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Burbach, Thor, M.S., Spring 2011       Geography 
 
The Influence of Environmental Variables on Predicting Rare-Plant Habitat in the Nez 
Perce National Forest 
 
Chairperson: Dr. Anna Klene 
 
Habitat suitability modeling is widely-used in both biogeography and ecology to 
characterize the biophysical requirements and distribution of plant and animal species.  
Many of these modeling efforts use different variants of essentially the same topo-
climatic variables (elevation, slope, aspect, precipitation, and temperature).  However, 
these commonly used variables may not sufficiently explain the distribution of rare-plant 
species, which may have additional habitat needs.  The aim of this project was to 
determine guidelines for selection of variables to include in statistical modeling efforts to 
predict suitable rare-plant habitat.  Additionally, how background extent, data resolution, 
sample size, and various ranking criteria effect environmental variable selection were 
considered.  For this case study, Broad-fruit Mariposa (Calochortus nitidus Dougl.) a 
rare-plant species found within the 2.2 million acre Nez Perce National Forest of north-
central Idaho was used.  The study area is dominated by mountainous terrain, with 
elevations ranging from 500 to 2800 m (~1500 to 9000 ft).  The widely used  MAXENT 
model and additional methods were used to statistically determine the relative importance 
of more than 30 environmental variables considered in the analysis and yield 
recommendations about the most effective way of utilizing these often highly correlated 
variables.  Study area extent and the sample size of occurrence data had by far the 
greatest impact.  Sensitivity to these factors resulted in variables being ranked differently, 
but the majority of the models ranked elevation, May precipitation, vegetation type, April 
minimum temperature, NDMI, September precipitation, and July maximum temperature 
as highly important for Broad-fruit mariposa.  Vegetation type, NDMI and NDVI tended 
to be ranked highest when modeled at the 30×30 m resolution, suggesting that these fine 
resolution datasets may be extremely valuable in predicting the habitat of Broad-fruit 
mariposa.   
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1 INTRODUCTION  

  

The Endangered Species Act of 1973 provides special legal protections for plant 

and animal species determined by the United States Fish and Wildlife Service (USFWS) 

to be in a threatened, endangered, or sensitive status (TES).  Sections 4 and 7 of this Act 

specifically designate the critical habitat requirements of these species and requires all 

federal agencies to insure that any action authorized, funded, or carried out by them will 

not likely jeopardize the continued existence of these species or result in destruction or 

adverse modification of their critical habitat (USFWS, 1988).   

Region One of the United States Forest Service has the responsibility to manage 

more than 200 TES plant species across four states (USDA, 2011; USDA, 2005; NEPA, 

1986).   The effective management of TES plant species is made particularly difficult due 

to their lack of abundance.  Surveys to find new occurrences are often prohibitively 

expensive, time consuming, and often not very productive (Parviainen et al., 2008).  With 

few occurrences by which to determine specific habitat requirements, managers are 

charged with the difficult task of planning for the conservation of these species and their 

habitat without this important information. 

Habitat suitability models (HSM’s) are a valuable tool that can help to overcome 

some of the management difficulties associated with the sparse data available for many of 

these rare plant species.  HSM’s have been successfully used to in a variety of ecological 

applications, by assisting the discovery of new populations, identifying sites suitable for 

reintroduction, predicting possible climate change effects, and aiding in conservation 

planning and management (Hirzel and Le Lay, 2008).  HSM’s produce detailed 
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geographic predictions of a species potential distribution by analyzing the environmental 

conditions in those areas the species is known to be present or absent (Elith et al., 2006).  

Geographical modeling in ecology relies on quantifying the species–environment 

relationship.  HSMs can help reveal the influence of environmental factors in defining the 

distribution of plant and animal species (Guisan and Zimmerman, 2000).  These 

modeling efforts are made possible by the availability of digital maps of environmental 

variables (Franklin, 1995). The ever increasing availability of environmental variables in 

digital format, along with advances in GIS technology, promise to greatly improve the 

mapping of species distributions (Brotons et al., 2004).  The choice of predictor variables 

used in HSMs has a strong influence on the model’s output (Guisan and Araujo, 2006). 

Thus, the selection of those key environmental variables that approximate a species 

ecological niche is a crucial element of successful Habitat Suitability Models (Guisan and 

Zimmermann, 2000; Hirzel and Le Lay, 2008). 

This research represents the second phase of an ongoing effort to improve habitat 

modeling methods and to develop a better understanding of the distribution of rare-plant 

habitats.  One of the goals of the project was to develop a set of basic guidelines to assist 

in the selection of environmental variables to be used by statistical models to map and 

predict suitable rare-plant habitat.  Broad-fruit Mariposa (Calochortus nitidus Dougl.) 

was selected from the 21 rare-plant species included in the first phase of this project 

(Nock, 2008) based on its relatively abundant occurrence within the study area.   

To capture fine-scale variation in habitat distribution, the size of the study area 

was limited to a portion of the Nez Perce National Forest rather than half of U.S. Forest 

Service (USFS) Region One as was previously considered by Nock (2008).  However, 
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with only minor modification the general procedures developed here should be applicable 

to other National Forests within USFS Region One.   This study area was selected due to 

the large quantity and variety of rare plant occurrence data available (Idaho Fish and 

Game, 2010); however, the accuracy of this type of data can vary considerably depending 

on the collection methods (Elith et al., 2006).  The locations of the most recent records 

collected using the Global Positioning System (GPS) are accurate to within 25 m whereas 

the locations of the older records in the dataset have accuracies of 200 m or more.   

 This research specifically addresses questions pertaining to the selection and 

relative predictive value of the environmental variables available for use in HSMs in 

USFS Region One.  Specifically, how study area extent, data resolution, sample size, and 

variable rank criteria effect which environmental variables are most statistically 

influential, and which subsets of variables provide the most accurate habitat predictions 

for the rare plant species under consideration?  In addition this project explored the 

influence of herbaria data precision on variable importance, by comparing models 

utilizing training data at 30×30 m resolution to those with data available at 200×200 m 

resolution.  It provides guidelines for variable selection in HSMs in order to assist them 

in applying these techniques to their particular management goals.  
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2 BACKGROUND 

2.1 Previous Work 

The first phase of this project completed by Nock (2008) examined 21 rare-plant 

species as identified in the USFS Region One Regional Forester’s Sensitive Species List.  

That study focused on the western half of Region One, an area of roughly 11 million 

hectares (Nock 2008).  The goal of that phase of the research project was to examine the 

availability of rare-plant occurrence data and test the suitability of the DOMAIN 

algorithm (Carpenter et al., 1993).  Rare-plant surveys were also conducted in the 

Beaverhead-Deerlodge, Bitterroot, and Nez Perce National Forests in order to refine 

survey techniques, obtain new rare-plant occurrence data, and to develop a deeper 

understanding of these rare-plants habitats (Nock, 2008).   

The DOMAIN algorithm (Carpenter et al., 1993) was used to model suitable 

habitats for 21 rare-plant species using seven environmental variables: annual 

precipitation, mean May temperature, slope, aspect, elevation, geologic material, and 

dominant vegetation type (Nock, 2008).  The DOMAIN model output was evaluated by 

comparison of  the percentage of occurrences found within areas predicted as potential 

habitat, whether Forest Service botanists identified potential habitat within those areas, 

and whether new occurrences were discovered within areas predicted by the  DOMAIN 

model (Nock, 2008).   

Nock (2008) found that future research may find it beneficial to work at finer 

resolutions than 60 × 60 m in an attempt to include microhabitat.  The DOMAIN 

algorithm generally performed well but did have its limitations: it did not address 

correlations and possible interactions between environmental variables nor did it isolate 
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the effect each environmental predictor had on the species’ distribution to allow 

determination of which variables were the most important (Nock, 2008).   

Of the 21 rare-plant species considered in the first phase of this project, Broad-

fruit mariposa, was selected based on its relatively abundant occurrence within the Nez 

Perce NF.  Broad-fruit mariposa is a perennial herb ranging from 20 to 41 cm (8 to 16 in) 

in height.  It typically produces up to four large lavender flowers (Figure 1).  The plant 

emerges in June, and grows rapidly through July, flowering for 7-10 days in early July 

(Hitchcock et al., 1969).  Broad-fruit Mariposa can primarily be found in the Palouse 

grasslands of Eastern Washington and Central Idaho.  It is generally associated with loess 

and alluvium-dominated soils, and can inhabit flat to moderately steep slopes in an 

elevation range from 500 to 2000 m above sea level.  It is associated with landscapes 

dominated by perennial grasslands and deciduous shrub-lands; in Idaho it is also known 

to inhabit open woodland areas adjacent to Palouse grasslands (Hitchcock et al., 1969). 

 

2.2 Study Area 

The Nez Perce National Forest was selected from the area considered by Nock 

(2008) due to the highly variable environmental conditions and large number and variety 

of rare plant species present in this region.  This National Forest covers more than 

2.2 million acres of north-central Idaho, stretching from the Oregon border on the west to 

the Montana border on the east (Figure 2).  It is bordered by the Clearwater National 

Forest to the north, the Bitterroot National Forest to the east, and the Payette National 

Forest to the south. Sixty-five percent of the Nez Perce NF (877,000 acres) is designated 

wilderness or inventoried road-less area including sections of the Selway-Bitterroot, 

Frank Church-River of No Return, and Gospel-Hump Wildernesses (USDA, 2007).  The 
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study area is dominated by steep slopes, with elevations ranging from less than 460 to 

2740 m, (1500 to >9000 ft).  The Nez Perce NF contains several large rivers including the 

Snake, Salmon, Selway, and South Fork of the Clearwater.  Located approximately 

480 km (300 mi) from the Pacific Ocean, the area’s climate is influenced by maritime air 

masses and prevailing westerly winds, resulting in increased precipitation and more 

moderate temperatures than those found at the same combination of latitude and altitude 

further inland (USDA, 2007).  The soils are moderately productive; an ash layer covers 

many of the soils, adding nutrients, water-holding capacity, and soil stability.  The Nez 

Perce NF supports a variety of vegetation types.  The lower elevations and southerly 

aspects are dominated by ponderosa pine forests interspersed with native grass and shrub-

lands.  Locations at high elevation or with northerly aspects are heavily forested, 

containing fir, lodgepole pine, Ponderosa pine, western larch, western red cedar, and 

Engelmann spruce (USDA, 2007). 

 

2.3 Habitat Suitability Modeling 

2.3.1 Historical and Theoretical Basis of HSM 

An understanding of plant distribution is of academic importance to numerous 

scientific disciplines, including ecology, botany, and geography; however, before it was 

the subject of academic interest, this understanding was a critical survival skill in hunter/ 

gather societies (Kelly, 1983).  Some of the earliest written records of the plant/ 

environment relationship come from the ancient Greeks.  Of the ancient Greeks, the 

greatest contributions to ecology were made by Aristotle and his student, Theophrastus, 

who made extensive botanical observations.  The influence of sun, exposure, elevation, 
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aspect, soil, water, temperature, and even other plants and animals were common 

environmental factors that he examined (Hughes, 1975).   

 Joseph Grinnell’s (1917) observations of California birds led to the formulation of 

the “Ecological Niche” as the fundamental concept governing the spatial distribution of 

plants and animals.  Hutchinson (1957) refines the Grinnellian ecological niche concept 

through the incorporation of a mathematical function that links the fitness of individuals 

to their environment; specifically, as an n-dimensional volume in environmental space 

that defines a species’ habitat, wherein each of the n axes represents an environmental 

variable that is critical in defining the habitat of that species.  Modern habitat suitability 

models rely on this mathematical formulation of the niche theory to delineate those 

conditions that best define suitable habitats through statistical correlation between 

environmental variables at areas of known habitat occupation (Hirzel et al., 2002).  

Hutchinson (1957) also postulated an important distinction between the “fundamental 

niche,” (the range of theoretically suitable habitat), and the “realized niche” (that part of 

the fundamental niche which is actually inhabited).  The realized niche is limited by 

competition, physical barriers, and random extinction events (Pulliam, 2000; Guisan and 

Thuiller, 2005).  The realized niche acknowledges that factors other than current 

environmental conditions - barriers, competition, past catastrophic events, etc. - can and 

often do influence a species’ observed distribution.   

Ecologists, botanists and biogeographers have long questioned whether species 

are distributed randomly within their environmentally defined range or systematically in 

response to geographically-varying environmental gradients.  Whittaker’s work in the 

Appalachian Mountains, correlating the occurrence of species to environmental gradients, 
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provided strong support for the systematic response theory (Whittaker, 1967).  

Biogeography was founded on the observed relationships between plant distribution and 

environmental characteristics.  It is the quantification of these relationships that forms the 

basis for modeling the geographic distribution of plant habitats.  These models predict the 

distribution of suitable plant habitats based on the environmental factors found at a 

particular location occupied by the plant species being modeled (Guisan and 

Zimmermann 2000). 

2.3.2 Modern HSMs 

The first habitat suitability models were primarily based on environmental 

envelope techniques.  The BIOCLIM model calculates the smallest rectilinear envelope 

in a multi-dimensional climatic space that contains the occurrence data (Busby, 1991). 

Walker and Cocks (1991) in an effort to improve upon BIOCLIM developed the 

HABITAT model that uses a convex envelope to define the environmental space 

enclosing the occurrence records.  The DOMAIN model (Carpenter et al., 1993) utilizes a 

point-to-point similarity metric (a measure of multivariate distances in environmental 

space) rather than classification trees and generally outperforms the BIOCLIM and 

HABITAT models particularly when the number of occurrence records is limited.  

DOMAIN was used by Nock (2008). 

Canonical correspondence analysis (CCA) is a technique that analyzes species 

distribution by examination of principal ordination axes constructed from linear 

combination of environmental variables.  The assumption of a Gaussian species response 

to the environmental variables is the primary limitation of this method (ter Braak, 1986).    

Ecological niche-factor analysis (ENFA) is the modeling algorithm implemented in the 
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BIOMAPPER package (Hirzel et al., 2000).  It has many features that make it 

particularly suitable for use in ecological modeling, it requires only presence data, it 

transforms data much like principle component analysis (PCA) but on axes that represent 

indices of species marginality and  tolerance,  that  are more easily interpreted in an 

ecological context than PCA (Guisan and Zimmermann, 2000).   

Generalized Linear Models (GLM) and Generalized Additive Models (GAM) are 

multiple-regression techniques (Hastie and Tibshirani, 1987).  Because of their ability to 

model complex ecological relationships and similarity with widely used and well 

understood multiple-regression techniques, (GLMs) and (GAMs) have seen extensive use 

in habitat-suitability modeling efforts (Austin, 2002).  GLMs fit parametric terms: 

combinations of linear, quadratic, and cubic terms.  GAMs further improve model 

flexibility through the use of data-defined non-parametric functions and cubic-splines to 

fit non-linear response curves (Elith et al., 2006; Hastie and Tibshirani, 1987).  

Multivariate adaptive regression-splines (MARS) is another regression-based method that 

is capable of fitting complex ecological response curves by utilizing piecewise linear 

functions (Leathwick et al., 2005). 

Recently, there have been a number of artificial neural network and machine 

learning techniques applied to habitat-suitability modeling.  The General Algorithm for 

Rule-Set Prediction (GARP) is a machine-learning technique that produces a set rules 

that when combined give a binary prediction of habitat.  The rules developed from 

presence pixels are ranked by the algorithm based their significance as compared with 

random predictions based on sampled background pixels (Stockwell and Peters, 1999).   

Boosted regression trees (BRT), is a relatively new machine-learning technique that 
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combines two algorithms: a boosting algorithm that iteratively accesses the regression-

tree algorithm to build a set of trees.  The boosting procedure overcomes many of the 

path dependent inaccuracies commonly encountered in single classification tree models.  

Boosting develops the regression model iteratively, with each iteration modifying 

sections of the tree to better fit the data.  The advantages of this method lie primarily in 

its ability to model variable interactions and in its proficiency in selecting relevant 

environmental variables (Friedman et al., 2000).  MAXENT is also a recently developed 

machine-learning algorithm that models a species’ distribution by finding the distribution 

of maximum entropy or that which is the most uniform distribution subject to the 

constraints imposed by the environmental variables (Phillips et al., 2006).   

Of the modeling techniques discussed here, MARS, BRT, and MAXENT 

performed best over the wide range of conditions considered in a comprehensive 

comparison of 16 commonly employed models (Elith et al., 2006), however most of the 

models, including the simple DOMAIN algorithm performed fairly well.  A number of 

other model comparison studies have also demonstrated MAXENT’s high level of  

performance  (Phillips et al., 2006; Sergio et al., 2007; Parolo et al., 2008; Phillips, 2008; 

Williams et al., 2009).  

 

2.4 Environmental variable selection 

Modern plant-distribution modeling is based upon the same environmental factors 

that were considered by those first ecologists and biogeographers.  The environmental 

variables utilized in plant distribution modeling are often limited to those deemed most 

important, prompting critics to question whether these small sets of environmental 
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variables can truly describe the complex plant-environment relationships and 

approximate their distribution (Guisan and Araujo, 2006).  Critics also make the 

argument that the distribution of plants may be determined by factors other than 

environmental relationships, such as those relating to species competition.  These 

criticisms serve to highlight the need for cautious interpretation of any model’s results.   

Austin (1980) classified environmental variables based on their biophysical 

importance, identifying three basic types of environmental variables: “resource variables, 

direct variables, and indirect variables.”  Resource variables such as light, water, and soil 

nutrients are those that are consumed by plant species.  Direct variables are those that are 

not consumed but have a direct physiological influence on a plant species.  Indirect 

variables have no physiological effect on the plant species but are in some way correlated 

with variables that do.  Models based on direct and resource variables will be the most 

robust and widely applicable, but it is very difficult to provide a continuous digital 

representation of these types of variables (Austin and Smith, 1989).  Using these 

variables for predictive mapping of species distribution is difficult and is still extremely 

rare (Austin and Smith, 1989). 

Models are exclusively driven by the data given to the algorithm.  The choice of 

which environmental variables are used to characterize the ecological niche is therefore a 

critical step in any habitat suitability modeling endeavor (Guisan and Araujo, 2006; 

Guisan and Zimmermann, 2000; Heikkinen et al., 2006; Hirzel and Le Lay, 2008).   

Topo-climatic gradients such as elevation, slope, aspect, mean temperature, and 

precipitation are readily available or easily approximated from Digital Elevation Models 

(DEMs).  For this reason, most habitat modeling efforts have focused on these types of 
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indirect variables.  Inclusion of more proximal variables such as soil type, water 

availability, radiation, and surface temperature should greatly improve model 

performance (Austin and Smith, 1989), but until recently this information has not 

generally been available in the required format.  Fortunately, advances in both satellite 

and airborne remote sensing technology and data analysis techniques continue to increase 

the availability and usefulness of this type of data (Zimmermann et al., 2007). 

The question still remains, are these commonly used variables the right variables?  

Critics of the HSM approach would say that there are many factors as, or equally, 

important that the method does not consider.  It is true that no model can hope to capture 

every variable that may influence the distribution of plants, but inclusion of complex 

inter-species relations also requires detailed knowledge which is very seldom available.  

That leaves these HSMs trying to assess what variables can get the best, albeit limited 

results.  Are the variables which are generally used (latitude, elevation, slope, aspect, 

evapotranspiration, mean temperature, precipitation, soil type, water availability, 

radiation, cloud cover, and vegetation type) adequate?  That question is difficult to 

answer, but HSM’s do generally predict species’ distribution fairly accurately, and the 

variables most often used are generally related to those that naturalists, botanists, and 

biogeographers have been identifying as important for more than 2000 years.    

The list of variables that have been historically used in HSM efforts is extensive.  

But computationally and statistically, it is usually necessary to restrict the variables used 

to those deemed most important (Guisan and Araujo, 2006; Guisan and Zimmermann, 

2000; Heikkinen et al., 2006; Hirzel and Le Lay, 2008).  It is generally desirable to pick 

the most parsimonious model by restricting the variables included to a small 
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biophysically meaningful set.  Parsimony is advantageous in that it simplifies the 

modeling process, and while the inclusion of fewer variables might decrease model 

accuracy slightly, it reduces the propagation of error into the output which can be 

multiplicative based upon the number of input layers (Wainwright and Mulligan, 2004).  

It also usually results in models that are easier to interpret and are more readily 

transferable to different geographic areas.  Inclusion of multiple correlated variables (for 

instance, an annual mean and two mean monthly temperature layers) can lead to increases 

the uncertainty in estimates of which is most important (Phillips 2008).   

An often-recommended method is to use expert knowledge of the species 

requirements to develop these lists (Guisan and Zimmerman, 2000).  However, when 

knowledge of the species requirements is unknown or the important variables are not 

available in an appropriate format, automated algorithms are often used to minimize the 

number of variables considered while still fitting the data well (Hirzel and Le Lay, 2008).   

Stepwise procedures such as Akaike Information Criterion (AIC; Akaike, 1974), 

Bayesian Information Criterion (BIC; Schwartz, 1978), and BRUTO (Hastie and 

Tibshirani, 1990) are often employed to identify the most parsimonious model while 

preventing the loss of important information.  Sophisticated techniques such as ridge 

regression or lasso that is very similar to the regularization method used in MAXENT 

(Dudik et al., 2004; Tibshirani, 1996) are very powerful as they penalize over-fitting, 

using only those parameters that have the greatest contribution to model performance.  

Some modeling algorithms have incorporated these types of procedures, they often do 

this by running each variable separately or dropping out one variable at a time which may 

be inadequate if there are more than two correlated variables included as input layers, as 
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they are not fully step-wise and fail to consider all combinations of variables.  Another 

method is to compare the variables selected by a number of competing models (Johnson 

and Omland, 2004).  Simple Analysis of Variance (ANOVA) tests can reveal whether 

reduced and full model performance is significantly different.   
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3 METHODS 

3.1 Data Acquisition 

3.1.1 Occurrence Data 

This study required both Broad-fruit Mariposa occurrence data and environmental 

data for the Nez Perce NF.  The presence data was acquired from the August 2010 update 

of the Idaho Fish and Game Plant Conservation Database (Idaho Fish and Game, 2010). 

This species was selected because of its relatively large number of records and to 

maintain continuity with the original study conducted by Nock (2008) and allow 

comparison to results of that work.   

The presence data came as polygon files and all occurrence records falling outside 

of the Nez Perce NF were removed from consideration.  The extent of these polygons 

represented the estimated spatial error of the presence location, and this error was 

significantly larger than the desired modeling resolution of 30×30 m for the majority of 

the records.  In order to explore rare plant micro-habitat association recommended by 

(Nock, 2008) two modeling resolutions were utilized, one at 30×30 m (fine) and one at 

200×200 m (coarse).  After removing all polygons with error envelopes greater than the 

200 m cutoff, a total of 139 occurrence records remained; these remaining records were 

split into two separate groups.  119 records had sufficient precision to be included in the 

200×200 m model while only 20 records had sufficient precision to be included in the 

30×30 m model.  In some instances a single polygon represented numerous distinct 

populations.  These polygon features were converted from multi-part to single-part 

features and all occurrence polygons were then converted to point data by taking the 

centroid of each polygon.   
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This type of opportunistically collected ecological data often suffers from both 

spatial autocorrelation and sampling bias (Legendre, 1993; Phillips et al., 2009).   The 

effect of sampling bias was not specifically addressed here, although road proximity was 

included as an environmental variable to assess how access may be related to 

occurrences.  There are specific methods available (and they are easily implemented in 

MAXENT) to address the issue of sampling bias (Phillips et al., 2009) but they were not 

considered here due to a lack of sufficient data.  Two approaches were used to assess the 

degree of spatial autocorrelation present within the occurrence records.  First, a simple 

measure of Euclidean distance between occurrence points from the 30×30 m and 

200×200 m datasets were calculated to determine the minimum, mean, and maximum 

distances between the data points (Figure 3) and second, a calculation of the average 

nearest-neighbor statistic that characterizes the degree of clustering in spatial data (values 

less than one indicate clustering, values greater than one indicates dispersion, and one 

indicates a random pattern).  The 200 m occurrence records of Broad-fruit Mariposa had 

an average nearest-neighbor value of 0.65 (z-score of -2.95 and one sided p-value of             

-0.0031) indicating that it is highly unlikely that the data is randomly distributed (Ebdon, 

1985).   

 

3.1.2 Variable Selection 

To identify which variables to consider for inclusion, it is typical to start with the 

biological requirements of any plant (radiation, heat, and moisture) and then add known 

species-specific needs.  Expert-opinion was sought in this study, through examination of 

the literature, field notes from and personal communication with botanist Mike Hays, Nez 
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Perce National Forest, and personal communication with Steve Shelly, USFS Region One 

Rare Plant Program manager, to identify variables likely important to Broad-fruit 

Mariposa.  Those included soil type, moisture availability, and an association with grass 

and shrub-dominated areas within a relatively narrow elevation band (Hitchcock et al., 

1969; Hays (field notes) 2010; Shelly (personal communication), 2011).  However, 

generally once a list of desired variables has been produced, the lack of appropriately 

scaled, spatially complete data layers for each variable requires substitutions of related 

layers.  The list of environmental variables initially considered thus also considered 

variables readily accessible to USFS analysts and managers in Region One and those 

commonly used in other plant modeling efforts (Engler et al., 2004; Franklin, 1995; 

Guisan and Zimmermann, 2000; Parolo et al., 2008).   

Forty-two environmental variables were initially considered in order to evaluate 

MAXENT’s ability to select the most important variables from a large initial set.  

Unfortunately, several layers were not included (ecological subsections, climate zones, 

geomorphology, geologic parent material, and soil type) because they were not available 

at the desired resolutions. Soil type in particular may be a very important predictor of 

Broad-fruit Mariposa habitat, its future inclusion may significantly improve modeling 

results (Shelly (personal communication), 2011; Hays (personal communication), 2011).  

Hays also suggested that potential vegetation type might be more effective as a predictor 

than the dominate vegetation type used here (Hays (personal communication), 2011).  

The remaining 37 environmental variables were included as inputs to MAXENT to 

predict Broad-fruit Mariposa habitat.  Each layer and its source are shown in (Table 4). 
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3.1.3 Climatic Data 

The climate data used consisted of 30-yr mean monthly temperature and 

precipitation data for the months of April through September (1971-2000) and was 

downloaded from the PRISM climate group (www.prism.oregonstate.edu/products/).  

This data is gridded by an algorithm that produces a continuous raster grid of estimated 

climatic parameters from point measurements of precipitation, temperature, and other 

climatic factors (PRISM, 2010).  This data was available at 800×800 m resolution and 

was down-scaled to 30×30 m resolution using a Digital Elevation Model (DEM) aided 

interpolation technique.  That involved removing the elevation effects by using the initial 

resolution DEM and a standard lapse rate of 6.5°C per 1000 m, then re-sampling the 

remaining temperature signal to 30×30 m using linear interpolation, and then re-scaled up 

to DEM elevations using the finer resolution DEMs and the same lapse rate (Willmott, 

1984).  Temperature anomalies related to non-standard atmospheric conditions and 

topographic convergence not accounted for in the PRISM data would not be corrected for 

by this procedure.  The 800×800 m resolution precipitation data was simply re-sampled 

to a 30×30 m by linear interpolation.  Spring climate variables were calculated as the 

mean of the April, May, and June values, and the summer climate variables were 

calculated as the mean of the July, August, and September values. These variables were 

included as they are related to the species moisture availability and heat requirements 

(Table 4).  However, the monthly and seasonal variables are highly correlated and a 

jackknife or some other selection procedure should be employed to isolate the most 

influential variable from each of these sets for inclusion in the final model. 
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3.1.4 Topographic Data 

The topographic variables elevation, slope, aspect, were derived from a 30×30 m 

DEM (USDA, 2007).  Beers aspect is a transformation of aspect into a continuous 

variable that ranges from 0.0 to 2.0 with 0 = SW, 1=NW & SE, and 2=NE aspects as:  

Beers	aspect	 	1	 	cos	 	 45°	 	aspect /degrees 	   

Beers aspect has greater ecological significance than standard aspect in that it better 

delineates cool and warm aspects (Beers and Wensel, 1966).  The “Topographic Wetness 

Index” was also derived from the DEM to estimate the variability of soil moisture over 

the study area (Beven and Kirkby, 1979; Moore et al., 1991).  The TWI value for each 

pixel will be calculated as the natural logarithm of the result of area draining into that 

pixel (a) divided by the tangent of the slope at that pixel (tanβ).  Average annual solar 

radiation was calculated using the algorithm of van Manen (2010) that calculates average 

solar insolation using hill-shade functions derived from the DEM at the solstices and the 

spring equinoxes.  The potential evapotranspiration data was calculated using mean solar 

insolation and mean temperature for the month of August calculated using the Solar 

Analyst tool in ArcGIS® 9.3 (ESRI, 2009) as inputs into the algorithm of Jensen and 

Haise (1963) that was specifically designed for use in the Intermountain West. Elevation 

was specifically identified by USFS botanists as being an important predictor for Broad-

fruit mariposa (Table 4).  The other topographic variables were included due to their 

common inclusion in other modeling efforts (Guisan and Zimmerman, 2000).  These 

variables are, however, strongly correlated to elevation and likely add little new 
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information to the model and therefore could be excluded without adversely affecting the 

model results. 

3.1.5 Vegetation, Road, and Disturbance Data 

The categorical variables of road proximity, timber harvest history, fire history, 

and vegetation type were acquired from the USFS Region One geospatial database.  The 

road data represent all public and USFS roads in the Nez Perce NF inventory.  The roads 

line layer was used to calculate a 30×30 m raster representing the simple linear distance 

to the nearest road.  The timber harvest layer was constructed by converting all polygons 

in which mechanical harvesting techniques were used from 1980 through 2010 and 

converting them to a single raster with integer values ranging from 0-30 that represent 

years since harvest.  The fire history data was constructed in the same manner as the 

timber harvest data with values ranging from 0-20 years (USDA, 2010). These layers 

were included in an attempt to assess the possible effects of access and disturbance, 

which are often significant for rare species (Rinehart (personal communication), 2008).  

The vegetation data comes from the USFS VMAP depicting dominant vegetation types; it 

was available at a 30×30 m resolution and was originally derived from Landsat imagery 

(USDA, 2006).  Vegetation type was included as it was identified by USFS botanists as 

being an important predictor for Broad-fruit mariposa (Table 4).   

3.1.6 NDVI and NDMI layers 

More difficult to gather was data for the satellite-based input layers.  The 

Normalized Difference Vegetation Index (NDVI) is the most widely used of the 

vegetation indices due to its simplicity and direct link to physical processes in plants (Liu 
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and Huete, 1995), as shown by the reflectance in the red and near-infrared (NIR) portions 

of the spectrum.  It is calculated:   

NDVI = (NIR-RED) / (NIR+RED) 

The Normalized Difference Moisture Index (NDMI) is similar to the NDVI but uses the 

mid-infrared (MIR) band that is strongly absorbed by the water contained within plants, 

and is strongly associated with water availability.  NDMI is calculated: 

NDMI = (NIR-MIR) / (NIR+MIR) 

While it is difficult to make direct interpretations about the biophysical meaning of 

NDMI information, it has been shown to be highly correlated to the “wetness” feature of 

Kauth and Thomas’, (1976) “Tasseled Cap” transformation (Wilson and Sader, 2002).  

The data to calculate the NDVI and NDMI were obtained from the USGS Landsat 

archive at glovis.usgs.gov.  Data from row 28 and paths 41 and 42 were needed to cover 

the entire Nez Perce NF.  The USGS archive was queried for all available July scenes 

with cloud cover less than ten percent.  Based on these constraints 19-years of Landsat 

TM data were used with collection dates ranging from 1986 through 2008 (USGS, 2010).  

The July images for 1987, 1993, 2001, and 2007 had cloud cover that exceeded 10% and 

were therefore excluded from the analysis.  Nineteen-year mean July NDVI and NDMI 

values were calculated in order to make these datasets as comparable as possible to the 

30-yr PRISM climate data.  The data was downloaded having undergone pre-processing 

including standard geo-rectification and radiometric corrections (Chandler et. al, 2007).  

These variables were included as proxies for summer moisture availability, but may also 

serve to delineate changes in vegetation types, both of which were identified by botanists 

as important (Table 4).  
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3.1.7 Data Processing 

 All data was projected to the UTM 11N coordinate system, geo-referenced and 

clipped to the USGS geo-rectified NDVI and NDMI extents.  Some of the environmental 

variables acquired from the USFS were only available for the National Forest and 

immediately adjacent areas only, requiring all of the data to be clipped to this smaller 

geographic extent.  All data sets discussed above were re-sampled to 200×200 m, for use 

in models that used occurrence records with accuracies less than 30 m, using the Spatial 

Analyst tool in ArcGIS® 9.3.   

 While it was a useful exercise to present a wide range of environmental variables 

to experts for consideration, the initial set (Table 4) was much too large and needed to be 

constrained in order to be parsimonious and have meaningful results as described in 

section 2.4.  Therefore, the large set initially considered was reduced to an intermediate 

(10 variable) and reduced (4 variable) subset using the procedures described below.  Even 

the intermediate subset is considered to be too many variables by many researchers 

(Guisan and Zimmerman, 2000; Johnson and Omland, 2004). 

 

3.2 Algorithm Implementation 

The concept of maximum entropy lends itself well to modeling the distribution of 

rare-plant species based on presence data alone.  The major advantage of this approach is 

that “it agrees with everything that is known, but carefully avoids assuming anything that 

is not known” (Jaynes, 1957).  The MAXENT algorithm develops a probability 

distribution that is as uniform as possible while being constrained by the empirical mean 

of features developed from the environmental variables at the occurrence locations.  

Berger et al., (1996) have shown that a distribution of this type is equivalent to a Gibbs 
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probability distribution that minimizes the negative log likelihood (log loss) of the sample 

points.  Using this method each feature is multiplied by a weighting factor (λ).  The 

appropriate maximum entropy distribution is then found by starting with a uniform 

distribution in which all weighting factors (λ) equal zero and iteratively varies them such 

that the negative log likelihood decreases to a minimum (Dud´ık et al., 2004).  In order to 

prevent over-fitting, the weighting factor (λ) is constrained by a “regularization factor” β 

(that determines how close the modeled values must be to the sample means).  The 

“regularization factor” forces the MAXENT distribution to focus on the most important 

environmental variables, reduces the tendency to over-fit the available data (Dud´ık et al., 

2004).  

Of particular interest for this study, MAXENT incorporates a variety of tools for 

analyzing the relative importance of environmental input variables.  During the model 

training process, the algorithm tracks of which environmental variables make the most 

significant contribution to the final habitat prediction and produces a table which ranks 

the importance for each environmental variable (Phillips, 2008).   The built-in jackknife 

tests that first iteratively excludes each variable and also considers each variable in 

isolation allows easy comparison of the relative impact each variable has on the overall 

distribution (Phillips, 2008).  The output of the jackknife test is a chart and corresponding 

data table that shows the effect that each environmental variable has on overall training 

gain, test gain, and the Area Under the [Receiver Operator Characteristic] Curve (AUC; 

Figure 3).  This research utilized small presence-only datasets, and mainly focused on 

assessing the relative importance of each environmental variable.  As such, MAXENT 

was a convenient model for this effort.  It offered proven performance, the capability of 
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handling the available data, and had the tools needed to address the research questions.   

However, it is believed that most algorithms being used in the literature today would 

have produced similar maps of suitable habitat if driven by the same input variables and 

thresholds.  

Technically, running MAXENT is a simple matter of identifying the file 

containing the occurrence data, the directory containing the environmental variables, and 

the directory where model out output will be stored (Phillips, 2008).  The output is a 

probability distribution over the entire study area.  Computationally, it starts with a 

uniform distribution and in an iterative fashion fits the modeled distribution to the 

training data.  A randomly selected percentage of the occurrence data can be set aside to 

test model performance.  The algorithm outputs a variety of variable contribution tables, 

as well as a probability surface, however, as this distribution is developed from only 

presence data it should be interpreted as an index of relative habitat suitability rather than 

the probability of species occurrence (Phillips 2008; Figure 4).  These outputs were used 

to compare the effect of selecting different sets of environmental variables had on the 

predictive performance of the models.  It is important to note that these comparisions 

were based on AUC, a measure that has known limitations but without absence data was 

the only option available, which limits the strengths of the analysis? 

3.3 Addressing Correlation of Occurrence Data 

The examination of the occurrence data discussed above indicated that the records 

were highly clustered and therefore likely to exhibit some degree of spatial 

autocorrelation (Legendre, 1993).  Parolo et al. (2008) addressed this problem by 

dichotomously splitting those occurrences that were closest together into the training and 
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test datasets.  This procedure would very likely artificially increase any measures of 

model performance.  In order to avoid this pitfall, the procedure of Parolo et al. (2008) 

was  modified by taking 30 random bootstrap samples of the occurrence records, splitting 

them into 75% training sites and 25% test sites, and running the model on each of these 

random partitions of the data.  This bootstrapping procedure is easily implemented in 

MAXENT through the available optional settings.  The mean response of these 30 

predictions was then used in all further analyses.  While this procedure does not remove 

the correlation in the data it does guard against generating by chance a model highly 

influenced by these correlations.  In addition, examination of the 30 individual models 

created by this procedure may provide some insight into the effect that this correlation 

has on model performance (Figures 5 and 6).  In addition to spatial auto-correlation in the 

occurrence data, many of the environmental variables were highly correlated to one 

another (Table 5).  This correlation can confound the interpretation of MAXENT’s 

measures of variable importance, making it difficult to accurately rank variable 

importance (Phillips et al., 2006).  

3.4 Comparing Model Accuracy and Variable Importance 

A variety of models were developed using different background extents, data 

resolution, sample sizes, occurrence data precision, environmental data resolution, , 

number of variables included and the variable ranking outputs available.   All of these 

models were built using the 30-bootstrap replicate procedure described above.  For each 

of the models used to examine these factors, both accuracy and the impact on which 

variables were statistically most important were examined.   
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3.4.1 Comparing Accuracy  

The Area Under the [Receiver Operator Characteristic] Curve (AUC) is a 

threshold-independent statistic of model performance.  AUC is a convenient index 

because it provides a single measure of overall prediction accuracy that is not dependent 

upon a particular threshold.  However, AUC as implemented in MAXENT measures the 

model’s ability to correctly rank sites with respect to their relative suitability.  This 

performance measure does not directly assess omission and commission rates as would 

the use of a confusion matrix and Kappa statistics commonly used in presence/ absence 

modeling techniques.  AUC values between range between 0.0 and 1.0.  A value of 0.5 

indicates that the model performs no better than random, while a score of 1.0 indicates 

perfect prediction (Fielding and Bell, 1997).  AUC values greater than 0.7 are generally 

thought to be useful for conservation planning (Elith et al., 2006).   The AUC is 

MAXENT’s standard measure of model performance and is automatically generated for 

each model run (Phillips, 2008).    

AUC values were computed for each of the various scenarios described below.  

The resulting mean-AUC values were compared using standard ANOVA and Welch t-

test procedures to determine whether there was statistical evidence that these factors 

produced better performing models.  When it was necessary to compare more than two 

mean-AUC values, and analysis of variance indicated significant differences, linear 

contrast techniques were used to make statistical comparisons of the group mean AUCs, 

using the R statistics package, in an effort to identify the variable selection method that 

produced on average the highest AUC (Ramsey and Schafer, 2002; Figures 11 and 12). 
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3.4.2 Comparing Variable Importance 

Using the procedure described above, a variety of models were produced to 

examine the sensitivity of HSMs to a variety of inputs and the resulting differences in 

variable importance.  Variable importance was ranked within MAXENT by examining 

variable rank output tables which show the influence of each variable.  Most of these 

variable ranking procedures use training or test gain.  Each iteration of the model 

attempts to improve model fit, measured as gain, by varying the coefficients (λ) 

associated with each feature (function of environmental variables).  Gain is basically a 

likelihood or deviance statistic that is used to maximize the probability of the occurrence 

data relative to the background (see section 2.4 for more detail; Phillips, 2006).   

The first of the variable importance measures considered was the percent 

contribution table which is a cumulative measure of training gain.  The next three 

variable importance measures are developed using jackknife tests for training gain, test 

gain and contribution to AUC (which is the only measure not directly based on gain; 

Figure 3 and Table 6).   The last measure of variable importance was calculated by the 

author using a manual combination of all of the automated outputs, by ranking each of 

the four outputs, summing across the rankings for each variable, and re-ranking the order 

(Table 7).  Comparisons of these various scenarios based on the variables selected by the 

above procedures were then examined to determine which scenarios performed best in 

terms of AUC. 
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3.5 Factors 

The specific factors considered included background extent, data resolution, 

sample size, and variable rank criteria.  Systematic combinations of these factors were 

produced and are referred to as scenarios for comparison.   

 
3.5.1 Study Area Extent  

The study area mentioned above included the area within a one mile buffer of the 

Nez Perce NF boundary.  However, the known occurrences of Broad-fruit Mariposa are 

confined to the south-westernmost portion of the Nez Perce NF.  The steep environmental 

gradients found in this area were vastly different ecological conditions than in the 

northeast portion of the Nez Perce NF.  This prompted concerns regarding the ability to 

extrapolate the modeling effort into these disparate environments that was addressed by 

others (Walter, in prep).  As the aim of this project was to assess variable importance, the 

analysis was constrained to that area known to support populations of Broad-fruit 

Mariposa.  Figure 2 shows the full extent of the Nez Perce NF and the smaller area used 

for most of the analysis.  This interpolative approach should have avoided some of the 

uncertainty that may have been induced by considering those areas with different 

environmental gradients (Guisan and Zimmermann, 2000; Hirzel and Le Lay, 2008).   

Full models including all 37 environmental variables were produced at the coarse 

resolution for the initial, large study area as well as for the reduced study area.  While 

calculated, AUC is dependent upon study area extent and thus comparisons of AUC from 

different extents are not valid.  These models were compared in terms of variable 

importance at the two extents (Figures 7 and 8).   More refined models with fewer 
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variables are discussed separately to examine the effects of methods to reduce the number 

of variables. 

3.5.2 Fine vs. Coarse Resolution 

As discussed in section 3.1.1, two modeling resolutions were utilized, one fine 

(30×30 m) and one coarse (200×200 m).  A series of runs were produced for the reduced 

study area at both the fine and coarse resolutions using the full set of 37 potential 

variables.  

3.5.3 Using Intermediate Variable Importance to Reduce the Number of Variables 

The intermediate models allow for evaluation of the variable importance and 

reduction of the number included.  Two subsets of variables were selected from the full 

model results from both the fine and coarse resolution output for further development.   

The first was based upon the top ten environmental variables, from the full model, 

as ranked by just the variable contribution ranking (scenario 1).  The second was 

determined by ranking the 37 environmental variables based on their influence on 

training gain, test gain, and effect on model AUC, when a variable is removed from the 

model and when considered alone as determined by the variable jackknife procedure 

(Table 6).  The ten variables with the highest ranks from the combination of these three 

jackknife outputs represent the second model (scenario 2).   

The same procedure was used to build intermediate models at the coarse 

resolution (scenario 3) and (scenario 4).  The performance of these models with an 

intermediate number of variables, were compared to assess the effect of these types of 

variable-ranking procedures on model accuracy (Figures 9 and 10).   
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Five additional models were constructed at both resolutions using the same 

procedure described above, but using only the top four variables from the full model as 

identified by the variable rank outputs.  At the fine resolution, the models developed 

using test gain and the combination of all outputs both identified the same four variables 

ranked in the same order.  This yielded four unique models for comparison based on the 

following outputs: percent contribution (scenario 5), training gain (scenario 6), test gain 

and combined (scenario 7), and contribution to AUC (scenario 8; Figure 11).    

At the course resolution, the models developed using test gain, contribution to 

AUC, and the combination of all outputs all identified the same four variables ranked in 

the same order.  This yielded three unique models for comparison based on the following 

outputs: percent contribution (scenario 9), training gain (scenario 10), test gain, 

contribution to AUC and combined (scenario 11; Figure 12). 

Given the number of scenarios developed, descriptions of each scenario are 

.included in the comprehensive Table 8, which also shows the resulting statistics. 

3.5.4 Occurrence Data Resolution 

One of the goals of modeling at two resolutions was to explore the effect of 

resolution on model accuracy and variable importance.  This comparison could not be 

fairly made using scenarios discussed earlier as the fine and coarse models sample 

locations were not the same.  Addressing this question required building a model that 

utilized the 200 m occurrence data (n=119) and the 30 m environmental data (scenario 

12).  Comparing this model’s output with the original coarse model’s output (scenario 13)  

should isolate the effect of scale and allow or the evaluation of the effect of grain size on 
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variable importance and model accuracy (Figure 14; Engler et al., 2004; Guisan et al., 

2007). 

3.6 Additional Evaluations 

3.6.1 Logistic Regression 

Thus far in this research, MAXENT’s variable selection criteria had only been 

evaluated in isolation because the literature indicates that the regularization method 

performs very well (Dudik et al., 2004; Tibshirani, 1996).  Elith et al. (2011) indicate that 

variable selection utilizing regularization is much better than other commonly used step-

wise selection procedures.  However, in order to further test the assortment of variable 

selection procedures, a simple logistic-regression model with no interaction was built for 

the 200 m occurrence data that included all 37 variables.  This logistic-regression model 

was built using 119 presence records and 10,000 absence records selected randomly from 

the background pixels (Engler et al., 2004; VanDerWal et al, 2009).  The environmental 

variable values were sampled at each presence and absence location and written to 

tabular form.  This tabular data was used to perform the logistic regression in the 

statistical analysis package R (www.r-project.org).  From the resulting logistic regression, 

R’s stepwise AIC function was used to select the most significant variables based on both 

a forward and backward stepwise AIC, (Akaike, 1974).  A MAXENT model built using 

the variables identified using the  logistic regression and AIC stepwise procedure 

(scenario 14), was then compared to a model with the same number of variables but 

identified by MAXENT using only linear features to make it comparable in complexity to 

the logistic model as possible (scenario 15).  The goal of this comparison was to identify 
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which of these two variable selection methods produced the best model in terms of AUC 

(Figure 15). 

3.6.2 Comparison of MAXENT to Domain 

A comparison of the total area predicted as suitable Broad-fruit Mariposa habitat 

by Nock (2007) using the Domain algorithm to the area predicted by MAXENT was 

conducted to assess the relative effectiveness of the two procedures.   The Domain model 

produces a binary output identifying areas as either suitable or unsuitable habitat.  

MAXENT’s logistic output produces a continuous probability surface ranging from 0 to 1 

with pixel values close to 1 indicating the most suitable habitat, that allows the user more 

flexibility in establishing particular binary thresholds (Phillips et al., 2008).  The Domain 

model was run with seven environmental variables at a 60×60 m resolution.   The model 

used in this comparison used the four best variables from the 200×200 m resolution for 

the small study area (Scenario 9). This particular scenario was selected because it uses a 

comparable number of occurrence records and fewer environmental variables.  The 

predicted areas used in this comparison correspond to the minimum and maximum 

extents produced by MAXENT’s recommended default threshold levels.  
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4 RESULTS AND DISCUSSION 

 
Results are discussed in the order they were presented in the Methods chapter.  

For comparison, Table 8 gives a brief description of the parameters used for each 

scenario while Figure 16 graphs the AUC for each.  Note that these only contain the 

results of runs involving the reduced study area as those are not easily comparable to 

those done on the full study area (Figure 2). 

 
 
4.1 Spatial autocorrelation of occurrence data 

 It was difficult to specifically address how much of the variability present in the 

30 bootstrapped model runs was attributable to spatial autocorrelation.  Figures 5 and 6 

demonstrate the effects of spatial autocorrelation on the fine and coarse resolution 

models.  According to Phillips (2008), the omission and predicted area plot (Figures 5c 

and 6d) for independent samples should be close to predicted omission (black line) due to 

the definition of the cumulative threshold.  As expected, the test omission is greater than 

predicted for the run with least spatially auto correlated sample split, and much lower for 

the most auto correlated run, resulting in inflated accuracy estimates for models in which 

all the test data is located near clusters of training locations.  The worst performing run, 

of all the scenarios considered, (AUC 0.827) is the result of training/test partitions that 

grouped the most clustered occurrence records into training sites and the dispersed 

occurrences into the test sites.  Conversely, the run that performed best, of all the 

scenarios considered, (AUC 0.998) split highly clustered occurrences into training and 

test sites such that test sites have high spatial autocorrelation with training sites.  These 
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effects are most pronounce in the runs produced using the 30 m occurrences (n=20) but 

still present in those built from the 200 m occurrence data (n=119, AUC 0.967 and 

0.869), for the high and low autocorrelation models respectively. 

Many of the environmental variables that were commonly ranked as highly 

important are also the variables that were determined to be highly correlated with one 

another.  The correlation between these variables not only increases uncertainty regarding 

the relative importance of these variables but also detracts from the model as they 

essentially contain no new information.     

These results support the need for caution when interpreting accuracy of models 

with non-random sampling, small sample sizes and highly correlated environmental data.  

In addition, these result show that increased sample sizes may insulate predictions 

somewhat from the effect of spatial autocorrelation.  While all of the models presented 

here performed relatively well (AUC better than 0.8).  This may be the result of the study 

area still being overly large or the species prevalence low, and this level of performance 

will likely vary depending on the species considered, geographical location, and available 

variables. 

4.2 Study Area Extent  

Comparing the models performance on the large and reduced study areas (Figure 

2) demonstrates a limitation of the AUC statistic.  The AUC calculated for the full Nez 

Perce NF (0.990) is larger than that calculated for the reduced study area (0.980) because 

of the way that AUC is calculated with presence-only data (Fielding and Bell, 1997; 

Phillips et al., 2006).  The use of AUC in evaluating the relative performance of two 
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presence-only models should be restricted to models having the same geographical 

extent. 

Comparison of the most important variable rankings was very different at these 

two extents (Figures 7 and 8).  The modeled species response to a particular 

environmental variable appears to be very sensitive to the range of the environmental 

gradients.  When selecting the geographical extent of a study area it is prudent to 

compare the range of the environmental gradients present in the study area with the range 

sampled by occurrence data.  Failure to do this can result in misleading interpretations of 

variable importance.  In this study, the road proximity layer provides a good example of 

this.  At the large study area extent road proximity is ranked as highly important where at 

the small extent it has very little influence on the model.  The proximity of sites to roads 

is very different between the road-less wilderness in the northern portion of the Nez Perce 

and the relatively heavily roaded areas found further south.  This is an extreme example 

of how inclusion of areas with vastly different environmental gradients from those 

occupied by the species can result in erroneous assessments of variable importance.   

It was not surprising that the AUC value was higher for the model of the large 

study area as this is a well documented characteristic of the AUC statistic.  However, the 

substantial difference in the variables selected as important between models at the two 

extents was unexpected. 

4.3 Using Intermediate Model Variable Rankings to Reduce Variables Included 

4.3.1 Ten Variable Results 

The fine-resolution models created using the variable contribution output and a 

rank based on combining the training, test, and AUC jackknife outputs to identify the top 
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ten variables, resulted in  models that performed statistically very similarly (scenario 1 

and scenario 2, Table 8).  A two sample t-test with the null hypothesis being that the there 

is no difference in mean AUC between the two models (Ramsey and  Schafer, 2002) 

produced a t-statistic of 1.326 and a corresponding one sided p-value of 0.19, indicating 

that there is no statistical evidence that one model performed better than the other.   

The models both ranked elevation, vegetation type, and April minimum 

temperature as being important, and the areas predicted as suitable are very similar 

(Figure 9). 

  The coarse-resolution models created using the variable contribution output and 

a rank based on combining the training, test, and AUC jackknife outputs to identify the 

top ten variables, produced similar results as well.  A two sample t-test with the null 

hypothesis being that the there is no difference in mean AUC between the two models 

produced a t-statistic of 2.092 and a corresponding one sided p-value of 0.04, indicating 

there is weak statistical evidence that the scenario 3 performed slightly than scenario 4.   

Both scenarios ranked elevation, vegetation type, and NDMI as being important, 

and the areas predicted as suitable are also very similar (Figure 10).   

4.3.2 Four Variable Results 

Five additional fine-resolution models were created using the variable 

contribution output and variable jackknife procedures to identify the top four variables. 

The jackknife of test gain identified the same four variables in the same order as the 

combined procedure so only that model was used in the analysis for a total of four 

scenarios: contribution output (scenario 5), training (scenario 6), test and combined 

(scenario 7), and AUC contribution (scenario 8).  Of the resulting models (Table 8), 
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scenario 7 performed best, with a mean AUC of 0.968, while the worst was scenario 8 

with a mean AUC of 0.929.  A f-test with the null hypothesis being that the there is no 

difference in mean AUC between the five models produced a f-statistic of 24.995 and a 

corresponding p-value much less than 0.00001, indicating that there is convincing 

statistical evidence that at least one of the means was not equal.  The specific hypothesis 

that scenario 7 was no better than the other four models was tested by the linear 

combination of group means procedure (Ramsey and  Schafer, 2002), resulting in a t-

statistic of 5.821 and a corresponding one sided p-value much less than 0.00001, 

providing convincing evidence that scenario 7 performed best (Table 8).  The largest 

difference in predicted area of these 4-variable models was between scenarios 6 and 8, 

scenario 8 predicted 6.57% more area as suitable even though the AUC scores were very 

similar 0.938 and 0.929 respectively (Table 8 and Figure 11b and d). 

From a practical standpoint, the three models that incorporated elevation and 

vegetation type performed well and predicted reasonably similar areas as having suitable 

habitat.    This illustrates some of the problems identified earlier regarding the use of 

AUC as the sole means of model validation.  Specifically demonstrating how two models 

with very similar AUC scores can predict substantially different areas as suitable.     

Five coarse-resolution models were created using various variable importance 

outputs to identify the top four environmental variables.  The jackknife of test gain, AUC, 

and the combined model identified the same four variables in the same order as the 

combined jackknife procedure so only the combined model was considered in the 

analysis.  Of the resulting three unique scenarios contribution output (scenario 9), training 

(scenario 10), and test-combined-AUC (scenario 11), scenario 9 performed best with a 
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mean AUC of 0.931, while worst was scenario 11 with a mean AUC of 0.923.  A f-test 

with the null hypothesis being that the there is no difference in mean AUC between the 

three models produced a f-statistic of 4.94 and a corresponding p-value of  0.0092, 

indicating that there is strong statistical evidence that at least one of the means was not 

equal.  The specific hypothesis that the scenario 9 was no better than the other two 

models was tested by the linear combination of group means procedure (Ramsey and 

Schafer, 2002), resulting in a t-statistic of 3.10 and a corresponding one sided p-value of 

0.0026, providing statistical evidence that the scenario 9 performed best (Figure 12). 

4.3.3 Summary of Variable Rank Impacts 

In summary, for the various variable selection methods described above, 

elevation, May precipitation, NDMI, vegetation type, and April minimum temperature 

were most commonly ranked as one of the top four important variables.  Elevation 

appears to be highly important in all models and vegetation type is highly important only 

in fine resolution scenarios  

MAXENT’s default percent contribution output performed the more complicated 

jackknife procedure in all cases except for the reduced (4 variable) fine resolution model 

comparison.  In that comparison, scenario 7 performed marginally better statistically than 

the default percent contribution output but the mean AUC difference was just 0.006.  In 

addition to performing well, the percent contribution output is also the easiest of the 

outputs to interpret, and should be the default source for variable selection.  The jackknife 

variable importance output can be used to modify the list selected variables, if the 

objective of the modeling effort is to maximize prediction of test data, or to identify 
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highly correlated variables, or identify those variables that may not add much to training 

gain but contain significant information not present in the other variables (Phillips, 2008).  

4.4 Occurrence Data Resolution 

To examine what the modeling result would be if all of the occurrence records 

had been collected with a known accuracy of 30 m or better, a comparison of two models 

that both used the 119 occurrence records, and the 10 most important environmental 

variables, was conducted.  One model utilized environmental variables at 30×30 m 

resolution (scenario 12) and the other used environmental variables at 200×200 m 

resolution (scenario 13).   

A two sample t-test with the null hypothesis being that the there is no difference 

in mean AUC between the two models produced a t-statistic of 1.685 and a 

corresponding one sided p-value of 0.0978, indicating that there is very little statistical 

evidence that one model performed better than the other (Table 8).   

The results of this comparison indicate that the resolution had little impact on the 

type of variables selected, as the top five variables were the same for both scenario 12 

and 13 though they were ranked differently (Figure 14).  The Landsat-derived NDMI and 

NDVI were much more significant contributors in the finer resolution run; this is likely 

because at this resolution the total variability of these indices was preserved.  NDMI, in 

particular, seems was an important contributor in models at both scales and was often 

very highly ranked in the fine-resolution runs. 

Interestingly, vegetation type was consistently ranked higher in the runs 

developed using 30 m (n=20) occurrence records and fine-resolution input data (scenario 

12).  This may be due to the corresponding vegetation type data being classified from 
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Landsat imagery at that resolution or it could be that the vegetation characteristics are 

fundamentally more important to this species at that scale.  Re-sampling to a coarse 

resolution also caused grassland pixels near forest pixels to be reclassified as forest.  

Examination of the vegetation type data at the 30×30 and 200×200 m resolutions 

revealed many instances of this kind of resampling-induced data degradation.  It may also 

be that due to the few and closely grouped occurrence records available at the fine 

precision; the majority of the Broad-fruit Mariposa populations fell into one of two 

vegetation classes (grass and shrub dominated) by chance.  While at the coarse resolution 

there were larger numbers of occurrence records that were more evenly distributed 

among more classes (grass, shrub, ponderosa, and lodgepole pine dominated) of 

vegetation making it less valuable as a predictor.   

4.5 Logistic Regression 

The comparison of the model using MAXENT-selected variables (scenario 14) 

versus the model using AIC-selected variables (scenario 15) suggests that MAXENT did 

a better job of removing correlated variables and retaining variables that contained unique 

information (Figure 15).  Scenario 14 also performed significantly better than scenario 

15, t-statistic 7.398 corresponding one-sided p-value much less than 0.00001, although 

both performed well (Table 8).  This supports the findings of Dudik et al. (2004), 

Tibshirani (1996), and Elith et al. (2011) that the regularization method of variable 

selection generally out performs other methods.  However, both scenarios included a 

large number of environmental variables (21), because the AIC-selection procedure could 

not remove any more variables without the AIC value increasing.  Due to the large 

number of variables that needed to be considered and the relatively small presence 
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dataset (119) this comparison relied on a very simple implementation of the logistic 

regression model a more sophisticated comparison might reach different conclusions.   

However the results presented here suggest that the regularization method of variable 

selection outperforms AIC-based methods in both flexibility and model performance.   

4.6 Comparison of MAXENT and Domain  

The Domain model using seven environmental variables at the 60×60 m 

resolution produced a binary output identifying 123,094 ha of suitable habitat for Broad-

fruit Mariposa (Nock, 2008).  The MAXENT model using only the four best variables, 

predicted a minimum and maximum area of 23,517 and 126,898 ha, respectively (Table 

9).  The MAXENT algorithm using a more parsimonious model, in general performed 

better, predicting much smaller areas as suitable than did Domain.  This is advantageous 

in the case of rare plant species as they usually do not occupy large areas and the more 

precisely those areas can be delineated the more effective the output will be in aiding 

conservation managers. Qualitatively the area predicted by the most inclusive MAXENT 

model and Domain are fairly similar, however the most restrictive MAXENT model 

identifies a much more specific area as suitable habitat.  All of the MAXENT scenarios 

presented here performed very well with AUCs ranging from 0.987 to 0.923 well above 

the 0.70 value determined by Elith et al. (2006) to be of value in conservation planning 

(Figure 16).  
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5 CONCLUSIONS AND RECOMMENDATIONS 

 
The number of environmental variables available in digital formats appropriate 

for habitat modeling continues to grow and this fuels the increasing efforts to find new 

ways to leverage this information into SDMs for a variety of management objectives.  

This makes the ability to effectively identify important subsets of environmental 

variables to be considered in predicting rare-plant habitat suitability even more critical.  

When possible the first step in this type of endeavor should be to gather as much 

information as possible about the relationships between the potential environmental 

variables and the target species.  With some modification a method similar to the one 

presented here can provide some insight into the effects of factors such as correlated 

variables, sample size and sampling, and spatial extents may have on statistically derived 

variable selections. This is not to suggest that the procedure used here should replace 

variable selection based on sound ecological understanding of biological requirements of 

the species under consideration, when those requirements are known and the data is 

available, rather this method should be used to supplement that approach.  It can be used 

to assist researchers narrow the list of important variables, particularly in those cases 

where there is a lack of definitive ecological understanding of the species/environment 

relationship as is often the case with rare species. 

  Often the environmental variables that have the most direct and proximal effect 

on rare plant distribution are precisely those variables that are unavailable in the 

geographical format required by statistical modeling efforts (Austin and Smith, 1989).  In 

these cases, there may be a number of other indirect variables that are strongly associated 

with a particular rare plant species and a procedure similar to the one presented here, can 
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be used to ascertain which are statistically most predictive, allowing the development of 

an initial description of suitable habitat.  However, through iterative cycles of data 

collection and model updating, the resulting output should become progressively better.  

 
5.1 Conclusions 

Validation of the results presented here has relied heavily on the AUC statistic. 

For the reasons discussed above, it would be advantageous to supplement this approach 

with some other validation procedure.  Unfortunately these more robust validation 

procedures generally require presence/absence data.  The importance of high quality 

presence/ absence data for the purpose of validating habitat suitability models has been 

well documented (Guisan and Zimmerman, 2000; Elith et al., 2006), and it can be 

particularly important in presence-only modeling efforts where the number of initial 

assumptions is necessarily large (Phillips et al., 2006), such as with rare species.  It would 

therefore be extremely useful for agencies to develop at least a small set of 

presence/absence data for those species of rare plants that will likely be included in future 

modeling efforts.  Optimally, these could be used not only to independently test the 

presence only model’s accuracy, but many of the other assumptions as well. 

The inclusion of highly correlated variables greatly complicates the interpretation 

of variable importance (Table 7; Figure 11d).  In addition it results in a less parsimonious 

model that may include many redundant variables.  It would be advantageous to identify 

and include only the most influential of the correlated variables, and exclude the others.  

The results presented here would have benefitted from the early exclusion of correlated 

variables that proved to be the least influential in identifying suitable habitat for Broad-

fruit mariposa.  This would have resulted in a more parsimonious model that took 
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advantage of as much unique information as possible, while reducing redundancy.  The 

inclusion of additional variables, with the goal of “data mining” for new, unexpected 

biophysiological relationships, is strongly discouraged in the literature (Guisan and 

Zimmerman, 2000) and increases the difficulty in achieving accurate, interpretable results 

from a parsimonious model. 

 The specific variables identified as being important in defining the distribution of 

Broad-fruit mariposa habitat were sensitive to a number of factors:  study area extent, 

sample size of occurrence data, variable ranking procedure (contribution, training gain, 

test gain, AUC maximized), environmental variable resolution, and to a lesser degree, 

model complexity.  Study area extent and the sample size of occurrence data had by far 

the greatest impact (Table 8; Figure 16).  Sensitivity to these factors resulted in output 

with important variables ranked differently, but the majority of the models rank the 

following variables as highly important for Broad-fruit Mariposa: elevation, May 

precipitation, vegetation type, April minimum temperature, NDMI, September 

precipitation, and July maximum temperature (Figures 8-12).  Of these, elevation, 

vegetation type, and NDMI were among the variables identified as potentially important 

by USFS botanists (Table 4), strongly supporting the benefit of utilizing expert 

knowledge when available.  It is worth noting that the strong correlation between 

elevation and predicted habitat may largely be the result of constraints imposed by 

modern land use practices as agriculture in the lower elevations may restrict Broad-fruit 

mariposa form inhabiting those areas.     

The 30×30 m resolution output tended to rank those environmental variables that 

were collected at that resolution (vegetation type, NDMI and NDVI) higher than models 
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run at the coarse resolution, suggesting that vegetation type and NDMI may be extremely 

valuable in predicting the habitat of Broad-fruit Mariposa.  Unfortunately, these results 

are based on only a few spatially correlated occurrence records and so collection of more 

data at this fine resolution is needed to confirm this apparent association.  Predictions at 

this fine resolution may also increase the overall accuracy of the results (Engler et al., 

2004), yielding predictions with smaller areas being defined as “suitable” that will permit 

identifying specific locations to conduct future surveys.   

The MAXENT algorithm used here allowed many of the recommendations of 

Nock (2008) to be addressed.   In addition, MAXENT appears to have outperformed 

Domain and offers users greater flexibility of implementation (Table 9).  While 

MAXENT has many features that facilitated its use in this project, there are many other 

methods which could be used that should perform similarly well; BRT, MARS, and 

GLM/GAMs using pseudo-absences performed similarly in model comparison studies  

(Elith et al., 2006).   In fact, a number of studies have shown that the selection of 

environmental variables, the quality of occurrence records, and amount of sampling bias 

are more important considerations than the type of algorithm used (Guisan and Araujo, 

2006; Guisan and Zimmermann, 2000; Hirzel and Le Lay, 2008; Phillips et al., 2008). 

 The primary benefit of utilizing the bootstrapping to produce a range of models 

that are trained and tested on different subsets of the occurrence data is that it provides 

insight into the extent and effects of spatial autocorrelation (Figures 5 and 6).  These 

effects were most pronounced in the fine-resolution models but still present in the coarse-

resolution models.  Models with small occurrence datasets tended to have high variability 

in performance while the performance of models with large occurrence datasets seem to 
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be less variable (Table 8).  The bootstrapping procedure used here illustrated the need for 

caution when interpreting the accuracy of models with non-random sampling and small 

sample sizes.  In addition, these result show that increased sample sizes may insulate 

models somewhat from the effect of spatial autocorrelation, and may help to identify 

areas that should be targeted for increased sampling to decrease the effects of spatial 

autocorrelation.  

While the range of performance differs between the models built at the two scales, 

the areas predicted as suitable were generally the same.  The additional areas predicted by 

the coarse model can be attributed to the larger number of occurrence data available at 

that resolution (Table 8; Figure 14).  This generally consistency in habitat prediction is 

encouraging as this study only considered one of the many rare-plant species managed by 

USFS in Region One.  Broad-fruit Mariposa was selected primarily due to its relative 

abundance of data; however, most of the other rare-plant species have an even smaller 

number of known occurrences.  This comparable performance with only 20 data records 

suggest that the procedures used here should be applicable with only minor modification 

to the other rare-plant species within Region One, even with low numbers of occurrence 

data. 

This project aimed to test the influence of a variety of factors on the determination 

of variable importance for the prediction of suitable habitat for Broad-fruit mariposa.  

The variables identified by this type of statistical inference may have little or no 

biophysical meaning and should not be used to infer any biophysical relationships.  The 

procedure used here is most appropriate when applied to relatively small areas where the 

species of interest is known to exist for the purpose of targeting new areas to survey in 
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the hope of finding new occurrences that can be used to further refine the model.  The 

output of this procedure should not be used to definitively define the species range or 

extent.  In addition it should not be used to extrapolate the occurrence of the species to 

new environments or areas.  Using HSMs for these types of applications are often 

problematic and when attempted should utilize randomly sampled presence/ absence 

occurrence data and the inclusion of environmental variables with strong biophysical 

connections to the target species. 

5.2 Recommendations for Habitat Suitability Models 

The following lists are specific recommendations aimed at assisting managers to A): 

select variables to be considered in the modeling effort, and B): some general 

considerations for modeling rare-plant habitat. 

5.2.1 Variable Selection 

• Selection of variables should be based on the expert’s ecological knowledge of 
species when possible and basic ecological principles when little species-specific 
information is known (Guisan and Zimmerman, 2000; Section 2.4).  Inclusion of 
variables related to disturbances (from roads, fire, etc.) should only be done when 
there is a previous expectation of an ecological relationship to that disturbance. 

• The use of a large number of variables is undesirable, particularly when 
correlated, effort should be given to the statistical determination of which of these 
correlated variables is most influential, and only those should be utilized for the 
main model.  See earlier discussion of variable selection procedures in Section 2.4 
and 3.1.2 for discussion. 

• Outputs ranking variable importance can be an effective tool for narrowing down 
the list of potential variables to be included in modeling efforts (Section 4.3; 
Dud´ık et al., 2004). 

• The specific ranking of these variables is sensitive to numerous factors, is made 
more difficult when variable are correlated, and should therefore be regarded 
skeptically (Section 5.1). 
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• Causal relationships cannot be inferred from the statistical associations identified 
between occurrence locations and environmental variables (Franklin, 1995)  

• While in the field, experts should attempt to assess the validity of environmental 
variables that could be used in modeling efforts and identify variables that should 
be incorporated in the future (Section 3.1.2). 

 

5.2.2 General recommendations for developing and implementing HSMs 

• Continue to encourage the development of more proximal environmental data at 
finest resolution possible (Section 3.1.2). 

• Do not restrict models or data availability to administrative boundaries as this 
allows algorithms to take advantage of the largest possible occurrence datasets 
and more thoroughly describe the species/environment relationship (Section 
3.1.2).  

• Future data collection should stress locational precision using differentially 
corrected GPS data to the maximum extent possible (Engler et al., 2004; Section 
3.1.1). 

• Replicate models can quantify the variability in model performance, particularly 
when sample size is small and data is spatially correlated (Section 3.4). 

• The HSM for a particular species should be iteratively updated as new occurrence 
and environmental data becomes available (Section 5.1). 

• HSMs that provide continuous probability predictions offer more flexibility in the 
selection of thresholds can be used to focus and improve the efficiency of future 
field surveys (Phillips et al., 2006). 

• Use independent presence/ absence occurrence data for validation of future 
modeling efforts (Section 3.4.1). 

• Conduct field surveys in an effort to ground truth model results (Nock, 2008). 

 

 Future research that may improve habitat-suitability modeling of rare-plant 

species found within Region One of the USFS include a formal examination of the effect 

of environmental variable resolution on model performance with a larger high-precision 

occurrence data set.  To more accurately assess presence-only models, at least a small set 



 

  49

of presence/ absence data should be developed for those species of rare plants that will 

likely be included in any future modeling efforts.  Conduct field surveys of those areas 

determined to be the most suitable in an effort to ground truth the results of all HSMs.  

Compare the result of those efforts to a simple model driven by only biophysically 

relevant data.  Further testing of the procedures used here on a variety different species 

and environments would help to determine its overall applicability.  Further examination 

of the effects of spatial autocorrelation on model performance would also be useful. 
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Table 1.  Species list used as input in DOMAIN habitat predictions (Nock, 2008).  Species considered 
in the current study are highlighted. 

Species State  State  Number of  

Common Name Scientific Name Listed Rank Occurrences 

Broad-fruit Mariposa Calochortus nitidus ID S3 261 

Constance's bittercress Cardamine constancei ID S3 74 

Evergreen kittentail Synthyris platycarpa ID S3 83 

Idaho Douglasia Douglasia idahoensis ID S2 20 

Idaho strawberry Waldsteinia idahoensis ID S3 45 

Pacific dogwood Cornus nuttallii ID S1 99 

Payson's milkvetch Astragalus paysonii ID S3 190 

Puzzling halimolobos Halimolobos perplexa ID S3 42 

Clustered lady's slipper 
Cypripedium 
fasciculatum  

ID/MT S2 S3 81 

Tapered-root orogenia Orogenia fusiformis MT S2 69 

Coville Indian paintbrush Castilleja covilleana MT S2 86 

Hall's rush Juncus hallii MT S2 24 

Hollyleaf clover Trifolium gymnocarpon MT S2 47 

Howell's gumweed Grindelia howellii MT S2 S3 100 

Jove's buttercup Ranunculus jovis MT S2 27 

Lemhi beardtongue Penstemon lemhiensis MT S3 153 

Missoula phlox 
Phlox kelseyi 
missoulensis 

MT S2 25 

Northern rattlesnake-
plantain 

Goodyera repens MT S2 S3 133 

Sapphire rockcress Arabis fecunda MT S2 43 

Short-styled colombine Aquilegia brevistyla MT S2 47 

Small onion Allium parvum MT S2 S3 102 
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Table 2.  Percent of known occurrence data contained in DOMAIN’s predicted area (Nock, 2008) 
. (Species considered in the current study highlighted) 

Species 
New 
Occurrences 

Known 
Occurrence 
Accuracy 

Acreage (Hectares) of 
Predicted Habitat in 
Nez Perce NF 

Broad-fruit Mariposa 2 95 304,173 (123,094) 

Constance's bittercress 5 100 552,866 (223,736) 

Evergreen kittentail 2 83 586,778 (237,460) 

Idaho Douglasia 0 95 179,061 (72,463) 

Idaho strawberry 11 98 531,617 (215,137) 

Pacific dogwood 4 100 552,866 (223,736) 

Payson's milkvetch 0 92 596,401 (241,354) 

Puzzling halimolobos 0 83 385,235 (155,899) 

Clustered lady's slipper 0 88 542,224 (219,430) 

Tapered-root orogenia 16 84 67,624 (27,366) 

Coville Indian paintbrush 1 67 75,823 (30,684) 

Hall's rush Not surveyed 83 4,964 (2,008) 

Hollyleaf clover 1 83 5,539 (2,241) 

Howell's gumweed Not surveyed 90 2,145 (868) 

Jove's buttercup Not surveyed 96 557 (225) 

Lemhi beardtongue 1 43 3,391 (1,372) 

 Missoula phlox 0 52 1,478 (598) 
Northern rattlesnake-
plantain 

0 89 11,287 (4,567) 

Sapphire rockcress Not surveyed 76 196 (79) 

Short-styled colombine Not surveyed 100 100 (40) 

Small onion 1 74 26,950 (10,906) 
 

Table 3.  Euclidean distance between occurrences. 

Minimum 
(m) 

Mean 
(m) 

Maximum 
(m) 

30 m  34 10383 27705 

200 m  112 19381 63862 
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Table 4.  List of environmental variables initially considered (variables highlighted in red were 
removed as they were mapped at a scale too course for the resolution of the modeling effort). Bold 
text are those identified by experts as important, underlined variables represent variables with a 
clear biophysical relationship to plant species, italicized variables represent climactic variables only 
the most significant of which should be included,  Variables with an asterisk represent variables 
commonly used in other modeling efforts or related to disturbance that may prove important to rare 
plants. 
 Variable  Resolution Description Resampling Source 

C
lim

at
ic

 

April Precip 800 × 800 m 30 yr (71-00) climate data Bi-linear interpolation PRISM 2010 
May Precip 800 × 800 m 30 yr (71-00) climate data Bi-linear interpolation PRISM 2010 
June Precip 800 × 800 m 30 yr (71-00) climate data Bi-linear interpolation PRISM 2010 
July Precip 800 × 800 m 30 yr (71-00) climate data Bi-linear interpolation PRISM 2010 
August Precip 800 × 800 m 30 yr (71-00) climate data Bi-linear interpolation PRISM 2010 
September Precip 800 × 800 m 30 yr (71-00) climate data Bi-linear interpolation PRISM 2010 
April Max Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
May Max Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
June Max Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
July Max Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
August Max Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
Sept Max Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
April Min Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
May Min Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
June Min Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
July Min Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
August Min Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
Sept Min Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
Spring Mean Precip 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
Summer Mean Precip 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
Spring Max Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
Summer Max Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
Spring Min Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 
Summer Min Temp 800 × 800 m 30 yr (71-00) climate data DEM aided interpolation PRISM 2010 

T
op

og
ra

p
h

ic
 Elevation  30 × 30 m  DEM 200m = mean of 30m pix. USDA 2007 

Slope*  30 × 30 m  DEM derived 200m = mean of 30m pix. USDA 2007 
Aspect*  30 × 30 m  DEM derived 200m = mean of 30m pix. USDA 2007 
Beer’s Aspect 30 × 30 m  1+cos((45°-aspect)div deg)  200m = mean of 30m pix. USDA 2007 
Topo. Wetness Index 30 × 30 m  DEM derived 200m = mean of 30m pix. USDA 2007 
Solar radiation 30 × 30 m  DEM derived 200m = mean of 30m pix. USDA 2007 
August Pot.ET  30 × 30 m  Solar rad. & Temp derived 200m = mean of 30m pix. PRISM 2010 

O
th

er
 

Dominant Veg.Type  30 × 30 m   Dominant Vegetation Type  200m = reclass 30m pix. USDA 2010 
NDVI 30 × 30 m  (NIR-RED)/(NIR+RED)  200m = mean of 30m pix. USGS 2010 
NDMI 30 × 30 m  (NIR-MIR)/(NIR+MIR) 200m = mean of 30m pix. USGS 2010 
Fire History*  1:24000 1988-2010 Fires  Polygon to 30m raster  USDA 2010 
Timber Harvest Hist* 1:24000 1980-2010 Mech.Treat.  Polygon to 30m raster  USDA 2010 
Road Proximity*  1:24000 Distance to nearest road Polygon to 30m raster  USDA 2010 
Climate Zones*  1:100000 Bailey's land units Polygon to 30m raster  USDA 2010 
Geologic Material*  1:100000 Land type associations Polygon to 30m raster  USDA 2010 
Ecological 
subregions* 1:100000 Ecological subregions Polygon to 30m raster  USDA 2010 
Geomorphology  1:100000 Land type associations Polygon to 30m raster  USDA 2010 
Soil  1:100000 Land type associations Polygon to 30m raster  USDA 2010 
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Table 5.  Correlation between the top ten variables from the fine and coarse resolution models (not in 
rank order, and bolded items indicate highly correlated variables).   

30m reduced model  correlation matrix

apr_m
int

aug_ppt

beers_aspt
elev

jul_m
axt

m
ay_ppt

ndm
i

ndvi

slope

veg_type

apr_mint 1.000

aug_ppt ‐0.865 1.000

beers_aspt ‐0.023 ‐0.028 1.000

elev ‐0.888 0.754 ‐0.006 1.000

jul_maxt 0.906 ‐0.755 ‐0.031 ‐0.961 1.000

may_ppt ‐0.701 0.873 ‐0.011 0.538 ‐0.610 1.000

ndmi ‐0.461 0.470 0.164 0.474 ‐0.511 0.476 1.000

ndvi ‐0.455 0.430 0.209 0.480 ‐0.532 0.479 0.859 1.000

slope 0.388 ‐0.363 0.009 ‐0.315 0.341 ‐0.336 ‐0.193 ‐0.196 1.000

veg_type ‐0.526 0.511 0.156 0.545 ‐0.565 0.473 0.707 0.709 ‐0.169 1.000

200m reduced model correlation matrix

apr_m
int

aug_ppt

beers_aspt
elev

jul_m
axt

m
ay_ppt

ndm
i

ndvi

slope

veg_type

apr_mint 1.000

aug_ppt ‐0.864 1.000

beers_aspt ‐0.026 ‐0.026 1.000

elev ‐0.886 0.754 ‐0.004 1.000

jul_maxt 0.911 ‐0.755 ‐0.030 ‐0.962 1.000

may_ppt ‐0.698 0.872 ‐0.008 0.537 ‐0.607 1.000

ndmi ‐0.470 0.478 0.174 0.483 ‐0.522 0.482 1.000

ndvi ‐0.461 0.436 0.223 0.487 ‐0.543 0.486 0.865 1.000

slope 0.415 ‐0.390 0.003 ‐0.340 0.357 ‐0.361 ‐0.212 ‐0.217 1.000

veg_type ‐0.524 0.510 0.164 0.544 ‐0.568 0.474 0.713 0.713 ‐0.189 1.000
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Table 6.  Examples of jackknife variable ranking procedures, gain sorted in ascending order for runs 
without a particular variable and descending for runs with only a particular variable. 
Test gain without 
variable  Gain  rank

Test gain with only 
variable  Gain  Rank

 elev200  1.7641 1  sep_maxt200  0.6643  1

 ndmi200  1.7956 2  elev200  0.6593  2

 aug_ppt200  1.8532 3  summer_maxt200  0.6432  3

 fire_hist200  1.8536 4  jun_maxt200  0.6334  4

 may_ppt200  1.8603 5  aug_maxt200  0.6248  5

 road_prox200  1.8623 6  jul_maxt200  0.6212  6

 apr_maxt200  1.8642 7  spring_maxt200  0.5893  7

 summer_ppt200  1.8664 8  apr_maxt200  0.5777  8

 spring_mint200  1.8732 9  may_maxt200  0.572  9

 ndvi200  1.8747 10  may_ppt200  0.5565  10

 solar_avg200  1.8752 11  apr_ppt200  0.4779  11

 veg_type200  1.8755 12  apr_mint200  0.4451  12

 aug_ept200  1.8783 13  sep_ppt200  0.4386  13

 sep_maxt200  1.8803 14  spring_ppt200  0.4192  14

 aug_maxt200  1.8846 15  may_mint200  0.4171  15

 jun_ppt200  1.8849 16  jun_ppt200  0.417  16

 twi200  1.8855 17  spring_mint200  0.4009  17

 jul_mint200  1.8856 18  jul_ppt200  0.3539  18

 slope200  1.8859 19  summer_ppt200  0.3515  19

 spring_ppt200  1.8869 20  jun_mint200  0.3427  20

 may_mint200  1.8879 21  aug_ppt200  0.3261  21

 sep_mint200  1.8898 22  aug_ept200  0.2379  22

 jul_ppt200  1.8903 23  jul_mint200  0.1839  23

 jul_maxt200  1.8919 24  slope200  0.1684  24

 aug_mint200  1.8954 25  aug_mint200  0.164  25

 jun_maxt200  1.896 26  summer_mint200  0.157  26

 apr_mint200  1.897 27  ndmi200  0.1564  27

 summer_mint200  1.8982 28  sep_mint200  0.1556  28

 beers_aspect200  1.9006 29  solar_avg200  0.1356  29

 jun_mint200  1.9053 30  road_prox200  0.1115  30

 spring_maxt200  1.9054 31  ndvi200  0.0996  31

 may_maxt200  1.9063 32  veg_type200  0.0666  32

 aspect200  1.9092 33  aspect200  0.0411  33

 apr_ppt200  1.9103 34  beers_aspect200  0.0348  34

 sep_ppt200  1.913 35  fire_hist200  0.0339  35

 summer_maxt200  1.939 36  twi200  0.0296  36

 treatments200  1.9665 37  treatments200  ‐0.068  37
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Table 7.  Top ten variables from the fine and coarse resolution model runs as determined by contribution to training gain, the training, test and AUC 
jackknife procedure, and the combined procedure. 
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Table 8.  Statistical comparison of models developed to test MAXENT’s variable selection outputs, 
variable resolution, and AIC variable selection methods.  *Suitable area was calculated by predicting 
suitable habitat as a percentage of the study area, as determined by thresholding the outputs at 
approximately a 10% test omission rate.  For Scenarios 1-15, the smaller, reduced study area was 
used.  Baseline models are included at the bottom for comparison.  **The full extent model was run 
over the entire Nez Perce National Forest and should not be compared to the others quantitatively. 

Intermediate models, variable importance   

Scenario 
Occ. 
Data  Resolution 

Ranking 
method  Figure 

Mean 
AUC 

F stat/ 
p‐value 

t‐ stat/ 
p‐value 

Suitable 
Area* 

1  30 m  30×30 m   %Contribution  9a  0.987  NA  H0: both 
equal 1.326/ 

0.19 

9.97 

2  30 m  30×30 m   Combined  9b  0.982  NA  13.25 

3  200 m  200×200 m   %Contribution  10a  0.961  NA  H0: both 
equal 2.092/ 

0.04 

21.56 

4  200 m  200×200 m   Combined  10b  0.958  NA  23.4 

Reduced models, variable importance   

Scenario 
Occ. 
Data  Resolution 

Ranking 
method  Figure 

Mean 
AUC  F stat/p‐value 

t‐ stat/ p‐
value 

Suitable 
Area* 

5  30 m  30×30 m   %Contribution  11a  0.962 

H0: all equal 
24.995/ 
<.00001 

H0: 7=5, 6 & 8 
5.821/ 
<.00001 

27.05 

6  30 m  30×30 m   training gain  11b  0.938  23.44 

7  30 m  30×30 m   test‐combined  11c  0.968  26.49 

8  30 m  30×30 m  
AUC 
contribution  11d  0.929  30.15 

9  200 m  200×200 m   %Contribution  12a  0.931 
H0: all equal 
4.94/.0092 

H0: 9=10 & 11  
3.10/ 
.0026 

27.59 

10  200 m  200×200 m   training gain  12b  0.924  32.31 

11  200 m  200×200 m   test‐comb‐AUC  12c  0.923  35.01 

Resolution, variable importance   

Scenario 
Occ. 
Data  Resolution 

Ranking 
method  Figure 

Mean 
AUC  F stat/p‐value 

t‐ stat/ p‐
value 

Suitable 
Area* 

12  200 m  30×30 m   %Contribution  14a  0.964  NA  H0: both 
equal 1.685/ 

.0978 

20.81 

13  200 m  200×200 m  %Contribution  14b  0.961  NA  21.56 

MAXENT vs AIC , variable importance   

Scenario 
Occ. 
Data  Resolution 

Ranking 
method  Figure 

Mean 
AUC  F stat/p‐value 

t‐ stat/ p‐
value 

Suitable 
Area* 

14  200 m  200×200 m   %Contribution  15a  0.973  NA  H0: both 
equal 7.398/ 
<0.00001 

20.74 

15  200 m  200×200 m   %Contribution  15b  0.963  NA  31.06 

All other model comparisons 

Description  Occ. 
Data 

Resolution  Study Area 
Extent 

Ranking method  Figure  Mean AUC  Suitable 
Area* 

High Autocorr. 1  30m  30×30 m  Small  %Contribution  5a  0.998  18.59 

Low Autocorr. 1  30m  30×30 m  Small  %Contribution  5b  0.827  8.27 

High Autocorr. 2  200 m  200×200 m  Small  %Contribution  6a  0.967  20.65 

Low Autocorr. 2  200 m  200×200 m  Small  %Contribution  6b  0.869  20.45 

Full extent**  200 m  200×200 m  Large  %Contribution  7  0.990  7.71 

Red. extent  200 m  200×200 m  Small  %Contribution  8  0.976  19.40 
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Table 9.  Comparison the areas of suitable Broad-fruit Mariposa habitat produced by Domain (Nock, 
2008) and MAXENT using thresholds applied for the minimal and maximum predicted area.   

Model Resolution # of variables 
Predicted  

(acres) 
Predicted  
(hectares) 

Domain  60 × 60 m  7 304,173 123,094 

MAXENT largest 200 × 200 m  4 313,571 126,898 

MAXENT smallest 200 × 200 m  4 58,111 23,517 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  Broad-fruit Mariposa (Calochortus nitidus Dougl.) in flower.  Photo by Bob Moseley, Idaho 
Conservation Data Center. 
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Figure 2.  Map of the Nez Perce National Forest and the original full study area and the smaller 
study area used for most of the research.  
 

 
Figure 3.  MAXENT’s graphical output of jackknife test of variable importance, also available in 
tabular form.   Details are given in Phillips (2008). 
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Figure 4.  MAXENT's data entry and settings page.  Details are given in Phillips (2008). 
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 High spatial autocorrelation   Low spatial autocorrelation

Test AUC 0.998 STD 0.001   Test AUC 0.827 STD 0.153 

  

Figure 5.  Comparison of 30×30 m resolution models with highest and lowest spatial autocorrelation 
of training and test datasets.  Inset a) and b) depict predicted areas of suitable habitat, while c) and 
d) show the deviation from MAXENTs predicted omission rates.  Additional details are given in 
Phillips (2008). 
  

a b 

c d 
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High spatial autocorrelation   Low spatial autocorrelation 

 
Test AUC 0.967 STD 0.013   Test AUC 0.869 STD 0.028  

 
Figure 6.  Comparison of 200×200 m resolution models with highest and lowest spatial 
autocorrelation of training and test datasets.   Inset a) and b) depict predicted areas of suitable 
habitat, while c) and d) show the deviation from MAXENTs predicted omission rates.  Additional 
details are given in Phillips (2008). 
 
 

a b 

d c 
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Variable 
Percent 

contribution 
Permutation 
importance 

road_prox200 19.1 29.3

may_ppt200 11.8 24.3

elevation200 9.8 15

ndmi200 6.7 1

sep_maxt200 5.7 0.1

apr_mint200 5.7 0.5

jul_maxt200 5.3 1.8

jun_maxt200 3.9 1.2

sep_ppt200 3.5 7.5

aug_maxt200 2.7 0

jun_ppt200 2.6 0.3

may_mint200 2.6 0.3

veg_type200 2.5 0.3

aug_etp200 2.4 0.1

sep_mint200 2.4 0.1

ndvi200 2.4 0.4

aug_ppt200 2 3.3

apr_maxt200 1.3 10.3

jun_mint200 1.3 0.1

fire_hist200 1.2 1.7

twi200 1.1 0.1

beers_aspt200 1 0.3

slope200 0.9 0.2

solar_avg200 0.6 0.3

aug_mint200 0.5 0.6

aspect200 0.5 0.2

treatments200 0.4 0.4

jul_mint200 0.2 0.2

jul_ppt200 0.1 0

apr_ppt200 0.1 0

may_maxt200 0 0

 
Figure 7.  Variable ranks of the full model for 
the full Nez Perce NF study area.
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Variable 
Percent 

contribution 
Permutation 
importance 

elev200 21.9 23.3

ndmi200 10.5 4.4

may_ppt200 9.1 19.8

may_mint200 8.3 1.9

jul_maxt200 7.4 5.7

veg_type200 4.5 1

apr_mint200 4.1 2.4

sep_ppt200 3.2 4.9

slope200 2.7 1.4

ndvi200 2.7 1

apr_maxt200 2.2 8.8

road_prox200 2.2 1.3

aspect200 2 1.2

aug_ppt200 1.8 5.6

aug_ept200 1.7 1

solar_avg200 1.7 1.2

beers_aspect200 1.6 1

jun_maxt200 1.5 0.3

jun_ppt200 1.4 0.1

fire_hist200 1.3 1.9

twi200 1.3 0.3

treatments200 1.3 0.2

jun_mint200 1 2.7

sep_mint200 1 1

apr_ppt200 0.9 0.1

jul_mint200 0.7 3.9

sep_maxt200 0.6 0.2

jul_ppt200 0.5 0.3

aug_mint200 0.5 3.1

aug_maxt200 0.4 0.1

may_maxt200 0.1 0

Figure 8.  Variable rank of the full model for 
the reduced study area.
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Variable 
Percent 

contribution 
Permutation 
importance 

elev 18.1 16.7

veg_type 17.3 2.3

beers_aspect 11.4 5.2

apr_mint 10.1 30.6

ndvi 9.9 12.1

aug_ppt 9.5 8.3

ndmi 8.6 4.7

may_ppt 7.8 8.1

road_prox 6.1 2.6

jul_maxt 1.3 9.3

 
30mcontbest10 AUC 0.987

 
Figure 9.  Variable ranks of intermediate 
models: a) scenario 1, b) scenario 2, while c & 
d) show plots of bootstrapped models. 
 

Variable
Percent 

contribution 
Permutation 
importance 

veg_type 21.4 4

elev 21.2 16

ndvi 15.8 13.1

apr_mint 11.5 24.8

may_ppt 10.1 18

ndmi 7.5 1.1

may_mint 6.4 0.1

sep_ppt 4.6 13

apr_ppt 1 7.4

jun_mint 0.4 2.4

     
30mbest10 AUC 0.982 

 
 
 
 

a 

d c 

b 
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Variable 
Percent 

contribution 
Permutation 
importance 

elev200 28.1 18.4

may_ppt200 15.1 30.3

apr_mint200 13.9 8.2

ndmi200 12.7 7.3

jul_maxt200 11.7 9

veg_type200 5 2.2

aug_ppt200 4.1 17.5

ndvi200 3.9 2.9

beers_aspt200 3.5 2.9

road_prox200 2 1.3

 
200mcontbest10 AUC 0.961 

 
Figure 10.  Variable rank of intermediate 
models: a) scenario 3, b) scenario 4, and c & 
d) show plots of bootstrapped AUC. 

Variable 
Percent 

contribution 
Permutation 
importance 

elev200 28.5 17.7

may_ppt200 15.2 11.2

ndmi200 14.9 3.3

jul_maxt200 12 26.8

spg_mint200 9.3 3.7

apr_mint200 6.2 2.5

aug_ppt200 5.5 10.1

apr_maxt200 4.2 21.4

sep_maxt200 2.9 2.8

aug_maxt200 1.4 0.5

 
200mbest10 AUC 0.958 

 
 

a b 

c d 
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Figure 11.  Variable ranks of reduced fine scale output for a) scenario 5, b) scenario 6, c) scenario 7, 
d) scenario 8, while e and f) show plots of bootstrapped AUC. While b) and d) predicted very 
different areas of suitability based upon different input variables, their AUC scores are quite close 
(less than 0.01 difference).  This clearly illustrates the limitations of using just this one statistic for 
evaluation of the performance of SDMs. 

a b 

c d 

e f
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Figure 12  Variable rank of reduced coarse scale output: a) scenario 9, b) scenario 10, c) scenario 11, 
d and e) plots of bootstrapped models. 
 
 
 

 
 
 
 
 

d e 

c b a 
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Variable 
Percent 
contribution 

Permutation 
importance 

 elev 29.3 16.9 

ndmi 15 7.5 

may_ppt 15 31.4 

jul_maxt 11.3 7.9 

apr_mint 10.2 8.4 

ndvi 6.2 4.2 

beers_aspect 4.1 3.2 

road_prox 3.3 2.7 

aug_ppt 2.8 16.8 

veg_type 2.7 1.1 

 
30m res occ. n=119 AUC 0.964 

 
Figure 13.  Variable rank of fine and coarse 
resolution models: a) scenario 12, b) scenario 
13, and c & d) plots of bootstrapped AUC. 
 

Variable 
Percent 

contribution 
Permutation 
importance 

elev200 28.1 18.4

may_ppt200 15.1 30.3

apr_mint200 13.9 8.2

ndmi200 12.7 7.3

jul_maxt200 11.7 9

veg_type200 5 2.2

aug_ppt200 4.1 17.5

ndvi200 3.9 2.9

beers_aspect200 3.5 2.9

road_prox200 2 1.3

 
200m res occ. n=119 AUC 0.961

a 

d 
c 

b 
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Variable Percent 
contribution 

Permutation 
importance 

elev200 27.1 21.9

ndmi200 12.2 2.9

jul_maxt200 11.6 13.1

may_ppt200 9.4 19.5

veg_type200 4.7 1

sep_ppt200 4.3 3.6

sep_maxt200 3 0.6

sum_mint200 3 1.9

aug_ppt200 2.9 12.3

road_prox200 2.6 1

apr_maxt200 2.6 12.7

slope200 2.5 1.7

jun_ppt200 2.5 0.6

beers_aspt200 2.2 1.2

solar_avg200 2.2 1.7

twi200 2.2 0.7

treatments200 1.4 0.6

sep_mint200 1.3 1.8

sum_maxt200 1.3 0.7

apr_ppt200 0.5 0.2

aug_maxt200 0.3 0.2

MAXENT selected variables AUC 0.973 

 
Figure 14. Variable rank of MAXENT vs. 
AIC model output: a) scenario 14, b) scenario 
15,  and c & d) plots of bootstrapped AUC. 
 

Variable 
Percent 

contribution 
Permutation 
importance

elev200 28 15.2

ndmi200 14.2 5

may_ppt200 11.3 23

jul_maxt200 10 13.3

may_mint200 9.1 0.7

sep_ppt200 5 7.2

apr_mint200 4.5 2.8

spring_ppt200 2.9 0.3

slope200 2.5 1

apr_maxt200 2.4 10.2

jun_maxt200 2.1 1.2

sum_ppt200 1.7 8.8

jun_mint200 1.3 2.1

sum_maxt200 1.1 0.3

spring_mint200 0.8 0.3

aug_mint200 0.8 3

jul_mint200 0.8 4.7

aug_maxt200 0.7 0.3

sum_mint200 0.5 0.4

spring_maxt200 0.3 0.1

may_maxt200 0.2 0.1

AIC selected variables AUC 0.963 

 

b a 

c d 
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Figure 15. Graph of mean AUC values for all  scenarios listed in Table 8.  A value of 0.5 indicates 
predictions no better than random while a value of 0.7 indicates prediction accuracies that have 
value in conservation planning (Elith et al., 2006).  The full extent model was run over the entire Nez 
Perce National Forest and should not be compared to the others quantitatively. 
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