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Rock glaciers of the northern Absaroka and Beartooth Ranges have not previously been 
described.  Six-hundred and sixty rock glaciers were hand digitized in a GIS and 
evaluated using 11 distributional characteristics.   Beartooth rock glaciers were found to 
occur at higher elevations, receive more precipitation, and were subjected to colder 
temperatures.  Additionally, logistic regression analysis was used to examine the 
predictive strength of the 11 descriptive parameters on rock-glacier activity.  Elevation 
and average annual maximum temperatures were most strongly correlated with activity.  
Results were used to make inferences about permafrost distribution which coincided with 
estimates from previous studies.  Finally, movement rates of four rock glaciers within the 
Black Canyon Basin of the Beartooth Mountains were estimated using photogrammetric 
techniques over a 51-year period.  While movement rates were consistent with those 
determined in other Rocky Mountain locations, much of the results were inconclusive.  
Increased movement of the East Grasshopper rock glacier may be the result of increased 
glacier subsidence, while ‘uphill’ movement of the Beartooth rock glacier may be 
indicative of rock-glacier subsidence.  
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1 INTRODUCTION  

 Rock glaciers are relatively understudied, glacial or periglacial features found in 

many mountainous regions of the world.  Morphologically, “rock glaciers can be defined 

as lobate or tongue-shaped debris-ice mixtures with very steep sides and similarly steep 

snout that slowly creep down-slope,” (Berger et al., 2004; pg. 233).  They can also be 

described as both glacial or periglacial features, however this remains controversial.  

Some argue for a strictly periglacial origin where rock-glacier ice only forms interstitially 

as part of a rock-ice matrix (Barsch, 1992).  Others support that rock glaciers form under 

a continuum of glacial to periglacial conditions (Ackert, 1998; Clark et al., 1998; 

Humlum, 1996).  In either case, rock glaciers are important components of mountain 

landscapes and in regards to climate analysis, past and present.  

 Rock glaciers have been used to reveal information about past permafrost 

boundaries and paleotemperatures from their spatial distribution (Kerschner, 1978; 

Morris, 1981; Humlum, 1988; Brazier et al., 1998; Humlum, 1998; Aoyama, 2005; 

Johnson et al., 2007; Millar and Westfall, 2008).  Other research has examined 

characteristics of rock-glacier age with respect to past glacial events (Zielinski, 1989) and 

geomorphologic rates (Berthling and Etzelmuller, 2007).  Rock-glacier movement has 

been studied using both geodetic (Wahrhaftig and Cox, 1959; White, 1971; Chueca and 

Julian, 2005) and photogrammetric methodology (Kääb et al., 2007; Roer and Nyenhuis, 

2007).  Boreholes (Arenson et al., 2002) and refraction seismic and geoelectric 

measurements (Croce and Milana, 2002; Potter et al., 1998) have been used to assess 

structure.  Rock-glacier hydrology is well studied in parts of the Andes due to the 

relatively arid environment and large numbers of rock glaciers (Schrott, 1996; Brenning, 
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2005; Lecomte et al., 2007), in the Austrian Alps (Krainer and Mostler, 2002) and the 

Colorado Front Range (Williams et al., 2006).   

 Recent temperature changes have resulted in glacier recession over many parts of 

the world (e.g. Haeberli and Beniston, 1998).  In Glacier National Park, Montana, under 

continued warming trends, all glaciers are expected to disappear by 2030 with drastic 

ecological consequences (Hall and Fagre, 2003).  Similar glacier recession has been 

observed for select glaciers of the Beartooth range, Montana (Seifert et al., 2009).  The 

water stored in rock glaciers will become more critical as other sources of water are lost.  

Yet, in the northern Rocky Mountains where alpine glaciers are in decline, rock-glacier 

inventories are not complete.  The results of this research will hopefully serve as baseline 

data for assessing the importance of rock glaciers with regards to alpine stream ecology 

and biodiversity, water resources, and climatic change in the northern Rocky Mountains.   

 

1.1 Objectives 

  The purpose of this current study is three-fold.  First, a survey of rock glaciers of 

the northern Absaroka and Beartooth ranges had not been previously performed.  The 

closest studies, geographically, include studies from the Lemhi Range, Idaho (Johnson et 

al., 2007), the southern Absaroka Mountains, Wyoming (Potter, 1972; Potter et al., 1998; 

Ackert, 1998), the Colorado Rockies (White, 1971; Giardino, 1984; Benedict et al., 1986; 

Degenhardt et al., 2003; Refsnider and Brugger, 2007) and the Sierra Nevada, California 

(Millar and Westfall, 2008).  Differences in rock glaciers between the two mountain 

ranges were evaluated with respect to several distributional parameters.  Secondly, the 

effect of these parameters on modern and relict activity classification was assessed using 

binary logistic regression analysis.  Finally, due to the availability of several photographs 

  2



 

of the Black Canyon Basin (Beartooth Range), quantification of the horizontal surface 

movement of four rock glaciers over the years 1952 - 2003 was completed.  

 

1.2 Study Area 

The Absaroka and Beartooth ranges lay just north and northeast of Yellowstone 

National Park on the border between Montana and Wyoming and are the fourth and first 

highest mountain ranges in Montana, respectively (Figure 1).  Geologically, the Absaroka 

Range is part of the larger Absaroka-Gallatin volcanic field, the largest volcanic field in 

the northern Rocky Mountains.  Volcanism in this region occurred along two sub-

parallel, northwest trending belts defined by hypabyssal plutons that extend for roughly 

150 km (Chadwick, 1970).  The Beartooth mountains are dominated by Pre-Cambrian 

granite, which was uplifted roughly 50 million years ago (Saros et al., 2003).  Cirque 

glaciers, remnant of multiple Pleistocene glacial advances (Graf, 1971), line the ends of 

many of the prominent U-shaped alpine valleys, while rock glaciers are the principal 

feature in many of these same valleys.   

Meteorological stations are scarce within the study area.  Interpolated 

precipitation estimates from the “Parameter – elevation Regressions on Independent 

Slopes Model” (PRISM) for the Absaroka’s are approximately 100 – 130 cm/yr at the 

highest elevations, while the Beartooth’s receive roughly 150 – 180 cm/yr.  PRISM used 

National Weather Service observations of temperature, precipitation, and digital elevation 

models (DEMs) to produce interpolations of climatic parameters on varying time-scales 

that were shown to reproduce climate patterns in mountainous terrain better than many 

other techniques (Daly et al., 2008).  Averages calculated of mean January and July 
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temperatures from 1991 – 2009 for the Monument Peak Snotel station (8850 ft: Natural 

Resources Conservation Service, 2009) were -9°C and 12°C respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

            Figure 1:  Outline of the study area for this project overlain on aerial photos.  The 
study area includes most of the Absaroka/Beartooth Wilderness area designated by 
the US Congress in 1978. 
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2 ROCK-GLACIER DISTRIBUTION 

2.1 Background 

Geomorphic mapping of rock glaciers and subsequent analysis of their 

distributional characteristics are the first steps in determining relationships between rock 

glaciers and their various topographic and climatic controls.  This fundamental 

interaction has led to many studies focused on understanding rock-glacier distribution. 

Rock-glacier inventories have aided in difficult land-cover classification in high 

mountain areas (Brenning and Trombotto, 2006).  Additionally, inferences regarding 

chronologies of cold events have also been made from rock-glacier inventories (Luckman 

and Crockett, 1978; Kerschner, 1978; Brazier et al., 1998; Blagborough, 1999), as well as 

the relative distribution of modern and relict rock glaciers (Millar and Westfall, 2008; 

Brazier et al., 1998; Putnam and Putnam, 2009).   

In this study, a variety of distributional characteristics were used to describe 

differences between Absaroka and Beartooth rock glaciers and to subsequently make 

inferences on glacial landscape evolution.  These characteristics include: estimated 

annual insolation, mean slope, mean aspect, mean elevation, mean annual maximum 

temperature (Tmax), mean annual minimum temperature (Tmin), mean January maximum 

temperature (TJanuary), mean July maximum temperature (TJuly), mean annual 

precipitation, lithology, and rock-glacier size.   

 

2.2 Methods 

2.2.1 Rock-Glacier Inventory 

Digital aerial photos flown in August 2005 (1 × 1 m resolution; U.S. Farm Services 

Agency) were obtained for the study area.  Initially, attempts were made to use Feature 
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Analyst©, a commercial software add-on to ArcGIS©, to identify rock glaciers; however, 

this was unsuccessful due to the inherent spectral similarity of rock glaciers to 

surrounding features.  Instead, 660 rock glaciers and rock-glacier complexes were 

identified and hand-digitized.  The following criteria were utilized to ensure consistency:    

1) Rock glaciers appear as lobate or tongue-shaped flowing masses of ice, rock 

and debris (Humlum, 1996) and are different from talus fields, rock-falls, and 

moraines (Millar and Westfall, 2008).  Talus fields show no distinct signs of 

flow, do not have a steep frontal slope, and often fan out instead of forming 

lobes or tear-dropped shapes.  Moraines are symmetrical consolidated glacial 

debris, and rock avalanches, being the rapid displacement of debris are often 

small compared to rock glaciers, originate from a small or limited source 

area, and show no prolonged signs of movement.  Protalus ramparts have 

been associated with rock-glacier development and can be differentiated as 

being wider than they are long (Johnson et al., 2007).  

2) Signs of flow associated with rock glaciers include parabolic-shaped ridges 

and furrows on more developed rock glaciers (White, 1971) and a tear-drop 

(or ‘tongue’) shape associated with smaller, less complex rock glaciers.   

3) Rock glaciers have a steep frontal slope (Roer and Nyenhuis, 2007). 

4) Rock glaciers have a debris source such as a cirque or cliff above them 

(Humlum, 1996). 
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5) The presence of a cirque glacier or glacial cirque valley above a potential 

rock glacier is indicative of rock-glacier formation based on the model 

developed by Potter et al. (1998). 

 

Additional criteria were considered in order to include potential relict rock glaciers. 

1) A shallower, less defined frontal slope is indicative of loss of the ice core 

(Roer and Nyenhuis, 2007) or a non-rock glacier. 

2) Thermokarst development upslope of the rock-glacier terminus is also 

indicative of ice core loss (Roer and Nyenhuis, 2007).      

3) Encroachment of vegetation is indicative of relict, or at least inactive forms 

(Roer and Nyenhuis, 2007). 

 

2.2.2 Rock-Glacier Characterization 

Digital elevation models (DEM’s; 10 × 10 m resolution) were obtained from the 

United States Geological Survey (USGS).  Aspect and slope layers were calculated from 

the DEM’s using ArcGIS Spatial Analyst©.   ArcGIS Solar Analyst©, which calculates 

incoming solar radiation based on a DEM, site specific latitude, and a sun map of the sky, 

was used to estimate mean annual incoming solar radiation for the study area (Fu and 

Rich, 1999).  Temperature data (Tmin, Tmax, TJanuary and TJuly) and mean annual 

precipitation were extracted from the 1971 - 2000 PRISM 30-year normal datasets.  

These datasets were reduced to sea level using the 1 × 1 km DEM corresponding to the 

PRISM data and a standard lapse rate of 6°C/1000 m, resampled to a 10 × 10 m cell size, 
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and then elevated to new elevations using the USGS 10 × 10 m DEM.  Absaroka and 

Beartooth lithologies were extracted from Spatial Databases for the Geology of the 

Northern Rocky Mountains (Zientek et al., 2005).  Parameter data was extracted in 

ArcGIS for each pixel lying within each rock-glacier polygon.  Pixel values within each 

individual rock-glacier polygon were averaged using ArcGIS Zonal Statistics©.  For 

analysis, means of each variable were used.  Linear mean aspect (Ө) was calculated from 

surface mean aspect by the following equation:  

 

 

Ө =     

 
  

Differences between rock glaciers of both the Absaroka and Beartooth mountain 

ranges were evaluated using a one-way ANOVA to test whether topographic and climatic 

parameters were significantly different between the two mountain ranges.   

 

2.3 Results 

A total of 270 and 390 rock glaciers were mapped for the northern Absaroka and 

Beartooth ranges, respectively (Figure 2).  The mapped rock glaciers were not a complete 

inventory as only those features which were almost certainly rock glaciers were included 

(the author believes the majority of rock glaciers in the area were digitized).  It is 

believed that the mapped rock glaciers are highly representative of the relative numbers 
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of rock glaciers between the two ranges.  Topographic and climatic parameters were 

significantly different between the two mountain ranges (Table 1) using ANOVA.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Map showing hand-digitized northern Absaroka (red) and Beartooth (blue) rock glaciers. 
 

Beartooth rock glaciers were generally higher in elevation (~200 m) than rock 

glaciers of the northern Absarokas (Figure 3; Table 1).  This reflects the fact that the 

Beartooth range is generally higher in elevation than the northern Absaroka’s, having 

many peaks over 3800 m (~12,000 ft).  Beartooth rock glaciers were also statistically 

significantly larger in size (Figure 4; Table 1).  Roughly 5% of Beartooth rock glaciers 

were larger than any found in the Absarokas.  Even excluding these outliers, differences 

in rock-glacier size were still significant.     
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Table 1: Table summarizing ANOVA results and mean, minimum, and maximum 
values for parameters between Absaroka and Beartooth rock glaciers.  See text for 
complete description of each variable.  Bolded p-values were significant at the 0.05 
level.  Samples sizes for the Absarokas and Beartooths were 270 and 360, 
respectively. 

  
 Absaroka 

Rock-glaciers 
Beartooth 

Rock-glaciers 
Difference 

(Absar-Bear) 
ANOVA
p-value 

Elevation  
(m) 

Mean 2732 2929 -197 
0.000 Min 2093 2239 -146 

Max 3072 3443 -371 

Area  
(m2) 

Mean 65274 143637 -78363 
0.000 Min 1444 3235 -1791 

Max 471480 3281408 -2809928 

Slope  
(deg) 

Mean 19 20 -1 
0.067 Min 5 5 0 

Max 35 38 -3 

Insolation  
(kWh/m2) 

Mean 1337 1381 -44 
0.000 Min 923 987 -64 

Max 1674 1742 -68 

Tmin  
(°C) 

Mean -7 -8 1 
0.000 Min -9 -11 2 

Max -2 -3 1 

Tmax 
 (°C) 

Mean 7 5 2 
0.000 Min 5 2 3 

Max 10 9 1 

TJanuary 
 (°C) 

Mean -4 -4 0 
0.642 Min -12 -14 2 

Max 8 7 1 

TJuly 
 (°C) 

Mean 21 20 1 
0.000 Min 13 9 4 

Max 32 32 0 

PPT  
(cm/yr) 

Mean 89 103 -14 
0.000 Min 52 69 -17 

Max 117 169 -52 

Lithology 
Mean N/A N/A N/A 

0.000 Min N/A N/A N/A 
Max N/A N/A N/A 

Aspect 
Mean N/A N/A N/A 

0.036 Min N/A N/A N/A 
Max N/A N/A N/A 
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Figure 4:  Distribution of mean area of rock glaciers in the Absaroka (red) and Beartooth 
(blue) ranges.  

 
Figure 3:  Distribution of mean elevation of rock glaciers in the Absaroka (red) and 
Beartooth (blue) ranges. 
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Beartooth rock glaciers also received ~ 3% higher levels of insolation (Figure 5; 

Table 1) and experienced slightly lower annual minimum and maximum annual average 

temperatures (Figure 6; Table 1), though differences in mean maximum January and July 

temperatures were more similar between ranges (Figure 7; Table 1).  The Beartooth’s 

were also estimated to receive more (+14 cm/yr) mean annual precipitation (Figure 8; 

Table 1).  Lithologies were also significantly different between the two ranges; the 

Beartooth’s being dominated by a mix of metamorphic rock types including: 

metamorphosed aluminous and sub-aluminous rocks, metamorphosed mafic or basic 

rocks, metamorphosed plutonic QAPF rocks and metamorphosed siliclastic sedimentary 

rocks (Figure 9; Table 1).  While some northern Absaroka rock glaciers had similar 

lithology almost half were volcanic in origin.   Additionally, a few rock glaciers were of a 

plutonic igneous origin in the northern part of the study area.   

Means of rock-glacier slopes did not differ significantly between ranges (Figure 

10; Table 1) with mean slopes of approximately 20°.  Rock glaciers from both ranges 

were most common on N-NE facing aspects, but were found on all aspects (Figure 11; 

Table 1).  Relative numbers of rock glaciers for each cardinal direction were virtually 

identical between mountain ranges (Table 2).  
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Figure 5:  Distribution of mean insolation for rock glaciers in the Absaroka (red) and 
Beartooth (blue) ranges.    

 

 

 

 

 

 

 

 

 

 

 
Figure 6:  Distribution of Tmin and Tmax at each rock glacier in the two mountain ranges 
by elevation. 
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Figure 7:  Distribution of TJanuary and TJuly at each rock glacier in the two mountain ranges 
by elevation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8:  Distribution of mean annual precipitation for rock glaciers in the Absaroka 
(red) and Beartooth (blue) ranges.  
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Figure 9:  Distribution of lithologic types for rock glaciers in the Absaroka (red) and 
Beartooth (blue) ranges.  

 

 

 

 

 

 

 

 

 

 
Figure 10:  Distribution of rock-glacier slopes for Absaroka (red) and Beartooth (blue) 
ranges. 
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Table 2:  Relative numbers of rock glaciers in each cardinal direction for Absaroka and Beartooth 
rock glaciers. 

  
North East 

(315 - 45°) (45 - 135°) 
South 

(135 - 225°) 
West 

(225 - 315°) 
Absaroka 30% 30% 17% 23% 

Beartooth 31% 31% 18% 20% 

 
 
 
 
 

 
Figure 11:  Distribution of rock-glacier aspects for Absaroka (red) and Beartooth 
(blue) ranges. 
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2.4 Discussion 

Evaluation of distributional parameters between these two ranges provides 

potential for unique insight into the glacial history of this region.  Assuming that both 

ranges were subject to roughly similar paleoclimatic trends due to their proximity, 

deductions can be made regarding climatic effects on rock-glacier genesis as well as 

controls on glacial landscape evolution.   

According to Locke (1989), East Grasshopper Glacier (one of the larger ice-fields 

of the Beartooth Range) currently falls below glacial climatic boundaries.  This is 

supported by research documenting substantial surface subsidence of this glacier over the 

past 50 years (Seifert et al., 2009).  The Beartooth Range currently contains a handful of 

cirque glaciers similar to the Grasshopper Glacier (71 according to Graf (1976) and 21 

according to Locke (1989)); however, glaciogenic rock glaciers are presently the 

dominant glacial feature in many of these valleys.  In contrast, the neighboring northern 

Absaroka’s currently contain just two potential cirque glaciers (north aspects of Mt. 

Cowen and Martin Peak) which may more appropriately be classified as snow-fields 

(nine glaciers were present on these peaks according to Graf (1976)).  This relative 

distribution is important context for analyzing potential shifts along the continuum from 

glacial and periglacial landscapes that occurs between these two proximal mountain 

ranges. 

Graf (1976) describes cirque glaciations as a series of cyclic events.   As local 

climate becomes more glacial, accumulation exceeds ablation, and glaciers grow.  If 

climate then becomes milder, ablation is greater than accumulation and glaciers recede.  

Local topography then exerts a stronger influence on glacial systems relative to climate 

through cirque shading, topographic snow accumulation, and increased avalanching 
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(Graf, 1976).  At this point in deglaciation, glaciers are at a minimum and are either 

retreating or disappearing, leaving more cirque headwall available for erosion.  Eroded 

debris is subsequently added to the persisting glacial ice below and as debris 

accumulation exceeds ice accumulation, glaciogenic rock glaciers can form.  Through 

this process, glaciogenic rock glaciers are one step in glacial landscape evolution.   

In this study, the Beartooths seem to fit into a geomorphic model of what was 

once a predominantly glacial landscape can be transformed into one that is increasingly 

periglacial (Clark et al., 1998).  Most rock glaciers of the Beartooths have characteristics 

of glaciogenic origin as they are large in size and often have formed below cirque 

glaciers. Periglacial rock glaciers, however, are still common in the Beartooths.   

Periglacial rock glaciers are the result of excessive debris accumulation in a 

periglacial environment (Humlum, 2000) due to continual avalanching of ice and rock.  

Thus, consistent cold temperatures, not glacial geomorphology are a primary control on 

formation.  In the northern Absarokas, most rock glaciers appear to be of periglacial 

origin.  These rock glaciers are present on valley sides and may have begun their initial 

growth as protalus ramparts during more recent cold events, as is hypothesized for 

morphologically similar rock glaciers in the nearby Lemhi range (Johnson et al., 2007).  

However, even in the Absarokas there are many rock glaciers that are potentially 

glaciogenic. 

Analysis of the characteristics between ranges supports the idea of an ongoing 

shift from predominantly glacial to periglacial landscape processes in the Beartooth’s.  

The Beartooth’s are higher in elevation, receive more precipitation, and are subjected to 

lower annual temperatures.  As warming followed the glacial maximum, climatic 
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conditions in the Beartooth’s maintained a higher likelihood of sustaining glacial 

conditions and preserving glacial ice relative to the northern Absaroka’s.  However, with 

continued warming and glacier recession, the shift toward more periglacial conditions 

may become more apparent. 

 

2.5 Conclusions 

A total of 660 rock glaciers were mapped in the study area.  Consequent analyses 

of distributional parameters showed distinct differences between Absaroka and Beartooth 

rock glaciers with regards to elevation, size, slope and topoclimatic variables.  Overall, 

Beartooth rock glaciers were statistically higher, larger, received more precipitation, and 

were subject to lower temperatures than those in the Absaroka’s.   

Analyses of rock-glacier characteristics revealed interesting differences between 

mountain ranges.  The comparative numbers of glaciers and the relative differences in the 

geomorphic position, size, and elevation of rock glaciers indicates that the northern 

Absarokas are closer to a periglacial-dominated landscape relative to the Beartooths 

which are clearly still highly influence by recent glacial activity.    

If climatic warming continues and glacial ice extent continues to decrease, it is 

possible that the majority of remaining ice content will be associated with rock glaciers in 

the Beartooth’s and similar Rocky Mountain locations.  
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3 ACTIVITY ANALYSIS AND LOGISTIC REGRESSION MODELING 

A major application of rock-glacier distribution has been to reconstruct past 

climates from the relative distribution of modern and relict rock glaciers (Brazier et al., 

1998; Hughes et al., 2003; Aoyama, 2005; Millar and Westfall, 2007; Roer and 

Nyenhuis, 2007; Putnam and Putnam, 2009).  This study aims to estimate current lower 

limits of permafrost and evaluate the relative importance of a series of factors on rock-

glacier ice preservation and activity in the region. 

  

3.1 Background 

 Humlum (1998a: 378) describes the presence of rock glaciers to be “a complex 

function of responses to air temperature, insolation, wind and seasonal precipitation over 

a considerable period.”  Additional parameters are noted by Morris (1981), who 

compared altitude, insolation and cirque wall orientation to preservation potential of the 

rock-glacier ice matrix.  In New Zealand, active rock glaciers favored relatively higher 

elevations and more southerly aspects (Brazier et al., 1998). In the same study, modern 

distribution of relict rock glaciers favored lower elevations on all aspects.   

Determination of activity classification of rock glaciers is useful in estimating 

permafrost boundaries.  Active and inactive rock glaciers can be used to assess 

boundaries of current permafrost distribution, while relict rock glaciers are used to 

evaluate past boundaries of permafrost (Pèwè, 1983; Barsch, 1996; Brazier et al., 1998).  

Following this rationale, the respective distribution of the lowest relict and modern rock 

glaciers might indicate past and present boundaries of mountain permafrost for the 

Absaroka/Beartooth region.  
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Logistic regression analyses have been used for many geomorphologic 

investigations; however, application towards rock glaciers has been limited (e.g. 

Brenning 2005; Brenning and Trombotto, 2006).  In this study, a logistic regression 

model was created using the distributional data to produce probabilities of whether rock 

glaciers were either modern (active or inactive) or relict.    

 

3.2 Methods 

3.2.1 Rock-glacier Activity Classification 

Activity level was assessed in the field at 80 rock glaciers in the summer and fall 

of 2008.  An additional 40 rock glaciers were classified by activity level using only aerial 

photos, DEM’s, and prior knowledge of field sites.  Rock glaciers were evaluated 

according to a set of criteria derived from the literature (Table 3) that relate surface 

characteristics to recent movement and thus, determine whether a rock glacier is active, 

inactive or relict.  Generally, rock glaciers with steep frontal and side slopes and little or 

no vegetation development were classified as modern, while rock glaciers with gentler 

frontal and side slopes (<35°) and heavy vegetation development were classified as relict.  

Additional detail is given in Table 3.   

The relatively small sample size led to the decision to use binary logistic 

regression, which necessitated grouping the active and inactive rock glaciers into a 

‘modern’ classification (Millar and Westfall, 2007).     
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Table 3:  Criteria used to assess rock-glacier activity based upon work from several 
authors (Chueca and Julian, 2005; Roer and Nyenhuis, 2007; Millar and Westfall, 
2007; Johnson et al., 2007; Clark et al., 1998). 
 
 Modern 

Relict 
Active Inactive 

Surface Dominantly smooth 

Can be smooth with 
blocky sections; has 
circular or elongate 

pits 

Dominantly blocky; 
Has a heavily pitted 
surface indicating 

thermokarst 

Lichen  Little or no lichen 

Crests of ridges are 
generally lichen 
covered, but the 

furrows remain bare 

Rock surfaces are 
completely covered 

with Lichen 

Surface Rocks Angular, unweathered 
and size sorted 

Not as well sorted, 
slightly weathered 

Highly weathered and 
unsorted clasts 

Front and Side 
Slopes ≥ 35° ≥ 35° < 35° 

Frontal Slope 
Stability 

Unstable with fresh, 
large, angular 

boulders at their bases 

Contains zones of 
stability and 
instability 

Frontal slope is low 
angle and stable 

Vegetation  No vegetation cover 
Can be fully or 

partially covered 
with vegetation 

Developed soils are 
completely colonized 

by vegetation 
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3.2.2 Logistic Regression 

Binary logistic regression analysis was used to test the significance of nine 

variables (elevation, insolation, slope, aspect, area, lithology, Tmax, Tmin, and 

precipitation) on whether a feature was modern or relict.  Further analyses examined the 

use of TJuly and TJanuary in place of Tmax and Tmin.  The 120 field-verified and remotely-

verified rock glaciers were used to build the regression model.  All variables were 

continuous except lithology which was coded using two dummy variables.  A backwards, 

stepwise procedure, which initially included all variables, was used.  At each step, the 

variable with the least weight was eliminated from the model until a desired significance 

of p < 0.05 was reached.  

Binary logistic regression produces logits, which are the logarithmically 

transformed ODDS of whether a selected binary categorical variable will occur based on 

input from independent variables (Hosmer and Lemeshow, 1989).  In this study, logits of 

whether a modern rock glacier would occur were produced.   

   

3.3 Results and Discussion 

 
From the initial 9 parameters Tmax and elevation were initially included in the 

final model:   

 

 

   
ODDS = e [(0.009*Elevation) + (0.487*Tmax) – 28.622)] 

 

 

A Hosmer and Lemeshow ‘goodness of fit’ statistic (Hosmer and Lemeshow, 1989) was 

used to test whether or not observed values of rock-glacier activity differed from 
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predicted.  Predicted values did not differ from observed values (p = 0.233).  In addition, 

a traditional chi-squared test for model fit was also employed (Hosmer and Lemeshow, 

1989), showing significant relation between predictor and response variables (p<<0.05).    

The ODDS were divided by (1+ODDS) to calculate probabilities of modern activity 

classification.  Probabilities for the remaining 540 rock glaciers were then mapped in a 

GIS to show respective distribution of activity probability (Figure 11).  There were stark 

differences between the two ranges.  Over 30% of Beartooth rock glaciers had a 70% or 

higher probability of being modern while only 8% of Absaroka rock glaciers did 

(Figure 12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12:  Map showing the probabilities of rock glaciers being classified as 'modern' in 
activity.  
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Figure 13: Probability of a rock glacier having modern activity for the northern 
Absarokas (red) and Beartooths (blue).

While these results support the expected relationship between elevation, 

temperature, and ice preservation in rock glaciers, temperature is largely a function of 

altitudinal gradients due to atmospheric lapse rates.  Both Tmax and elevation have 

significant weight in the model, however the two variables are correlated (Pearson 

correlation coefficient = -0.771).  Beyond issues of co-linearity, the appropriateness of 

Tmax for this study was questioned during analysis.   

Tmax is defined as an annual mean calculated from average maximum monthly 

temperature.  This makes it difficult to interpret whether cold, warm, or transitional 

season temperatures are ultimately affecting and predicting rock-glacier activity.  Similar 

ambiguity exists by using Tmin, mean monthly lows which are also averaged annually.  

Comparison to mean maximum temperatures from January and July (standard variables 

for examining temperatures influences on glacial behavior) were subsequently used to 
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evaluate whether yearly extremes of cold and warm temperatures were correlated with 

rock-glacier activity.  In this new analysis, elevation remained significantly related to 

rock-glacier activity, but neither TJanuary nor TJuly were.  Additionally the fact that PRISM 

data are modeled using elevation as a primary factor in interpolation may render it 

inappropriate for inclusion as an independent variable in this regression analysis.  

Previous research shows that preservation of ice within rock glaciers is dependent 

on cold winter temperatures (Brazier et al., 1998; Millar and Westfall, 2007).  While 

TJanuary was not included in the regression model, the fact that elevation was highly 

related to activity supports these previous studies (Figure 13); as colder temperatures can 

be inferred at higher elevations due to atmospheric lapse rates, though that is not 

necessarily true in mountainous regions.  Results from an ANOVA test comparing means 

of the 11 different parameters between modern and relict rock glaciers support Figure 13 

which shows that mean elevations of modern rock glaciers are significantly higher (p = 

3.92×10-5) than those of relict rock glaciers.  It seems that while elevation alone does not 

entirely explain the variability in rock-glacier activity, logistic regression results further 

support the use of altitudinal boundaries of rock glaciers in estimating their location. 
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Figure 14:  Distribution of elevation for modern (blue) and relict (black) rock glaciers.    

 
 
3.3.1 Permafrost Distribution 

Previously the lower altitudinal limits of continuous mountain permafrost were 

estimated for the Absaroka/Beartooth region by Harris (1986), where ice in peat was 

observed in the Beartooth’s at 2400 m.  Ensuing general lower limits of continuous and 

sporadic mountain permafrost were estimated to be ~2600 m and ~1500 m, respectively 

for latitudes of about 45° N (Harris, 1986).   

The lowest field-observed relict rock glacier was located in the Absarokas and 

had a minimum elevation of 2100 m which coincides with previous estimates of lower 

permafrost limits for Wisconsinan times in northern Wyoming (Mears, 1981).  While 

Harris (1986) estimated the current lower limit of mountain permafrost to be ~2600 m, 

estimates of current permafrost boundaries in this study based on minimum elevations of 

modern rock glaciers were 2500 m and 2800 m for Absaroka and Beartooth rock glaciers, 

respectively.  The mean of these two values was 2650 m which is slightly higher, but 

comparable to estimates made by Harris (1986).  However, this range of values is slightly 
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lower than was proposed by Pèwè (1983), who suggested a 1000 m upward shift since the 

late Wisconsinan; which would put current levels for the study area at roughly 3000 m.  

Rock-glacier age, a critical component of paleoclimatic investigation using rock glaciers, 

was not determined in this study.  Thus, only relative inferences can be made by 

comparisons with previous research (Figure 14). 

 

 

 

 

 

 

 

 

 

 

 

 

The elevations of the probability distribution of modern rock glaciers were 

mapped along with minimum elevations of relict and modern rock glaciers (Figure 15).  

By tracing the ‘Beartooth Modern Limit’ (Figure 15), one finds that it crosses probability 

isolines ranging from 10% - 70% which may or may not improve estimates of permafrost 

boundaries.  

 
Figure 15:  Map showing the relative position of estimated permafrost boundaries on the 
landscape. 
 

Hello. 
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 The implications of these estimates are many-fold.  As was described in Chapter 2 

glacier/rock glacier ratios imply that the Beartooth range is geomorphically shifting 

towards more periglacial processes.  Regional estimates of permafrost boundaries may 

assist in understanding potential future shifts in permafrost as near surface temperatures 

in the mountains of the western USA are projected to increase by 0.8 – 1.7°C by 2050 (de 

Jong et al., 2009).  Increasing temperature trends would further promote Beartooth 

deglaciation as the northern Absarokas are already deglaciated.  In addition, ice within 

rock glaciers may also decrease, leading to fewer active rock glaciers, though rates of this 

decline will be slowed due to insulative properties of the rock mantle.   

 
 

Figure 16:  Close-up map of Mt. Wood area (Beartooths) showing estimated activity probability 
compared with boundaries estimated from minimal altitudinal extents of modern and relict rock 
glaciers.  
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3.3.2 Insolation and Temperature 

It was originally hypothesized that elevation and insolation would be primary 

controls on rock-glacier activity, and while elevation was most significant, Tmax was more 

significant (p < 0.05) than insolation.  Results do not discount insolation completely, 

however.  Comparison of mean insolation values was statistically significant (p < 0.05) 

by aspect (Figure 16).  Additionally, plotting the observed modern and relict rock glaciers 

with respect to elevation and aspect shows a greater occurrence of modern rock glaciers 

on north-facing slopes than the relict distribution (Figure 17; Table 4).   

 

 

 

 

 

 

 

 

 

 Figure 17:  Relationship between mean insolation and aspect for all 660 rock glaciers.  Mean 
insolation values (kW·h/m2) for each respective orientation were: North (1346), East (1340), 
South (1388), and West (1397).       
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Figure 18:  Comparison between modern and relict rock glaciers plotted by 
elevation (m) and orientation. 

Table 4:  Relative numbers of relict and modern rock glaciers for each cardinal direction. 

  North (315 - 45°) East (45 - 135°) South (135 - 225°) West (225 - 315°) 

Relict 20% 37% 20% 22% 

Modern 29% 25% 26% 19% 

 

 

 

 

 

Previous research from southern Colorado shows preservation of the rock-glacier 

ice matrix to be primarily controlled by rock-fall intensity and topoclimatic parameters 

such as elevation, radiation reduction, and position of the cirque headwall with respect to 

wind-drifting and snow avalanching (Morris, 1981).  Other studies have looked at rock-

glacier development and preservation with regards to annual insolation and lithology 

(Johnson et al., 2007), lithology and geological controls (Ikeda and Matsuoka, 2006), and 

morphology and topography (Humlum, 1988).  Controls on rock-glacier initiation and 

growth are not understood in great detail, however (Humlum, 2000).   
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 In this study, interestingly, estimated insolation was not a strong predictor of 

activity.  This is most likely the result of insulating properties of the rock mantle which 

have been suggested to greatly reduce ablation rates (Potter et al., 1998).  It was also 

hypothesized that there would be a correlation between temperature and insolation, but 

none was found.  The solar insolation calculated in Solar Analyst© is an estimated value 

that does not take complex atmospheric variability into account; observational solar 

radiation measurements might show trends more highly correlated to surface 

temperatures.   

While glaciers are barometers of change in precipitation and temperature (Locke, 

1989; Shea and Marshall, 2007), glaciogenic rock glaciers, by their existence, signal a 

decline in precipitation relative to previous conditions.  This is due to their frequent 

occurrence in areas and at elevations similar to glaciers, but generally too arid for current 

glacier formation (Brazier et al., 1998, Humlum, 1998b).  In addition, due to the 

formation of a rock mantle, rock glaciers exhibit slow response to changes in 

temperature.  A marked increase in annual temperatures, thus, would need to have 

persisted for decades to centuries (Brenning, 2005) in order to harvest a response.   

 Temperature increases in the instrumental climate record over the past 100 years 

for areas in the Canadian Rockies correspond to a decline in glacial mass balance 

(Luckman, 1998).  Similarly, anomalous interaction of high summer temperatures and 

low winter accumulation has led to unprecedented glacial recession in Glacier National 

Park, Montana that began in the early-20th century (Pederson et al., 2004).    Increased 

summer temperatures that are affecting glacier recession in other Rocky Mountain areas 

are most likely affecting northern Absaroka and Beartooth alpine areas, though because 
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modern rock glaciers are dependent on cold winter temperatures for their ice 

preservation, in the wake of massive glacier recession, rock glaciers may become the 

principal vestiges of glacial ice in the Beartooth region as they may already be in the 

northern Absarokas. 

 
 

3.4 Conclusions 

This study utilized activity data from 120 rock glaciers to predict activity 

classification on a larger data set of 540 rock glaciers through logistic regression 

analysis.  Tmax (mean annual maximum temperatures) and elevation had the strongest 

predictive value for whether a rock glacier would be modern (active or inactive) as 

opposed to relict.  However, further analysis using January and July temperature data 

suggested that Tmax may be inappropriate for this study due to their co-linearity with 

elevation and the inability to differentiate whether cold, warm, or seasonal temperature 

trends affect rock-glacier activity.   

Predicted probabilities of rock-glacier activity were compared to minimum rock-

glacier elevations as a proxy for permafrost presence.  Estimates from this study 

coincide with previous estimates from Harris (1986) where lower limits of continuous 

permafrost were approximated to be present at ~ 2600 m.  In the current study, 

minimum elevations for modern relict rock glaciers in the northern Absarokas and 

Beartooths were 2500 m and 2800 m respectively.  The mean of these two elevations is 

2650 m, which is slightly higher but comparable to estimates from Harris (1986).   

Originally it was hypothesized that solar insolation would be a determining factor, 

however no strong correlation with activity was observed.  This is most likely the result 

of insulative characteristics of the rock-glacier rock mantle.   
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Finally, with continuing climate warming and glacial recession, the slow response 

of ice within rock glaciers may prove to be an important asset to alpine ecosystems.  

Presumably this is already the case in the Absarokas and will become increasingly more 

important in the Beartooths. 
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4 ROCK-GLACIER MOVEMENT 

4.1 Background 

 Ground-based approaches as well as air- and space-borne techniques exist for 

monitoring rock-glacier kinematics with high resolution (Haeberli, 2006).  Movement 

quantification in the Colorado Front Range has been done using surveying (White 1971).  

Similar studies were carried out in the Pyrenees (Chueca and Julian, 2005) and the Alps 

in Austria (Krainer and Mostler, 2000), where surface velocities were on the order of 0.1 

m/yr and roughly 2.5 m/yr, respectively.  Some of the highest rock-glacier velocities have 

been observed in the Andes, up to 100 m/yr (Corte, 1987).  Photogrammetry is the 

technique most commonly used for monitoring rock-glacier movement (Haeberli, 2006) 

and can help describe horizontal as well as vertical displacement of rock-glacier surface 

features most efficiently and with high resolution (Kääb et al., 1997, Berger et al., 2004).   

Comparison between climate and rock-glacier morphology and movement is 

controversial due to conflicting reports of evident and obscure correlations on varying 

time scales (Kääb et al., 1997; Bachrach et al., 2004).  Other research has shown rock-

glacier climate sensitivity to fluctuate over the length of the rock glacier (Konrad et al., 

1999).  Ablation rates were found to be higher near the cirque and decreased to near zero 

towards the terminus due to the increasing thickness of the debris layer near the terminus. 
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4.2 Methods 

 Digitally ortho-rectified and geo-referenced aerial photographs of the Black 

Canyon Basin (Figure 18) were obtained for the years 1952, 1981, 1987, 1995, and 2003 

from the USFS’s Remote Sensing Application Center (RSAC).   

 

 

 

 

 

 

 

 

 

Only four rock glaciers were analyzed because other potential rock glaciers had 

either poor photo resolution or had orthorectification inaccuracies.  For each of the rock 

glaciers, distinctive surface boulders were identified and tracked by digitizing a line, with 

each point on the line representing the location of the boulder at one time slice 

(Figure 19).   

 

Figure 19:  Map showing the four rock glaciers (Beartooth, East Grasshopper, South 
Valley, and Tri-Lobe) included in photogrammetrical analysis.  
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The total number of lines digitized per rock glacier was based on the size of the rock 

glacier as well as the ability to identify specific boulders on sequential photos (Table 5).  

The mean distance traveled by boulders between successive photo periods was 

determined for each rock glacier. 

Figure 20:  Movement vector on the East Grasshopper rock glacier.  The lighter pixels in 
the 2003 circle represent the boulder that was tracked using this particular poly-line.  
Other circles represent the position of that boulder in previous years.   

 
Table 5:  Sample sizes of boulders per rock glacier used to determine rock-glacier 
movement. 

Rock glacier Number of Boulders Tracked 

Tri-Lobe Rock-glacier 88 

East Grasshopper Rock-glacier 218 

Little Monster Rock-glacier 65 

Beartooth Rock-glacier 94 

Reference Vectors 91 
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Photo error was estimated by comparing the movement of rock-glacier boulders 

to the ‘movement’ of large boulders outside rock-glacier boundaries that were assumed to 

be stationary; these are called reference vectors hereafter.  The same set of reference 

vectors were used for each rock glacier.   

4.3 Results 

4.3.1 Reference Vectors 

T–test’s were used to compare means of X and Y coordinates for reference 

vectors among sequential photos.  Results showed that positions of reference boulders did 

not vary significantly from one year to the next (p < 0.05).  While the photos, in general, 

were very well aligned, distortion at photograph edges was widespread.  This made the 

potential for tracking movement of boulders often difficult and thus, inaccurate at times.     

 

4.3.2 South Valley Rock Glacier  

The South Valley rock glacier has a mean elevation of 3185 m and holds a 

northerly aspect.  Field analysis revealed this rock glacier to be inactive which is partially 

supported by movement analysis.  In periods one (1952-1981), three (1987-1995) and 

four (1995-2003), photo error was significantly higher than or equal to rock-glacier 

movement (Figure 20).  In period two (1981-1987), however, comparing means of 

movement and reference vectors showed rock glacier movement to be significant.  

Values of annual displacement rates can be calculated by subtracting photo error 

movement from rock-glacier movement as both were observed to be moving in the same 

direction.  For period two, rock-glacier movement was 7 cm/yr for the 6-year period.  
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This suggests the South Valley rock glacier was active in period two, however, due to 

photo error, results regarding other periods were inconclusive.    

 

 

 
Figure 21:  Surface movement of the South Valley rock glacier (1952 - 2003). 
 

 

 

 

 

 

 

 

 

 

 

4.3.3 Tri-Lobe Rock Glacier  

The Tri-lobe rock glacier is the lowest in elevation of the four rock glaciers 

coming to a terminus at the western end of Black Canyon Lake.  It has a mean elevation 

of 2906 m and a northwesterly aspect.  In all four periods, photo error was either equal to 

or greater than potential rock-glacier movement, suggesting that this rock glacier had not 

moved throughout the study period (Figure 21).  This is consistent with field observations 

where the Tri-Lobe rock glacier was classified as inactive due to its steep front slope, 

weathered surface features and extensive alpine vegetation cover.  
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Figure 22:  Surface movement of the Tri-Lobe rock glacier (1952 - 2003). 
 

 

 

 

 

 

 

 

 

 

 

 

4.3.4 Beartooth Rock Glacier  

The Beartooth rock glacier gets its name from the Beartooth Glacier below which 

it formed.  The rock glacier sits at 3224 m and has a mean directional aspect facing east.  

It was classified as active due to a steep, unstable frontal slope, no vegetation, and a 

smooth surface with fresh angular clasts.  For periods one, two, and three (1952 – 1995), 

reference vector movement was equal or greater than rock-glacier movement (Figure 22).  

In period four, however, rock-glacier movement was significant in comparison to 

reference vectors (p < 0.05) at 9.2 cm/yr; but was ‘backwards’ or uphill.  This may be the 

result of surface subsidence; causing boulders to appear to be moving backwards when 
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they are actually lowering or settling in the z-direction.  Further climatic and 

photogrammetric analyses are necessary in order to explore these hypotheses.    

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 23:  Surface movement of the Beartooth rock glacier (1952 - 2003). 
 

 

4.3.5 East Grasshopper Rock Glacier  

The East Grasshopper rock glacier is one of the largest in the Beartooth Range.  It 

has a northeast aspect and a mean elevation of 3117 m.  It was classified as active due to 

the steepness and instability of its frontal and side slopes.  There was vegetation on some 

developed soils, but due to the size of this particular rock glacier, it is possible that some 

regions were inactive.  Period one shows displacement rates of 4.3 cm/yr.  In periods two, 

and four, p-values showed no difference between means and photo error was greater than 

rock-glacier movement.  Period three, however, shows an increased rate of 8.0 cm/yr 
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(Figure 23).  Overall, in period one total displacement equaled 125 cm over 29 years.  In 

period three (1987-1995), a duration one quarter the length of period one, the rock glacier 

moved 64 cm, which is half the distance covered in period one.       

 

 

 

 

 

 

 

 

 

 

 
Figure 24: Surface movement of the E Grasshopper rock glacier (1952 - 2003). 
 

 
 

4.4 Discussion and Conclusions 

This study attempted to quantify the movement of four rock glaciers in the 

Beartooth Range using photogrammetric methods within a GIS.  Statistically, error was 

large enough to render much of the analysis inconclusive.  The Tri-lobe rock glacier is 

essentially inactive with no significant movement found either in the field or from air-

photo analysis.  In contrast, movement rates of the East Grasshopper rock glacier may 

have increased over time and are consistent with movement rates observed at other 

Rocky Mountain rock glaciers (White, 1971; Benedict et al., 1986; Potter et al., 1998).         
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 Successive observation of the air photos does indicate potential subsidence and 

‘flattening’ of the upper section of the Beartooth rock glacier.  In the 1952 photo (Figure 

24), the 1952 and 2005 glacier termini are labeled, respectively.  GIS measurements show 

over 100 m of horizontal recession.  Additionally, in 1952 the terminal moraine section of 

the rock glacier is defined by a sharp crest.  Comparison with the 2005 photo (Figure 25) 

also shows the position of the sharp crest for 1952; however, there appears to have been 

some amount of subsidence and erosion because the crest is not as easily defined.  This 

additional analysis supports the theory that apparent ‘backwards’ movement may be the 

result of subsidence of the rock-glacier surface, though further investigation is necessary. 

With respect to the East Grasshopper rock glacier, current research shows 

dramatic surface thinning of its associated cirque glacier (Seifert et al., 2009).  Previous 

research concerning basal sliding of rock glaciers suggests increased cirque glacier 

ablation is correlated with increased rock-glacier movement due to lubrication of sliding 

surfaces (Krainer and Mostler, 2000).     

 

 

 

 

 

 

 

 

  43



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1952 

2005 

 
Figure 25:  Aerial photos of the Beartooth rock glacier (1952 top and 2005 bottom) with the 
glacier terminus in 1952 shown in red and the 2005 glacier terminus in blue.  Up-valley 
recession was from 80 – 120 m.  In the 1952 photo, there is a clearly defined sharp crest on the 
terminal moraine that is labeled; in 2005, the crest is not as prominent. 
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5 CONCLUSIONS AND FUTURE RESEARCH 

5.1 Conclusions 

5.1.1 Distribution 

Over 660 rock glaciers were mapped within the study area and then described 

using 11 topographic and climatic variables.  Distinct differences were apparent in 

temperature, elevation, precipitation, insolation, and lithology between northern 

Absaroka and Beartooth rock glaciers.  The Beartooth rock glaciers were higher in 

elevation and subject to more precipitation and lower temperatures.  Inferences from 

these comparisons suggest that while Beartooth geomorphology is shifting from glacial to 

more periglacial, the northern Absarokas are already largely periglacial.  Basic 

understanding of these rock glaciers is important because glacial decline is increasing due 

to climate warming and rock glaciers may soon become the dominate source of ice in the 

region, particularly in the Beartooths.    

 

5.1.2 Activity Analysis 

Of the 660 rock glaciers that were mapped, 120 were assessed for activity level.  

This sub-sample was used to build a binary logistic regression that 1) determined which 

parameters had the strongest relationship to rock-glacier activity and 2) could be used to 

extrapolate activity probabilities onto the larger dataset.  The parameters that were most 

important in activity prediction were rock-glacier elevation and Tmax (average annual 

maximum temperature).  That Tmax was modeled using elevation as a primary factor in 

interpolation essentially disqualifies it as an appropriate independent variable.  In 

addition, by using Tmax, it was unclear whether cold, warm or other seasonal temperature 

trends affect rock-glacier activity.  Subsequent analysis of January and July temperatures 

  45



 

was inconclusive in that no correlation was found between temperature data for these 

months and rock-glacier activity. 

 

5.1.3 Permafrost Boundary Estimates 

Predicted activity probabilities from the logistic regression were mapped and 

compared with previous methods to estimate past and present permafrost boundaries.  

Modern permafrost limits were similar to those found in the region by Harris (1986) but 

varied due to inclusion of logistic regression results. 

 

5.1.4 Movement 

Quantification of surface movement of four rock glaciers in the Beartooth Range 

through photogrammetric techniques proved to be largely inconclusive, however, some 

findings were reached.  The South Valley rock glacier moved 7 cm/yr from 1981 – 1987.  

Displacement rates of the East Grasshopper rock glacier increased: from 1952 – 1981, 

rates were 4.3 cm/yr, and from 1987 – 1995, rates were 8.0 cm/yr.  In contrast, no 

significant movement was observed for the Tri-Lobe rock glacier as photo error was 

similar to rock-glacier movement.  Statistically significant movement of the Beartooth 

rock glacier was observed, though it appeared to be ‘backwards’ or uphill.  As this 

methodology only quantified horizontal surface movement, apparent uphill movement 

could actually be subsidence.   
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5.2 Future Research 

5.2.1 Lithology 

In this study, while Beartooth lithologies were fairly uniform, differences between 

Absaroka rock glaciers were found that should be explored further.  For example, rock 

glaciers off the north cirque of Martin Peak were composed of metamorphosed mafic 

igneous rocks (gneiss) which often produced blocky, dark surfaces with large clasts 

similar to Beartooth rock glaciers (Figure 25).  In contrast, to the south, on the north side 

of Emigrant Peak, rock glaciers were dominated by volcanic QAPF rocks (basalt, 

andesite, dacite, rhyolite, conglomerate; Figure 26) with clasts that were lighter in color, 

smaller, more angular, and subsequently more tightly packed.  Further research is 

warranted as differences in clast size and mineralogy may influence insulative properties, 

energy balance, and air and water flow.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26:  Metamorphic rocks shown in the north cirque of Martin Peak.  The rock 
glacier is in the mid-ground and the right bottom corner of the photo.   
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Figure 27:  Volcanic QAPF rocks on a north gulley of Emigrant Peak.  Furrows and ridges 
can be seen down-slope on the lower one-third of this very large rock glacier. 
 

 
 
5.2.2 Climatic Data Analysis 

Logistic regression analysis found Tmax and elevation to be strongly related to 

activity classification.  However, insolation contained limited predictive value.  

Additionally, there was no significant relationship between temperature data and 

estimated insolation.  These variables were based upon model estimates of temperature 

and DEMs instead of in situ observations and thus need to be treated with caution.  

Verification of these data through field measurements of temperature and insolation 

would improve our understanding of these variables and their interaction.   

Analysis of historical climate data could be useful in evaluating recent, regional 

climatic changes, and whether or not rock-glacier movement is related to these changes.  
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Analysis of site-specific climate data was outside the scope of this current study, although 

there are a variety of stations in the region with records that go back into the late 19th and 

early 20th centuries (Appendix A).  

 

5.2.3 Hydroecology and Water Resources 

Similar to glaciers, rock glaciers can act as a source of year-round water in high 

alpine catchments where late summer precipitation is minimal (Johnson et al., 2007).  

Schrott (1996) determined that rock glaciers can contribute up to 30% of river discharge 

during summer months, while other research has shown Andean rock glaciers to store an 

estimated water equivalent of 0.3 km3 per 1000 km2 of mountainous area (Brenning, 

2005).  The amount of water in rock glaciers is often difficult to estimate due to the 

inherent variability and difficulty in determining exact genesis and subsequent depth and 

distribution of ice in rock glaciers.  Hence, another approach summarizes rock glacier 

hydrologic input more specifically by evaluating isotopic pathways in rock-glacier runoff 

(Williams et al., 2006).   

While the effects of deglaciation receive high levels of attention, hydrologic 

contribution from rock glaciers is less understood, though becoming increasingly more 

important.  Milner et al. (2009) reviews some major ecological effects of deglaciation to 

include changes in fluvial, solute, sediment and thermal regimes which also directly 

influence channel stability and habitat.  Thus, future biodiversity of stream communities 

in cold environments can be severely affected by changes in water source contribution.   

As the potential increases for rock glaciers to be the primary source of ice in 

Rocky Mountain alpine catchments, it may be beneficial to further understand how rock 
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glaciers influence different morphologic regimes of streams and rivers as well as 

ecological communities relative to glaciers.  In this way, associated changes in habitat 

and channel stability can be more accurately anticipated. 
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APPENDIX A 

 
 

 
 

 

Table A: Climate stations proximally located to the northern Absaroka and Beartooth ranges.  
Station 
Type 

Elevation 
(ft.) 

Period of 
Record Station Name Temp. Precip. Snowfall 

Livingston 12S COOP 4870 1951-present x √ √ 
Emigrant COOP 5000 1950-1968 x √ √ 
Jardine COOP 6450 1951-1976 √ √ √ 
Gardiner COOP 5280 1956-present √ √ √ 
Yellowstone Park COOP 6240 1894-present √ √ √ 
Tower Falls COOP 6270 1948-present √ √ √ 
Lamar Ranger St COOP 6470 1922-present √ √ √ 
YNP N COOP N/A 1946-1967 √ √ √ 
Cooke City 2W COOP 7560 1967-present √ √ √ 
Crandal Creek COOP 6720 1913-present √ √ √ 
Red Lodge 1NW COOP 5580 1894-present √ √ √ 
Mystic Lake COOP 6570 1924-present √ √ √ 
Nye COOP 5030 1954-1962 √ √ √ 
Mcleod COOP 5130 1951-1990 x X √ 
Cole Creek SNOTEL 7850 1971- present √ √ √ 
Burnt Mtn. SNOTEL 5880 2001-present √ √ √ 
Placer Basin SNOTEL 8830 1980-present √ √ √ 
Box Canyon SNOTEL 6670 1979-present √ √ √ 
Monument Peak SNOTEL 8850 1980-present √ √ √ 
Fisher Creek SNOTEL 9100 1967-present √ √ √ 
NE Entrance SNOTEL 7350 1967-present √ √ √ 
E Boulder Mine SNOTEL 6335 2008-present √ √ √ 
White Mill SNOTEL 8700 1974-present √ √ √ 


