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Propios, Sofronio, M.S., Spring 2020    Geography 
 
Characterizing burn severity of beetle-killed forests leveraging Google Earth Engine-derived 
normalized burn ratios 
 
Chairperson: David Shively 
 
Following numerous studies, a general consensus on burn severity in forests affected by bark 
beetle outbreaks has not yet been achieved. The purpose of this study is to characterize burn 
severities in forest stands affected by mountain pine beetle (MPB) outbreaks, especially in 
relation to “time since outbreak”, vegetation cover, and topographic factors. This study focuses 
on wildfires that occurred in the northern Rocky Mountains of Idaho and Montana during the 
2012 fire season within forested areas that had previously experienced prior MPB outbreaks. 
Remote sensing techniques were used to quantify and compare the burn severities of MPB-
outbreak stands with those of unaffected lodgepole pine; the role of fire weather was not 
accounted for in this study. The results indicate time since outbreak and existing vegetation 
cover were more important influences on burn severity when compared to topographic factors. 
Initial expectations were that red stage stands would exhibit the highest burn severity. These 
findings indicate though that 5+ year time since outbreak forest stands experienced higher burn 
severities compared to unaffected stands and those that were more recently affected by MPB. 
Increased torching potential may be attributed to increased surface fuel loads from needle fall. 
Statistical modeling and spatial autocorrelation were not significant but should be considered by 
future researchers. 
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1. Introduction 

As a result of climate change and long-standing forest management practices (including fire 

suppression and creation of even-aged stands across broad swaths of landscape), a mountain pine 

beetle (MPB; Dendroctonus ponderosae) epidemic has impacted forests of the western United 

States over the last 30 years (Jenkins et al. 2012; Perrakis et al. 2014; Hicke et al. 2016). In Idaho 

and Montana, the MPB has affected over 6.6 million hectares, mainly in high-elevation forests 

dominated by lodgepole pine (Pinus contorta Douglas ex Louden). Based on geospatial data 

available through the US Forest Service, large swaths of forest in Idaho and Montana contain 

dead-standing trees following outbreaks that occurred since the year 2000.  

Forest and wildland fire managers have raised concerns over how these dead fuels will 

influence fire behavior and burn severity (Page et al. 2014). While research on beetle outbreak-

wildfire interactions has been conducted for quite some time (e.g., Geiszler et al. 1984; Lynch et 

al. 2006), more recent papers have focused primarily on physical fire modeling, involving 

hypothetical fuel conditions and parameters (Jenkins et al. 2012; Page et al. 2014; Hoffman et al. 

2015). Simulations conducted by Hoffman et al. (2012) found that sites where all susceptible 

trees were killed by MPB produced canopy consumption rates of 70% or more when compared 

to sites with no MPB-mortality. 

The subsequent criticism has been that conventional fire modeling techniques have produced 

inaccurate results as they assume the presence of live trees, instead of dead trees (Hicke et al. 

2012; Jenkins et al. 2012). Overestimates of canopy fuel consumed in simulations may likely be 

caused by modeling the fuels complex as a homogeneous layer (Hoffman et al. 2012). 

Limitations with physics-based models are likely to persist until current fire behavior models can 

be validated by data from accurate wildfire observations and/or experimental fires (Page et al. 
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2014). Although fundamentally different from fire modeling techniques, more research is 

emerging that incorporates post-fire data in analyses (Harvey et al. 2014a; Harvey et al. 2014b). 

To date, a general consensus on how insect-affected areas alter fire behavior or burn severity 

has not yet been achieved, which is an observation noted repeatedly in more recent studies 

(Hicke et al. 2012; Hoffman et al. 2012; Black et al. 2013; McCarley et al. 2017; Meigs et al. 

2016; Reiner 2017). The disparity in research outcomes may be rooted in the environmental 

differences caused by regional climatic conditions in addition to the varying methodologies and 

data sources employed by each study, in addition to limited sampling or the challenging nature of 

identifying proper study controls in stands that were unaffected by MPB that were similar to 

attacked locations (Hicke et al. 2012). The purpose of this study is to determine the effect of 

prior MPB outbreaks on subsequent fire severity. The study focuses on wildfires that occurred in 

the northern Rocky Mountains of Idaho and Montana in 2012 in areas that had experienced MPB 

outbreaks in the previous 12 years. The primary objective is to quantify the effects of recent 

MPB outbreaks on subsequent burn severity at the stand scale (i.e., 30 x 30 m), explicitly 

including the role of time-since-outbreak. Beetle outbreaks are classified as green/red stage (< 3 

years since outbreak), grey stage (3-5 years), and old-stage trees (> 5 years). Vegetation cover 

(percent canopy cover) and topographic factors (slope and aspect) are also analyzed. 

2. Background 

Climate change and forest management practices have directly and indirectly influenced 

forest disturbances, such as wildfires and insect outbreaks, resulting in rapid changes to forest 

ecosystems in the western United States over the past several decades (Agne et al. 2016; Meigs 

et al. 2016; Westerling 2016). Warming temperatures have led to an increase in bark beetle-

caused tree mortality over large regions, particularly in the Northern Rocky Mountains (Black et 
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al. 2013). Mountain pine beetles have affected 6.6 million hectares of coniferous forests in 13 

western states (Perrakis et al. 2014) over the past 25 years (Jenkins et al. 2012). Wildfire and 

bark beetle outbreaks are the two main drivers of tree mortality in the west, with insect-killed 

trees often surpassing annual wildfire acreage (Coleman et al. 2018), impacting more canopy 

area than wildfires in the western U.S. over the last thirty years (Hicke et al. 2016). 

A native insect in the western U.S., the MPB has been an important disturbance agent in 

coniferous forest ecosystems for thousands of years. The favored host tree of the MPB is the 

lodgepole pine, which usually grows in dense stands that tend to have stand-replacing fire 

regimes (Reiner 2017). At low population levels, MPBs attack mature, old, or weakened trees, 

which helps create a heterogeneous forest structure by altering age-class and species composition 

(Agne et al. 2016). Low-level outbreaks also facilitate the recycling of nutrients and allow 

understory vegetation to grow by creating openings in the canopy (Jenkins et al. 2012). Increased 

temperatures accompanied by dry conditions in recent decades have weakened otherwise 

resistant trees, and have allowed for MBP populations to grow more rapidly within and between 

growing seasons leading to widespread outbreaks that dramatically alter stand structure, 

composition, and fuels quantity (Jenkins et al. 2012; McCarley et al. 2017). 

Although the spatial and temporal overlap of beetle activity and wildfire are relatively 

infrequent, anecdotal evidence has shown that fire behavior has not followed modeled fire 

predictions when beetle outbreaks precede the occurrence of wildfire (Page et al. 2013). Oral 

accounts from fire fighters and fire specialists note unusual and extreme fire behavior within 

MPB-affected stands, such as canopy fuels igniting in the absence of surface fire, or low 

intensity surface fires that have initiated crown fires (Page et al. 2013). Both types of fire 

behavior contribute to rapid fire spread (Perrakis et al. 2014; Reiner 2017). Fire crews have also 
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reported heavy dead surface fuel build-up, prolific spotting, and trees that are more prone to 

uprooting or mid-tree breakage during fires than dead trees killed by other causal agents (Jenkins 

et al. 2012). Gaining a better understanding of how these linked disturbances behave is 

paramount to fire fighter safety and fire suppression management strategies (Page et al. 2013). 

Due to the spatial and temporal variability of bark beetle outbreaks, affected stands produce 

heterogeneous forest structure that contain trees in various stages of mortality, described by ‘time 

since outbreak.’ The needles of MPB-killed trees transition from green to red-stage within one 

year as photosynthetic activity ceases, gradually dropping their needles during the grey-stage 

between 3 to 5 years; trees are largely denuded of needles once reaching the old-stage beyond the 

fifth year (Perrakis et al. 2014). The time since outbreak impacts foliar moisture content, which 

is greatly diminished over time (Hicke et al. 2012). For example, foliar moisture content for 

lodgepole pine was approximately 109% in live trees compared to 12% for red-stage trees in 

Montana (Reiner 2017). This lowers the temperature threshold necessary for a surface fire to 

initiate crown fires and promotes spotting over greater distances (Jenkins et al. 2012; ; Reiner 

2017). 

The literature contains very few case studies of how bark beetle outbreaks have influenced 

subsequent fire behavior (Meigs et al. 2012; Harvey et al. 2014a; Harvey et al. 2014b; Agne et 

al. 2016)), and currently there is no general consensus on this particular disturbance interaction – 

a fact that has been noted in several past reviews (Hicke et al. 2012; McCarley et al. 2017; 

Reiner 2017). This is likely due to the variety of methodologies employed to analyze the effects 

of MPB on wildfire severity, or the inadequacies of the models used. Fuels were typically 

addressed by observational studies, while fire behavior was typically addressed by modeling 

studies (Hicke et al. 2012). Some simulations assume homogenous stands of live trees rather than 
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capturing the variability of foliar moisture and canopy bulk density found in stands of beetle-

killed trees (Hoffman et al. 2012; Jenkins et al. 2012; Perrakis et al. 2014).  A key metric of fire 

effects is burn severity, which is the qualitative measure of fire impacts on soils and above 

ground biomass. In subalpine forests, fire severity is typically directly related to fire intensity 

during a fire event, such that areas with high burn severity presented hazardous conditions for 

fire fighters during the event (Jenkins et al. 2012). Fire severity also dictates, in part, how a 

forest ecosystem recovers after a fire event (Keely 2009). 

2.1 Foliar Flammability and Chemistry 

Following a MPB attack, the foliage of the host lodgepole pine undergoes dramatic changes 

in moisture content and chemical composition as the tree transitions from initial decline to death. 

In the early green-attack/yellow stage (< 1 year since attack), crown fire potential increases as 

the desiccated needles are still retained in the tree canopy, persisting through the red-stage (< 3 

years since attack (Page et al. 2012). Dead and dying lodgepole pine foliage contains 

considerable amounts of volatile terpenes compared to live foliage, with attacked trees showing 

higher terpene emission rates within the first year, increasing flammability potential (Page et al. 

2012). As foliar moisture content continues to decrease following tree death, crown flammability 

increases. This increase in crown flammability remains high for another 2-3 years, the length of 

time it takes for the needles to fall from the tree (Jolly et al. 2012). 

Foliage samples collected from beetle-attack and non-attack lodgepole pine revealed that 

time-to-ignition was strongly influenced by time since beetle attack. When compared to non-

attack green foliage, yellow and red foliage showed shorter ignition times, reduced ignition 

temperatures, and higher heat yields (Page et al. 2012). Burn tests conducted in a controlled 



 

6 
 

laboratory environment showed that red needles ignited in an average of 13 seconds, compared 

to an average of 35 seconds for green needles. A model combining foliar moisture content, crude 

fat, and fiber explained 92% of the variation in time until ignition (Jolly et al. 2012). These 

results suggest beetle-attacked trees that still have most of their needles in the canopy may be at 

greater risk of crown fire initiation, as less heat energy is necessary to ignite canopy foliage. 

2.2 Modeled and Simulated Fire Behavior 

A number of improved simulation and modeling techniques have been developed that 

incorporate physics-based coupled fire/atmosphere interactions, in addition to accounting for 

heterogeneous fuel structure that results from variable MBP outbreak severity (i.e. percentage of 

trees killed). These simulation models found that in forest stands with dead canopy foliage, 

representing MPB-caused morality, canopy fuel consumption, crown fire intensity, and rate of 

spread all increased when compared to unaffected lodgepole pine stands (Hoffman et al. 2012; 

Perrakis et al. 2014). Results also suggest that pre-attack forest structure and outbreak severity 

influence crown fire behavior through the red-stage, where trees still retain dead needles and 

canopy bulk density remains largely unchanged. 

A strong linear relationship has been observed between modeled MPB outbreak severity, 

predicted canopy fuel consumption, and crown fire intensity; outbreak severity explained 67% of 

the variability in modeled canopy fuel consumption and 50% of the modeled crown fire intensity 

(Hoffman et al. 2012). Under moderate burning conditions, simulations predicted that fires 

would have spreading rates of 2.7 times higher on average during the first five years following 

MPB attack when compared to unaffected lodgepole pine stands (Perrakis et al. 2014). Surface 

fire rate of spread was also influenced by declines in canopy bulk density from needle fall, which 
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increased surface wind speeds. As crown foliage is reduced, it lowers the source of drag on wind, 

which can produce channelized wind flow when there is continuity in beetle outbreak (Hoffman 

et al. 2015). 

2.3 Empirical Observations 

One of the first studies to collect extensive field data on beetle-wildfire interaction evaluated 

several wildfires that occurred in 2011 throughout the Northern Rocky Mountain states of Idaho 

and Montana (Harvey et al. 2014b). Its findings included results that differed from predictions 

based on simulation models and fine-scale fire behavior observations and suggested that recent 

pre-fire MPB outbreak severity had very little impact on fire severity, as the primary drivers 

were extreme burning conditions and topography. Fire severity was largely unaffected under 

moderate burning conditions for both red stage (outbreak < 3 years before fire) and grey stage 

(outbreaks 3-10 years before fire). Under extreme burning conditions, red stage had few effects 

detected, while grey stage showed increases related to surface fire severity. 

Another beetle-wildfire study conducted by the same lead author examined wildfires that 

occurred in the Greater Yellowstone Ecosystem in 2008 and 2011 (Harvey et al. 2014a). This 

study found that pre-fire beetle outbreak severity was moderately linked to fire severity, with 

changes in strength and direction influenced by time since outbreak and burning conditions. 

Under moderate burning conditions, green-attack/red stage (0-2 years following beetle outbreak) 

showed that several fire severity measures increased with pre-fire MPB outbreak severity, while 

fire severity decreased with outbreak severity in the grey stage (3-15 years following beetle 

outbreak). During extreme burning conditions, the higher levels of pre-fire MPB outbreak 

severities were weakly associated for both red and grey stage. The Greater Yellowstone 
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Ecosystem beetle-wildfire interactions demonstrated that green-attack/red-stage canopy fire 

severity increased under moderate burning conditions, which were consistent with fuel property 

and fire simulation modeling. 

3. Methods 

3.1 Objectives 

The purpose of this study is to characterize the burn severity of MPB-killed stands, based on 

the concept of “time since outbreak”, to determine the effect of such fuels on burn severity; 

Hicke et al. (2012) found that time since outbreak was one of the factors that clearly caused 

variability in responses.  The unit of analysis is of the 30 x 30 m pixel. This variable will be 

combined with Existing Vegetation Cover (EVC) and the Slope-Cosine-Aspect Index (SCAI) to 

determine the relative influence of each in relation to burn severity. Birch et al. (2015) found that 

“bottom-up” inputs, such as vegetation and topography, have a greater influence on predicting 

burn severity than climate and weather; this finding was the reasoning for excluding fire weather 

as a variable for this study. The most important variable predicting burn severity was EVC, with 

the Slope-Cosine-Aspect Index (SCAI) coming in a distant second (Birch et al. 2015). This study 

examined 34 wildfire events that occurred in the Northern Rocky Mountains in Idaho and 

Montana during the 2012 fire season, within burned forested areas that had experienced a prior 

MPB-outbreak event (Figure 1). 
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Figure 1. Study area of central Idaho and western Montana showing the 34 fires from 2012. 

The primary objective is to quantify the stand-scale (i.e., 30 x 30m) effects of recent MPB 

outbreaks on subsequent burn severity, with explicit attention to the role of time since outbreak. 

Beetle outbreaks were classified as green/red stage (< 3 years since outbreak), grey stage (3-5 

years), and old-stage trees (> 5 years). Vegetation cover (percent cover) and topographic factors 

(slope and aspect) are also analyzed. 
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3.2 Data Sources 

3.2.1 Monitoring Trends in Burn Severity Program 

The Monitoring Trends in Burn Severity (MTBS) program maps the fire severity and 

perimeters of large wildland fires in the United States dating back to 1984. The MTBS program 

was initiated in 2006 by the Wildland Fire Leadership Council (WFLC), an interagency body 

with responsibility for implementing the National Fire Plan 

(https://www.forestsandrangelands.gov/resources/overview/), and it is jointly managed by the 

U.S. Geological Survey’s (USGS) Center for Earth Resources Observation and Science (EROS) 

and the U.S. Department of Agriculture Forest Service’s Remote Sensing Applications Center 

(RSAC). The USGS National Satellite Land Remote Sensing Data Archive is the primary 

repository for MTBS image data, which can be downloaded for free using the USGS Global 

Visualization Viewer (GloVis; http://glovis.usgs.gov/), developed by USGS EROS (Eidenshink 

et al. 2007). 

The MTBS program’s primary objective is to provide burn severity information necessary to 

analyze trends in national fire severity for the National Fire Plan over time. Secondary objectives 

include providing regional and sub-regional geospatial and fire-specific data to support resource 

management, monitoring, and research activities. The MTBS program divides the United States 

into regional zones that represent similar ecological conditions, mapping fires greater than 202 

hectares (500 acres) in the East, and 404 hectares (1,000 acres) in the West. As defined by the 

MTBS program, burn severity is the “degree to which a site has been altered or disrupted by fire; 

loosely, a product of fire intensity and residence time” (Eidenshink et al. 2007, 5), is a ‘map-

able’ product using remotely sensed imagery, and relates primarily to fire-effects on the 

vegetative biomass in the upper strata. Historical burn severity data have allowed agencies and 



 

11 
 

scientists to understand the immediate and long-term post-fire effects over a broad range of 

spatiotemporal scales in addition to interpreting the mosaic effects that occur within individual 

fire perimeters (Eidenshink et al. 2007). 

 The remotely sensed satellite imagery used for MTBS are from the Landsat library processed 

by the National Land Archive Production System (NLAPS; 

http://eros.usgs.gov/guides/images/landsat_tm/nlapsgeo2.html) at USGS EROS. The spectral 

response of individual fires is based on imagery collected by the Thematic Mapper (TM, Landsat 

4-5), Enhanced Thematic Mapper Plus (ETM+, Landsat 7), and Operational Land Imager (OLI, 

Landsat 8) spaceborne sensors. The principal geospatial output layers produced include the pre- 

and post-fire Normalized Burn Ratio (NBR), differenced NBR (dNBR), thematic burn severity 

classification, and dNBR-derived fire perimeters (Eidenshink et al. 2007). 

The USGS and Forest Service have used the NBR in fire severity mapping efforts since 2002, 

which has proven to be relatively accurate and cost effective (Eidenshink et al. 2007). Pre- and 

post-fire scene pairs are selected for each fire as close to peak gross primary production (GPP), 

or ‘peak of green’ conditions, that are as close to cloud-free as obtainable. Depending on the 

location’s latitude, this is generally between the months of April-July. The pre-fire image would 

be preferentially selected from the ‘peak of green’ period that same year the fire occurred. A 

suitable pre-fire substitute image would be from the year prior. The post-fire image should be 

selected from the growing season immediately following the fire, which is normally ‘peak of 

green’ the subsequent year. This extended assessment is ideal for forest and shrub ecosystems as 

it captures lagging first-order fire effects, such as delayed tree mortality, and ecologically 

significant second-order effects, such as initial post-fire vegetative response (Eidenshink et al. 

2007). 
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The NBR is calculated as follows: 

NBR = (
𝑁𝑁𝑁𝑁𝑅𝑅−𝑆𝑆𝑆𝑆𝑁𝑁𝑅𝑅2
𝑁𝑁𝑁𝑁𝑅𝑅+𝑆𝑆𝑆𝑆𝑁𝑁𝑅𝑅2

) 

where NIR is the near-infrared band (TM and ETM+, band 4; OLI, band 5) and SWIR2 is the 

shortwave infrared 2 band (all sensors, band 7). The NIR band is sensitive to chlorophyll content, 

which is highly reflective in live, healthy vegetation. The SWIR2 band is sensitive to water 

content, which is absorbed in vegetation with high moisture content (Miller and Thode 2007). 

The post-fire NBR image is subtracted from the pre-fire NBR to generate the differenced 

Normalized Burn Ratio (dNBR), which MTBS analysts will use to digitize fire perimeters 

(Eidenshink et al. 2007). A “relativized” dNBR (RdNBR) is also processed, which accounts for 

variable spectral signatures for high severity fires due to differences in pre-fire tree canopy 

density (Miller and Thode 2007). 

 The RdNBR is a thematic raster dataset with integer values associated with each 30 m pixel 

(Eidenshink et al. 2007). Positive values generally represent a negative change in greenness 

(mortality), while negative values generally indicate positive vegetative response (regrowth).  

Burn severity is then partitioned into seven discrete classes: 

Enhanced Regrowth, High (-550 to -251) 

Enhanced Regrowth, Low (-250 to -101) 

Unburned (-100 to 99) 

Low Severity (100 to 269) 

Moderate-low Severity (270 to 439) 

Moderate-high Severity (440 to 659) 

High Severity (660 to 1350) 
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3.2.2 Google Earth Engine (GEE) Data 

  A recent study leveraging the computational power of Google Earth Engine (GEE) 

produced burn severity classifications that were generally more accurate than those produced by 

the MTBS process (Parks et al. 2018). A cloud-based platform capable of planetary-scale 

geospatial analysis (Robinson et al. 2017), GEE maintains a multi-petabyte public catalog of 

commonly used remote sensing datasets, including the entire Landsat archive (Gorelick et al. 

2017). Rather than having to manually select individual pre- and post-fire imagery, which can be 

a very time-consuming process, the GEE procedure utilizes a mean compositing approach over a 

pre-specified date range (pre- and post-fire). All valid, cloud-free pixels are stacked, with the 

mean value of each pixel used to calculate the resulting burn severity layers. The process only 

requires a GIS-input shapefile containing polygons that delineate fire perimeters, which are 

freely available from the MTBS website for download. 

 Similar to the MTBS data, the GEE process creates NBR and dNBR layers.  However, an 

additional “offset” processing step is introduced before creating the RdNBR. The average values 

of all unburned pixels 180 m outside of the fire perimeter are calculated to produce a dNBRoffset 

layer. This intermediate step accounts for the differences in pixel value that is introduced due to 

variable phenology or precipitation between pre- and post-fire imagery. The GEE-based burn 

severity products generally achieve higher overall accuracy and correspondence to field data, and 

the RdNBR created from the “offset” approach yields even higher accuracies, especially when 

comparing multiple fires with different ignition dates (Parks et al. 2018). A link to the GEE code 

to implement these methods is provided by Parks et al. (2018). 

  



 

14 
 

3.2.3 Aerial Detection Survey (ADS) 

Insects and diseases have caused millions of hectares of defoliation and tree mortality in the 

U.S. annually. As directed by Congress, the USDA Forest Service’s Forest Health Protection 

(FHP) program conducts annual aerial detection surveys (ADS) to report forest conditions by 

mapping tree injury and mortality from insects, disease, or abiotic causes (Coleman et al. 2018). 

The ADS is one step in a multi-tiered approach to detect, evaluate, and monitor significant 

events or changes occurring in forested landscapes. Additional remote sensing and ground 

surveying techniques are also applied to complement the ADS, all of which are subjected to 

some degree of ground-truthing (Johnson and Wittwer 2008). 

Aerial surveying, or sketch-mapping, is a remote sensing technique to manually document 

forest change onto a map, and is primarily conducted during the summer months. The surveys 

are performed from high-winged aircraft capable of flying at relatively slow speeds 

(approximately 100 knots or 115 mph). Traditionally, a trained observer records affected areas 

onto a paper 1:24,000 scale USGS topographic base-map, delineating their sizes, shapes, and 

locations as accurately as possible. Attributes recorded include host (i.e., tree species), causal 

agent (insect species), symptom, outbreak severity, and percentage or number of trees affected. 

Practiced in the United States since the 1950s, aerial surveys have proven to be an efficient and 

cost-effective method to map and monitor disturbance agents over large forested areas (Johnson 

and Wittwer 2008). 

In recent years, the Forest Service’s Forest Health Technology Enterprise Team has designed 

and implemented a Digital Aerial Sketch Mapping (DASM) system that uses Global Positioning 

System (GPS)-enabled, touch-screen tablets. These novel technologies allow the observer to 
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quickly digitize polygons directly into the mapping software, which can later be downloaded and 

processed to create Geographic Information System (GIS) shapefile layer. The DASM system 

has also eliminated the need to hand-digitize the paper maps, a time-consuming post-processing 

phase necessary in order to create GIS datasets (Johnson and Wittwer 2008). 

Since the collection of ADS data is highly subjective, dependent upon the training and 

experience of the observer, the resulting data products are also highly subjective and variable. On 

average, an airborne observer has approximately 30 seconds per mile to recognize, classify, and 

record all of the disturbance activity they see in a swath about 1.5 miles wide (Johnson and 

Wittwer 2008). Ground-truthing of ADS data does occur, but due to time and budgetary 

constraints it is typically conducted on < 1% of data surveyed annually (Coleman et al. 2018). 

These factors introduce a number of limitations and possible errors associated with the ADS 

program. These include, but are not limited to the correct spatial location and extent of damage, 

or the accurate identification of existing damage. The ADS data have been recognized as 

reasonable input for coarse spatial-scale analysis (Egan 2014), best-suited for identifying trends 

rather than precise measurements (Johnson and Wittwer 2008). However, the data have also been 

used at finer-scales by many agencies, researchers, and land managers (Coleman et al. 2018). 

Recently, a study assessing ADS data collected between 2012 and 2014 found that the 

overall accuracy was > 70% when compared to ground-collected data (Coleman et al. 2018). 

Accurately identifying the biotic agent was highly dependent upon correctly identifying the tree 

species, which affected the accuracy of the polygon boundaries. This accuracy assessment 

encompassed all insect and pathogen types, of which phloem feeders (bark beetles) represented 

55% of all casual agents. Damage recorded as tree mortality, with the dominant damage-type 

(55%) largely attributed to bark beetles, achieved commission errors of only 2%. High overall 
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accuracies were achieved for recording damage type (97%), genera/forest cover type (96%), tree 

species (87%), and feeding guild or injury category (84%). 

While accuracy decreased when identifying damage agent species (70%), mountain pine 

beetle achieved low levels of commission error (10%). Since many insects and diseases are host-

specific, correct identification of the damaging agent is highly dependent upon the accuracy of 

observing the correct tree species. Thus, high levels of accuracy for MPB observations in the 

Rocky Mountain region is attributed to their host-specific preference of lodgepole pine, which 

also had high accuracy rates of identification. Introduction of the GPS-capable DASM system 

may be a contributing factor to high accuracies as it has enabled observers to spend more time 

mapping tree injury and mortality, rather than continually geo-referencing their location before 

recording their observations (Coleman et al. 2018). 

3.2.4 LANDFIRE Program 

Launched in 2004 by the Wildland Fire Leadership Council, the LANDFIRE program is a 

multi-agency initiative that produces consistent and comprehensive geospatial data products. 

Using an interdisciplinary, science-based approach, these 30-m resolution raster grid maps and 

data describe vegetation and wildland fuels across the United States, in addition to fire regimes 

and ecological departure from historical conditions. Jointly operated by the USDA Forest 

Service and USGS EROS, its purpose is to facilitate national and regional-level wildfire 

management planning and reporting. In particular, LANDFIRE supports the development of 

wildland fire suppression strategies, community and firefighter protection, and effectively 

allocating wildfire resources (Rollins 2009). 

 



 

17 
 

3.3. Analytical Methods 

Thirty-four fires from 2012 in northern Idaho and western Montana were examined using 

Environmental Systems Research Institute’s ArcGIS 10. The total areal extent of these fires 

covered 373,707 hectares (923,450 acres). Fire perimeter polygons from the MTBS program 

were used as inputs to create GEE-derived burn severity layers, with RdNBR as the final 

product. The ADS dataset was utilized to locate beetle outbreak areas, and these were merged 

and categorized as green/red stage (< 3 years since outbreak, 2010-2012), grey stage (3-5 years, 

2007-2009), and old-stage trees (> 5 years, 2000-2006). Only pixels with beetle-killed trees 

located within the burn perimeters were considered. Available ADS data for the study area dated 

back to 2000, and did not contain information related to outbreak severity. 

 The LANDFIRE 2010 version provided Existing Vegetation Type (EVT), Existing 

Vegetation Cover (EVC), Vegetation Disturbance (VDIST), slope, and aspect datasets. The EVT 

dataset was used as a base-layer to identify vegetation assemblages that contained lodgepole 

pine. This layer was then applied as a mask to the ADS data so that only pixels identified as 

having lodgepole pine were included in the analysis. This same mask was applied to the EVC 

layer, which provided cover-percentage data as a proxy for available surface fuels. The VDIST 

fire history data only went back to 1984, so this was supplemented with the fire history data 

available from the U.S. Forest Service Region 1, which dates back to the late-1800s. All areas 

that experienced fire within the last 79 years were excluded from analysis, as it takes 

approximately 80 years for lodgepole pines to reach the 20 cm (~8 in) diameter at breast height 

(1.4 m above the ground) that MPB prefer (Negron 2019). Non-vegetated areas, such as natural 

barren, water, and man-made features, were also excluded. Slope and aspect data were used to 

calculate the Slope-Cosine-Aspect Index. Higher values produced by this index indicate steeper 
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slopes and/or more northern-facing aspects, and it also likely approximates the effective moisture 

of fuels available to burn (Birch et al. 2015). 

Following Birch et al. 2015, random sampling points were generated for the entire study area 

using the 34 fire perimeters as boundaries without stratification, with 127.5 m established as the 

minimum distance in between points (Figure 2.). This distance prevents adjacent pixels from 

being selected, minimizing spectral mixing (or the adjacency affect, which can confound results) 

(Birch et al. 2015), and spatial autocorrelation. These points were used to extract data from the 

RdNBR, ADS, EVC, and Slope-Cosine-Aspect Index layers. Any pixels that had RdNBR < -550 

or > 1350 were removed, in addition pixels with EVC values of 0%. This left 49,385 sample 

pixels, or the equivalent of 4,445 hectares (10,984 acres). 
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Figure 2. Example of Google Earth Engine derived RdNBR layers and randomly sampled 

points in the Selway-Bitterroot Wilderness. 

4. Results 

The RdNBR values extracted from the 49,385 randomly sampled pixels ranged from -544 to 

1,345, with an overall mean value of 307 (Table 1, Figure 3). The mean RdNBR values were 291 

for pixels unaffected by MPB, 320 for green/red stage, 321 for grey-stage, and 361 for old-stage. 

All of these mean values fall within the range of moderate-low severity (270 to 439) on the 

RdNBR Burn Severity scale. When comparing the mean RdNBR values for each burn severity 

class and tree-type (e.g., low severity; grey = 186) to the total burn severity class RdNBR mean 

(low severity; total = 184), all categories that had at least 31 extracted pixels that were +/- 9 of 

the total mean. There was only one category (green/red, enhanced regrowth, high) that fell 
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outside of this (-73), but it had only five extracted pixels. Pixels unaffected by MPB were mainly 

classified in the unburned (24.8%), low (24.2%), and moderate-low (19.0%) burn severity 

categories, accounting for 57.0% of the burn severity for this lodgepole pine forest-type. Burn 

severity of green/red stage, grey-stage, and old-stage pixels were primarily classified as low 

(28.8%, 23.2%, and 22.7% respectively), moderate-low (21.6%, 21.6%, 20.4% respectively) and 

moderate-high (21.9%, 20.9%, and 20.6% respectively). As a whole, the low severity category 

contained the highest percentage of pixels (24.0%), followed by unburned (22.1%), moderate-

low (19.7%), and moderate-high (19.0%) severity. For pixels that fell within the high severity 

range, this accounted for 10.6% of unaffected pixels, 9.6% for green/red stage, 11.9% of grey-

stage, and 17.5% of old-stage. If MPB-caused mortality significantly affected burn severity, then 

one would expect that a greater proportion of pixels to burn at higher severity would be found 

during the earliest, green/red stage of beetle-kill, and gradually decline in severity as these trees 

transition to grey-stage, and then finally to old-stage. However, these results indicate that the 

opposite occurred. 
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Table 1. RdNBR burn severity classes. 

  

RdNBR Burn
Severity Classes

mean
RdNBR

# of
pts %

mean
RdNBR

# of
pts %

mean
RdNBR

# of
pts %

mean
RdNBR

# of
pts %

mean
RdNBR

# of
pts %

Enhanced Regrowth,
High (-550 to -251) -352 237 0.7% -429 5 0.2% -354 63 0.8% -365 79 1.1% -356 384 0.8%

Enhanced Regrowth,
Low (-250 to -101) -151 848 2.6% -144 31 1.5% -149 187 2.4% -159 196 2.8% -152 1262 2.6%

Unburned
(-100 to 99) 16 8038 24.8% 19 341 16.4% 12 1506 19.2% 13 1053 14.9% 15 10938 22.1%
Low Severity
(100 to 269) 183 7847 24.2% 185 600 28.8% 186 1813 23.2% 184 1603 22.7% 184 11863 24.0%

Moderate-low
Severity (270 to 439) 351 6150 19.0% 350 450 21.6% 352 1693 21.6% 352 1440 20.4% 351 9733 19.7%

Moderate-high
Severity (440 to 659) 542 5865 18.1% 547 455 21.9% 542 1632 20.9% 543 1451 20.6% 542 9403 19.0%

High Severity
(660 to 1350) 795 3434 10.6% 746 200 9.6% 783 930 11.9% 809 1238 17.5% 794 5802 11.7%

291 32419 100.0% 320 2082 100.0% 321 7824 100.0% 361 7060 100.0% 307 49385 100.0%

unaffected by MPB green/red grey old total
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Figure 3. RdNBR of unaffected and MPB-killed time since outbreak classes. Note: Boxplot 
values shown (top-to-bottom are maximum, 75th percentile, median, mean (numeric value is 
written in front of symbol “X”), 25th percentile, and minimum. RdNBR values: Enhanced 
Regrowth, High (-550 to -251), Enhanced Regrowth, Low (-250 to -101), Unburned (-100 to 99), 
Low Severity (100 to 269), Moderate-low Severity (270 to 439), Moderate-high Severity (440 to 
659), High Severity (660 to 1350). 

The majority of the existing vegetation cover burned at moderate-low severity, ranging from 

RdNBR values of 270 to 439 (Table 2, Figure 4). The 30% EVC class contained the highest 

proportion of pixels (29.0%), with all four tree-types having the highest percentage EVC in this 

category. This was followed by 40% EVC (21.6%), and 20% EVC (20.5%), accounting for 

71.1% of all EVC percentages. All tree-types had their lowest RdNBR values in the 10% and 

20% EVC categories, with an overall average of -64 (unburned) and 117 (low severity), 
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respectively. While covering a smaller areal extent (2.4%), 90% EVC displayed the highest 

RdNBR (1335), followed by 80% EVC (989), and 70% EVC (764). All three of these RdNBR 

values fell within the high severity (660 to 1350) range. The 30% EVC, and 60-80% EVC 

categories displayed an increasing RdNBR trend when progressing from unaffected, green/red, 

grey, to old-stage pixels, with old-stage pixels demonstrating the highest RdNBR values for all 

four of these EVC% categories. 

Table 2. Existing Vegetation Cover 

 

 

 

 

 

EVC %
mean

RdNBR
# of
pts %

mean
RdNBR

# of
pts %

mean
RdNBR

# of
pts %

mean
RdNBR

# of
pts %

mean
RdNBR

# of
pts %

10%-20% -85 3694 11.4% 0 142 6.8% 0 627 8.0% 4 450 6.4% -64 4913 9.9%
20%-30% 84 6934 21.4% 160 339 16.3% 177 1332 17.0% 207 1496 21.2% 117 10101 20.5%
30%-40% 336 8855 27.3% 474 624 30.0% 521 2096 26.8% 615 2756 39.0% 423 14331 29.0%
40%-50% 496 6214 19.2% 49 544 26.1% 183 2057 26.3% 369 1837 26.0% 391 10652 21.6%
50%-60% 430 3347 10.3% 72 259 12.4% 153 1114 14.2% 233 435 6.2% 335 5155 10.4%
60%-70% 391 2271 7.0% 554 149 7.2% 610 555 7.1% 660 50 0.7% 444 3025 6.1%
70%-80% 752 868 2.7% 866 21 1.0% 873 39 0.5% 885 30 0.4% 764 958 1.9%
80%-90% 974 228 0.7% 1187 4 0.2% 1236 4 0.1% 1265 6 0.1% 989 242 0.5%

90%-100% 1335 8 0.0% 0.0% 0.0% 0.0% 1335 8 0.0%
291 32419 100.0% 320 2082 100.0% 321 7824 100.0% 361 7060 100.0% 307 49385 100.0%

totalunaffected by MPB green/red grey old
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Figure 4. Mean RdNBR values for each existing vegetation cover class (EVC, %). RdNBR 

values: Enhanced Regrowth, High (-550 to -251), Enhanced Regrowth, Low (-250 to -
101), Unburned (-100 to 99, Low Severity (100 to 269), Moderate-low Severity (270 to 
439), Moderate-high Severity (440 to 659), High Severity (660 to 1350). 

 
In examining the Slope-Cosine-Aspect Index (SCAI), the majority of the sampled pixels 

were located on shallow-sloped northern (27.7%; SCAI 0 to 15.0) and southern (27.1%; SCAI -

15.0 to -0.1) aspects, which had average RdNBR values of 394 (moderate-low severity) and 173 

(low severity), respectively (Table 3, Figure 5). Overall, the RdNBR values increased the 

steepest southern facing slopes, transitioning to shallow south and north-facing slopes, and then 

to the steep northern slopes, which displayed the highest RdNBR figures. Southern facing slopes, 

those with negative SCAI values, all had lower RdNBR values when compared to those with 
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positive SCAI values on the north-facing slopes. The steepest south-facing slopes with negative 

SCAI values of -60 to -45.1 showed RdNBR values of enhanced regrowth, high (-550 to -251), 

with a mean of RdNBR -521. All tree-types within this index range reflected this, with the 

exception of old-stage pixels, which had a value of 0, indicative of unburned conditions (-100 to 

99). The remaining three south-facing slopes made up 49.3% of all pixels, showing RdNBR 

values of: 1) -170 (SCAI -45.0 to -30.1; enhanced regrowth, low), 2) 3 (SCAI = -30.0 to -15.1; 

unburned), and 173 (SCAI -15.0 to -0.1; low severity). Accounting for approximately 22.8% of 

the pixels examined, the three steepest north-facing slope indices had RdNBR values of 638 

(SCAI 15.1 to 30.0; moderate-high severity), 902 (SCAI 30.1 to 45.0; high severity), and 1,306 

(SCAI 45.1 to 60.0; high severity). 

Table 3. Slope-Cosine-Aspect Index 

 

 

 

SCAI
mean

RdNBR
# of
pts %

mean
RdNBR

# of
pts %

mean
RdNBR

# of
pts %

mean
RdNBR

# of
pts %

mean
RdNBR

# of
pts %

-60 - -45.1 -519 23 0.1% -545 1 0.0% -546 1 0.0% 0 0 0.0% -521 25 0.1%
-45.0 - -30.1 -156 1536 4.7% -135 58 2.8% -228 188 2.4% -416 50 0.7% -170 1832 3.7%
-30.0 - -15.1 10 6370 19.6% 48 420 20.2% 0 1455 18.6% -58 895 12.7% 3 9140 18.5%
-15.0 - -0.1 159 8035 24.8% 206 547 26.3% 194 2214 28.3% 194 2584 36.6% 173 13380 27.1%

0 - 15.0 355 8343 25.7% 394 571 27.4% 412 2230 28.5% 506 2555 36.2% 394 13699 27.7%
15.1 - 30.0 606 6519 20.1% 625 421 20.2% 660 1516 19.4% 827 934 13.2% 638 9390 19.0%
30.1 - 45.0 884 1571 4.8% 830 63 3.0% 994 220 2.8% 1196 41 0.6% 902 1895 3.8%
45.1 - 60 1304 22 0.1% 1300 1 0.0% 0 0 0.0% 1345 1 0.0% 1306 24 0.0%

291 32419 100.0% 320 2082 100.0% 321 7824 100.0% 361 7060 100.0% 307 49385 100.0%

unaffected by MPB green/red grey old total
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Figure 5. Mean RdNBR for each Slope-Cosine-Aspect Indexclass. RdNBR values: Enhanced 

Regrowth, High (-550 to -251), Enhanced Regrowth, Low (-250 to -101), Unburned    
(-100 to 99, Low Severity (100 to 269), Moderate-low Severity (270 to 439), Moderate-
high Severity (440 to 659), High Severity (660 to 1350). 

 
5. Discussion 

Forest areas that experienced beetle-attack less than three years prior are generally believed 

to be at greater risk of fire ignition and high fire intensity, a characteristic that is associated with 

high burn severity. The proposed mechanism for this prediction is the change in moisture content 

and chemical composition of dead and dying needles on beetle-killed trees. These trees start to 

rapidly shed their needles approximately three years after MBP attack which have turned grey at 
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this point, gradually reducing its canopy bulk density. By year five, the trees are completely 

denuded. Based on these processes, a reasonable prediction is that fires would burn with higher 

burn severity in forests in the early stages of beetle-caused mortality, burn with lower severity as 

these trees transition to grey-stage, and then finally burn with the lowest severity once 

transitioning to old-stage. Declines in canopy bulk density from needle fall may also lead to 

increased burn severity, as reduced crown foliage lowers the source of drag on wind, producing 

channelized wind flow when there is continuity in beetle outbreak, while also increasing surface 

fuels. However, the results observed in this study indicate that the opposite occurred: a greater 

proportion of forests over five years after a MBP outbreak (17.5%) burned in the high severity 

range, compared to forest in the grey stage (11.9%), green/red stage (9.6%), or unaffected stands 

(10.6%). This could possibly be linked to the disparity in sample sizes among different time 

since outbreak classifications and stands that were unaffected by MPB-outbreaks (49,385 total 

pixels), as the MPB-killed pixels (16,966 pixels or 34.4% combined) accounted for significantly 

lower point-total when compared to unaffected pixels, which made up 65.6% (32,419 pixels). 

Green/red stage represented 4.2% (2,082 pixels), 15.8% for grey-stage (7,824 pixels), and 14.3% 

for old-stage (7,060 pixels).  

Another potential explanation for the higher burn severity values found in old-stage stands is 

the change of understory growth rate and structure following a MPB outbreak. Surviving canopy 

and sub-canopy lodgepole pine also experience enhanced growth rates, particularly in stands 

with higher MPB outbreak severity (Amoroso et al. 2013), but younger age-classes of understory 

lodgepole pine were found to be the most responsive following an outbreak (Hawkins et al. 

2013). As the outbreak gradually reduces the overstory canopy cover, the understory begins to 

experience accelerated growth driven by an increase of sunlight and water availability, which can 
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promote the growth of understory vegetation (Moritz et al. 2012). Once the old-stage begins 

when the dead trees are completely bare of needles, the understory experiences increased 

productivity, which could last 10-20 years following the disturbance (Amoroso et al. 2013). The 

needles add to the fine fuel accumulation on the forest floor. Also, the dead trees begin to fall 

over due to windfall or decay within five years of outbreak (Hicke et al. 2012), adding to the 

build-up of woody fuels on the forest floor. All of these factors may help establish understory-

canopy continuity, acting as efficient ladder fuels to ignite the canopy (Hicke et al. 2012), which 

is associated with high burn severity. 

 One variable that was not available in the most recent version of the ADS data was outbreak 

severity, which had been available for previous studies. Harvey et al. (2012) found variable 

influence of outbreak severity over two different studies. One study suggested that outbreak 

severity affected few measures of fire severity (Harvey et al. 2014b), while the other found that 

outbreak severity was linked to fire severity, but that it was dependent on outbreak stage, with 

fire severity significantly higher in stands in the early stages of the outbreak (Harvey et al. 

2014a). It is recommended for future studies to investigate the influence of outbreak severity on 

burn severity once these data are again made available.  

Also, it is suggested that vegetation indices, such as Normalized Difference Vegetation Index 

(NDVI) or Red-Green (RGI) Index be investigated to assess their utility in determining 

understory vegetation growth. An initial attempt was made to use NDVI or RGI in locating 

MPB-killed stands in a portion of the study area, but the results yielded were inconclusive. 

Testing for spatial autocorrelation and multiple linear regression for each variable should also be 

investigated further. Moran’s I tests and multiple linear regression modeling were attempted 

during this study, but they yielded results that were statistically insignificant. 
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6. Conclusion 

Time since outbreak and vegetation cover were more important influences on burn severity 

compared to topography (i.e., the slope-cosine-aspect index) across the 34 fires sampled in 2012. 

The findings indicate that old-stage stands had the highest burn severity of the three MPB-killed 

stand age classes, where it was initially expected that to have the lowest. This may be attributed 

to a smaller sample size of MPB-killed stands when compared to unaffected stands, or changes 

in understory growth rate and structure following a MPB outbreak. Enhanced productivity may 

increase understory flammability, while also establishing understory-overstory continuity, 

connecting ladder fuels that ignite canopy fires associated with higher burn severity. Hicke et al. 

(2012) suggested that in grey and old stage trees, increased surface fuel loads increase surface 

fire probability, and may decrease crown fire probability due to a reduction in canopy bulk 

density. But, increased torching potential may occur following increased surface fuel loads. As 

more outbreak areas continue to transition to old-stage, understanding the dynamics that drive 

burn severity in these areas (including green/red stage and grey-stage) will be important in 

maintaining firefighter safety, wildfire management planning, and anticipating ecological impact. 

It is suggested that future studies incorporate MPB outbreak severity in their analysis, if these 

data again become available through the ADS program, in addition to investigating the influence 

of rapid understory growth following MPB outbreaks and fire weather conditions. 
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