 years ago 

(Kellerlynn, 2004).  It was this Pinedale glaciation that was most responsible for shaping 

the alpine landscape that exists within Rocky Mountain National Park today.  “Evidence 

of these glacial episodes can be seen in the steep cirque headwalls along the continental 

divide” (Harris and Tuttle, 1990: 275). 

 Finally, the neoglaciation occurred ~3,800 years ago (Harris and Tuttle, 1990); 

however, the glaciers that existed at this time were confined within the cirques that were 

already present.   

 

4.3 Climate 

 

 The climate of Rocky Mountain National Park is variable, depending on elevation, 

slope, and aspect (National Parks Service, 2013) The annual average temperature for the 

region ranges from 35°F to 45°F, and is primarily influenced by the prevailing westerly 

winds and the north-south orientation of the Rocky Mountains.  The climate can be 

separated into two distinct climate patterns caused by the presence of the Continental 

Divide, which determines the amount of incoming solar radiation and precipitation. 

During the winter months, from December to March, the difference between the 

different halves of Rock Mountain National Park can be easily observed.  At this time, 
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the eastern half of the park will experience warmer temperatures and lower amounts of 

snowfall than its western counterpart.  The eastern side of the park has an average low 

temperature of 18°F and will receive, on average, 6 inches of snow per month.  This is 

significantly different from the western side of the park, which has an average low 

temperature of 7°F and receives on average 24 inches of snow per month. 

 Springtime, occurring during the months of April and May, is marked 

predominantly by unpredictable weather patterns that cause large variations in both 

temperature and precipitation.  Average temperatures in the eastern portion of the park at 

this time lie around 44°F, while the western portion experiences average temperatures of 

39°F.  Snow is still common in both portions of the park at this time. 

 Summer months, from June to August, are typically moderate in temperature, 

with average high temperatures in the eastern portion at 76°F and average high 

temperatures in the western portion of the park at 73°F.  Afternoon thunderstorms and 

high winds in the upper elevations are common occurrences. 

 Fall months, September through November, are typically drier and cooler.  At this 

time temperatures begin their slow descent into the lower registers of the thermometer.  

Snowstorms potentially may occur as early as September during a typical fall. 

 

4.4 Vegetation 

 

Rocky Mountain National Park lies within the Colorado Rockies forest ecoregion 

and is characterized by “dramatic vertical zonation” (World Wildlife Foundation, 2013).  

This is caused by the abrupt gradient, which occurs as elevation increases from flatlands 
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to mountain environments.  There are three distinct zones that exist within the park, each 

containing its unique vegetation: the montane, subalpine, and alpine tundra zones. 

Below the montane zone, between 5,600 and 9,500 feet a.s.l. (National Park 

Service, 2012), lies the montane zone.  The montane zone harbors a warm, dry climate 

that allows for diverse vegetation to exist (Alberts, 1963).  Here, Ponderosa pine (Pinus 

ponderosa), Lodgepole pine (Pinus contorta), Douglas fir (Pseudotsuga), and aspen 

(Populus tremuloides) (Daubenmire, 1943) are common.  The montane zone also 

provides an ideal climate for various forms of shrubs; some commonly observed shrubs 

are Antelope Bitterbrush (Purshia tridentate), Raspberry (Rubus strigosus), and Wax 

Currant (Ribes cereum) (Alberts, 1963). 

The subalpine zone exists between 9,000 and 11,000 feet a.s.l. (National Park 

Service, 2012) and is dominated by subalpine fir (Abies lasiocarpa), and Engelmann 

spruce (Picea engelmanni).  This zone is characterized by much higher moisture content 

than the montane zone, as it receives approximately double the amount of precipitation 

(Alberts, 1963). 

Located in the higher elevations above 11,000 feet a.s.l. (National Park Service, 

2012), is the alpine tundra zone.  This zone is characterized predominantly by barren, 

rocky landscapes; however, “vast expanses of it are covered with a cold, wet soil mantle 

(Alberts, 1963: 21).  Vegetation that exists in the alpine tundra zone consists mainly of 

grasses, sedges, herbs, shrubs, and perennials. 
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Figure 2: Map displaying the study area, the Glacier Creek watershed in Rocky Mountain 

National Park 
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5. METHODS 

 

5.1  Data Acquisition and Geodatabase Generation 

  

Using ArcGIS 10, a geodatabase, containing both raster and vector data, was 

created that to store all geographic data that would be involved in the analysis.  Each 

dataset contained in the geodatabase was originally projected in, or reprojected to, the 

North American Datum 1983 (NAD83) Universal Transverse Mercator (UTM) Zone 13 

projection. 

Vector data were stored in three different feature datasets: Census, RMNP (Rocky 

Mountain National Park) Logistics, and Geomorphologic Units.  Feature classes stored in 

the Census feature dataset included roads, linear water features, and areal water features 

for each of the four Colorado counties that the park was located in.  Railroads, county 

boundaries, and state boundaries were also stored in the Census feature dataset.  These 

datasets were obtained from the U.S. Census Bureau’s TIGER database 

(http://www.census.gov/geo/maps-data/data/tiger.html), an extensive online database that 

contains geographic datasets created and maintained by the U.S. Census Bureau.  The 

RMNP Logistics feature dataset contained trails, trailheads, and the park boundary 

feature classes.  These were obtained from the National Park Service Data and 

Information Clearinghouse (http://www.nps.gov/gis/data_info).  The Geomorphologic 

Units feature dataset contained a single point feature class, Geomorphologic Units, which 

would be used to store locational data recorded in the field.  Data sources for these 

feature datasets can be observed in Table 1. 

http://www.census.gov/geo/maps-data/data/tiger.html
http://www.nps.gov/gis/data_info
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Geodatabase Feature Dataset Dataset Source 

RMNP_Geodatabase Census BoulderCo_ArealWaterFeatures http://www.census.gov/geo/maps-
data/data/tiger.html 

    BoulderCo_LinearWaterFeatures http://www.census.gov/geo/maps-

data/data/tiger.html 

    BoulderCo_Roads http://www.census.gov/geo/maps-
data/data/tiger.html 

    GrandCo_ArealWaterFeatures http://www.census.gov/geo/maps-

data/data/tiger.html 

    GrandCo_LinearWaterFeatures http://www.census.gov/geo/maps-
data/data/tiger.html 

    GrandCo_Roads http://www.census.gov/geo/maps-

data/data/tiger.html 

    JacksonCo_ArealWaterFeatures http://www.census.gov/geo/maps-
data/data/tiger.html 

    JacksonCo_LinearWaterFeatures http://www.census.gov/geo/maps-

data/data/tiger.html 

    JacksonCo_Roads http://www.census.gov/geo/maps-

data/data/tiger.html 

    LarimerCo_ArealWaterFeatures http://www.census.gov/geo/maps-

data/data/tiger.html 

    LarimerCo_LinearWaterFeatures http://www.census.gov/geo/maps-

data/data/tiger.html 

    LarimerCo_Roads http://www.census.gov/geo/maps-

data/data/tiger.html 

    Railroads http://www.census.gov/geo/maps-

data/data/tiger.html 

    CountyBoundaries http://www.census.gov/geo/maps-

data/data/tiger.html 

    StateBoundaries http://www.census.gov/geo/maps-

data/data/tiger.html 

  RMNP_Logistics Trails http://www.nps.gov/gis/data_info 

    Trailheads http://www.nps.gov/gis/data_info 

    ParkBoundaries http://www.nps.gov/gis/data_info 

  GeomorphologicUnits GeomorphologicUnits User Created 

Table 1: Table displaying geodatabase structure and data sources. 

 

Raster datasets used in the analysis consisted of two forms of remotely sensed 

imagery that were obtained from the United States Department of Agriculture (USDA) 

Geospatial Data Gateway, located at the Natural Resources Conservation Service 

(http://datagateway.nrcs.usda.gov).  Four different imagery datasets provided by the 

National Agricultural Imagery Program (NAIP) were obtained, one for each of the four 

Colorado counties that the park boundary overlaps.  These datasets were high spatial 

resolution (1 m) true color aerial photographs (red, green, and blue bands), which were 

acquired in the summer of 2011 by aircraft mounted with passive remote sensors.  In 
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addition, twenty-five digital elevation models (DEMs) were also obtained from the 

USDA.  A DEM provides the average elevation for each cell in raster dataset, dependent 

on the spatial resolution of the dataset; the DEM datasets used in the analysis had a 

spatial resolution of 10 m. 

 

5.2  Initial Geoprocessing Workflow 

  

Initial geoprocessing consisted of performing a series of steps using ArcGIS to 

create the framework with which the analysis would be later performed.  The 

geoprocessing workflow included a series of steps designed to remove extraneous 

information from the vector data.  These steps included appending corresponding vector 

datasets and clipping them to the Rocky Mountain National Park boundary. For example, 

the four different linear water feature datasets (one for each county that Rocky Mountain 

National Park intersects) were appended, or joined, together using the Append function in 

ArcGIS, creating a single dataset.  This newly created dataset was then clipped to the 

Rocky Mountain National Park boundary using the Clip function in ArcGIS.  When each 

of the vector datasets had been processed, the collected raster datasets were also put 

through a series of geoprocessing steps.  First, the twenty-five individual DEM datasets 

were mosaicked together, creating a single seamless image.  Using this newly created 

DEM mosaic, the study area boundaries were delineated using a series of tools in ArcGIS’ 

Hydrology toolbox.  Next, using the Surface Analyst toolbox in ArcGIS, a series of DEM 

derivatives were created from the DEM mosaic.  This included maps displaying relief, 

slope, and curvature. 
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5.3 Legend Development 

 

The framework, or what the legend would be capable of representing, was 

developed prior to conducting fieldwork.  Because the purpose of the study was to 

produce a comprehensive legend for mapping the geomorphological features and 

processes in high mountain environments, multiple sources were utilized in order to 

compile a comprehensive legend. 

The legend developed by Kneisel et al. (1998), which was developed by a group 

of experts in the field of mountain geomorphology, was primarily used as the framework 

that the new legend would be based upon.  Of the fifty-five geomorphologic features and 

processes capable of being represented by the legend developed by Kneisel et al. (1998), 

a total of thirty-six were included in the new legend.  However, certain features and 

processes included in their legend were omitted from the new legend on the basis of 

generalization.  For example, the legend developed by Kneisel et al. (1998) contains three 

different symbols for representing rock glaciers, three different symbols for representing 

morainic ridges, and two different symbols for representing permafrost.  The new legend 

includes a single symbolic element for each of these features, in order to reduce 

complexity. 

The legend developed by Pavlopoulos et al. (2009) was also utilized in the 

process of determining the contents of the new legend.  From this legend, twelve different 

symbolic elements for representing geomorphological features and processes were 

incorporated into the new legend.  Features and processes from the legend developed by 
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Pavlopoulos et al. (2009) that were not included in the new legend were omitted on the 

basis of duplication, or because they do not occur in high mountain environments.  For 

example, many features and processes (such as cirques, glaciers, and rock glaciers) 

included in the new legend were already incorporated into it from the system developed 

by Kneisel et al. (1998).  Other landforms and processes were also omitted from the new 

legend because they result from continental ice sheets and ice caps, such as in the case of 

drumlins or eskers. 

In addition, United States National Park Service Geologic Resource Evaluation 

for Glacier National Park, Rocky Mountain National Park, and Denali National Park were 

obtained.  Geologic Resource Evaluations are peer-reviewed documents published by the 

National Park Service, which discuss the geologic history, geologic issues, and provide a 

written inventory of the geomorphologic features and processes that exist within its 

respective park.  Denali National Park (Alaska, United States) and Glacier National Park 

(Montana, United States) were selected as they each contain high mountain environments 

and exhibit the geomorphological landforms and processes that are associated with them.  

The Geologic Resource Evaluations were used to augment the framework based upon the 

legends developed by Kneisel et al. (1998) and Pavlopoulos et al. (2009), by including 

six specific geomorphological features that were not included in either existing 

geomorphological mapping legend.  For example, the legends developed by Kneisel et al. 

(1998) and Pavlopoulos et al. (2009) did not include a symbol for representing a hanging 

valley, a glacial landform that is included in each of the three Geologic Resource 

Evaluations consulted. 
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5.4  Fieldwork 

  

During the summer of 2012, a total of eight days were spent conducting fieldwork 

in the study area within Rocky Mountain National Park.  Fieldwork consisted of 

capturing digital images of different geomorphologic units existing in the landscape using 

a digital camera and plotting data points using a Global Positioning System (GPS) 

receiver.  These images and data points collected would later be used as references for 

identifying and delineating geomorphologic units from the aerial photographs in the lab-

based analysis. In addition, a large-scale (1:24,000) topographic map was carried into the 

field.  A rough sketch was made of large geomorphologic units (such as cirques or 

hanging valleys, rather than erratic boulders) on the map and descriptive notes were 

recorded in a field book. 

 When a geomorphologic unit was located and identified in the field, an image was 

taken of it.  Using a Trimble Juno 3 GPS receiver (sub-3 m horizontal accuracy) 

containing the Geomorphologic Units feature dataset, a data point was plotted.  Points 

collected contained six attributes associated with the data point: the geographic 

coordinates (latitude and longitude) of the data point, the type of geomorphologic unit, 

the image number associated with the data point, the approximate bearing (or direction in 

reference to magnetic north) in which the image was taken, the photographer’s initials, 

and the date.  In total, 186 data points and 397 images were collected.  A large disparity 

exists between the amount of data points and images collected because in many instances 

multiple images were taken of a geomorphologic unit in an attempt to collect the best 
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possible image for visual reference.  The approximate locations of the GPS points can be 

observed in Figure 3. 

Figure 3: Approximate locations of the GPS points gathered and associated images 
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5.5  Digitization of Geomorphologic Units  

  

Following the completion of the fieldwork in Rocky Mountain National Park, 

digitization, or drawing, of geomorphologic features began using ArcGIS 10.  This was a 

process of creating a series of new feature classes (one for each geomorphologic unit 

identified in the landscape, such as a debris cone feature class and a alluvial plain feature 

class) within the Geomorphologic Units feature dataset.  Using a combination of aerial 

images, DEMs, and the GPS data points along with their corresponding digital images, 

geomorphologic units identified on the landscape were manually delineated in ArcGIS 

and stored in each of their respective feature classes.  When the digitization of the study 

area’s geomorphological units was completed, objects were exported out of ArcGIS and 

into Adobe Illustrator for the production of the final map document. 

 

5.6  Symbolic Representation and Design Development 

  

Using Adobe Illustrator, a series of symbolic representations were designed to 

represent geomorphological landforms and processes.  Adobe Illustrator is computer 

software developed specifically for creating and manipulating vector graphics.  Variation 

between the symbolic representations created was achieved using the five visual 

variables: size, shape (or appearance), orientation, texture, and color. 

 The type of feature, whether point, line, or area (polygon), used to symbolize a 

geomorphologic unit was determined either logically, or through reviewing existing 

systems.  Many geomorphologic landforms, such as cirques, glaciers, and glacial 

moraines are discrete objects on the landscape with defined boundaries or edges.  
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Landforms such as these can be effectively represented using any of the three basic 

feature types.  Geomorphologic processes, however, are often less defined within the 

landscape; hence why both existing systems, Kneisel et al. (1998) and Pavlopoulos et al. 

(2009), use line feature types to represent them.  Following the example of the pre-

existing systems, geomorphologic processes were represented in the new system by linear 

features which indicated the direction of motion. 

The appearances of symbols in the newly developed legend were based upon the 

appearances of symbols included in the pre-existing legends developed by Kneisel et al. 

(1998) and Pavlopoulos et al. (2009), with the exception of geomorphological features 

and processes that did not exist in either pre-existing legend.  For these features and 

processes, the appearance of the symbol was original. 

Table 2 displays a comparison of four different symbols for representing 

geomorphologic features and processes (cirques, debris cones, debris flows, glaciers), 

which are included in each legend.  

 

Table 2: Comparison of symbol design from the existing legends by Kneisel et al. (1998) 

and Pavlopoulos et al. (2009), in addition to the newly developed legend. 



 51 

Cirques, or bowl-like hollows formed at the source of a glacier, seem to have 

acquired a cartographic convention for their representation.  This has taken the 

appearance of a series of short lines extending perpendicular from a primary line used to 

delineate the cirque wall, which can be observed in the legends developed by Kneisel et 

al. (1998) and Pavlopoulos et al. (2009).  Because of this existing cartographic 

convention, the appearance of the symbol included in the new legend is only marginally 

different than the pre-existing geomorphological mapping legends; this is to promote 

continuity between the legends.  The new legend represents cirques using two parallel 

lines, which delineate the cirque wall, with a series of short lines extending inward 

(toward the center of the cirque) perpendicular from the inner parallel line. 

Unlike cirques, there is no cartographic convention for representing debris cones; 

this can be observed from the pre-existing systems.  The legend developed by Kneisel et 

al. (1998) depicts debris cones using a series of solid black lines extending from a point 

of origin.  The assumed intent of these lines is to indicate the direction of flow of debris.  

In between these lines exist triangular shapes, which exhibit black boundary lines and 

white interiors.  While effective in communicating the orientation and extent of debris 

cones, the symbol lends itself to over-complicating the geomorphological map by 

including too many visual objects in a single symbol.  The legend developed by 

Pavlopoulos et al. (2009) represents debris cones in a much more simple manner. The 

symbol used in this legend depicts debris cones using dashed lines that also extend from a 

single point of origin.  This is both effective in communicating information regarding the 

origin, orientation, and extent of the debris cone, while not over-complicating the map.  

The appearance of the symbol for representing debris cones in the new legend is based 
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upon the appearance of the symbol included in the legend by Pavlopoulos et al. (2009).  

This symbol is depicted by a series of lines extending from a point of origin.  The lines 

are dashed and increase in width with distance from the point of origin.  The intent 

behind the increasing width of the line is to represent the outward flow exhibited by 

debris cones.  The design of the symbol is effective in communicating information 

regarding origin, orientation, and extent of debris cones, all the while remaining different 

in appearance from the symbol included in the legend developed by Pavlopoulos et al. 

(2009) for legality issues regarding copyright. 

Debris flows are similar to debris cones, regarding the fact that there is no 

standard cartographic convention for representing them.  The legend developed by 

Kneisel et al. (1998) depicts debris flows with a series of wave-like curves with an arrow 

at the end.  Once again, this is likely to indicate direction of flow.  This symbol is 

effective in communicating information, as well as being relatively simple in nature.  

However, as it is black in appearance, it easily blends in to the geomorphologic map.  

The legend developed by Pavlopoulos et al. (2009) represents debris flows in an entirely 

different manner.  Pavlopoulos et al. (2009) represent debris flows very similar to debris 

cones, as they use a single dashed black line for representing this geomorphologic 

process.  This symbol is also effective at communicating information, however it is very 

similar in appearance to debris cones, potentially making the process of distinguishing 

the two difficult.  The newly developed legend represents debris flows most similar to the 

legend developed by Kneisel et al. (1998).  It uses a red tapering red line with an arrow at 

the end.  Because mass-movements pose a particular threat “to communities and 

infrastructure” (Hearn and Hart, 2011), the color red was used for this symbol, along with 
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other geomorphologic processes, because it is commonly associated with danger (Otto et 

al., 2011).  The arrow at the end of the tapering line is meant to depict the direction of 

flow.  This symbol is effective in communicating information regarding the location and 

flow direction of debris flows.  In addition, the symbol is easy to differentiate from others 

because of its color. 

Glacial ice is also a geomorphologic unit that lacks a standard cartographic 

convention for its representation.  In the legend developed by Kneisel et al. (1998), 

glacial ice is represented with by a grey polygon with a solid black outline.  While being 

effective in delineating the boundaries of the glacier, this symbol is lacking in the 

uniqueness of its appearance, which is quite similar to other symbols included in the 

legend, such as possible permafrost, probable permafrost, and dead ice, which all appear 

as polygons filled with marginally different grey hues.  The legend developed by 

Pavlopoulos et al. (2009) represents glacial ice with a different approach.  The symbol 

used by this legend appears as a solid white polygon with a dashed black line, which 

delineates the boundaries of the glacier.  This is moderately ineffective in its ability to 

represent glaciers because there is little visual contrast in its design.  The unobstructed 

white fill of the polygon coupled with the black dashed line produces little visual contrast 

between the object and the background, causing the object to blend into the 

geomorphologic map, becoming less noticeable.  The newly developed legend depicts 

glaciers in a very different manner from both pre-existing legends, making it more 

effective in its ability to communicate relative information regarding glacial ice.  The 

new legend represents glaciers with white fill that is obstructed by blue dashes and a blue 

boundary.  Once again, color was used in the symbol design because it is the most “eye-
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catching” visual variable (Otto et al. (2011).  The solid white background of the polygon 

is obstructed by blue dashes and is bounded by a solid blue line; this produces texture 

within the symbol, and thus enhances the visual contrast of the symbol making it more 

easily identifiable within the geomorphologic map.   

 

5.7  Map Production  

   

The last step was the production of multiple geomorphological maps using Adobe 

Illustrator.  Two maps were produced: one fine scale map of the study area, and a second 

very-fine scale map of a small subset of the study area.  To do this, the geomorphologic 

units digitized in ArcGIS were imported into the Adobe Illustrator interface.  Complex 

objects, such as lines and polygons, which contained great amounts of data were 

generalized using a simplification function in Adobe Illustrator.  Otto et al. state, 

“generalization is the abstraction of map objects aiming at a simplification of the map 

content in order to fit the scale or purpose of the map without significantly changing the 

map’s message” (2011: 259).  The simplification function used in Adobe Illustrator 

removed a user-defined percentage of nodes, or points connecting different lines.  In 

doing this, the complex shape of certain objects was reduced, presenting a more easily 

readable map.  Once the units were generalized, the appropriate symbols were applied to 

them. 

Following the completion of the production of the two primary geomorphological 

maps, two additional geomorphological maps were generated.  These maps were very-

fine scale depictions of the study area subset.  However, they were populated with re-
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creations of the symbols from the legends developed by Kneisel et al. (1998) and 

Pavlopoulos et al. (2009).  The purpose for creating these additional maps was to provide 

a visual comparison between the two existing legends and the newly developed legend.  
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6.  RESULTS 

 

6.1  The Development of the First Legend for Mapping Geomorphology in High 

Mountain Environments in the United States 

 

The study resulted in the development and production of the first 

geomorphological mapping legend specifically for mapping high mountain environments 

in the United States.  In total, it includes sixty different symbols for representing 

geomorphological landforms and processes in these environments (Figure 4).  Visual 

variance between geomorphological units was achieved by utilizing size, shape 

(appearance), texture, orientation, and color.  The legend is capable of representing these 

environments at scales between 1:10,000 and 1:50,000.  

The appearance of most symbols included in the new legend was based upon the 

design of symbols included in the legends developed by Kneisel et al. (1998) and 

Pavlopoulos et al. (2009). However, as neither existing geomorphological mapping 

legend contained symbols for certain geomorphological features, their designs were 

original. 

The legend is divided into eight categories: 1) geomorphologic features, 2) 

geomorphologic processes, 3) glaciology\hydrology; 4) edges and ridges, 5) valley shape, 

6) topography, 7) surface material, and 8) other.  The contents of each category were 

based upon the content of similar categories from the legend developed by Kneisel et al. 

(1998). 

The geomorphologic feature category contains a total of thirty-two different 

symbols for represent geomorphological features related to glacial, fluvial, and hillslope 
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geomorphological processes.  Symbol designs were similar to those of the existing 

systems developed by Kneisel et al. (1998) and Pavlopoulos et al. (2009). Visual variance 

in this category was mainly achieved using shape or appearance, and texture.  In addition, 

the colors black, white, the combination of both, and grey were also used. 

The geomorphologic process category contained a total of five different symbols 

for representing geomorphologic processes related to hillslope geomorphology.  Hillslope 

processes (such as debris flows and rockslides) “pose an ever increasing risk to 

communities and infrastructure” (Hearn and Hart, 2011: 107); because of this, they were 

assigned the color red, as red is commonly associated with “danger” (Otto et al. 2011).  

Symbols for geomorphologic processes appeared as variations of the “arrow” shape, so as 

to communicate the direction of flow for each process. 

The glaciology/hydrology category was also based upon the similar category 

developed by Kneisel et al. (1998).  It contained a total of eight different geomorphologic 

features.  This category used shape or appearance, texture, and color to create visual 

variance between symbols.  In order to maintain continuity with standard mapping 

conventions, the symbols for lakes and ponds, rivers and streams, perennial springs, and 

waterfalls were assigned the color blue.  Glaciers and perennial snow used a combination 

of the colors blue and white.  The symbols for flood plains and wetlands were assigned 

the color green, due to the presence of vegetation. 

The edges and ridges category contained five different geomorphologic features.  

This category was also based upon a similar category from the legend developed by 

Kneisel et al. (1998).  These symbols achieved visual variation through shape or 

appearance, and color.  The only symbol in this category of the legend that had color 
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assigned to it was the symbol for levees, which was assigned the color green to maintain 

continuity with the symbols for flood plains and wetlands.    

The fifth category, valley shape, contains two symbols for representing the valley 

profile.  The symbols, intended for representing the shape of a valley, either glacial or 

fluvial, were adopted and modified from the legend developed by Pavlopoulos et al. 

(2009).  Both symbols appear black in color. 

The topography category contains a single symbol for representing contour lines, 

for use as the base map.  The contour interval used is dependent on several variables, 

such as the scale of the mapped area and the amount of relief within, and is ultimately the 

choice of the cartographer. 

The surface material category, which contains six different symbols for 

representing surface material, was adopted and modified from the legend developed by 

Kneisel et al. (1998).  Visual variance between the symbols was achieved by the use of 

color.  The six symbols, for representing clay, silt, sand, pebbles, gravel, and boulders, 

appear as solid colors.  The color for each symbol is a different tint of the color brown.  

As the grain size of the material increases, the color of the symbol becomes lighter.  For 

example, clay, which has a very fine grain size, is the darkest hue, while boulders, which 

have a very coarse grain size, appear as a very light hue in comparison.  

The final category of symbols, labeled as “other,” contains a single symbol for 

representing trails, either human or animal in origin.  This appears as a yellow dashed 

line.  Yellow was used because it is easily distinguishable within the map. 
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The design of the map layout of the proposed system is similar to the basic design 

specified by Otto et al. (2011).  The map layout was designed to follow the basic 

principle of visual balance.  The visually heaviest object is the geomorphological map 

Figure 4: The legend for the newly developed system for geomorphological mapping of high 

mountain environments in the United States 
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itself.  As it is also the most important object in the map, it is important that it be placed 

in a location that emphasizes its importance; thus, the geomorphological map was placed 

in the upper left corner, where, in western culture, an individual looks to first.  The 

geomorphological map should have a bounding rectangle, or neatline, surrounding it to 

emphasize importance and maintain neatness.  This is the only object that should have a 

bounding rectangle so that other objects do not gain unwanted visual weight. 

The legend of the geomorphological map is the second most important object in 

the map document.  Because of this, it needs to maintain a visual weight that is less than 

the main geomorphological map, while being visually heavier than all other items.  The 

most effective way to do this is to place it in the lower right corner of the document 

where the eye will travel to after leaving the main map.  As the legend may potentially 

include geomorphologic units that are not found in the study area, should omit any 

symbols that are not present. 

A reference map that depicts the location of the area of interest in reference to the 

surrounding area should also be included.  The appearance of the reference map is left to 

the discretion of the cartographer.  Common options for the appearance of the reference 

map are a basic shape, or a DEM derived shaded relief.  Color can be used for either 

option; however, it is important that the reference map holds a lower visual weight than 

the main geomorphological map in order to not draw attention away from the most 

important objects in the document.  The position of the reference map should be on the 

right side of the document, above the legend.   

In addition, it is essential to include map elements that give the map-reader 

reference information.  Otto et al. state, “geomorphological maps characteristically 
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include the following map elements surrounding the main map: title, scale, directional 

indicator (north arrow), coordinate gird or border, information on coordinate system and 

map projection, and author information” (2011: 262-263).  While most map elements 

listed here should be included in the final document, one is left to the cartographer’s 

discretion: the incorporation of the coordinate grid.  The purpose of a coordinate grid, 

created by lines of latitude and longitude, is to provide locational reference.  While useful 

for small-scale geomorphological maps, large- and medium- scale geomorphological 

maps often are concerned with areas that are too small to necessitate the incorporation of 

a coordinate grid in the final document.   

The placement of these objects also follows the outline described by Otto et al. 

(2011).  The title, which provides the map-reader with a brief summary of the contents of 

the map, should be placed in the top-left corner, above the main geomorphological map.  

The scale bar should be either below the geomorphological map, or within the bounding 

rectangle surrounding the geomorphological map.  This is left to the discretion of the 

cartographer.  However, it is essential that a scale bar be used rather than a scale text 

(1inch = 10,000 inches) so that the scale of the map remains accurate if its physical size is 

altered.  For example, if a map is produced at a certain scale on a specific map sheet (a 

scale of 1:20,000 on a 8.5” x 11” map sheet) and the physical size of the map sheet is 

altered, the scale text remains constant and is no longer accurate.  A directional indicator 

or north arrow should be placed in the space below the main geomorphological map, or 

within the geomorphological map’s bounding rectangle.  Additional textual information, 

such as information concerning the coordinate system and projection that the map is 
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displayed with or information regarding authorship of the map, should be placed below 

the main geomorphological map. 

In order to provide the most complete depiction of a landscape, it is necessary to 

include as much information as possible.  Similar to Passarge’s Morphological Atlas 

(1914), a geomorphological map produced using the newly developed system is intended 

to be supplemented by the inclusion of additional information.  A modern 

geomorphological study should include much more than simply a single 

geomorphological map.  With the availability of great amounts of spatial data in the 

United States, much of it for free, those performing a geomorphological study have the 

capability to include multiple kinds of spatial information, allowing for a holistic 

depiction of the landscape, and might include one, or more of the following: 

 Reference map(s) 

 Geological map 

 Morphometry map(s) – elevation, slope, surface curvature profile, etc. 

 Aerial photography/satellite imagery 

 Landcover map(s) 

 Additional textual information 

 

6.2 Geomorphological Map of the Glacier Creek Watershed, Rocky Mountain 

National Park, Colorado 

 

In addition to the development of a new legend for mapping geomorphological 

environments of high mountain environments in the United States, the project also 

produced a large-scale geomorphological map of the Glacier Creek watershed in Rocky 
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Mountain National Park, Colorado as a test case.  This can be observed in Figure 5.  A 

second geomorphological map was also produced using the new legend.  This map was 

produced at a very large scale (~1:12,000 inches) of a small subset of the Glacier Creek 

watershed (Figure 8).  It is important to state, however, that the geomorphological map 

produced for the study area within Rocky Mountain National Park may not be a 

completely accurate representation of the geomorphological setting of the Glacier Creek 

watershed, as this was not the objective of the project.  The purpose of this 

geomorphological map was to provide an example of the capability of the newly 

developed legend to represent the geomorphological landforms and processes that exist 

within high mountain environments in the United State. 
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Figure 5: The final geomorphological map produced for the Glacier Creek watershed 
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 The final map produced of the Glacier Creek watershed depicts the dynamic 

geomorphological setting of the study area.  Twenty-one different geomorphological 

units were identified; these were primarily of glacial origin.  Glacial troughs, or “U” 

shaped valleys, extend eastward from the continental divide.  The glaciers that once 

existed within these valleys have all but disappeared completely, leaving behind small 

glaciers and perennial snow masses.  Cirques carved into the bedrock by glacial ice 

depict the extent of the glaciers that once existed within Rocky Mountain National Park.  

Arêtes, or the thin ridge that exists between parallel glacial troughs, also exist.  A glacial 

horn, or a peak resulting from the headward erosion of multiple glaciers converging at a 

central point, was identified as well.  Multiple hanging valleys were also identified, 

providing evidence of multiple glaciation events.  Tarns, paternoster lakes, and glacial 

debris currently reside in the valley floors.  Two Roche Moutonees were also identified in 

the lower elevations.  Talus cones were found at the base of the valley headwalls and 

sidewalls. 

 To a lesser extent, fluvial and hillslope processes have also played an active role 

in the evolution of the landscape.  Landforms resulting from hillslope processes, such as 

rockfalls, rockslides, and debris flows were found in various locations throughout the 

study area.  Debris flow channels were commonly found above talus cones.  Scree slopes 

were found to exist on shallow slopes above treeline.  The many streams running along 

the valley floors have resulted in landforms specific to fluvial processes, such as alluvial 

fans, alluvial plains, gorges, and waterfalls, which were also identified in the Glacier 

Creek watershed. 
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 All of the above landforms and processes, glacial, hillslope, and fluvial, can be 

located and identified on the final geomorphological map, which uses 50ft contour lines 

derived from a DEM for the background.  The geomorphological map itself has been 

placed in a bounding rectangle, to promote a neat and clean appearance, in the upper left 

corner of the map sheet, adhering to the principles of visual hierarchy and weight.  A 

north arrow to provide orientation and scale bar have been placed below the 

geomorphological map in the lower left corner of the bounding rectangle that houses the 

geomorphological map, so as not to draw the users attention away from the map itself.  In 

the lower left corner of the map sheet lays the legend.  Symbols for geomorphologic units 

that were not present in the study were omitted from the legend, as they were unnecessary 

and utilized much needed space.  Above the legend in the upper right corner of the map 

sheet lays a reference map that depicts the location of the study area in relation to the rest 

of Rocky Mountain National Park.  The title and subtitle of the map are located in the top 

left corner of the map, as this is pertinent information to the user in regards to 

understanding what is depicted within the map.  Textual information regarding the 

projection of the geomorphologic map is located in the bottom right corner of the map 

sheet. 
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7. DISCUSSION 

 

 The newly developed system is the optimal choice for the production of 

geomorphological maps of high mountain environments in the United States.  While 

other geomorphological mapping systems may be used, such as the system developed by 

Kneisel et al. (1998) and Pavlopoulos et al. (2009), the new system is the only 

geomorphological mapping system in existence that has been developed specifically for 

mapping the geomorphologic setting of high mountain environments in the United States. 

 Of the two existing systems tested for their ability to effectively represent the 

geomorphologic features and processes that exist within these environments, the legend 

developed by Kneisel et al. (1998) is the stronger choice.  

This system’s greatest strength lies in its ability to represent a great amount of 

different geomorphological features and processes that exist within high mountain 

environments, which can be seen in Figure 6.  As it was developed in Germany by a 

group of collaborating geomorphologists, it contains an extensive inventory of symbols 

for representing features and processes that are specific to high mountain environments.  

While it is missing certain geomorphological features that were explicitly included in the 

Geologic Resource Evaluations for Denali National Park, Glacier National Park, and 

Rocky Mountain National Park, such as erratic boulders, horns, cols, glacial outwash 

deposits, glacial stairways, and hanging valleys, the system could be augmented by 

adding symbols to represent these features, thus making it capable of more completely 

representing these environments.



 68 

 

Figure 6: Geomorphological map of a subset of the Glacier Creek watershed produced using the legend developed by Kneisel 

et al. (1998) 
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 It is not uncommon for geomorphological maps to be overly complex causing 

illegibility.  This can be caused not only by their highly detailed nature, but also by 

symbolic design.  Though the legend developed by Kneisel et al. (1998) is capable of 

representing a great amount of geomorphologic features and processes that exist within 

high mountain environments, the ability for it to effectively communicate information 

regarding these features and processes is hindered by the design of the symbols. 

 The primary weakness of the system developed by Kneisel et al. (1998) lies in its 

cartographic representation of geomorphologic features and processes.  Because the 

authors avoided the use of color, choosing only to use black and white, to create visual 

variation between symbols (with the exception of the color blue for rivers, streams, and 

lakes), variation between different geomorphologic features and processes is dependent 

entirely on symbol size, shape (appearance), orientation, and texture.   

Symbols within this legend primarily use its shape, or appearance, to create visual 

variation between different geomorphologic forms and processes.  This is most often 

effective for creating visual variance between symbols in the legend.  However, there are 

specific cases when the appearance of certain symbols only differ slightly, which can 

potentially cause confusion for the user.  A specific example lies in the symbols for 

representing incisions (or gully erosion) and debris flows (Table 3). 

 

 

Table 3: A comparison of two different symbols included in the legend 

developed by Kneisel et al. (1998). 
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Incisions are represented by a straight line with an arrow on the end used to depict 

direction of travel.  The appearance of the symbol for debris flows, however, is only 

marginally different: it’s represented by a wave-like line that has an arrow on the end, 

used to depict direction of travel.  In other cases, visual variation is attempted through the 

use of size.  This can be seen in the symbols used to depict moraines and gravel/pebble 

plains. Both symbols appear to be nearly identical, with the same texture composed of a 

very tight grid of black lines.  The only difference between the two symbols is the outer 

boundary line, which is roughly double in thickness for the moraine as it is for the 

gravel/pebbles plain, causing the two units to easily be confused with one another.  As 

color is the most eye-catching of the visual variables, it would have been advantageous 

for the system developed by Kneisel et al. (1998) to incorporate it into its symbolic 

design. 

The legend developed by Pavlopoulos et al. (2009), while still capable of 

representing certain aspects of the geomorphologic setting of high mountain 

environments in the United States, is the weaker of the two legends tested in the study 

area. 

The greatest strength of legend developed by Pavlopoulos et al. (2009) lies in its 

symbolic design.  Unlike the legend developed by Kneisel et al. (2009), Pavlopoulos et al. 

(2009) take full advantage of the five visual variables (size, shape or appearance, 

orientation, texture, and color) to create visual variation between symbols used to 

represent geomorphologic features and processes.  Of these, the most effective way in 

which the authors create visual variation between symbolic elements is through the use of 

color.  While this is an obvious strength, given that color is the most eye-catching of the 
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visual variables, it also lends itself to a particular flaw in the legend developed by 

Pavlopoulos et al. (2009) 

 Pavlopoulos et al. (2009) do not designate which color should be applied to 

which feature or process, leaving this choice to the cartographer.  While this allows for a 

certain amount of artistic freedom for the cartographer, it does provide a standard to be 

used for the production of different geomorphological maps.  In the work published by 

Pavlopoulos et al. (2009), Mapping Geomorphological Environments, the authors 

demonstrate the effective use of color in five different geomorphological environments; 

the authors also demonstrate that, by not designating a standard color scheme to be used, 

geomorphological maps displaying similar information can appear vastly different. 

The primary weakness in the legend developed by Pavlopoulos et al. (2009) lies 

in its inability to represent the complete geomorphological setting of high mountain 

environments.  Though it is capable of mapping certain aspects of the physical 

environment, it is incapable of representing the complete environment, as it lacks 

symbols for represent significant geomorphological features and processes that are 

included in other, more specialized, geomorphological mapping systems, such as the 

system developed by Kneisel et al. (1998).  This can be observed in Figure 7.  Because 

this legend lacks symbols necessary to represent the complete geomorphological 

environment of high mountain environments, it should be avoided for producing 

geomorphological maps of these environments. 

The newly developed legend is the first geomorphological mapping system 

developed specifically for high mountain environments in the United States.  It is the 

optimal choice for geomorphological mapping of these environments, as it was designed 
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using based upon the strengths of the two legends developed by Kneisel et al. (1998) and 

by Pavlopoulos et al. (2009).  The new legend is capable of providing a more 

comprehensive representation of the geomorphological environment, as well as being 

more effective in communicating information by taking advantage of the five visual 

variables.
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Figure 7: Geomorphological map of a subset of the Glacier Creek watershed produced using the legend developed by 

Pavlopoulos et al. (2009) 
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 The new legend, as it was based upon the legend developed by Kneisel et al. 

(1998), is comprehensive in nature.  The new legend contains a series of symbols capable 

of representing fifty four different geomorphologic features and processes, and was 

compiled using five different sources in order provide the most comprehensive legend.  It 

contains forty-one symbols for geomorphologic features and processes identified within 

the legend developed by Kneisel et al. (1998).  The new legend does not include the 

entire collection of symbols contained within the legend developed by Kneisel et al. 

(1998) in an attempt to reduce complexity.  For example, the legend developed by 

Kneisel et al. (1998) contains three symbols, whose appearance only differs marginally, 

for representing rock glaciers in the landscape.  In order to generalize, or reduce 

complexity, the new legend contains a single symbol for representing rock glaciers.  

Similarly, the legend developed by Kneisel et al. (1998) also contains three symbols, 

which also only differ marginally in appearance, for representing morainic ridges in the 

landscape.  Once again, in an attempt to generalize, the new legend contains a single 

symbol for morainic ridges. 

The new legend also contains a series of symbols for landforms and processes that 

were not included in the legend developed by Kneisel et al. (1998).  Certain symbols for 

geomorphologic landforms and processes were adopted from the system developed by 

Pavlopoulos et al. (1998), such as glacial erratics, glacial debris, and glacial horns.  Items 

included in the legend developed by Pavlopoulos et al. (2009) that were not included in 

the new legend were symbols for representing geomorphologic landforms and processes 

associated with ice sheets and ice caps, as the new legend is intended for high mountain 
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environments that have been affected by alpine glaciation.  For example, some of the 

symbols included in the legend that were developed by Pavlopoulos et al. (2009) that 

were omitted from the new system include drumlins, fields of drumlins, and eskers, 

among others.  Other symbols that were omitted from the new legend were also done so 

in the interest of generalization.  For example, the legend developed by Pavlopoulos et al. 

(2009) has a series of symbols for representing different aspects of glaciers, such as 

glacial ice, the glacier border, and the glacier tongue.  The new legend contains a single 

symbol for representing the whole of the glacier. 

In addition to the legends developed by Kneisel et al. (1998) and Pavlopoulos et 

al. (2009), the new legend contains symbols for geomorphologic units and processes that 

were not included in these legends, but included in documented scientific literature.  

Items included in the Geologic Resource Evaluations for Rocky Mountain National Park, 

as well as Denali National Park and Glacier National Park, were also included in the new 

legend in order to make it more comprehensive than existing geomorphological mapping 

systems. 

Not only is the new system more comprehensive than existing systems, it is also 

more effective in communicating information regarding the geomorphological features 

and processes than the existing legends developed by Kneisel et al. (1998) and 

Pavlopoulos et al. (2009).  This can be observed in Figure 8.  Contrary to the legend
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Figure 8: Geomorphological map of a subset of the Glacier Creek watershed produced using the newly developed legend 
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developed by Kneisel et al. (1998), the new legend takes full advantage of the use of 

color, the most eye-catching visual variable.  For example, the new legend uses the hue 

cyan for hydrologic features, red for mass movements, and the combination of cyan and 

white for glaciers and perennial snow.  By using color, visual contrast is generated, 

increasing readability of the geomorphological map.  While the legend developed by 

Pavlopoulos et al. (2009) also uses color, the authors did not designate which colors 

should be applied to which symbol, which results in a lack of continuity amongst 

different geomorphological maps.  The new legend, however, designates which colors to 

be used.  This ensures that geomorphological maps produced by different authors will 

appear similar. 

However, the new legend does have certain limitations.  Just as the systems 

developed by Kneisel et al. (1998) and Pavlopoulos et al. (2009) were not without flaws, 

the new system has potential for improvement.  The new legend is potentially incomplete.  

It is possible that the new legend is incapable of representing the complete 

geomorphologic setting of a high mountain environment on the grounds that certain 

geomorphologic features and processes are not included in the final legend. 

A potential way to mitigate this problem is for the development of a unified 

definition of high mountain environments.  By defining what a high mountain 

environment is, and what geomorphologic features and processes can potentially exist 

within these environments, a comprehensive inventory can be developed.  Once an 

inventory has been developed, an existing legend may be augmented, or a new legend 

may be created. 
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8. CONCLUSION 

  

 This thesis project was successful in completing its primary objective: the 

development of a legend for mapping the geomorphological setting of high mountain 

environments in the United States.  In addition, multiple geomorphological maps of a 

designated study area were also successfully produced to provide examples of the 

capability for the newly developed system to represent geomorphological landforms and 

processes that exist in high mountain environments.   

The development of a legend for geomorphological mapping of high mountain 

environments existing in the United States is an effort towards joining other countries 

around the globe that are attempting to represent the physical surface of the earth.  Prior 

to this study, the United States has made little, if any, efforts towards the unification and 

standardization of geomorphological mapping systems, relying instead on the USGS 

standard geologic mapping system to represent all environments.  By attempting to 

develop a legend specifically for mapping geomorphological environments, rather than 

geologic, a step toward a national standard has been made. 

 High mountain environments are only one of the many different landscapes that 

exist within the United States’ boundaries.  Further research must be performed 

concerning the development of geomorphological mapping systems for each of these 

different landscapes.  Through increased interest in the field of geomorphological 

mapping and collaboration between geomorphologists, the task of developing an 

extensive nationally unified key, although great, is certainly possible. 
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