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ABSTRACT 

Touzel, Steven, M.S., Summer 2013      Geography 

Mapping the Distribution and Abundance of Western Larch (Larix Occidentalis Nutt.) 

with Multi-Temporal Satellite Imagery and Gradient Modeling 

Committee Chair: David Shively and Zachary Holden 

Western larch (Larix occidentalis Nutt.) is one of three native North American 

larch species, it occupies the mountainous regions of northwestern North America, and it 

is a deciduous conifer.  Western larch is among the most ecologically and economically 

important conifer tree species in the northern Rockies region.  This study explores the 

viability of mapping western larch via the analysis of multi-temporal Landsat imagery 

and gradient modeling.  Larch presence and abundance data from 300 field plots 

correlated with Normalized Difference Vegetation Index seasonal change (NDVIsc) 

explains 46% of the variability in larch basal area.  Multivariate models built with 

NDVIsc and additional climatic and topographic variables only slightly improved the 

models.  These satellite imagery based models suggest that western larch tends to occur 

primarily on shaded, north-facing slopes within the study area.  This analysis was 

contrasted with a gradient modeling approach using data from 4800 Forest Inventory 

and Analysis plots and a suite of fine scale (30-60 m) topographic and climatic data as 

predictors.  These models correctly predicted larch presence with error rates of less than 

20%.  Presence or absence of western larch was found to be strongly dependent on 

minimum temperature and water balance variables (soil moisture deficit and actual 

evapotranspiration).  Probability prediction rasters produced with these data also showed 

a noticeable northern aspect tendency.  The accuracy of the remote sensing based 

models suggest that the method may be applied to other areas, and the output from both 

model types points to a strong relationship between larch presence and fine scale 

topographic and climatic factors, especially as they interact to affect soil moisture. 
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1. Introduction 

 1.1. Larix occidentalis Nutt. 

 Western larch (Larix occidentalis Nutt.) is one of the most ecologically and 

economically important conifer tree species in western North America. It is a seral, 

shade intolerant, long lived, and deciduous species of pine with a life span of 400 to 900 

years, and the largest of the Larix genus (Schmidt & Shearer, 1991).  It can grow as fast 

as four feet in one year, and produces high density mature wood after only 15 years 

making it the most productive and economically important of the three native North 

American larch species (Parent, Mahoney, & Barkley, 2010).  Western larch normally 

reaches 30 to 55m in height and a diameter at breast height (DBH) of 1 to 1.5 m, 

occasionally exceeding 60 m in height and two meters in diameter (Eckenwalder, 2009). 

Western larch is the only native North American larch species to offer high 

timber values and desirable silvical attributes that make it an economically attractive and 

profitable species (Schmidt, Shearer, & Roe, 1976).  It occupies an estimated 2.5 million 

acres in its U.S. range with an estimated volume of saw timber of 30.3 billion board feet; 

over half of the total acreage and board feet is found in western Montana.  Economically, 

the wood products industry is heavily reliant on the species, and annual volume of larch 

harvest is second only to Douglas-fir in volume cut in the northern Rockies region 

(Schmidt et al., 1976).  Breeding programs for larch have been in place since the 1980s 

(Rehfeldt & Jaquish, 2010) emphasizing the need for a predictive model for larch 

abundance as opposed to only larch presence, as well as an improved understanding of 

the interactions between western larch and the patterns of environmental conditions 
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suitable for growth.  The ability to locate areas where larch is most abundant could 

improve breeding programs by informing managers of the environmental conditions that 

are most likely to increase seedling survival rates. 

 The range of western larch is limited to relatively moist and cool climate zones 

of the upper Columbia River basin of northwestern Montana, northern and west central 

Idaho, northeastern Washington, southeastern British Columbia, along the east slopes of 

the Cascade Mountains in Washington and northern Oregon, and in the Blue and 

Wallowa Mountains of southeastern Washington and northeastern Oregon (Figure 1) 

(Schmidt & Shearer, 1991). 

 

Figure 1. Western larch extent (Little, 1971), Forest Service Region 1 and Remote 

Sensing study area. 

 

Growing best in the cool climates of the Northern Rocky Mountain slopes and valleys, 
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larch is often found on northeast facing slopes on deep and well drained Inceptisol and 

Alfisol soils (Schmidt et al., 1976, Larsen, 1916, 1925, Shearer, 1961).  It grows in a 

wide range of elevations from 600 to 1600 meters (Eckenwalder, 2009), growing at 

higher elevations along its southern geographic extent, while low temperatures prevent 

its migration upward in areas farther north (Barbour, Burk, & Pitts, 1980).  It most often 

forms an admixture with its common site associates, consisting of: ponderosa pine 

(Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), grand fir (Abies grandis), 

western white pine (Pinus monticola), western red cedar (Thuja plicata), western 

hemlock (Tsuga heterophylla), Engelmann spruce (Picea engelmannii), subalpine fir 

(Abies lasiocarpa), and mountain hemlock (Tsuga mertensiana) (Schmidt & Shearer, 

1991). 

 Western larch is dependent on frequent forest fire to reduce competition.  As a 

result of thick bark and characteristic high branching, mature larch are among the most 

fire resistant trees in the northern Rockies (Schmidt & Shearer, 1991).  Fire also thins 

stands, prepares seedbeds, and produces open canopy environments that allow seral 

species such as western larch to outperform competitor species, producing increasingly 

pure stands with increasing frequency of fires (Schmidt & Shearer, 1991).  The speed at 

which larch recolonizes burned areas also helps to protect watersheds from prolonged 

erosion associated with such disturbances (Schmidt & Shearer, 1991).  As a result of the 

standard practice of fire prevention and suppression in North American forests, pure 

stands of western larch are infrequent as less fire resistant species have expanded into 

these areas (Schmidt & Shearer, 1991, Powers, Adams, Joslin, & Fiske, 2005).   

 Western larch is a resilient species and generally insect and disease resistant.  
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Larch is resistant to windthrow due to its extensive root system and loses few branches 

resulting from the accumulation of snow during winter due to its deciduous nature 

(Schmidt & Shearer, 1991).  It is generally unaffected by pine beetles.  Dwarf mistletoe 

(Arceuthobium laricis), a parasitic plant, represents the greatest non-climatic disturbance 

to larch growth as it can reduce seed viability, limit growth, causes burls, brashness, 

weakens trees which enables further attacks by disease and insects, and in some cases 

causes mortality (Schmidt et al., 1976, Schmidt & Shearer, 1991). 

 As a deciduous conifer, larch has distinctive physiological and morphological 

characteristics that make it unique among other conifers that share its range.  Western 

larch provides an aesthetically pleasing addition to the landscapes of the Northwest.  The 

seasonal changes in its foliage present a major contrast in color even in stands in which 

larch is a small component.  Newer, bright green needles begin to appear in May and 

June, becoming darker green during the summer, and turn bright yellow and senesce in 

September and October.  Mature larch also contribute to wildlife diversity by providing 

habitat for pileated woodpeckers and other cavity nesters as well as food supply for 

squirrels, deer, elk, bears, and moose (Schmidt et al., 1976; McClelland & McClelland, 

1999). 

Western larch has distinctive physiological characteristics resulting primarily 

from its deciduous growth habit.  It produces more photosynthetic leaf surface area each 

year than any other coniferous tree of a given size class (Eckenwalder, 2009), and leaves 

also have a relatively large specific leaf area (Gower & Richards, 1990).  In terms of 

growth rates, this combination of factors has the useful consequence of allowing larch to 

assimilate more carbon via higher photosynthetic rates (Gower & Richards, 1990, 
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Eckenwalder, 2009).  However, this also requires a relatively large amount of water and 

growth rates become limited when soil moisture is scarce (Higgins et al., 1987).  While 

western larch has the ability to germinate under a wide variety of conditions, even at the 

dry end of its range (Oswald & Neuenschwander, 1993), higher surface temperatures on 

south and west facing exposures decrease moisture availability which reduces seedling 

survival.  These physiological and growth characteristics of western larch, combined 

with its inability to tolerate shade, limits the distribution of larch to relatively mesic sites 

and establishment of stands to post disturbance, open canopy areas (Schmidt et al., 1976, 

Schmidt & Shearer, 1991). 

There is growing concern among scientists and land managers about the 

persistence and spatial redistribution of vegetation given rapidly warming climate.  The 

predictions of Rehfeldt and Jaquish (2010) suggest that the suitable habitat of western 

larch may face drastic changes in the coming century.  Compounding these possible 

changes are results derived from a study concerning climate change and Siberian larch in 

which Shuman, Shugart, and O’Halloran (2011) establish that the genus may have 

important feedbacks to the earth’s climate system.  The study presented evidence that 

larch forests increase albedo over an area as the loss of needles during winter results in a 

reduced obscuring of snow build up beneath the canopy.  This leads to an increase in 

albedo from 0.16 in non-deciduous dominated cover to 0.26 in areas of larch dominated 

cover.  Due to its possible response to changes in climate as well as its ecological and 

economic value, western larch represents an important species for investigation. 

1.2. Mapping and Modeling of Species Distribution and Abundance 
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In the past decade, classifying the presence or absence of tree species via the 

analysis of remotely sensed imagery has become increasingly prevalent (e.g., Pfeffer, 

Pebesma, & Burrough, 2003, Krishnaswamy, Kiran, & Ganeshaiah, 2004, Zimmermann, 

Edwards, Moisen, Frescino, & Blackard, 2007, Buermann et al., 2008, Maignan, Breon, 

Bacour, Demarty, & Poirson, 2008, Narayanaraj, Bolstad, Elliott, & Vose, 2010, 

Sanchez-Azofeifa et al., 2011).  Increased quality of data and availability of data are the 

main drivers of this trend, and this has led to new and improved species distribution 

modeling predictor variable datasets in otherwise un-surveyed areas (Gould, 2000; 

Nagendra, 2001, Turner et al., 2003, Buermann et al., 2008).  A parallel evolution has 

also occurred in modeling methodologies, increasing model prediction validity while 

using relatively small sample datasets through the implementation of such methods as 

non-parametric computer learning or neural network methods (Pandit, Hayward, Leeuw, 

& Kolasa, 2010, Cutler et al., 2007).  As a result, species distribution models (SDM) are 

utilized more and more often as tools for assessing and motivating environmental 

conservation and management (Pandit et al., 2010). 

Satellite imagery can provide high resolution temporal and reflectance 

information that can be analyzed for spectral signatures, phenological events (e.g., 

seasonal senescence, bud burst, and flowering), and canopy biomass which are often 

unique among tree species (Franklin & Miller, 2009).  Within coniferous forests, 

species-level discrimination can be difficult as many species are not easily 

distinguishable via phenology (e.g., most do not senesce), spectral signature, or canopy 

biomass.  Because western larch is a deciduous conifer it represents a unique exception 

to the common traits of coniferous trees making it a prime candidate for classification 
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via the analysis of remotely sensed imagery.  The deciduous nature of western larch may 

be exploited in this case by applying seasonal change detection methods to vegetation 

metrics within coniferous forests.  The change in larch needle presence causes a large 

shift in photosynthetic activity that is detectable with green biomass metrics such as the 

normalized difference vegetation index (NDVI) derived from remotely sensed imagery.  

The ability to detect changes in vegetation indices (VI) metrics over the yearly cycle of 

larch growing period to senescence period was pioneered in a study conducted by 

Busetto et al. (2010) concerning European larch (Larix decidua).  The study utilized the 

time series of 250 meter resolution Moderate Resolution Image Spectroradiometer 

(MODIS) NDVI data to monitor larch phenology and found strong correlations between 

larch senescence and NDVI change.  However, the study did not attempt to extrapolate 

these correlations to map larch abundance.  Additionally, the relatively coarse spatial 

resolution of MODIS data could limit its utility for detecting larch in mixed species 

stands and in topographically complex and heterogeneous environments.  

Previous studies’ attempts to establish the spatial distribution of western larch in 

western North America have been based on bioclimatic characteristics such as 

temperature, precipitation, freezing dates, combinations of temperature and precipitation 

related metrics (Rehfeldt & Jaquish, 2010), and soil characteristics (New, 1999).  These 

two studies, respectively, utilized relatively coarse resolution (1km resolution) datasets 

and study areas that neglected the majority of western larch habitat (only including 

south-eastern British Columbia). 

It is important to note that the mountainous regions which western larch inhabits 

are subject to significantly complex spatial variation in climate as well as other 
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environmental factors.  This can substantially alter the regularity of environmental 

conditions even at a relatively fine scale.  Precipitation, soil characteristics, amount of 

incident solar radiation, and temperature ranges vary due to multiple factors associated 

with the topographically complex regions of north western North America.  In these 

areas, vegetation is dependent on variables that operate on sub-kilometer scales, thus 

conclusions drawn from models based on predictor variables at kilometer scales may be 

erroneous or at least over-simplified (Pandit et al., 2010).  Errors associated with 

modeled species distributions using coarse-scale datasets, when compared with more 

informed models, can lead to misinterpretation of species-environmental variable 

correlations and subsequent mismanagement of species (Pandit et al., 2010).  Strahler, 

Logan, and Bryant (1978) cite indirect gradients such as fine scale topographic 

parameters as strongly influencing vegetation composition.  Other studies have also 

shown that topographically complex regions create considerable uncertainty in the 

extent of vegetation change due to climate change (Bartlein, Whitlock, & Shafer, 1997), 

and that finer scale climatic factors (direct and resource gradients) are of importance to 

tree establishment (Baker, 1995).  Topographic variation has a significant influence on 

direct and resource gradients through such interactions as elevation on temperature and 

precipitation, and slope angle and aspect with radiation, soil moisture, soil development, 

and wind exposure (Franklin, 1995, Baker, 1995).  These factors combine to create 

considerable variation within kilometer-scale climate model grid cells, which become 

visible as distinct changes in forest vegetation at sub-kilometer spatial scales (Lutz, 

Wagtendonk, & Franklin, 2010). 

Western larch seedlings are particularly dependent on topographic variation 
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through its effect on radiation and temperature levels as they influence available soil 

moisture (Oswald & Neuenschwander, 1993).  Thus, due to the interactions between 

complex terrain and direct and resource gradients, it is beneficial to utilize finer 

resolution data.  Previous studies have shown that macro-scale climatic predictors do not 

perform well at fine scales, and that SDMs which include fine scale predictors produce 

superior model performance (Franklin &Miller, 2009). 

The goal of the present study is to assess the potential for mapping the 

distribution and abundance of western larch using multi-temporal Landsat TM 5 

imagery, in conjunction with interpolated climatic and topographic variables.  Seasonal 

needle loss should result in large decreases in greenness relative to other species, which 

should be detectable in the near infrared portion of the electromagnetic spectrum.  The 

analysis of multi-temporal remotely sensed data to produce a western larch distribution 

map has not previously been attempted, and the moderately high (30m) resolution of 

Landsat imagery should provide further insights into the topographic influences on the 

distribution of the species. The results of remote sensing-based models are compared 

with a more traditional gradient modeling approach employed in this study using Forest 

Inventory and Analysis (FIA) plot data, developed without satellite-derived predictors. 

This gradient modeling process takes a more direct route in attempting to 

improve upon the previous attempts by Rehfeldt and Jaquish (2010) by incorporating 

fine scale (30-60 meter) climatic, topographic, and water balance parameters to predict 

the probability of the presence of larch within the study area.  This process essentially 

investigates the patterns that exist between western larch locations and generalized 

ecological conditions present over a large portion of the western larch range in the 
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contiguous United States through the use of FIA plots.  The FIA plot data are a much 

larger dataset which covers the range of western larch habitat within United States 

Forest Service (USFS) Region 1 (Figure 1), and the systematic sampling methods which 

were utilized to produce them reduce bias.  Though both methods seek to improve the 

knowledge of the spatial distribution of the species in a spatially heterogeneous 

environment, building a model based strictly on environmental gradients will allow for 

the prediction of the fundamental niche as determined by the range of environmental 

conditions within which larch currently exists (realized niche) (Franklin & Miller, 2009, 

Lomolino, 2006).    
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2. Materials and Methods 

2.1. Study Site 

The modeling of larch presence and abundance using multi-temporal satellite 

imagery was conducted on portions of the Lolo and Flathead National Forests in western 

Montana, contained within Landsat Thematic Mapper (TM) scene Worldwide Reference 

System (WRS) path: 41, row: 27 (Figure 2). 

 
Figure 2. Remote Sensing Study area.  Located in western Montana, with original model 

building samples and validation sample locations shown in the Nine Mile Valley area in 

the west and the Seeley-Swan Valley in the east. 
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The predictions of western larch presence and abundance are calculated over an area 

covering approximately 10,500 km
2
 encompassing a large portion of the western larch 

range of western Montana.  The interaction of large-scale climate patterns, geologic 

events and subsequent landforms have produced a complex pattern of ecosystems in this 

region as climate, soils, and vegetation vary considerably even over small distances.  

The continental climate within this zone ranges from dry cool temperate, wet cool 

temperate, to subalpine boreal.  The general climate pattern of this region is represented 

by cold to mild wet winters and warm dry summers.  Forests are predominantly 

coniferous and species vary according to local environmental factors and disturbance 

history.  Elevations range from 700 to 3,000 meters and this accounts for a majority of 

the climatic, soil, and vegetation differences.  Annual precipitation in this region varies 

with elevation, ranging from 27 cm in lower elevation valleys to 97 cm at higher 

elevations.  Ponderosa pine (Pinus ponderosa), Douglas fir (Pseudotsuga menziesii), and 

western larch are common at low-to mid-elevations, while lodgepole pine (Pinus 

contorta), Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) 

occur at higher elevations. 
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2.2. Field Data Collection 

Field data of western larch presence and abundance were collected over a 3 

month period from May to August, 2012.  Sampling was conducted in two general areas, 

220 of 300 samples were located in Nine Mile Valley, approximately 30 km west of 

Missoula.  An additional 80 samples were located in the Seeley-Swan Valley (Figure 2), 

approximately 50 miles east of Missoula.  Sample plots were selected purposively at 

sites that were relatively accessible by forest roads.  To reduce edge effects, sample plots 

were located at least 50 meters from roads or trails.  Plot sample sites were separated by 

at least 50 meters to prevent the overlap of data extracted from 30 meter resolution 

topographic and climatic layers, and Landsat TM imagery.  Information gathered 

included: counts of the presence of all tree species; ocular estimates of the percent 

presence of deciduous plant material at levels of 0-1 meter, 1-5 meters, sub-canopy, and 

canopy; ocular estimates of percent canopy cover; latitude and longitude; and 

photographs of views from the center of the plot facing north and west.  The abundance 

of trees in each plot was estimated using variable radius sampling, and presence of a tree 

within a plot was determined via the use of a Spiegel Relascope using a basal area factor 

(BAF) of 10 (Bitterlich, 1984).  The 10 BAF, for the Spiegel Relascope, is utilized with 

the units of ft
2
/acre.  When converted to m

2
/ha this becomes a BAF of 2.296.  This BAF 

was chosen as it was large enough to preclude excessively large plots that often lead to 

an obscuring of the visibility of trees from the central survey position as a result of 

topography or tree density (Bitterlich, 1984).  Deciduous undergrowth and deciduous 

tree information was recorded in order to document other plants that may affect NDVI 

(Krishnaswamy et al., 2004).  The location of the center of each plot was recorded using 
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a Garmin GS60CSx global positioning system datalogger; at least 50 positions were 

logged and then averaged.  Photographs were collected to document site locations for 

possible future site resampling and to help justify results or inspect unusual findings. 

 Independent samples for model validation were collected during April, 2013.  All 

50 samples were collected in the Nine Mile Valley area.  Samples were randomly 

generated, and buffered to select those between 50m and 200m of forest roads.  Data 

collected for each validation sample included counts of all western larch within a 

Relascope BAF of 10, and photographs of views from the center of the plot facing north 

and west.  Sample points were navigated to via the use of a Garmin GS60CSx. 
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2.3. Topographic, Climatic, and Remotely Sensed Data 

A suite of topographic, biophysical and climatic data were generated for the 

study area using 30m resolution digital elevation data from the USGS National 

Elevation Dataset (Gesch, 2007, Gesch et al., 2002).  All variables are listed in Table 1 

and are described in Holden, Morgan, and Evans (2009).  These variables included 

growing season and annual cumulative incident clear sky radiation, using the model of 

Flint and Childs (1987), and heat load index (McCune, Grace, & Urban, 2002).  

Topographic predictors included slope, aspect, and metrics of topographic dissection 

(Pike & Wilson, 1971) calculated with multiple window sizes.  Climatic data included 

30 year average (1971-2000) mean annual precipitation and minimum temperature 

generated using the thin plate spline models implemented in Anusplin (Hutchinson, 

1993).  Additionally, a simple monthly climatic water balance model was generated for 

the study area following methods described by Dobrowski et al. (2013) and adapted to 

finer spatial resolutions by Holden, Landguth, and Purdy (in review) to produce soil 

moisture deficit (DEF), and actual evapotranspiration (AET) for the study area. 
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Table 1. Description of variables and associated abbreviations. 

Variable Description Abbreviation 

Climatic Variables 

 Minimum Temperature (°C) TMIN 

Mean Annual Precipitation (cm) PPT 

Growing Season Precipitation (cm) GSP 

Mean Annual Temperature (°C) MAT 

  Topographic Variables 

 Dissection Index with variable window sizes DISS# (i.e. DISS27) 

Elevation (m) Elev 

Aspect (degrees) ASP 

Transformed Aspect TRASP 

Annual Solar Radiation (w/m
2
) ASR 

Growing Season Radiation (w/m
2
) GSR 

Heat Load Index  HLI 

Slope (%) SLOPE 

  Water Balance Variables 

 Soil Moisture Deficit (mm) DEF 

Actual Evapotranspiration (mm) AET 

  

Landsat Derived Variables  

Seasonally differenced Normalized Differenced Vegetation 

Index NDVIsc 

 

Landsat Thematic Mapper (TM) 5 imagery for the study area was acquired 

through the Global Visualization Viewer administered by the US Geological Survey 

(USGS).  For the analysis of seasonal vegetation index change, a summer image and a 

fall image were necessary.  While there are many cloud free summer images available, 

the availability of corresponding relatively cloud free fall (> Julian Day 300) images for 

the study area are extremely limited.  It is necessary to use a Julian Day 300 or soon 

thereafter image due to the likelihood of deciduous understory vegetation senescence 
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occurring prior to this date and the presence of snow cover obscuring image reflectance 

values soon after, both of which reduce the ability of NDVI to accurately detect 

vegetation (Busetto et al., 2010).  Busetto et al. (2010) found that the timing of the full 

leaf off date or the end of the senescence period of the phenological cycle for European 

larch can be assumed to be relatively static as it is more dependent on photoperiod than 

factors such as temperature or drought (Migliavacca et al., 2008, Stӧckli et al., 2008), 

and for this current study this characteristic is assumed to also apply to western larch.  

The use of early spring images was also considered, however no cloud-free early spring 

Landsat images were available for the study area.  Additionally, snow cover at high 

elevations would have limited the extension of the model predictions to higher elevation 

areas. As a result of these limitations, the most recent clear images were utilized.  

Landsat TM5, WRS path: 41, row: 27 images representing summer from August 8
th

, 

1998 (Julian day 220) and fall from October 27
th

, 1998 (Julian Day 300) were the most 

recent cloud free images.  These images were imported into ERDAS Imagine 11 and 

inspected for irregularities (i.e. cloud cover, haze, and striping) and then processed for 

reflectance values.  The processed imagery was then used to calculate NDVI values via 

the following equation: 

34

34

dLandsatBandLandsatBan

dLandsatBandLandsatBan
NDVI




     Equation 1 

The two scenes were then differenced to create an NDVI seasonal change value 

(NDVIsc). 

NDVIsc = Summer NDVI – Fall NDVI    Equation 2 
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The NDVI equation (Rouse, Hass, Schell, & Deering, 1974) produces values in the 

range of -1 to 1, with values of 0.3 to 1 representing vegetated surfaces with increasing 

values indicating increasing green vegetation and lower values indicating less vegetated 

surfaces such as defoliated trees, bare earth, or water (Jensen, 2000).  Near infrared light 

is reflected and red light is absorbed at higher rates when they interact with healthy 

vegetation producing the higher values of NDVI.  The opposite occurs when there is less 

green vegetation present.  Due to a lack of sensitivity, there is also a possible source of 

error in these values caused by the presence of snow, cloud cover, or understory 

vegetation.  NDVI values are highly correlated with canopy biomass and leaf area index, 

making it a suitable index for canopy vegetation change purposes.  It is also relatively 

insensitive to atmospheric and topographic effects, enables scene-to-scene comparisons, 

and has been used frequently in SDMs (Jensen, 2000, Krishnaswamy et al., 2004, 

Buermann et al., 2008). 

A 30m resolution, 2006 National Landcover Dataset (NLCD) produced by the 

Multi-Resolution Land Characteristics (MRLC) Consortium was used to discriminate 

between forested and non-forested areas.  A mask was created using these two 

classification types combined with a cloud cover mask and applied to all predictions in 

order to remove the urban, agriculture, deciduous, and other land classifications that 

may create false positives as a result of the presence of non-larch deciduous material 

which exist outside of mixed and coniferous forests. 
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2.4. Data Analysis 

A suite of statistical models including multiple linear regression (LR), 

generalized additive models (GAM) (Wood, 2008) and the machine learning algorithm 

Random Forest (RF) (Breiman, 2001) were used to quantify relationships between larch 

presence or abundance, and satellite and climatic, topographic, and water balance 

predictor variables.  The Raster package (Hijmans & Etten, 2011) was used to import 

and manipulate all raster datasets.  All statistical and modeling data analysis was 

performed in R (Development Core Team, 2011). Models were developed for predicting 

larch abundance as a continuous variable, and detecting presence or absence of larch at 

each plot. Presence/absence models were developed using various thresholds of larch 

abundance, with threshold values for presence set at a sequence of basal area (BA) 

values from 2.296 m
2
/ha (10 ft

2
/acre) to 34.44 m

2
/ha (150 ft

2
/acre). 

2.4.1. Remote Sensing Based Models for Larch Abundance  

Correlation analysis and simple linear regression were first used to examine 

relationships between field observations of larch abundance and NDVIsc, as well as 

topographic, climatic and water balance variables.  Predictor variables were screened 

prior to analysis, and variables with a correlation (Pearson’s r) of 0.7 or higher were 

removed to avoid multi-colinearity.  Correlations between larch abundance and predictor 

variables were also tested under a variety of predictor variable transformations where it 

was deemed appropriate.   

Larch abundance was then modeled with GAM, LR, and RF models using all of 

the remaining variables and then pruned to produce more parsimonious models.  For the 
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LR models, variables were selected which contributed significantly to the explanatory 

power of the model as determined through a stepwise bi-directional variable selection 

process using the Akaike Information Criterion (AIC) and using a threshold p value of 

less than or equal to 0.05 (Fisher, 1925).  GAMs were built with Gaussian distribution 

and a log link in order to restrict model predictions to positive values.  Smoothing terms 

were applied to predictor variables in GAM models and models with and without 

smoothers were compared via AIC and adjusted R
2
 (R

2
) values to determine their 

significance to model performance.  Smoothers were applied with the mgcv optimized 

splining procedure which uses a cross validation approach with the data to choose an 

optimal value for the smoothing parameter (Wood, 2011).  Candidate GAMs were 

further pruned to produce parsimonious models using the ≤ 0.05 p value, and AIC score 

optimization. 

Random Forest models generate multiple classification trees (Breiman, 2001), 

each of which provide a vote for the final prediction of the given observation.  

Predictions of each tree differ due to a process of resampling the data and utilizing a 

randomly selected subset of the full list of the given predictor variables.  Random Forest 

models were run with nodes split with 2 randomly selected variables and 2000 trees to 

insure convergence to the lowest mean squared error (MSE).  Variables selected for RF 

models were determined by an iterative process whereby the inclusion of a given 

variable was dependent on whether it contributed to improvements in percent variation 

explained, and through variable importance data as derived from reductions in model 

error associated with each variable. 

2.4.2. Remote Sensing Based Binary models of Larch Presence/Absence 
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In order to establish thresholds of larch abundance at which NDVIsc can 

effectively predict larch presence in a cell, GAM and Random Forest modeling were 

applied to predict larch occurrence as a binary variable at various levels of larch 

abundance.  Binary larch presence-absence response variables were created at 

increments of 2.296 m
2
/ha (10 ft

2
/acre), and models were generated to predict larch 

presence probabilities at each increment.  GAMs were built using the binomial 

distribution with a logit link and variables were chosen in the same manner as described 

above. 

RF models were optimized via the minimization of out of bag (OOB) error 

matrix percent error and kappa hat (K) statistics.  Due to the way error matrix percent 

error is calculated (number of correct predictions / number of samples), increasing the 

frequency of absences when modeling for higher larch BA may result in high accuracy 

as there is a higher probability of guessing correctly.  To account for this, it is important 

to adjust for the possibility of chance agreements in model output and this is accounted 

for in the K statistic (Cohen, 1960). 

2.4.3. Gradient Modeling with Forest Inventory Plot Data of Larch 

Presence/Absence 

Data from 4,824 FIA plots covering all of the USFS Region 1 (Figure 1) lands 

were used to develop gradient models of larch occurrence (presence-absence).  Presence 

of larch at each plot was assigned based on a threshold of 10% abundance or greater.  

Predictor variables used in modeling were all related to water and energy either directly 

or indirectly and in some cases were strongly correlated with each other (-0.7 > r > 0.7) 
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due in part to the processes used in producing them.  In cases such as interpolated 

temperature (MAT, TMIN), elevation data are directly used in the production process 

and output displays a resultant strong correlation between the two.  Elevation was 

removed from models within which temperature was a significant predictor and TMIN 

was utilized in place of MAT as TMIN is known to limit the distribution of larch 

(Barbour et al., 1980).  Larch presence of 10% or greater was then predicted with GAM 

and RF models built using the remaining variables.  This modeling process was 

implemented in order to take a more direct route in investigating the relationship 

between larch presence and fine scale topographic, climatic, and water balance variables.  

A secondary objective here was to compare satellite-derived maps of larch occurrence 

with more traditional topographic and climate envelope based models.  In this way, 

further inquiries can be made as to the effectiveness of such gradient models to 

accurately predict larch presence.  However, this comparison is dependent on the 

accuracy of the remote sensing based model predictions.  RF and GAM model predictor 

variables were selected and models were generated using the same criteria for binary 

models as described above. 

2.4.4. Model Accuracy Assessment 

Final models were chosen based on optimization of the aforementioned model 

performance metrics and then further tested through cross validation.  In the cross 

validation procedure a partitioned dataset was used for model building containing a 

randomly selected 90% of the full dataset.  This model was then used to predict the 

withheld 10% and the error rates between predicted and true values were used to 

calculate model accuracy.  An average root mean squared error (RMSE) was calculated 
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for the continuous larch BA prediction models, and a percent classification error rate, 

area under the Receiver Operating Characteristic curve (AUC), and a K statistic were 

calculated for larch presence-absence prediction models.  For GAMs, the predicted 

probability of larch presence was classified as present or absent using the conventional 

greater than 0.5 probability threshold.  The cross validation process was repeated 100 

times, each time with a new random draw of observations.  The resulting 100 mean 

RMSEs, classification error rates, or K statistics were averaged to calculate a final mean 

cross validation root mean square error (CVRMSE), a mean cross validation percent 

error rate (CVER), or a mean cross validation K statistic (CVK) for each model and then 

compared. 

The final best performing models for both continuous and binary larch 

predictions were then utilized to create prediction rasters over the entirety of the study 

area.  Binary predictions were produced as probabilities of presence, and continuous 

predictions were produced as larch BA m
2
/ha.  The NLCD and cloud mask was then 

applied to each prediction to remove cloud cover and non-forested areas.  Remote 

sensing based prediction rasters were validated by examining differences between model 

predictions and the 50 independent validation plot sample data as an RMSE statistic for 

continuous models or a percent error rate and K statistic for binary models.  For the final, 

best performing, continuous larch BA model prediction raster, 1,000,000 (≈10% of the 

prediction raster) random sample points were generated and correlations between 

predicted larch BA and topographic, water balance, and climatic variables were 

examined.  Polar plots were used to assess the predicted distribution of larch abundance 

relative to aspect. 
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Comparisons between binary remote sensing based models and FIA produced 

gradient model predictions were made in order to examine any correlations between the 

gradient model and remote sensing based models.  Due to the differences in response 

variables between the FIA binary models and the remote sensing models, comparisons 

can only be made about the probability of larch presence.  However, even these 

comparisons are tenuous due to the differences in methods of production of the plot data 

between the FIA dataset and the remote sensing model dataset.  It is hypothesized that 

the predictions of larch presence generated via remote sensing methods will represent a 

subset of the gradient model predictions.  These comparisons assume that, based on the 

theoretical application of topographic variables within a model utilizing a larger 

geographic range of larch plot data to produce presence or absence probabilities, certain 

aspects of the model may not be ideal for the study area in question.  Rasters were 

imported into ArcGIS 10 where all map creation was performed. 
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3. Results 

3.1. Remote Sensing Continuous Basal Area Model Performance 

Larch abundance was moderately well correlated with NDVIsc.  Simple linear 

regression of NDVIsc and larch abundance produced an R
2
 value of 0.47 (Figure 3).  

Results of continuous models of larch abundance are shown in Table 2. 

 
Figure 3. Simple linear regression (red line) of the correlation between larch abundance 

(m
2
/ha) and NDVIsc, with a locally weighted scatterplot smoother (blue line) also shown 

for reference. 
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Table 2. Diagnostic values from three candidate model types used to predict larch abundance. 

 

Model Type Predictors R
2 

Variation 

Explained 

(%) 

Cross Val 

RMSE 

m
2
/ha 

(ft
2
/acre) 

Independent 

Val RMSE 

m
2
/ha 

AIC 

Linear Model 
NDVIsc

3
, HLI, DEF, 

PPT 
0.502  

5.681 

(24.91) 
10.93 1290.81 

Linear Model NDVIsc 0.467  
5.836 

(25.77) 
 +15.5 

GAM 
s(NDVIsc), HLI, 

DEF 
0.519  

5.610 

(24.60) 
11.73 2132.68 

GAM s(NDVIsc) 0.495  
5.699 

(25.00) 
 +11.2 

Random Forest 
NDVIsc

2
, ASR, 

TMIN, HLI 
 50 

5.564 

(24.57) 
9.428  

Random Forest NDVIsc  29 
6.512 

(28.76) 
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Parsimonious LR, GAM and RF models yielded similar accuracies. The strictly 

linear form of the NDVIsc variable was unable to accurately capture the confusion 

resulting from non-larch deciduous material as is illustrated by the locally weighted 

scatterplot smoother (Figure 3).  To compensate for this trend, squared and cubed 

transformations were applied to this variable which reduced residuals at the lower end of 

the predicted western larch BA range.  NDVIsc
2
 and NDVIsc

3
 were included as predictor 

variables and when either transformation was included in a final model all lower forms 

of the variable were also included.  A final parsimonious LR model created with the 

inclusion of NDVIsc
3
, HLI, PPT, and DEF produced an R

2
 of 0.50 but only reduced AIC 

scores from 1306.3 to 1290.81.  When the correlation with NDVIsc was tested within a 

log link Gaussian distribution GAM with applied smoothers, the R
2
 value increased to 

0.495 (Table 2). Pruning a global GAM to produce a parsimonious final model 

generated predictor variables of NDVIsc, HLI, and DEF and the R
2
 value increased 

further to 0.52, representing the highest R
2
 reached of any parsimonious model.  AIC 

values for the final GAM with applied smoothing terms improved significantly when 

compared with the same model without smoothers and models without smoothers also 

performed poorly when compared via the R
2
 model statistic.  Based on these model 

diagnostics the smoothing terms appear to provide a stronger fit than the parametric 

transformations used in the LR model.  When this final GAM is cross validated there is 

only a 0.09 m
2
/ha improvement in CVRMSE from the simple NDVIsc GAM to the more 

complex model, indicating only marginal improvement when model complexity is 

increased.  Residuals of this final GAM are normally distributed but heteroscedastic, 

exhibiting an increase in variance at higher basal area values.  When the accuracies of 

the final LR and GAM models are tested on the independent validation dataset, LR 
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performs better, suggesting that the smoothing term within the GAM model may not be 

as effective as the parametric transformations utilized in the LR and RF models.  Based 

on the model diagnostics and validation, there is some confusion as to the effectiveness 

of the smoothing term.  It is possible that the smoothing term is inappropriate or that it 

may overfit the model to the original data and therefor does not predict well when 

extrapolated to new data. 

Using Random Forest models to predict larch BA as a continuous variable 

showed similar explanatory power according to the model accuracy diagnostics with the 

original dataset.  An RF model using only NDVIsc produced an explained variation of 

28.94%.  When a full parsimonious model was built with NDVIsc
2
, annual cumulative 

solar radiation (ASR), TMIN, and HLI, explained variation increased considerably to 

50.13%.  Inclusion of these predictor variables also showed corresponding 

improvements in CVRMSE from 6.51 m
2
/ha to 5.56 m

2
/ha.  This final RF model 

produces the lowest CVRMSE of any model and when tested using the independent 

validation sample data the RF model performed significantly better than either the GAM 

or LR models.  Based on the robust methodologies for model validation, it is apparent 

that Random Forest provides the best model for predicting larch basal area. 

Final models for LR, GAM, and RF were utilized to predict larch abundance 

across the study area (Figure 4). 
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Figure 4. Optimized parsimonious model predictions of larch BA (m

2
/ha) using LR, 

GAM, and Random Forest.  
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Output for each model displays a strong pattern of high larch abundance on northern 

facing slopes.  This pattern is further corroborated via the averaged 1,000,000 randomly 

extracted samples from the RF model prediction raster.  As shown in the polar plot 

(Figure 5A) it is clear that, based on the NDVIsc larch abundance predictions, there is a 

strong relationship between larch abundance and aspect, with higher levels of larch 

abundance on northern facing slopes within the study area.  There is also a strong 

correlation with annual incident solar radiation, with larch abundance decreasing with 

increasing annual incident radiation (Figure 5B).  Soil moisture deficit and AET display 

slightly weaker negative trends with larch abundance, and may be regarded as indicators 

of larch absence (Figure 5C, 5D).  Variability in soil moisture deficit increases as larch 

abundance increases, which may indicate a lack of sensitivity to soil moisture deficit 

below a certain value. 

  



31 

 

    

  

Figure 5. Polar plot and scatter plots illustrating the correlations of sampled predicted 

larch abundance and A) Aspect; B) Annual solar radiation, C) Soil moisture deficit, and 

D) Actual evapotranspiration. 
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3.2. Remote Sensing Presence-Absence Model Performance 

Results of presence-absence models based on NDVIsc are shown in Table 3 and 

probability predictions generated for the study area with parsimonious models can be 

seen in Figure 6.
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Figure 6. Remote Sensing based probability of Larch presence at 9.184 m

2
/ha and 22.96 m

2
/ ha thresholds. 
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Table 3. Model diagnostic values from FIA gradient models and NDVIsc, topographic and climatic data model types used to 

predict larch presence. 

 

 

 Remote Sensing Larch Presence Models 

Model 

Type 

BA 

Threshold 

m
2
/ha 

(ft
2
/acre) 

Predictors R
2 Error 

Rate (%) 
K AUC 

Cross Val 

Error 

Rate (%) 

Cross 

Val K 

Independent 

Val 

Error Rate 

(%) 

Independent 

Val K 

GAM 
9.18 

(40) 
NDVIsc 0.329 24.6 0.506 0.831 25.3 0.475 32.6 0.372 

GAM 
22.957 

(100) 
NDVIsc 0.382 13 0.53 0.890 13.0 0.527 20.4 0.385 

Random 

Forest 

9.18 

(40) 

NDVIsc
2
, 

AET 
 24 0.539 0.809 24.2 0.592 32.6 0.361 

Random 

Forest 

22.957 

(100) 

NDVIsc
2
, 

ASR, HLI  
13 0.550 0.865 13.3 0.869 18.3 0.363 

 FIA Gradient Models 

GAM 10% 

TMIN, AET, 

ASR, DEF, 

DISS27 

0.26 19.5 0.335  20.2 0.279 0.856   

RF 10% 
TMIN, AET, 

DEF, DISS27 
 19.7 0.364  20.1 0.303 0.840   
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Model strength depended on the threshold BA (m
2
/ha) value chosen for 

assigning larch presence-absence for each plot, and the strongest correlations were 

achieved when presence was assigned to plots with larch BA values of 9.183 m
2
/ha (40 

ft
2
/acre) or greater.  The RF model predictor variables at this threshold included NDVIsc

2
 

and AET.  This model returned OOB error rates of 24%, K values of 0.5397, and AUC 

values of 0.8095, suggesting a moderate to good performance when predicting larch 

presence at this density.  Using a binomial GAM at this level incorporated a smoothed 

NDVIsc predictor variable only and generated slightly better results producing an R
2
 of 

0.329 and an AUC of 0.8313.  To make Random Forest and GAM output more 

comparable, a binary classification was applied to the probability predictions of the 

GAM using the conventional greater than 0.5 as the reclassification rate for all classified 

presences.  In this way, the agreement between the two model varieties is more apparent, 

as the error rates and K values are nearly identical.  Utilizing the cross validation method 

produced similar error rates and K scores when compared with models using the entire 

dataset for model building and assessment.  This was the case for all BA thresholds 

using the GAM and RF model types.  Further analysis of these binary models using the 

independent validation points, showed similar model agreement.  However, the GAM 

models produced lower commission error rates which led to slightly higher K values. 

Predicting larch presence at a BA of 22.957 m
2
/ha (100 ft

2
/acre) yielded a more 

skewed split and was expected to decrease K values as a result.  A binomial GAM 

including predictor variables of smoothed NDVIsc, yielded increases in the GAM R
2
 to 

0.382 and AUC to 0.89.  K statistics increased when predicting at the more skewed 

22.957 m
2
/ha threshold suggesting that model performance due to chance is limited.  
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However, in the more skewed model, the commission error rate for classified presences 

of 40.35% indicates that the model misclassifies presence at a noticeably higher rate.  

The corresponding commission error rate of 23.22% for the more balanced 9.183 m
2
/ha 

threshold indicates an improvement in model performance in the most fundamentally 

important category for this study, predicting larch presence.  Above the 9.183 m
2
/ha 

larch BA threshold, larch abundance caused NDVIsc seems to be larger than most non 

larch source NDVIsc, and therefore represents the lowest larch abundance at which 

accurate predictions can be extrapolated.  A final binary GAM model was utilized to 

extract polygons of larch presence and a larch presence map was generated (Figure 7). 

Figure 7. Western Larch presence predictions and intersection of remote sensing models 

and gradient models. 
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3.3. Gradient Modeling with FIA Data Performance 

Simple gradient modeling with FIA plot data produced moderate model 

performance (Table 3).  Probability predictions generated for the study area with final 

parsimonious models can be seen in Figure 8. 
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Figure 8. FIA data based Probability of Larch presence at 10% presence. A) Binomial 

GAM, B) Random Forest Model. 

 

Error rates were low for both the binomial GAM and the Random Forest models 

(< 20%), however K statistics were also very low (< 0.37).  The low K scores are as a 
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result of the skew in the number of absences in the FIA plot dataset, and the high error 

rates (57% for the Random Forest model) associated with predicted presence.  The 

majority of errors within these models occurred as predictions of larch presence in plots 

where larch was absent.  A pruned Random Forest gradient model included predictor 

variables of TMIN, AET, DEF, and DISS27.  This model yielded K values of 0.36 and 

AUC values of 0.84.  A final parsimonious model for the binomial GAM model type 

included predictor variables of TMIN, AET, ASR, DEF, and DISS27, all of which were 

included with applied smoothers.  The binomial GAM produced a lower K value of 0.33, 

but a higher AUC value of 0.86.  Minimum temperature represented the most significant 

predictor variable for both models, supporting previous work suggesting that minimum 

temperature is an important factor in limiting the distribution of western larch (Barbour 

et al., 1980, Schmidt & Shearer, 1991).  The error rates for these models are deceiving 

and should not be regarded as indicative of a particularly good model fit.  The K values 

provide more useful information in attempting to compare between the gradient model 

types and the remote sensing models.  The gradient models show significantly lower K 

values, which suggests that the low error rates are not strongly related to the model fit.  

Comparing the K values between the gradient models and the remote sensing models 

suggests that seasonally differenced NDVI may significantly enhance the detection of 

western larch presence.  Further analysis of these gradient models using the 10% 

withheld cross validation process, provided similar results.  For the GAM, cross 

validation error rate and Kappa statistics rose and fell by 0.7% and 0.05% respectively 

as compared with the full dataset model rates.  The RF model yielded a slightly lower 

increase in cross validation error rate (0.4%) and a slightly larger decrease in cross 

validation K  (0.06%) than GAM models, suggesting that commission error rates were 
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more affected by the data withheld from model building. 
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4. Discussion 

Remote sensing based models and climate envelope based models showed 

moderate ability at predicting the abundance and occurrence of western larch within the 

study area.  When NDVIsc based Larch abundance models included topographic, 

climatic, and water balance predictors, model performance improved, but only slightly.  

This suggests that the majority of the variation is accounted for with NDVIsc.  

Predictions from these models generally overpredict the density of larch within a cell but 

otherwise appear to provide a good indicator of the presence of high or low volumes of 

larch within the forest matrix.  This is particularly visible in the photographs depicting 

larch abundance and the corresponding model predictions shown in Figure 9A-C.  A 

number of other possible sample plot characteristics that may have affected the larch 

abundance-NDVIsc correlation were also examined, but yielded inconclusive results. 
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(A) 

(B) 

(C) 
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Figure 9. A-C: Model predictions of high larch density with corresponding photographs 

displaying corroborating larch abundance.  D: Errors associated with predictions of 

high larch density within high elevation floodplains. 

 

One possible source of error could arise from the presence of deciduous 

understory vegetation other than larch, to assess the potential influence of understory 

vegetation on larch detection, larch abundance and deciduous understory vegetation 

were combined into a single deciduous index.  The resulting correlation between NDVIsc 

and the deciduous index was 0.49 which was not significantly different from the larch 

abundance model.  This suggests that while other deciduous material in the area may 

affect predictions, the misclassifications or possible over predictions associated with this 

likely source of error are minimal.  Percent canopy cover was also examined as a 

potential source of error, as it may affect the magnitude of NDVIsc by influencing the 

detectability of deciduous vegetation beneath the forest canopy.  However, no 

relationships were found between plot canopy cover and the magnitude of NDVI change.  

A separation of the two sample sites (Nine Mile Valley and Seeley-Swan Valley) and 

examinations of the variation in NDVIsc response to larch abundance were conducted to 

test for possible inter-site variation.  Model diagnostics suggest that there was no major 

(D) 
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difference between sites.  However, the sample size in the Seeley-Swan site was limited 

compared to the Nine Mile site, and a more even sampling may demonstrate variation 

between the sites.  Visual inspection of the BA predictions combined with independent 

field verification data, suggests that models are particularly well able to predict the 

absence of larch within the coniferous forest matrix. 

Presence-absence models utilizing NDVIsc were developed using varying 

thresholds of abundance to define the presence of larch at a plot.  Model accuracy 

generally increased with increasing larch abundance, with the highest model accuracies 

achieved using a 40% threshold. These results are rather intuitive, but have important 

implications for the potential application of multi-temporal Landsat data for mapping the 

presence of western larch in new areas or at broader scales.  These results suggest that 

accurate detection of larch presence as only a small fraction of total canopy cover may 

be limited. Seasonally differenced satellite indices show good potential for detection of 

moderately abundant or pure larch stands in this region. 

Both the continuous larch abundance predictions and the presence-absence 

predictions showed western larch occurrence to be markedly limited on southern facing 

aspects.  When topographic, climatic and water balance data were extracted from the 

remote sensing based larch abundance prediction rasters each model showed that larch 

abundance was negatively correlated with climatic water balance deficit (DEF) and ASR.  

This finding suggests that moisture limitations on exposed, dry, south-facing slopes may 

restrict the distribution of larch to more mesic aspect positions, supporting previous 

findings of increased regeneration success of larch in these areas (Schmidt & Shearer, 

1991).  The study region is relatively dry, receiving an average of 40 centimeters of 
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precipitation annually at lower elevations. Topography and principally solar insolation 

strongly mediates the moisture gradients in mountains of the region.  The results of this 

analysis suggests that higher solar insolation on south-facing aspect positions result in 

soil moisture deficits that may limit larch seedling survival and therefor larch abundance. 

Within this topographically complex study area, temperature, moisture and 

insolation included in the various models are highly variable even at sub-kilometer 

scales.  Larch presence and abundance appears to be highly sensitive to aspect-scale 

moisture and temperature gradients. These results highlight the importance of including 

high spatial resolution, topographically sensitive bioclimatic predictors to adequately 

capture the distribution of western larch. The improved spatial resolution of the 

physically-based climatic water balance models used here may offer new insights into 

the mechanisms that govern the presence and abundance of western larch, as well as 

other species in this region.  Past studies of the vulnerability of western larch to climate 

warming were performed using relatively coarse (1km) resolution climate data that 

ignored aspect influences on temperature, radiation and moisture and the potential for 

terrain to mediate larch distribution (Rehfeldt & Jaquish, 2010). The results of this study 

suggest that accounting for this fine-scale variation may be essential for understanding 

the potential response of western larch to climatic change. 

This information should prove useful to management of the species especially as 

it pertains to the reforestation of burned areas or harvested areas utilizing larch’s fast 

growth rates and improving BA yields of larch forests in areas that exhibit high growth 

capacity.  The predictive models of larch abundance could also help to guide harvests or 

assist in the collection of larch occurrence data for further studies concerning phenology, 
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species health, and improving species distribution modeling. 

Through the analysis of models via independent field validation samples, several 

key sources of error were established.  Within the NLCD coniferous forest classification 

areas, there are frequent high elevation flood plains or bogs.  In these flood plains, high 

volumes of grasses dominate with little or no canopy cover, which combine to produce 

an NDVIsc that is comparable to areas with high volumes of larch presence.  One of the 

50 randomly generated independent validation points was within an area which 

exhibited this land cover type and was therefore excluded from the model validation 

dataset (Figure 9D).  Another source of model prediction error occurred in areas that 

displayed characteristic larch NDVIsc, and were also within the optimal topographic, 

climatic, and water balance parameters but were unforested, containing mostly shrubs.  

It may be possible to remove these patches as potential larch growth areas with a more 

accurate coniferous forest landcover mask.  Limited cloud cover within the fall Landsat 

image caused errors in predictions and these areas were removed.  Where these clouds 

obscured ground cover, high values of NDVIsc were a result, and this led to areas of 

predicted high larch abundance.  Upon further investigation, these areas do not contain 

high volumes of larch which supports the importance of obtaining a cloud free fall 

image. 

 While it is of interest to compare more commonly applied plot-based gradient 

models with models developed from remotely-sensed imagery, it is important to note 

that these analyses were conducted across very different geographic extents.  The FIA 

sample data used to construct the gradient models represent a much larger portion of the 

distribution of western larch than the remote sensing study.  This is significant because 
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distributions of larch outside of the remote sensing study area encompass a broader 

range of climatic characteristics, which could limit the distribution of western larch, or 

mediate the importance of aspect-scale, radiation driven influences on larch distribution 

and abundance.  For example, slope and aspect may be more important within 

precipitation limited areas including northwestern Montana, but could be less important 

in much wetter areas of northern and central Idaho. 
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5. Conclusion 

This study examined the potential for multi-temporal Landsat derived vegetation 

indices and climatic envelope models to capture the current and potential distribution of 

western larch.  Most importantly, change in NDVI between summer and fall images was 

moderately well correlated with the presence and abundance of western larch at field 

plot locations.  Random Forest models generated using this correlation demonstrated the 

ability to relatively accurately predict larch abundance.  This finding is of importance 

because of its possible application in monitoring larch presence and abundance without 

relying on costly and time consuming field data collection methods.  Climatic envelope 

models based on 4800 FIA plots that incorporated fine-scale climate and biophysical 

predictors also predicted the presence of larch with moderate accuracy and captured 

similar features of larch distribution. Both methods produced larch presence maps that 

exhibited strong dependence on solar insolation and climatic water balance variables.  

These results suggest that within the study area, the occurrence of western larch is 

strongly dependent on topography, and in particular solar insolation.  This conclusion is 

of importance due to the implications it may have in informing the management of the 

species.  It can also help to update predictions of possible changes in the extent of 

suitable habitat due to climate change, considering the most recent predictions do not 

include topographic scale dependencies. 

The moderately strong correlation between larch abundance and seasonally-

differenced NDVI derived from Landsat imagery suggest that remotely sensed data have 
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some utility for improving efforts to map the current distribution of western larch in this 

region. However, there are important limitations to the analysis, and further study is 

warranted.  One major limitation of using multi-temporal imagery as an indicator of 

larch presence is the general lack of cloud-free spring or fall scenes during snow-free 

periods, which is needed to capture seasonal differences of larch foliage. Future efforts 

to detect larch with multi-temporal imagery may benefit from the availability of more 

recent cloud free fall imagery.  Furthermore, an investigation of a multiple year series 

utilizing this technique could also provide insight into the possible trends or migration of 

larch growth. In addition, alternative satellite sensors such as the MODIS with higher 

temporal revisit times, potentially fused with available cloud-free Landsat scenes should 

be evaluated as potential tools for mapping western larch. 
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