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Abstract 

 
Evans, Heather, Master of Science, May 2010 

 

The Biogeography of Ageratina adenophora: A Mexican Trans-Global Invader 

 

Co-Chairman: Dr. Jeffrey Gritzner   

 

Co-Chairman: Dr. Ragan Callaway 

 

  Invasive plants are a global problem often resulting in negative impacts upon 

populations of native plants and the environments in which they grow.  Invasive plants 

inhibit native species and take over areas where they have been introduced.  These 

invasive species create ecological problems for wildlife foraging, as they often transform 

the vegetation of native habitats resulting in conditions unsuitable for grazing.  In 

addition, invasive plant species pose problems for humans in the areas of health, 

economics, and land management.  Ageratina adenophora, a plant native to Mexico, has 

become a trans-global invader, particularly in China and India. In an effort to understand 

how the plant becomes a successful invader, a series of greenhouse experiments at The 

University of Montana were conducted to test for allelopathy and volatile chemical 

reactions.  This study was designed to determine the effects of Ageratina adenophora 

regarding seed germination, mortality, and plant biomass on plants from the invaded 

environments of China and India.  These tests compared seed germination and mortality 

from Mexican plants, where Ageratina adenophora is native.  A second experiment 

tested the growth rates and biomass of plants in Ageratina adenophora’s native 

environment of Mexico, versus those plants from invaded China and India.  This was 

done with the hypothesis that Mexican plants would grow successfully in the presence of 

Ageratina adenophora while Chinese and Indian plant‟s growth would be inhibited.  The 

findings suggest that indeed, there is a growth rate correlation between Mexican plants 

surviving in the presence of Ageratina adenophora and the Chinese and Indian plant‟s 

growth rates were inhibited. 

 
Keywords: Ageratina adenophora, invasive species, allelopathy, Mexico, China, 

India 
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Chapter One 

 

Introduction 
 

There is a significant need to understand invasive plants, their importance in 

introduced ecosystems, and their role in the environments in which they have evolved 

and developed symbiotic, and other healthy relationships in their native environments.  

The problems of invasive plants pose threats to ecosystem health, particularly to plants in 

their native communities and their relationships with interdependent biological life (Cox 

2004, 4).   

The phenomena of invasive plants and associated threats to diverse plant 

communities occur without clear, effective, or absolute removal techniques in newly 

invaded communities where these problems manifest.  There are several hypotheses that 

attempt to understand why this happens, and how it affects the landscape.  Invasive plants 

role on plant communities and how they can transform from small and somewhat 

insignificant plants at home to substantial plant invaders abroad is one of the most 

perplexing questions for ecology-based scientists today and accounts for significant 

research currently (Callaway and Aschehoug 2000, 521; Hierro, Maron and Callaway 

2005, 10; Callaway et al. 2008, 1043).   

This work will examine the problem of negative allelopathic effects of Ageratina 

adenophora in the invaded communities of South and East Asia, and its role in native 

communities of Mexico.  This study includes The Novel Weapons Hypothesis, to develop 

understanding of growth and inhibition indicated through A. adenophora.  The Novel 

Weapons Hypothesis proposes that some invasive plants may succeed by bringing novel 

chemical interactions to the communities, in which they invade, supporting dominance of 
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invasive plants over those plants that are native (Callaway and Aschehoug 2000, 521, 

Inderjit et al. 2007, 876).  The native plant communities are thought to have evolved 

within their respective niches, keeping native communities in healthy biological status.  

 Native plant communities and natural neighbors have become well adapted to one 

another, and chemicals present in native plant communities typically play a regulatory 

role, preventing native plants from out-competing with one another to maintain a healthy 

equilibrium (Hierro 2005, 16).  As native plants grow in a naturally evolved community 

with a peculiar chemical composition, there are instances in which an introduced plant 

does not become invasive and contribute to the detriment of that plant community.  Many 

introduced plants do become invasive through negative allelopathy and become a 

problem (Cappuccino and Arnason 2006, 189, Hierro, Maron, and Callaway 2005, 6).  

Invasive plants may colonize disturbed habitat, are not a members of original plant 

communities, are locally abundant, and is of little economic value, but costly to control 

(Ghersa 2007). 

This fundamental assumption that release of novel weapons creates strong 

suppression by invasive plants to a native plant's community.  This phenomenon enables 

invasive plants to attain higher densities upon introduction, becoming dominant enough 

to create virtual monocultures in their introduced range (Callaway et al. 2005, 577). The 

strength and pervasiveness of population control of plants by their enemies is still a 

mystery, and commonly, invasive plants may not have been examined within their native 

communities.  Often invasive plants are not significantly abundant in their home ranges, 

as compared to introduced communities where they flourish and create unnatural 

monocultures and other community mortality among natives.  These problems contribute 



 3 

to the lack of knowledge to eradicate invasive, as this lack of study exists in not fully 

understood within their native environments (Hierro, Maron and Callaway 2005, 5; 

Hierro 2005, 2) 

Introduction of invasive plants may be through anthropogenic actions outside of 

natural biological occurrence.  Such introductions may occur as invasive plants attach to 

shipments of food from abroad; invasive plants may travel as fragments to a new region 

by inevitable attachment to an airplane or the undercarriage of a motor vehicle and can be 

carried in lesser cases by faunal migration or weather patterns.  It is those plants that may 

use negative allelopathy, which gives them advantage in the sites where they invade 

(Inderjit et al. 2008, 876). 

   This chemical-based plant action, allelopathy, has been under study since 372 

B.C.  by a disciple of Aristotle and following this, 25-220 A.D. a book was reviewed by 

Chinese researchers, who discovered pesticidal and allelopathic reactions among plants. 

Much later, into the 20th Century Rice (1984) defined allelopathy as both a stimulant and 

inhibiting mechanism to plants in the microcosm.  Muller discovered its importance of 

plant interference such as plant dominance, succession and community formation, and 

thought that plant interactions may be "novel" as expanded by Callaway (2000). 

In this work, the study of biogeography and invasive plants investigates a 

worldwide invader, Ageratina adenophora, also known as Sticky Snakeroot, Crofton 

Weed, and Mexican Devil throughout its regions of invasion.  This study focuses upon A. 

adenophora‟s role in its native Mexico and in the regions of its invasions where it grows 

abroad.  Although A. adenophora has become a transglobal threat and is one of the 
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world's worst invaders, this study will emphasize invasion and allelopathic growth in 

India and China, in contrast to A. adeonphora‟s native Mexico. 

 This study proposes The Novel Weapons hypothesis that A. adenophora 

possesses chemicals that are novel, in the plant communities where it invades, and gives 

it an allelopathic advantage to plants in their native communities, that have not evolved to 

accommodate this introduction.  This thesis will contribute to a better understanding of A. 

adenophora’s invasion status abroad in relation to its performance in its home range.  

Chapter Two: Biogeography, Invasive Plants, and Allelopathy, presents an 

introduction to the field of biogeography.  Within this context attention will turn to case 

studies of invasive plants and allelopathy in diverse species communities.  This will 

provide a background in biogeography, examples of allelopathy, and how invasive plants 

may prosper within areas of introduction. Also, an explanation of some key terms will be 

discussed, and a brief history of when biogeographical sciences began and expanded is 

included. 

 Chapter Three: places emphasis upon A. adenophora, its physiology and 

strategies for success.  This chapter includes an examination of what the scientific 

community knows of A. adenophora's relationship to its native region, and how it 

performs in areas of invasion. Consideration is given to climate, physiology, significance, 

invasive status, current solutions, and a discussion of A. adenophora in theses areas of 

invasion.  

In Chapter Four:  Methods, discusses two greenhouse experiments conducted to 

compare allelopathy within differing populations of plants coming from areas where A. 

adenophora may be found to be invasive in South and East Asia and Native Mexico  This 
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project, conducted on The University of Montana Missoula campus, analyzed A. 

adenophora and allelopathic relationships within these communities.  Plants from these 

regions were grown in a closed environment with leaf litter of A. adenophora in close 

proximity to plant seedlings.  These experiments supported understanding of growth rates 

from all plants included, and to examine the status of allelopathy on plants from the three 

regions as affected by the leaf litter.  Both experiments used A. adenophora leaf litter to 

observe effected growth rates, documented allelopathic effects upon Chinese and Indian 

plants, and effects on Mexican plants.  The outcome of native Mexican and non-native 

Chinese and Indian were impacted differently is explained in depth. 

In Chapter Five: Results and Discussion, the two experiments will be analyzed, 

and the relevance of the experiments will be discussed.  The chapter will expand upon the 

implications of two experiments.  The experiments will be examined independently and 

comparatively.  The analysis will illustrate the relevance of this work and the 

interconnectiveness of the project.    
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Chapter Two 

 

Biogeography, Invasive Plants and Allelopathy 
 

 Elements of biogeography comprise a combination of several disciplines 

including geography, biology, ecology, and, in some instances, anthropology.  

Biogeography encompasses spatial patterns and processes, landscape change, and 

anthropogenic effects and modifications of biotic communities. Today biogeography 

looks at existing interdependent systems and how they relate to the world, particularly for 

this study, the allelopathy and biogeographical status of Ageratina adenophora.  These 

scientific practices can be traced back to the early 1800s.  The foundations of 

biogeography were formed prior to theories of natural selection, even preceding those 

ideas of Charles Darwin and Alfred Wallace (Brown 2004, 2). The basis for the study of 

allelopathy traces its roots to over 2000 years ago, but is relatively new to mainstream 

plant research presently. 

Foundations of Biogeography and Allelopathy 

As mentioned briefly, studies as early as 372 B.C. Theophrastus, a student of 

Aristotle, observed an effect similar to allelopathy of pigweed on alfalfa (Jelenic 1987 in 

Chou 2006, 1).  Observations and scientific acknowledgments were made relatively 

shortly after this.  In 25 A.D. in China, pesticide control and plant suppression were 

observed in Shengnong Ben Tsao Jing where a description of what is now known as 

allelopathic activity was recorded.  These studies have solid relevance to allelopathy and 

the potential relationships this could present.  In addition, a Chinese pharmacologist 

wrote a book about herbal supplements where he described the chemical constituents of 
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toxins and nutrients, specifically to humans and furthered understanding through these 

examples. 

Plants thereafter were often traded or introduced for agricultural purposes in new 

colonies as early as the 1400s, becoming invasive through anthropogenic action.  In 

historical times, there was neither concern regarding plants threatening a biological 

system nor were they known to pose a threat to biodiversity and ecosystem health.  These 

actions represented the first widespread and global alteration of native plant communities, 

and negative effects upon agricultural crops (von Humboldt 2004 [1805], 50). 

In the early 1800s, resources around the world became increasingly available and 

plants were primarily used for food and medicine (von Humboldt 2004 [1805], 50; De 

Candolle 1832 in Chou 2006, 1).  In historical times, there was no concern regarding 

plants threatening a biological system nor were they known to pose a threat to 

biodiversity and ecosystem health.  These actions represented the first widespread and 

global alteration of native plant communities, and negative effects upon agricultural crops 

(von Humboldt 2004 [1805], 50). 

At this time in the 1800's there was a vague understanding of plants in a home 

range and the negative effects of plant introduction into new communities.  Farmers 

noticed that plants within their crops showed inhibition or stimulation among their 

neighboring plants as the practice of agriculture grew.  The biogeography of introduced 

plants was simpler, in these earlier times as researchers viewed plants for medicine and 

harvested plants for use in herbal tinctures to cure ailments, aid in the recovery of illness, 

and to promote well-being.  Plants were not considered, by humans, to be used for much 

else than direct anthropogenic benefits namely agricultural and medicinal uses (von 
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Humboldt 2004 [1805], 50).  There was neither any study of invasive plants in these 

efforts to cultivate medicinal plants, nor was there a perspective on humans spreading 

plants into non-native regions (von Humboldt 2004, 51-54). 

In the late nineteenth century a study of relationships among species and species 

dispersal were examined.  Today biogeography looks at existing interdependent systems 

and how they relate to the world (Haeckel 2004 [1876] 180).  The strategy of studying 

invasive plants in their natural communities is not consistent.  Perhaps with this scope of 

biogeographical examination a better understanding of how plants interact at home and 

abroad (Hierro, Maron, and Callaway 2005, 4), and this could improve understanding of 

allelopathy and the many effects that come from such a phenomenon may be improved  

 Certainly, understanding of allelopathic effects has evolved since the initial ideas 

of how plant species behave and transform landscapes.  One of the most elusive questions 

in ecology presently is why some species succeed much more in their introduced ranges 

than in their native range, and how allelopathy contributes to the success of introduced 

plants (Weidenhamer 2006, 85).  In efforts to further understanding in biogeography, 

scientific studies in the early twentieth century developed methods to explain how 

invasive species travel, how they can hybridize and cross-pollinate and ultimately how 

invasive plants can have such a powerful, negative impact upon plant community 

diversity.  

 Invasive species, no matter the quantity, are observed to create ecological 

problems for wildlife, human heath, and economics as they often transform the vegetation 

of native habitats into conditions unsuitable for grazing, for accessing clean water, and 
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for the consumption of valuable local plants (Holt 2004, 1559; Cox 2004, 65; Sax et al. 

2005, 65; Radosevich 2007, 545).   

 Invasive plants may reach such high densities to become dominant within the 

communities they invade (Aliotta, Cafiero, and Otero 2006, 285).  This status in the new 

ecosystem, as a dominant invader, poses the greatest threat to native ecosystems and 

invasive plants may create virtual monocultures within these communities (Denslow and 

Hughes 2004, 1284; Hierro and Callaway 2003, 29; Mack et al. 2000, 692). 

In the mid-nineteen hundreds pioneering scientists examined the close 

relationship between ecology and geography and discovering plant commonalities 

complementing one another, leading to linkages in the exploration of biogeographical and 

ecological problems. The relationship of ecology and geography relative to 

environmental processes was a major focus of these earlier works.  Discoveries, provided 

information in their own right, and enlightenment of scientists studying the disciplines 

together (Wulff 2004 [1943], 514).  Island biogeography emerged in the early twentieth 

century, and remains a foundation for biogeographical scientists both spatially and 

physically.  Island biogeographical studies helped these early, groundbreaking naturalists 

understand biogeographical isolation among species, and species dispersal (Darwin 2004 

[1859], 141; Diamond 2004, 1001).   

 Biogeography has evolved to become broader in scope, and ecological research of 

invasive plants has exploded as a subdiscipline, which may be attributed to island 

biogeography.  As we obtain knowledge acquired through increasingly in-depth research, 

details of ecosystem functions are acquired (Pysek and Richardson 2006, 23).  This 
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science of plants and biological interaction has encouraged the study of a spatial scope of 

environments where native and invasive plants occur.   

Biogeography of Plants   

 Plant research within biogeography ranges from the study of chemical reactions 

among plant species both native and invasive, to the studies of loss of plant consumers 

and natural enemies, and plant competition in a native community (Whittaker 2004, 931).    

These studies demonstrate relationships that affect plant growth and success (Callaway 

and Ridneour 2004, 437).  Current research has evolved from the earlier efforts to 

understand plant communities, agriculture, and wilderness by pioneers in biogeography 

(Lomolino, Sax and Brown 2004, 5).   

Plant biogeography currently focuses largely upon invasive plants and efforts of 

elimination for the purposes of land management, agriculture (Kohli, Batish, and Singh 

2006, 467), native plant communities and wildlife habitat (Radosevish, Jodie and Claudio 

2007, 8).  Not only does analysis of these problems create significant economic burdens, 

invasive plants are troublesome to recreationists lack access to areas owing to research 

activities or efforts to eliminate further degradation (Hammitt and Cole 1998, 51).  

Recreationists may also contribute to species introductions through the unintentional 

spread from travel on foot, by vehicle undercarriage, or by other means. (Eiswerth 2005, 

130). 

Plant species act individually and within a community, both of which may enable 

travel, migration to new communities, without the assistance of humans, all of which may 

be examples better, understood through island biogeography (Hengeveld, Giller and 

Riddle 2004, 454).  Although island biogeography provides insight into the proposed 
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questions, it does not cover the full spectrum of invasive plant introduction or success of 

invasion, as this in part, falls within the broader domain of the biological sciences.  The 

scope of biogeography holds principles from island biogeography, examining plant 

dispersal, evolution, and species interaction (Diamond 2004, 1005).  This early 

foundation of understanding plant migration and anthropogenic introduction continues to 

serve as a building block for understanding allelopathy in modern times.  

Spatial aspects and community communication, or relationships between evolved 

communities among coexisting and invasive species are discussed within the 

biogeography of plants.  The studies include plant migration and introduction outside of 

their natural barriers (Hierro, Maron, and Callaway 2005, 5).  This illustrates how species 

have evolved in their native regions to become successful among their new neighbors.  In 

addition to using this study of plants in their native communities, an understanding may 

be attained to how a species may be an aggressive invader abroad and if so, the question 

of how success was established may be clarified. 

In the past, anthropogenic actions were thought to be the most prevalent reason 

for plant dispersal into new areas.  Plants were introduced as ornamentals, and through 

agriculture, inadvertently creating invasive plants and problems that would inevitably 

follow.  In addition to these methods of introduction, plants may travel through 

waterways chiefly oceans and rivers and may attach to animals that migrate, through 

airborne travel by birds, wind, and other climatic elements (Mack, et al. 2000, 689).  

There is not a complete understanding of how invaders may become dominant, 

and interfere with natural systems that have evolved to become modern communities.  

There are several theories, however, examining how this phenomenon occurs (Hierro, 
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Marron Callaway 2005, 7).  There is a steady trend in biogeography to discover invasive 

plants and find solutions to the intrusions of diversity.  Biogeography may focus upon 

invasive species and how they work within their own communities when compared to 

their success abroad.   

Invasive plants may have negative impacts upon introduction to new communities 

and posses phytotoxic effects that inhibit growth in native plants. Negative allelopathy 

may cause a loss in biodiversity in healthy plant communities (Cox 2004, 377).  Invasive 

plants result in negative impacts to populations of native plants and the biological 

communities in which they grow (Kohli, Batish, and Singh 2006, 467).  Invasive plants 

may inhibit native species and create an inbalance in communities that may have evolved 

together over time (Sinkkonen 2006, 379). 

 One current hypothesis states that as many plants are transplanted into non-native 

areas they do not necessarily become invasive out-compete native plants for elemental 

resources to survive and account for loss of habitat and human resources (Hierro Maron 

and Callaway 2005, 3).  Indeed plants may become invasive, creating large biological 

problems with a potential to create large changes to the landscape and interdependent life 

therein.   

Recently, there has been significant research on one relevant plant and one tree 

species that illustrate the issues with the invasion of non-native species into ecosystems.  

The first example, Pinus albicaulis, known commonly as the Whitebark Pine, a tree 

native to the Rocky Mountains, has a high mortality rate owing to introduction of a non-

native, pest-driven disease.  The potential extinction of that species has far-reaching 

impacts across the entire ecosystem (McKinney and Tomback 2007, 1044).   The second 
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case study discusses the introduction and rapid spread of Centaurea maculosa, known 

commonly as Spotted Knapweed into the Rocky Mountain West. 

Disruption of Ecosystem Processes Case Study One 

In an effort to understand the impacts an invasive species can have on a native 

system, the following case study illustrates the interconnectedness, and thus 

biogeographical impacts, of such plant species.  Invasive plant-related negative outcomes 

and the effects of retention and restoration of native communities can be demonstrated by 

a tree species such as Pinus albicaulis (Whitebark Pine), and blister rust a disease causing 

mortality to the species.  This tree is an upper subalpine species, and is native to the 

North American continent, occurring primarily in the Northern Rocky Mountains 

(McCaughey and Schmidt 2001; 29).   

 Pinus albicaulis is both a keystone species (Schrag et al.  2007, 10) and a 

foundation species in high-elevation ecosystems (Resler and Tomback 2008, 161).  Many 

species rely on Whitebark Pine for success, including the Clark‟s Nutcracker, Red 

Squirrel, Grizzly Bear, and to a smaller extent the Black Bear (Arno 1986, 92).  These 

species work within an increasingly fragile ecosystem.  Global warming and Cronartium 

ribicola, the pathogen that creates Blister Rust in five-needled white pine trees, are the 

two largest threats to P. albicaulis, and the tree is thought to be close to extinction 

throughout the majority of its native ranges (Schrag et al. 2007, 10). 

Cronartium ribicola is currently a particularly large threat to P. albicaulis and is a 

disease for which no solution is known (Keane, Gray, and Dickinson 2007, 1).  Its effects 

on these tree stands are widespread and it causes mortality in trees in only a few years 

(Resler and Tomback 2008, 161).  The climatic trend of increasingly warmer 
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temperatures intensifies the effects of blister rust and these threats to this tree.  Mortality 

and possibly the end of P.  albicaulis as a species exist, and this example of invasive 

disease is only a part of the seemingly countless ways in which invasive plants and 

disease can affect ecosystem processes and native species whether plant, wildlife or 

human.  In addition, plants can be the foundation for many species survival and success 

within their native ranges. 

Disruption of Ecosystem Processes Case Study Two 

One of the worst invasive species to the North America West, Centaurea 

maculosa is native to Eurasia.  This plant invades throughout the North American 

continent in similar climates to it home range (Callaway and Ridenour 2004, 438).  It was 

probably introduced with alfalfa seeds from Europe, has successfully invaded the 

Northern Rocky Mountains, and has become established in more than seven million acres 

throughout the United States (Callaway and Ridenour 2004, 438).  C. maculosa is 

thought to have become successful through negative allelopathy and is extremely 

destructive.  Upon introduction, it may create monocultures where it becomes established 

and spreads without many enemies to hinder its success (Callaway et al. 2005).  Plants such 

as C. maculosa are biogeographically significant, as these plants travel across regions and 

dramatically change the landscapes in which they invade. 

Efforts to control C. maculosa include biocontrol, or the release of specialist 

insects (Callaway and Ridenour 2004, 439) to eliminate the target plant, as the insect 

used is a specialist consumer.  These efforts have not proven to be completely effective.  

Further, efforts have been made to determine the chemical effects of this plant abroad.  
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Currently, C. maculosa is successful in the Northern Rocky Mountains, and there are not 

solution to control its invasive status (Callaway, and Ridenour 2004; 440). 

Biogeographical analysis helps to determine if an invasive plant reacts differently 

in its invaded range, allowing it to dominate (Hierro, Maron, and Callaway 2005, 9).  

There are efforts to understand why some invasive plants do well in one location, but are 

not as successful in another invaded area. 

Trends in Invasive Plants Study of Allelopathy 

Allelopathy is known to contain plant chemistry that acts as secondary plant 

products released into the environment.  This is a strategy through volatilization, 

leaching, root exudation and decomposition of plant residues in the soil (Hierro and 

Callaway 2003, 29).  In order to manage the allelopathy of invasive plants that are 

intruding upon native communities, biogeographical approaches to gain an understanding 

of the issues on a spatial scale may be implemented.  This focus upon understanding a 

single aspect of a plant‟s success, chemical behavior at home and abroad is to test 

negative allelopathic effects of one plant to another in a controlled environment 

(Callaway and Ridneour 2004, 436).  Plant biogeography has much to offer in the 

analysis of invasive plants.  In addition to chemical manipulation, biogeography explores 

mechanisms that enable successful invasive plants to occur in substantially higher 

abundance in areas of introduction.  Among these areas of research is analysis of 

allelopathy (Hierro, Maron, and 2005, 9; Inderjit et al. 2005, 876; Callaway and Ridenour 

2004, 436) 

The history of allelopathy started with Hans Molisch, an Austrian professor of 

botany, who coined the term from the Latin words: allelo and pathy meaning mutual 
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harm (Chou 2006, 1).   His discoveries of allelopathy started when he observed fruit from 

different regions that seemed to affect one another in the ripening process, specifically 

apples that caused other fruits to ripen at a faster rate when in a closed environment.  He 

attributed this to their ethylene gas (Chou 2006, 2).  His studies initiated research into the 

phenomena of plant invasion through chemical integration allowing plants to modify 

those environments in which they are introduced. 

In the 1960s, allelopathy was linked to plant ecology and ecosystem function, 

with observation of chemical inhibition to native plants by invasive plants (Chou 2006, 

2). Later botanist Elroy Rice (1984) studied allelopathy in more depth.  His studies 

furthered understanding of current chemical communication among plants in the areas of 

stimulation and inhibition.  Rice observed that many answers emerged from field studies 

of allelopathy, as opposed to analysis in a closed environment similar to those of Molisch  

in 1937 (Rice 1992, 31).  The concept of allelopathy contains hypotheses that explain 

why plants occurring in a new area attributed to anthropogenic causes allow higher 

significant abundance in their introduced range than in their native range?  Native plant 

communities are often crowded out by invasive plants and out-competed in their native 

range (Callaway et al. 2008, 1043).  Several studies have shown the effects of allelopathy 

and rigorously examined the ecological environments therein.  These studies have 

furthered the science of understanding this phenomena and how it may further future 

exploration. 

Allelopathy can be attributed to how plants react chemically to neighboring plants 

at home or abroad (Chou 2006, 2).  An examination of plant communities suggests that 

plants may compete with one another for resources such as nutrients, water, light, and 
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pollinators, better known as resource competition (Weidenhamer 2006, 86).  These 

relationships keep native plants in balance as they are competing for the same resources 

and have evolved to growing in these specific communities.  

 Plants are constantly communicating with one another through chemical 

stimulation and suppression, and provide a necessary environment for native plants that 

have evolved there (Chou 2006, 5). When plants become invasive, they often escape 

chemical competition in introduced areas that keep them in control within their native 

regions, and can use their previously adapted chemical weapons on unsuspecting and 

unadapted foes in the environment into which they are introduced (Callaway and 

Ridenour 2004, 436).   

Plant communities can encompass healthy forms of competition for some plants, 

and lack of success for less well-adapted plants.  Chemical stimulants released by plants 

may indirectly affect their neighbors causing inhibition or stimulation.  This may modify 

the soil in some way, and requires further understanding (Callaway and Ridenour 2004, 

436).  Allelopathy plays a key role in an invasive plant disturbing a diverse plant 

community (Weidenhamer 2006, 87).   

Allelopathy can occur under several conditions.  The following case studies 

attempt to explain how allelopathy occurs within a plant community, and how it can 

inhibit the naturally occurring flora therein.  The case studies found here use existing 

knowledge with pioneering research by Darwin and Mulisch, whose ideas stimulated 

scientists and researchers and evolved an understanding of how these biological systems 

work. 
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As noted above invasive plants are thought to gain a noticeable advantage in a 

native plant community.  These invasive additions have enemies from abroad that contain 

novel chemicals permitting them to outcompete specialist enemies that have evolved 

without highly competitive invasive plants in their native ranges known as The Novel 

Weapons Hypothesis (Callaway and Ridenour  2004; 437).  The fundamental assumption 

is that chemical release from enemies in a native plant community enables plants to attain 

higher densities in their introduced range. While native herbivores and pathogens can 

cause substantial damage (Callaway and Ridenour 2004, 437), an understanding of the 

strength and pervasiveness of population control of plants by their enemies is incomplete.  

Explicit comparisons of the effects of enemies in the native and introduced range are 

crucial for testing allelopathy hypotheses. 

The Novel Weapons Hypothesis (Callaway and Ridenour 2004, 437), and the 

allelopathic properties of A. adenophora's status in its native habitat and abroad (Inderjit 

et al. 2008, 867) suggest that some invasive plants bring novel ways of interaction to 

natural plant communities (Callaway and Aschehoug 2000, 521).  This hypothesis 

proposes that invasive plants exude allelochemicals that are not necessarily effective in 

their native ranges, where competitive neighboring plants have evolved as part of a well-

adapted community.  However, these same species are suggested to be highly inhibitory 

to those native plant communities where they invade.  This biogeographical theory helps 

to demonstrates that plants are fluid in movement, and allelopathy, positive or negative, is 

always part of these biogeographical interactions.   

  As plants move across boundaries, transplanted by man, or through natural 

dispersal, species demonstrate their approach as spatially based.  As biogeography looks 
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at plants in place-based foundation and the evolution that occurs with plants in their 

native communities or abroad, it demonstrates a connection of ecology biogeography.   

A hypothesis preceding the Novel Weapons Hypothesis is the Evolution of 

Increased Competitive Ability (Muller-Scharer, Schaffiner, and Steigner 2004, 418; 

Callaway and Aschehoug 2000, 521).  This hypothesis argues that exotics, which have 

been liberated for a long period from their enemies at home, whose evolutionary 

chemical makeup is absent in the introduced range, species posses traits that help them 

outcompete plants where they invade.  This argues that invasive plants can use more 

resources for traits that provide greater competition, such as size or fecundity. 

Again, Callaway and Ridenour (2004), suggest that some invasive plants 

transform from "native weaklings to invasive bullies" by exuding biochemicals that 

create chemical inhibition.  Plants or soil microbes in invaded communities are 

negatively affected owing to the disruption of balanced competition.  There is reason to 

think that plants do not evolve in order to out-compete plants areas of introduction, but 

instead evolve to compete in natural communities.  The Novel Weapons Hypothesis is 

relatively new (Callaway et al. 2005, 578), and negative allelopathy of invasive plants 

has been somewhat understudied.  It is now believed that biogeographical studies of the 

allelopathy from invasive plants in natural plant communities may support the role of 

allelopathy in community theory (Baldwin 2003, 42). 
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Allelopathy Case Study One 

  An example of allelopathy was a project conducted by two ecologists to examine 

allelopathic effects of Centaurea diffusa on newly invaded ranges in North America.  

This compared new ranges with effects in native communities in Eurasia, Callaway and 

Aschehoug (2000) compared the success of this Eurasian plant on three species of bunch 

grass that coexist with C. diffusa (Hierro and Callaway 2003, 31).  These species were all 

grown with similar species from Eurasia of similar size.  Eurasian seeds were harvested 

from the foothills of the Caucus Mountains in the Republic of Georgia.  American seeds 

were collected from the Rocky Mountains in Montana, USA.  Every grass species was 

common in its respective sites.  The ground cover of C.diffusa was very low at less than 

one percent of cover.  In the Montana Rocky Mountains, C. maculosa, a plant closely 

related to C. diffusa, covered up to ninety percent of a given area. 

Each of the seven species were planted alone and in all grass-Centaurea 

combinations, and all combinations were grown in sand or in sand mixed with activated 

carbon expected to suppress any potential allelopathic effects because of its ability to 

absorb  organic compounds.  C. diffusa had stronger negative effects upon North 

American species than upon its native Eurasian species. The Eurasian species showed a 

reduced C. diffusa biomass in the experiment. 

 Centaurea diffusa had no significant negative effect upon Eurasian grass species, 

but significantly inhibited all North American species. North American grasses had no 

competitive effects on the chemical absorption of C. diffusa within the experiment.  The 

important implications for the role of allelopathy in exotic plant invasion, activated 

carbon had exceptionally different effects on the interactions between C. diffusa and the 
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grass species from the different biogeographical regions (Hierro and Callaway 2003; 32). 

 Allelopathy Case Study Two 

 A second example of allelopathy is the study of Alliaria petiolata is native to 

Europe and successfully invades forest habitats throughout North America.  In its native 

region, it occurs along forest edges, other shady habitats, and in forest understory 

(Callaway et al 2008; 1044).  Seedlings emerge in early spring and grow into evergreen 

rosettes during the first year. Flowers are born in late spring on one or more stalks of the 

second year plants, and mature later into soliloquies.  Since its arrival into the 

northeastern United States, it invaded from Ontario to the Carolinas and as far west in the 

United States as the Pacific Ocean, it has been regarded as highly invasive in these 

introduced regions (Callaway et al 2008 1044). 

Alliara petiolata was observed to form dense, monospecific stands that take over 

and eliminate native plant communities within a variety of habitats, including forest 

edges, floodplains, and forest understory (Callaway et al 2008; 1044).  Currently this 

plant has become highly successful and taken over many plant communities through 

allelopathy to gaining success.   

After rigorous chemical testing, it was determined that A. petiolata does indeed 

have allelopathic affects on plant microbial communities in North America, reducing 

native soil chemicals to their inhibition.  However, A. petiolata showed little affect on 

those species in its native communities in Europe, and thus, they grew without signs of 

allelopathy and without inhibition.   
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Allelopathy Case Study Three 

 Bartholomew (1970) revealed that a shrub and grass community of California 

Chaparral and costal sage communities, with a characteristic bare zone, is not necessarily 

empty of vegetation owing to allelopathy.  Previous studies suggested that volatiles were 

the main reason for this bare zone, and this was the accepted hypothesis for several years.  

Finally, Bartholomew, in his research, suggested that small mammals and birds 

contributed to the lack of vegetation.  Before this the role of animals in the bare zone was 

believed to be minimal at best.  Bartholomew carried out an extensive experiment to 

determine the actual reason for this area devoid of any vegetation, given it was so close to 

adjacent shrub and grassland communities.      

Bartholomew‟s observations confirmed his previous idea that the work of 

herbivores native to the area complemented chemical plant-to-plant inhibition. He argued 

that California chaparral and sage provided excellent cover for rodents, rabbits and birds.  

In addition, the neighboring grassland provided an ample food source for this wildlife to 

graze and consume seeds. 

Bartholomew conducted several experiments including wildlife monitoring, using 

stations around the site of observation.  He put out a source of seeds to provide a larger 

food source.  Bartholomew thought that the source of food would determine if these 

animals were coming to the area for food. In efforts to explain his ideas further, 

experimental traps were set to hold the small mammals in order to observe which species 

were accessing the bare zone.  In the process of this experiment, seeds were put onto 

sandpaper to prevent them from falling out of the area.  The seeds were accessible from 
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wildlife that may graze in the areas, using the adjacent shrubs and grasslands for food and 

cover.  

Bartholomew determined that indeed, wildlife feeding in the bare zone was this 

cause of plant mortality. In addition, he discovered a small amount of volatile toxins; 

however more lack of plant growth was not due to allelopathy, but instead could be 

attributed to grazers.  These discoveries are important to the understanding of allelopathy 

and the possibility of other hypotheses.  The idea of other sources of conflict within a 

community and how those may affect native species is important.  As scientists succeed 

in gaining a greater understanding of how invasive plants work within biological systems 

creates further understanding of allelopathic effects. 

 There are many different ideas of how plants invade, why they may become  

successful in their new communities, and how this ties into biogeography.  As there are 

many different approaches, biogeography helps us understand plant allelopathy within a 

context of place.    

 As biogeographical scientists strive to gain understanding into the problem 

threatening biodiversity and the overall well-being of a native community, whether plant, 

wildlife or anthropogenic contributions are involved, we can proceed with another kernel 

of knowledge and a step toward healthy ecosystems.  The Novel Weapons Hypothesis of, 

Callaway and Ridenour (2004) and the allelopathic effects to A. adenophora, and its 

status in native Mexico and regions of China and India where it has become a substantial 

invader, is, in part, the focus of the research within this thesis and will perhaps add to a 

new collection of studies to further reach a solution.  
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Chapter Three 

 

Ageratina adenophora 
 

Ageratina adenophora, a plant native to central Mexico, aggressively invades 

several regions through out the world.  This project, however will primarily focus 

primarily on South and East Asia (Wang and Wang 2006, 397). There are however, 

regions where A. adenophora invades in addition to South and East Asia and a few of 

these regions will be discussed briefly.  A. adenophora flourishes in subtropical regions, 

similar to its native range of Central America (Hong-Bang 2007, 75; Wang and Wang 

2006, 406).  As it invades, the plant can grow successfully along riparian areas and into 

disturbed habitat, such as new roadways and other human-related developments (Liu et 

al. 2007, 237; Xiao-yu et al. 2004, 319). 

Ageratina adenophora chokes out native plant life in regions of invasive 

establishment, causing harm to natural plant communities and the ecosystem processes 

therein (Liu et al. 2005, 341).  Further environmental processes and human-activity are 

negatively impacted as well, and it is costly for land managers to control (Zhang et al. 

2008, 561; Liu et al. 2005, 341). 

Plants such as A.adenophora create high monetary costs, loss of biodiversity, and 

interruption of affected anthropogenic activities.  Anthropogenic activities include 

agriculture, livestock grazing, recreation, harvesting of native plants for cultural 

purposes, water supply and land development (Eiswerth 2005, 132).  A. adenophora 

contributes to these problems as it invades quickly and successfully in most of the plant 

communities where it is introduced (Lichti and Hoshovsky 2000, 30).  
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 Ageratina  adenophora is fatally toxic to horses and most livestock, and is not 

edible to cattle or goats. The toxic disease caused in horses is known as "blowing 

disease," and may take several years to become evident. The symptoms of blowing 

disease manifest as coughing, difficult breathing, and violent blowing after exertion is the 

result of the acute edema, leading to hemorrhaging (Morris 1989, 282).  A. adenophora „s 

introduction into regions abroad started in the early 19
th

 century, spreading from Mexico 

to Britain as an ornamental plant where it thrives (Cronk and Fuller 1998, 269; Wang and 

Wang 2006, 397).  Later, in the early 1940s, it was introduced into South and East Asia, 

specifically into Myanmar, where it continues to spread.  A. adenophora is now 

devastating areas of China, India and other similar regions of introduction (Xiao-yu et al. 

2006, 116). 

Ageratina adenophora 

native

invaded

 
 Figure 3.1. Map of A. adenophora distribution. 

1
 

 

 

 

 

 

                                                 
 

1
  Figure 3.1.  A. adenophora distribution in its native and invaded areas, relevant to the project. 
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Physiology of Ageratina adenophora 

 

The physiology of A. adenophora makes it a likely candidate for invasion.  Its 

features include large purple stems that grows from 0.5-1.7 meters tall, are very hairy, 

and roots into the soil upon contact (Muniappan et al. 2008, 63).  Its leaf blades generally 

grow five to ten centimeters long and may produce ten to sixty flowers per head 

(Bossard, Randal and Hoshovsky 2000, 31).  The seeds have pappus hairs enabling the 

plant to withstand diverse environmental conditions that are not present in its native 

environment.  The hairs allow seeds to travel long distances by acting as a parachute, 

enabling seeds to be carried by wind or water. 

 
 Figure

 
 3.2.  

 
A. adenophora. 

2 
 

A. adenophora buds begin to appear in late winter.  They then grow aggressively, 

flowering in early spring usually in March. Seeds are established without pollination or 

fertilization, and fifteen to thirty percent of the 7,000 to 10,000 seeds produced by each 

plant are not viable.  However, a high number of seeds, 4000 to 5000, can become 

                                                 
 

2
  Figure 3.2. A. adenophora  growing in the field. 
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established. Seeds mature and are shed between April and mid-June, and the lower leaves 

of the plant drop after seed fall. Dense stands can contribute up to 60,000 viable seeds per 

square meter to the seed bank making it is successful in its introduced ranges (Bossard, 

Randal and Hoshovsky 2000, 31).  In addition, seeds that are buried lose their viability 

quickly and at a constant rate.  This does not mean that seeds are unsuccessful; however, 

because of high seed production this high mortality has little effect on the plant's 

potential for spreading.    

Germination occurs between June and March, with peak germination for over 

eighty percent of the viable seeds in August and September (Bossard, Randal and 

Hoshovsky 2000, 31). Light is necessary for seeds to germinate, so conditions, such as 

bare soil, are essential for establishment.  Once germinated, seedlings can withstand a 

considerable amount of shading, compensating for reduced light intensity by increasing 

leaf area. Deep shade, however, will kill seedlings (Xiao-yu 2006, 116).  

Seedlings grow rapidly and are fully established and able to regenerate from the 

crown, if damaged, within eight weeks of germination. In second-year and older plants, 

new growth begins with the first major summer rains, usually in June. Growth rates of 

seedlings and mature plants remain high during summer but decline in the cooler winter 

months (Wang and Wang 2006, 397).  

 Ageratina adenophora reproduces as noted above, asexually and by dispersal of 

seeds (Muniappan and Viraktamath 1993). These seeds favor disrupted environmental 

sites. They also travel as many invasive plants do in mud sticking to animals, machinery, 

and vehicles, and by adhering to footwear or clothing (Bossard, Randal and Hoshovsky 

2000, 31). 
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Alfonso, Carlos, JacintoMexico- native

 
 Figure 3.3. A. adenophora in Mexico. 

3
 

 

Ageratina adenophora grows native in Mexico on a significantly smaller scale 

than it does in India, and China.  This plant is understudied in its native Mexico as it is 

not an aggressive species in its home range, nor does it grow overly successful at home, 

as it does abroad (Muniappan, Raman and Reddy 2004, 64 

Trans-global Invasion 

Ageratina adenophora often takes over native plant communities in areas of 

invasion, and is such a strong inhibitor it may change soil biota to its own advantage, 

crowding out native species through allelopathy (Hong-Bang et al. 2006, 73). 

                                                 
 

3
 Figure 3.3. A. adenophora growing in its native Mexico. 
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INDIA - invasive

 
 Figure 3.4. A. adenophora in India. 

4
 

 

Invasion in India 

In India, A. adenophora is a widespread problem.  It is hypothesized that 

allelopathy plays a strong role in A. adenophora's spread, damage to native plant 

communities, and other issues as noted previously.  This chemical destruction may be a 

key player in the success it attains in India.  

 Figures 3, 4 and 6 provide visual observation of A. adenophora is not a substantial 

plant in its native community of Mexico, where it grows in small patches (figure 3).  In 

India (figure 4), A .adenophora grows without inhibition and outcompetes several plants 

growing in natural communities, as in the case of China (Xiao-yu, Zhao-hua; Wei-guo 

2004, 319, and Dong et al. 2007, 283). 

Unfortunately, there is little scholarly research into A. adenophora’s invasion in 

India or on its native Mexico that is available to researchers in the United States.  Perhaps 

Indian research is limited largely to that country‟s scholarly journals and technical reports 

                                                 
 

4
   Figure 3.4.  A. adenophora invasive in India. 
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and Mexican research is nonexistent.  As the research is inaccessible to researchers 

abroad, it limits discussion of Indian problems and reaction to A. adenophora. 

Fortunately, owing to the availability of public research, the discussion of China‟s 

experience with A. adenophora will be slightly more in depth.  The discussion will be 

extended to Australia and the United States.  In addition to these mentioned nations, A. 

adenophora has also invaded New Zealand, South and Southwest Africa, and other 

smaller and less impacted nations of Southeast Asia.  In these areas similar to Mexico and 

India, the available research is limited. 

Invasion in China 

Concerning native and invasive communities, China is one of the world‟s hotspots 

with regard to biodiversity, with some 30,000 native plants species (Ding et al. 2008, 

319).  A. adenophora was introduced into China in the 1940s from Myanmar, originally 

as an ornamental plant.  It now spreads into Yunnan, Guangxi and Hainan Provinces (Xie 

et al. 2001, 1337).  Geographic predictions for A.adenophora in China are illustrated in 

figure 5.  They suggest that this spread may result from several different factors, as the 

ease with most invasive plants; it may spread with different means depending upon the 

location of the disturbance and the local environment.  

 Huge disturbances, such as the Three Gorges Dam and the recently completed rail 

link to Tibet, could further spread invasive species to disturbed communities in the 

country (Ding et al. 2008, 317) as disturbance is a key component for the introduction of 

invasive plants and allelopathy.  
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 Figure 3.5. A. adenophora distributions in China. 
5
 

 

Disturbance in China is more frequent and widespread, as the country has 

undergone an economic boom in the last twenty- five years.  As more money is available 

in the country, there is more trade that is international and a higher risk of invasive plants 

through shipments from overseas.  This enormous increase in trade has resulted in many 

invasive plants introductions (Ding et al. 2008, 317).  These introductions allowed an 

invasion of A. adenophora to spread throughout South and East Asia.  A. adenophora is 

now currently one of the worst invaders in Chinese plant communities.  Figure 6 

illustrates how A.adenophora can grow in dense monocultures and thickets (Ding et. al. 

2008, 317). 

                                                 
 

5
 Figure 3.5. Geographic predictions for A.adenophora in China. The blue triangles represent   

predicted models where A adenophora is to establish and grow.  The white circles represent 51 testing data 

used to predict the different colors represent regions where A. adenophora is present with predicted 

varying degrees of likelihood and the extent of invasion predictability throughout China. 



 32 

CHINA - invasive
 

 Figure 3.6. A. adenophora in China. 
6 

 

 

Problems of invasive plants have drawn the attention of the government and the 

public in China, bringing focus to the high and still rising price of invasive plants.  A. 

adenophora threatens China‟s native plant communities, accounting for huge monetary 

costs and a sustainable loss of native plants.  Invasive plants create problems in the local 

economy and loss of native vegetation as well and threats to livestock, and riparian 

vegetation, and damaged waterways (Zhu et al. 2007, 1143; Zhu et al. 2007, 144).   

Invasive plants create problems for land managers to consider, and with strategies to rid 

the land of the invader, imposing monetary costs along with these severe biological 

impacts (Ding et al. 2008, 317).  

Additional Regional Invasions 

 Since its introduction into Australia in the early 1900s, A. adenophora has 

become widespread in Queensland coastal areas and on the New South Wales Northern 

Coast and as far south as Wollongong (Trounce and Dayson 2003, 1).  Isolated invasions 

also occur in the northern and central tablelands. A.adenophora has become an invasive 
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 Figure 3.6. A. adenophora in China. 
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plant in thirty-nine governmentally managed areas of coastal New South Wales (Trounce 

and Dayson 2003, 1).  Most invasions lye between Gosford and the Queensland border. 

In Sydney, A.adenophora has been established for more than 30 years and has spread 

rapidly from its introduction into this area since the early 1970s (Trounce and Dayson 

2003, 1).  

Mechanical and chemical controls are implemented in addition to biological control, 

and provide no agents to control the plant.  These efforts of Australian land managers are 

to rid their region of the plant and restore natural systems. (Trounce and Dayson 2003, 

643).  In figure 7, the map illustrates the areas that have succumbed to A. adenophora 

invasion in the areas shaded in black.  The grey areas represent potential future spread.   

 

 
Figure 3.7.  A. adenophora distributions in Australia. 

7
 

 

 Ageratina is also found in invaded areas of the United States, where it is a 

significant problem.  A. adenophora can be found in California, and Hawaii.  Efforts by 

the United States Department of Agriculture focus on gaining control and eliminating the 

plant. Currently there are efforts underway to exterminate the species and research is 

current throughout the country. 

                                                 
 Figure 3.7.  Map of Australia 2010.  Black shading indicates current A. adenophora invasions, 

grey indicate potential areas of spread. 
7
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California State scientists and land managers accounts for A. adenophora to be 

moderately invasive in those areas where it has established.  It flourishes in over ten 

counties in California, from Marin County south to San Bernardino (Bossard, Randal, 

and Hoshovsky 2000, 30).  In California, A. adenophora can be especially hard to 

control, as it prefers to grow on steep slopes and mechanical control here can be 

ineffective in this type of landscape.  A. adenophora has been naturalized in California 

since the early Twentieth Century, from Mexico (Bossard, Randal and Hoshovsky 2000, 

31). 

Hawaii is a conducive environment for A. adenophora.  The species successfully 

invades in the local tropical climate.  Here the plant covers five regions among the 

islands, mostly on the big island, with its mild climate.   A. adenophora does not threaten 

other species in higher elevations; however, it is invasive where it does exist (Motooka 

2003, 184). 

 

 
 Figure 3.8. A. adenophora in Hawaii. 
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8
 Figure 3.8. Ageratina adenophora  in Maui, Hawaii, February 27, 2009. 
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 As A. adenophora remains a problem species throughout the world, there are 

efforts to resolve the ecosystem-based dilemma.  Perhaps, field and laboratory research 

can piece together answers to solve the questions of invasion related to A. adenophora 

and its many intricacies to regain native plant life and repair the ecosystem problems 

therein. 
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Chapter Four 

 

 Methods 

 
In order to test for negative allelopathy on selected plant species, two experiments 

were conducted in a greenhouse, to examine A. adenophora on species in regions where 

it invades, namely China and India in comparison to species from its native habitat in 

Mexico.  The experiments were designed to determine if A. adenophora would inhibit 

plants from China and India, and leave plants from Mexico, to grow freely without 

chemical suppression, or an absence of allelopathy.  This would help to determine if these 

plants reacted in a controlled environment of a greenhouse, are comparable to plants in 

the field and give insight into the intricacies of their chemical strategies. 

Several species of seedlings were collected from the invaded areas of China and 

India where A. adenophora is present and in Mexico where A. adenophora grows 

naturally.  The Mexican plants, for the experiments, will remain labeled simply by the 

plots where they were harvested in Mexico, rather than by specific Latin names.  

Scientific and common names are listed in detail in Figures 4.1 and 4.4 for the seedling 

species from China and India used in Experiments One and Two.  The seedlings were 

collected and provided by three colleagues:  Inderjit in India, Yu-Long Feng in China, 

and Alfonso Valiente-Banuet
 
in Mexico and supervised by Ragan Callaway in the U.S.A. 

The hypothesis for Experiment One examined volatile allelopathic effects from A. 

adenophora.   This was prepared by using A. adenophora leaf litter (treatment) and 

Quercus macrocarpa leaf litter (control)  placing it in close proximity, but not in physical 

contact, with plant seedlings.  This strategy would help to determine if there was 

inhibition of the Chinese and India plants, stunting their growth or preventing growth all 
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together, while the Mexican plants were hypothesized to react without inhibition when 

exposed to the treatment group.  The hypothesis was that Chinese and Indian plants 

would grow with inhibition from A. adenophora's allelopathy, while Mexican plants 

would grow unaffected. 

The hypothesis for Experiment Two was that A. adenophora leaf litter, placed 

into the same soil of growing seedlings, would have negative allelopathic effects 

inhibiting the Chinese and Indian plant species which were the most successful in 

Experiment One, and the species from Mexico that were most successful from 

Experiment One would grow without inhibition. 

Experiment One 

Experiment One was to test the effects of airborne allelopathy, or the chemical volatiles 

of A. adenophora on plants from the three countries.  There were several important steps 

to prepare the experiment and ensure that the plants would receive equal treatment and 

grow under equal, and thus repeatable, conditions.  
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Plants from China and India for Ageratina adenophora Experiment One  

Country of Origin Scientific Name Common Name 

China Sida szechuensis Badusan 

China Siegesbekia orietalis St. Paulswort 

China Peperomia tetraphylla Acorn Peperomia 

China Hemiphragma heterophyllum Unknown 

China Amranthus tricolor Joseph‟s Coat 

China Eupotarium Chinense Hemp Agrimony 

China Qxalis comiculata Creeping Wood Sorrel 

China Eupatorium japonicum Unknown 

China Cucubalus baccifer Berry-bearing catchfly 

   

India Prosopis cineraria Ghaf 

India Cassia fistuca Golden Shower 

India Lawsonia alba Henna 

India Bambosa aroundinacea Bamboo 

India Bombyx ceifa   Unknown 

India Dillenia indica Elephant Apple 

India Lagerstroemia indica 

 

Crepe myrtle 

India Withania sominifers Indian Ginseng 
 Table 4.1. Plant used in first experiment. 
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Experiment One Preparation 

 Experiment One began on January 20, 2008. Several steps were taken to ensure 

uniformity, precision, and retesting for the future if needed.  In the first step of the 

experiment, 990 rocket pots were washed, sterilized and dried.  Each pot was washed 

with household-quality dish soap, rinsed with tap water, and soaked in a 50% water/ 50% 

bleach solution for an hour.  The same process was applied to the ten racks that held the 

rocket pots.  The second step, after the pots and racks were soaked, was to rinse them 

with tap water and air-dry them.  After the rocket pots were dried, they were prepared for 

seed planting.   

 

                                                 
 

9
 Table 4.1. Plants used for Experiment One (Mexican plants not included for lack of specie's 

names). 
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 Figure 4.2. rocket pots. 

10
 

 The third step consisted of using Kimwipes, a cloth-gauze padding, in the bottom 

of the pots in order to hold the mixture of soil and plant material from filtering out of the 

bottom of each rocket pot.  Each Kimwipe sheet was folded three times, and placed one 

per pot into the bottom of each rocket pot.  This allowed the moisture to remain in the 

pots for a longer period.  The Kimwipes were placed in the 990 rocket pots, ready for 

further preparation. 

 In the fourth step, Sand/Soil mixture was blended, using twenty milliliters of 

sterile sand and thirty milliliters of a sterile innoculum/ soil mix.  The thirty milliliters of 

sand/soil mix consisted of five milliliters of autoclaved soil and twenty-five milliliters of 

the sterilized sand.  (The sand was 20/30 grit, from Lane Mountain, Washington).  A total 

mix of thirty liters of this mixture were put together in order to plant seedlings in 990 

rocket pots. 

 Each of the 990 rocket pots was filled with 30 milliliters of this sand/soil mixture 

and placed into the racks.  These racks, made to hold up to 200 rocket pots, were for this 
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 Figure 4.2. A rack of rocket pots with A. adenophora leaf litter.  Colored tags denoting country of origin. 
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experiment of allelopathy, only filled with 100 pots per rack.  This short pot/rack ratio 

was intended to cut down on possible allelopathy among plants in the racks, as A. 

adenophora allelopathy alone is the subject of the experiment.  This feature of planting 

the racks only half-full and randomizing them in the racks gave plants more room and cut 

down on contact between each plant during the experiment.   

 Before planting in the pots, the seedlings themselves needed preparation.  Many 

species would not germinate owing to the hard coating of the seeds.  In these cases, the 

seedlings were scored with a razor blade and others scratched with sandpaper owing to a 

lack of environmental factors that help to open the seed naturally.  

 There were a total of thirty- three plant species, with sixteen species from Mexico, 

nine species from China, and eight species from India.  These plants were all collected in 

areas where A. adenophora is present.  Each of the thirty-three species was planted into 

thirty pots each.  In addition to organization, ninety pots split into each of the ten racks 

total, with five seeds planted per pot.  This is the 990 pots for the total of Experiment 

One.  

 
 Figure 4.3. Experiment One ready for the greenhouse. 
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 Figure 4.3. Rocket Pot-filled racks and bins ready for the greenhouse. 
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 The ten racks of ninety-nine pots were each put into separate bins, measuring 115-

L (84x40x35cm). Five of these bins had loose, leaf litter of A. adenophora, which was 

shipped to the University of Montana from Inderjit, at the University of Delhi in India.  

There were also five bins for a control group that were filled with the control litter 

collected from The University of Montana campus, to act as a control for the experiment.  

Quercus macrocarpa has not been shown to have a negative allelopathic affect upon any 

of the seedlings planted in this experiment.  It is merely present to ensure CO2 release 

and other elements of decomposition from decaying litter and acts to make the 

experiment uniform. 

Post Preparation, Monitoring, and Data Collection 

 Once the full plant flats were filled with planted pots, they were watered and 

placed into the greenhouse.  Following this, the seedlings were watered with a mist of 

water every two to five days, depending on the moisture in the soil, ensuring that it did 

not dry up.  On February 4, 2008, the A. adenophora leaves had been over-watered and 

were too wet to use for the experiment in this condition.  They were then put into a 

warming oven at sixty-six degrees centigrade until dry.  These leaves were then taken out 

of the warmer and put back into the bins on February 6, 2008.  The leaves following the 

drying phase in the warmer did not have their pungent smell any longer and perhaps this 

would affect any contribution of inhibition or facilitated growth from allelopathy.  On 

February 11, 2008 a new shipment of A. adenophora leaves were received to replace the 

leaves that were dried in the warmer. 

 An inventory of the seedling‟s germination was recorded on February 8, and 

February 22, 2008.  It was then determined how many of the five seeds per pot had 
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germinated and a worksheet in Microsoft Excel was created, to save into a database.  On 

February 29, 2008, the largest plant in each pot was measured and the remaining smaller 

plants were plucked out in an effort to look at the most successful plants and their growth 

rate.  The last measure for germination and height was conducted on March 21, 2008, 

measurements were taken to determine plant mortality. 

 In Experiment Two, only the most successful plants from Experiment One were 

examined and tested for allelopathic volatiles.  This included eight species from China, 

eight species from India and six species from Mexico.  The seedlings were prepared in 

the same manner as in Experiment One, with a few exceptions.  These plants were treated 

to examine growth and biomass, but did not have leaf litter of any kind for a control.  

These were projected to further test for effects of A. adenophora and determine its 

chemical interactions with chosen seedlings. 

Experiment Two 

 The changes in Experiment Two allowed for further investigation, and were 

conducted to determine how inhibitory A. adenophora would be with the most successful 

plants from Experiment One.   The following chart displays the chosen species and helps 

to provide a visual observation of the plants used. 
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Plants from China and India for Ageratina adenophora Experiment Two 

Country of Origin Scientific Name Common Name 

China Sida szechuensis Badusan 

China Siegesbekia orietalis St. Paulswort 

China  Hemiphragma heterophyllum Unknown 

China Amranthus tricolor Joseph‟s Coat 

China Eupotarium Chinense Hemp Agrimony 

China Qxalis comiculata Creeping Wood Sorrel 

China Eupatorium japonicum Unknown 

China Cucubalus baccifer Berry-bearing catchfly 

   

India Prosopis cineraria Ghaf 

India Cassia fistuca Golden Shower 

India Lawsonia alba Henna 

India Bambosa aroundinacea Bamboo 

India Bombyx ceifa   Unknown 

India Dillenia indica Elephant Apple 

India Lagerstroemia indica 

 

Crepe myrtle 

 Figure 4.4. Plants for Experiment Two. 
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Experiment Two Preparation 

 Preparation for Experiment Two began on May 23, 2008, and 440 rocket pots and 

the four racks that hold the rocket pots were washed.  The cleaning was done with tap 

water and standard household-quality dish soap and each pot and rack were washed 

individually.  The pots and racks were then submerged into a 50 % water/ 50% bleach 

solution for an hour.  Then the pots and racks were rinsed with tap water and air dried, 

getting them ready for potting a soil-sand mixture and seedlings.  As in Experiment One, 

the racks used to hold the rocket pots, which are structured to hold 200 pots at a time, 

were only filled with 100 pots at a time in order to create space between the pots in an 

effort to avoid additional chemical reaction between each species. 
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 Table 4.4. Plants used for the second experiment  (Mexican plants not mentioned for lack of 

specie's names). 
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 The seeds were then sorted into twenty separate pots per species to create 220 

pots for a treatment and 220 pots for a control.  Hence, there were 440 pots for the entire 

experiment. In Experiment Two, the A. adenophora leaf litter was measured by taking a 

small and general pinch of litter to put into each pot with an effort to make each pot's 

content as equal as possible.   

 The seedlings were prepared for planting with consideration of those seedlings 

that needed more preparation, such as some tree species and other seedlings that needed 

to be scored with a razor blade, or scarifying with sandpaper, before planting them into 

the soil.  Hence, seeds were counted, and prepared for germination to ensure a uniform 

number of seedlings for each pot.  Five seedlings from each species went into their own, 

individual pots for twenty pots per each species.  The twenty-two species were then put 

equally into twenty separate rocket pots, to equal ten pots per species in the A. 

adenophora group and ten pots per species for the control group. 

 To further the pot preparation for seed planting, several steps were taken to ensure 

uniformity between the seedling and a repeatable experiment. This entailed folding 

Kimwipes, and placing one in the bottom of each rocket pot following this the sand-soil 

mixture with a 5:1 ratio was poured into each pot.  The seedlings were then planted, 

placing five seedlings from one species in each pot with twenty pots per one species.  In 

220 pots A. adenophora leaf litter was incorporated into the sand-soil mixture, and 220 

pots with sand-soil mixture only, as the control. This equaled a total of 440 planted pots.  

The seedlings also received one round of Miracle Grow Fertilizer, or, one to six pellets in 

each pot. 
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 Figure 4.5. Experiment Two planted pots. 
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Post Preparation, Monitoring, and Data Collection 

 The seedlings were then watered every two to three days with a light mist in order 

to keep the soil moist.  Harvests were taken during a three-day period.  This included 

weighing the seedlings that had grown through the duration of the experiment.  The 

plants were then recorded individually by average weight.  The first harvest conducted on 

July 21, 2008, the second July 22, 2008, and the third on July 23, 2008.  The plants were 

then dried in three separate batches, until each plant was weighed and averaged for each 

species in each rocket pot.  The weights and averages demonstrate what level of impact 

A. adenophora has on the seedlings and how successful the seedlings were at their peak 

in the experiment.   

Data Analysis 

 Statistics were run to determine the mean of the each plant grown, and to measure 

the species richness and mortality in Experiment One.  In Experiment Two, the total mass 

of the plants per each pot were weighed to obtain an average for growth within the A. 
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 Figure 4.5. Rocket pots for Experiment Two in the greenhouse.  
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adenophora treatments to determine biomass.  Dr. Ragan Callaway also ran statistical 

models to quantify the impacts and outcomes of the growing seedlings in the presence of 

A. adenophora, and those in a controlled environment where there was not any other 

plant litter present.  
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Chapter Five 

 

Results and Discussion 

 
 When this project was started, there was a question of whether Ageratina 

adenophora was releasing volatile chemicals.  The question of whether A. adenophora 

would inhibit plants from regions where it invades, and plants from its native Mexico, 

was the focus of the experiments.  These questions are of great importance in 

understanding invasive plants, and how they negatively impact the world around them.     

The following experiments were efforts to determine if there were indeed volatiles, and if 

so, how this contributes to the science of allelopathy and A. adenophora today. 

Plant Germination, Growth, and Testing for Experiment One 

 Seedlings for Experiment One were planted and placed into the greenhouse in 

early January 2008.  Here the plants grew steadily through the first few months of the 

year, and were watered and inventoried every few days to ensure that they had sufficient 

nutrients, heat and light to allow seedlings to mature; this at least if there was not a 

presence of allelopathy.  This allowed testing of the hypothesis for Experiment One to be 

carried out. 

 The hypothesis for Experiment One focused on whether A. adenophora would 

impact said plants, facilitate growth or leave these plants essentially unaffected.  In order 

to determine this, the two experiments conducted were analyzed for the outcome and 

statistical models were run to determine the percentages of growth, inhibition and overall 

effects from A. adenophora leaf litter.  

  The plants were thoroughly inventoried four times, and germination and 

mortality were measured and recorded to determine species richness and mortality to 
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asses the outcome.  Plants growth was recorded a total of four times and placed back into 

the greenhouse until the last inventory on March 25, 2008, for a total of fifty-nine days.  

These totals were compiled and the germination rates were recorded and considered. 

 The plants were harvested for the last time and each plant was individually 

recorded, thirty plants, planted per each species.  The findings were placed into a 

Microsoft Excel spreadsheet to determine plant mortality and growth (measured in 

millimeters).  The tallest plant from each of the 990 rocket pots were plucked and 

recorded to represent the respective pots where they were grown.  This was taken into 

account to determine if allelopathy had affected any of the plants and statistics were ran 

to make this discovery. 

Statistical Analysis of Experiment One 

 A statistical analysis using the Statistical Package for the Social Sciences (SPSS) 

for a multivariate approach to understanding the project outcomes was conducted by Dr. 

Ragan Callaway.  The standard error and how each species differed in both the treatment 

and control were calculated.  This gave closer insight to the project, and allowed for 

analysis of the hypothesis and scientific analysis of allelopathy of A. adenophora, if there 

was any, and if so, to what extent. 

 The mortality of Indian plants was extremely high in the treatment bins, proving 

there were indeed volatiles and A. adenophora inhibited the growth of the Indian plants.  

The Chinese plants were also affected, but not as statistically significant as Indian plants 

and both species from both invaded regions, versus species from Mexico.  This showed 

that A. adenophora was more inhibiting to Chinese and Indian plants than it was to 

Mexican plants.  Hence, volatile interaction and allelopathic inhibition was greater with 
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nonnative plants.  In addition to mortality, the researcher considered species richness for 

Experiment One, and analyzed data using SPSS.  The tests showed varied outcomes and 

another sign of allelopathy for those plants abroad, more so than in plants from nonnative 

regions than in Mexico.    

 Chinese plants showed higher species richness in exposure to the control, versus 

the treatment exposure more so than the other two country's plants.  In Experiment One, 

these findings were statistically significant.  Indian plants also had high species richness 

in the control versus the treatment bins and showed to be statistically significant as well.  

Mexican plants actually grew successfully and more rapid with the treatment, showing a 

positive effect from A. adenophora. 

Plant Germination, Growth, and Testing for Experiment Two 

 On March 23, 2008, seedlings for Experiment Two were planted and placed in the 

greenhouse to begin their cycle of growth that would later suggest allelopathy.  The 

plants were also watered and observed for germination to be recorded later.  This 

experiment had duration of fifty-nine days, allowing enough time for germination, and 

for a test to determine allelopathic effects on all plant subjects.  The purpose of 

Experiment Two was to test those plants that were most successful in Experiment One, 

from all three countries, to determine if there was further allelopathy and if there would 

be a different outcome with using a control different from Experiment One.   

 In Experiment One, the control was leaf litter from Quercus macrocarpa collected 

from The University of Montana campus.  This was a plant not known to have 

allelopathic effects on any of the plants involved.  In Experiment Two, the control was 

simply to leave the bins empty of any leaf litter, to ensure that Q. macrocarpa did not 
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have a negative effect on plants in Experiment One, and to conduct another thorough test 

for allelopathy. 

The plants for Experiment Two were watered approximately every three days. They 

were also checked for germination or mortality and this would be accounted for later 

during the harvest.  The plants were kept in temperatures that had been conducive to their 

germination and growth weight in their native environments. At 20-22°C during a 16 h 

light period 72at 18-20°C during the night; relative humidity was 30 – 55 %.  Also, the 

seedlings were planted with a miniscule amount of fertilizer from a Miracle Grow 

mixture, to assist in keeping the plants healthy as part of the secondary experiment.  

 Plants for Experiment Two were harvested after an almost two month growing 

period and inventoried by weight in grams, and by mortality.  They were then entered 

into a Microsoft Excel spreadsheet and statistically analyzed for biomass.  The results 

were somewhat independent from those of Experiment One and essentially constituted a 

new experiment in which to test the plants for allelopathy. 

Statistical Analysis for Experiment Two  

 Outcomes of running an SPSS statistical model for Experiment Two gave two 

results.  First was species richness, which was similar to Experiment One in terms of 

statistical significance.  Chinese and Indian plants both grew more successfully in the 

control than they did with A. adenophora and at a high statistically significant rate.  The 

Mexican plants again grew more successfully with A. adenophora leaf litter, but this 

outcome was not statistically significant. 
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Examining biomass, there was a positive effect of A. adenophora on plants from Mexico 

and India, but a slightly less prominent effect on Chinese plants.  Further, a slightly more 

positive effect on Mexican plants than on those of India were found.   

Discussion for Experiments One and Two 

 Perhaps allelopathy provided native plants with an advantage over non-natives 

and The Novel Weapons Hypothesis will further become accepted as a truism for 

invasive plant strategy, however small this experiment contributes to the study.  

Conducting two experiments provided the researcher with an opportunity to gain greater 

knowledge of how allelopathy affects plants, both in their native and invasive regions, 

and to gain insight into how this may be applicable within plant communities.  These 

experiments may contribute to a better understanding of volatiles, which can be 

inhibitory in communities where an invader is found.  The experiments were unique in 

scope, preparation, testing and reporting, thus contributions to biogeographical studies of 

invasive plants and concepts testing allelopathy.  Experiments One and Two both showed 

strong allelopathic effects and demonstrated that Mexican plants were not suppressed by 

A. adenophora, while non-native plants were distinctly effected by A. adenophora 

although to a different extent in each experiment. 

Outcomes and Significance of Experiment One 

 As mentioned, Experiment One measured species richness and mortality in order 

to quantify A. adenophora's positive or negative effects upon the plants used in the 

experiment.  The first test in Figure 5.1 measured mortality and is displayed in a graph 

following the statistical models run using SPSS.  This graph indicates how successful A. 

adenophora is in India, or at least to Indian plants in the greenhouse, causing a 
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statistically significant mortality rate.  Test of the Chinese plants were statistically 

significant as well, but not to the same extent.  The Mexican plants did not have a high 

rate of morality.  This shows a standard error of about ten percent for Indian plants, five 

percent for Chinese plants and ten percent for Mexican plants as shown in Figure 5.1 

where mortality of the plants is illustrated. 

 

 Figure 5.1. Mortality rates for Experiment One. 
14

 

 These findings suggest that allelopathy from A. adenophora have negative effects 

on the mortality of non-native plants, which have a high mortality rate from A. 

adenophora's volatiles. Species richness was also great in the non-native plant 

assemblages within the control group, and lower in the A. adenophora group, suggesting 

again the impacts of volatiles.  Species richness, as shown in Figure 5.2 indicates that 

native plants grew well in the A. adenophora group and reveal that there was not a strong 

inhibitory effect on those plants.  Again, Chinese and Indian plants were affected to a 
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 Figure 5.1. Measurements of mortality. 
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degree of statistical significance, and exhibited more growth and success in the control 

groups than in the A. adenophora group.  Mexican plants were not negatively impacted 

by A. adenophora and grew more successfully that in the control group. 

 

 Figure 5.2. Species richness of Experiment One. 
15
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 Figure 5.2. Density of species richness in each plant region in the experiment. 
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 Outcomes and Significance of Experiment Two  

  Experiment Two showed positive signs of allelopathy and statistical significance 

as well, A. adenophora was consistently inhibitory in both experiments.  This 

demonstrates that the hypothesis for each plant experiment was positive and gave the 

outcomes of positive hypotheses for each test.   

 

 
 Figure 5.3. Biomass of Experiment Two. 

16 
 

 Biomass was measured for the control and A. adenophora groups illustrated in 

Figure 5.3.    There is definitely a higher growth rate for non-native plants with a standard 

error of about 0.05.  Also, native plants showed a higher growth rate with the treatment 

group present and appeared to be unaffected.  When a statistical model was run for non-

native plants as one unit, there was an even higher rate of inhibition from A. adenophora.  
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 Figure 5.3 Biomass, or success of plants in the presence of A. adenophora. 
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Hence, biomass was denser, as it was measured by weight of successful seedlings that 

germinated and survived for the harvest.  Dead plants were discarded and not accounted 

for in this experiment. 
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Chapter Six 

 

Conclusion 

 As biogeography furthered the understanding of the natural world and its 

inhabitants, the foundation was set within geography for the study of science of invasive 

plants like Ageratina adenophora.  Through studies of biological life and plants in their 

natural and invasive environments, we can open the doors to our knowledge of how these 

plants perform in their respective environmental roles. Field and laboratory experiments 

are a key to looking at the biogeographical effects and relationships of plants within the 

Trans-global ecosystems.  It is through this understanding that we can preserve native 

plants in their niches, and have a deeper understanding of the role invasive plants play is 

their migrations abroad.   

 It is of great importance to acknowledge the study and insight into allelopathy and 

how an invasive plant's strategies can affect a plant community with such strength and 

influence.  Allelopathy is at the forefront of explaining how plants invade and become 

noxious and gives insight into how this phenomenon relates to the rest of the biological 

world. The possibilities of allelopathy can set the stage for extreme and unrelenting 

invasion of a plant into a new, and hence, invaded community.  In these studies, such as 

this thesis we may understand how these concepts and knowledge gained present a source 

of answers to gain control and solve the complex problems of invasive plants. 

 Plants like A. adenophora are a substantial example of the invasion processes and 

the negative impacts on environment.  Invasive plants are costly, degredating to the 

natural world in new areas, present and create problems to health both for humans and all 

biological life involved.  Studying the foundations of biogeography can grasp the roots of 
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this science and contribute to the understanding of how this observation of life and place 

began, and what we can learn from those elements of the past.  The tools learned from 

these pioneering scientists and perhaps insight from this study can perhaps prepare one 

better for the scientific analysis of A. adenophora. Research on A. adenophora and the 

laboratory experiments conducted for this thesis were an attempt to further the 

examination of the plant and contribute to its still understudied features in the scientific 

community. 

 This study established some of A. adenophora's elemental factors, representing its 

capability of inhibiting plants where it invades with allelopathic volatiles and causes, in 

some cases, high rates of mortality.  This mortality may lead to destruction of a plant 

community, in India, China, and other parts of the globe where A. adenophora can be 

found in an invasive status.  Moreover, A. adenophora through negative allelopathy can 

be degredating to a community's species richness and cause loss of biomass in a plant 

population, allowing for further disturbance and invasion.  The features of A. 

adenophora, which were assumed before these experiments were affirmed, are applicable 

to the plants in these three nations to resolve the problems of invasion.  These findings 

can better prepare managers for dealing with their plants and furthers our understanding 

of other invasive plants. 

 Ageratina adenophora is only one invasive plant, but furthering the study of 

allelopathic volatile effects can be a lens to understand the proximity of one plant to 

another, how one invasive plant may react to several species where it is present, and how 

this directly represents chemical suppression.  We can observe how one native plant may 

react in comparison to their native neighbor, finding that one may be highly inhibited, 
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while another is completely unharmed and flourishes despite the invasive plant and its 

effects from one plant to the next, in that community. 

 Also of importance in this thesis were the studies of whether A. adenophora 

affected each plant similarly or differently in respect to the three measurements of 

mortality, species richness and biomass.  While some of the plants used were tree 

seedlings, others shrubs and others small to moderate in size.  All seedlings for the 

experiments were selected because they were the plants that grew within close proximity 

to where A. adenophora is found to invade or subside in its areas of introduction and 

native plant communities.  Further study may look at these experiments to perhaps add 

more in depth to the phenomena for invasion of A. adenophora in China and India, an 

addition to native Mexico.  

 This thesis research was based largely on Chinese scholarly journals and the few 

that exist from India and Mexico, which were available for American researchers.  Future 

directions could be to substantiate these outcomes and gain a more worldly study of A. 

adenophora in its native and invasive regions.  Perhaps this project conducts further 

education of the effects of allelopathy, within the tests of these regions and others areas 

of invasion (Australia, United States, regions in Africa, and Europe).  Researchers must 

observe A. adenophora in Mexico, as an addition to invasive plant research as they are 

often understudied in their native environments (Hierro 2005, 2).  It is likely that A. 

adenophora is understudied due to lack of a crucial reason to study it in Mexico, as it 

may not be as relevant as it is in its invasive regions throughout the world.  Further, 

through my research study of A. adenophora it appears to be insignificant in Mexico and 

does not pose a threat there, nor is it known to be of interest in the study of flora in that 
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country.   This thesis is one of the first to analyze A. adenophora and the aspect of its 

occurrence in these three regions, and to experiment with its allelopathic effects on these 

region's plants.  A. adenophora is not extensively studied, and is relatively new to 

scholars who have conducted investigations (Dong, et al. 2008, Hong-Bang et al. 2007, 

Lichti and Hoshovsky 2000, Munniappan et al. 2009, Morris 1989, Zang et al. 2008, 

Tripathi 1981).   

 It would he of great importance to contribute to the study of this plant and 

conduct field or laboratory tests to determine the biological role it plays in native Mexico, 

what contributions, and how significant,  or not it is to its community there.  This could 

provide information about chemical content and communication, wildlife habitat, crop 

management and many other valuable resources that may be affected and may affect A. 

adenophora.  Also of importance is to study A. adenophora and its effects on each 

individual plant that may be related to the areas impacted. This may give insight to how 

to keep A. adenophora manageable in croplands, habitat for other, indigenous life and to 

prevent further spread once established.   

 This thesis and future studies will contribute to a better understanding of invasive 

plants, potentially the strategies plants use to become invasive, and their biogeography.   

This thesis examined how a Mexican native has allelopathic affects on Chinese and 

Indian plants through leaf litter and what conclusions can be drawn from those results in 

a laboratory environment.  An article, (Inderjit et al. 2010 in press) reports on several 

different mechanisms to compare leaf litter of A. adenophora from India on plants from 

China, India and Mexico. These studies may contribute to the understanding and 
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strategies to examine the negative allelopathy of A. adenophora in these regions around 

the world. 
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Appendix A 

Volatile chemicals from leaf litter are associated with 

invasiveness of a Neotropical weed in Asia 
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Abstract. Some invasive plants successfully outcompete their neighbors in the invaded 

ranges while happily coexist in diverse communities in their native range. We find that 

volatile signals may contribute to the success of Ageratina adenophora, an aggressive 

neotropical invasive plant.   In the field in its native Mexico, A. adenophora has neutral 

to positive effects on other species, but in two non-native ranges, China and India, it 

strongly inhibits other plants.  In controlled experiments volatiles from A. adenophora 

litter caused higher mortality of species native to India and China, but not of species 

native to Mexico.  Litter from A. adenophora plants from non-native populations 

produced chemically different VOCs than litter from native populations.  Biogeographic 

differences in the impacts of A. adenophora suggest that evolutionary trajectories may 

affect interactions within communities, and differences in composition of volatiles 

between ranges suggest that A. adenophora may be experiencing strong selection on 

biochemical composition in its non-native ranges. 

 

Keywords: Ageratina adenophora, native diversity, plant invasion, volatile 

organic chemicals   
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INTRODUCTION 

 

Why some plant species are able to attain near monocultural dominance in communities 

where they are exotic but not where they are native remains poorly understood (Callaway 

and Maron 2006).  But this biogeographic shift in dominance is the essence of exotic 

“invasion” and in the absence of disturbance strong competitive interactions are likely to 

play an important role in establishing the dominance of invaders (Levine et al. 2003, Víla 

and Weiner 2004).  Release from specialist herbivores or pathogens may allow plants to 

be more competitive in non-native ranges (Keane and Crawley 2002), or successful 

invaders may possess competitive advantages because they come from a more 

competitive species pool or happen to possess inherent traits that give them an advantage 

relative to their new neighbors.  One explicit hypothesis for why some species become 

more competitively dominant in their new ranges is the Novel Weapons Hypothesis 

(NWH), which poses that some invaders possess allelopathic, anti-herbivore, or 

antimicrobial chemicals to which native organisms have not adapted, and that these novel 

compounds provide invaders with direct or indirect competitive advantages (Callaway 

and Aschehoug 2000, Callaway and Ridenour 2004).  Evidence for the NWH comes 

from, experiments in which chemicals produced by invaders were applied to species from 

invaded and native ranges (Callaway et al. 2008, He et al. 2009), studies comparing the 

allelopathic effects of invaders and native plants (Ens et al. 2009a, b), and literature 

comparisons of the novelty of chemicals produced by invasive species relative to 

chemicals identified in the native flora (Cappuccino and Arnason 2006). 
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Early studies of allelopathy focused on volatile organic compounds (VOCs) 

(Muller et al. 1964, Muller 1965), but interest in VOCs as agents of allelopathy faded 

after their ecological importance in the field was challenged by experiments showing that 

herbivores were likely to cause the patterns attributed to VOCs (Bartholomew 1970).  But 

recently, VOCs have gained attention in other ecological roles as factors in 

communication among plants (Karban 2007, Karban and Shiojiri 2009), signals to the 

predators of herbivore enemies (Kessler and Baldwin 2002) and in self-nonself 

recognition (Eoms et al. 2006). And, they have re-emerged as potential factors in 

allelopathic interactions as well (Eom et al. 2006, Barney et al. 2005, and Karban 2007).   

A plant species that may employ VOCs in allelopathy is Ageratina adenophora 

(Sprengel) R. M. King and H. Robinson [Syn. Eupatorium adenophorum, Asteraceae], a 

species producing a large number of volatiles with broad biocidal properties (Palá-Paúl et 

al. 2002). Ageratina adenophora is a shrub native to central Mexico but invasive in 

subtropical climates throughout the world including Africa, India, the Philippines, 

Europe, China and Australia.  Ageratina adenophora can establish virtual monocultures 

where diverse native communities once flourished (Wang and Wang 2006) and appears 

to be expanding its range in the areas of our study sites in India and China (Zhu et al. 

2007).  In addition to bioactivity of its VOCs, there is some evidence for A. adenophora 

allelopathy based on tissue extracts and field applications of activated carbon (Song et al. 

2000, Zhang et al. 2008). These results plus the powerful and unusual smell of its litter 

make A. adenophora an interesting candidate for comparing the biological effects of 

VOCs on competitiors from both native and invasive ranges to gain insight into whether 

allelopathy might play a role in its invasive abilities.   
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METHODS 

 

Effect of Ageratina adenophora in the field 

 

In the native range, there were two field sites; one in northeast Mexico in the Sierra 

Madre Oriental near Balcón de Moctezuma in the state of Tamaulipas, and the other in 

central Mexico in the state of Querétaro.  The Moctezuma site was at 1400 m a.s.l., 

23º36'N; 99º13', and is open oak woodland dominated by Quercus oleoides.  The 

Querétaro site was at 19º52‟N; 100º54‟W.  In India, we sampled two sites in Mussoorie 

(30°28.750'N; 78°03.216'E; 1663 m elevation and 30°28.272'N; 78°03.463'E; 1866 m, 

respectively).  At each site we randomly placed 20 1m x1m quadrats in large patches of 

A. adenophora and 20 quadrats in random locations without A. adenophora but 

surrounding the patches.  We counted the number of different species in each quadrat. 

We also sampled two sites in the same way in China, the first located at Xujiaba, 2430 m 

a.s.l., 24°32'N, 101°1'E; and the second at Taizhong, 1420 m a.s.l., 24°27'N, 100°54'E.  

Both sites were in Jingdong County, Yunnan Province, and were 15 km from each other.  

At each site in Mexico and in China we randomly located 20 shrubs and then randomly 

located 1 x 1 m quadrat under each canopy.  In Mexico and China the cover of each 

species was estimated in each quadrat.   
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VOC bioassay  

 

We tested the effect of VOCs emitted from A. adenophora leaf litter on the 

germination of B. biternata and B. arundinacea seedlings at the University of Delhi.  

Eight seeds of either B. biternata or B. arundinacea were placed on Whatman filter paper 

#1 in each of three 7.5-8.0 cm diameter Petri dishes.  To maintain uniform moisture, a 

thin layer of cotton soaked in 10 mL distilled water was placed below the filter paper.  

Three Petri dishes were then placed in glass chambers (190 mm x 100 mm, i.d. x height) 

with either 20 g of A. adenophora leaf litter, collected as it fell naturally in the field, or 

without litter. Litter was air-dried and then used for bioassay experiments. For each 

species and treatment combination there were 5 glass chambers, thus 5 replicates.  Glass 

chambers without A. adenophora leaf litter were used as controls.  The chambers were 

incubated at 28-32°C and a 12h:12h light/dark cycle. Seed germination was counted daily 

and root and shoot lengths were measured after 7 (B. biternata) or 8 (B. arundinacea) 

days.  Mean root or shoot lengths were compared with t-tests. 

 

Biogeographic comparisons 

 

Seeds were collected in the field and from growing plants growing in communities with 

A. adenophora.  We planted seeds from each of the three regions in 200 cm
3
 “rocket 

pots” and then placed these pots in 115-L (84x40x35cm) plastic bins that contained either 

1.5 L of A. adenophora litter collected from plants from the three regions but grown from 

seed in a common garden, or a 1.5-L mixture of field-collected litter from Quercus 
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macrocarpa, Acer platanoides, and Populus tremuloides, collected on The University of 

Montana campus.  We initially used seeds of 16 species from Mexico, 9 species from 

China, and 8 species from India.  For each species we planted 5 seeds in each of 33 

rocket pots for an initial total of 990 replicates.  Pots contained 5 ml of soil and 25 ml of 

silica sand.  Rocket pots for each species were then divided equally into the two litter 

treatments.  Five bins were used for each of the litter treatments; thus each bin contained 

3 replicates of each species.   Litter was air-dried for 2 days and then placed in the bottom 

of the bins; rocket pots were placed in racks which suspended the rocket pots above the 

litter.  Bins were covered with lids leaving 120 cm
2
 of each cover open, allowing 

circulation but ensuring that air within the bins was affected by VOCs; attested to by the 

exceptionally strong smell within the bins and throughout the greenhouse.  These 

seedlings were grown in a greenhouse from 23 January 2008 to 21 March 2008 with 

ambient light supplemented by metal halide bulbs, keeping photosynthetically active 

radiation (PAR) during the day above 1200 µmol/m
2
/s with a day length of 13 hours.  We 

watered plants every two to three days.  During the experiment germination was counted 

as plants emerged but new germinants were thinned so that the survival and final mass of 

the first germinant was measured in each rocket pot.  The final total dry (at 60
o
C) 

biomass was measured after 59 days and survival of these individuals was measured.   

 

Identification and quantification of volatiles 

 

We grew A. adenophora from seeds of nine separate populations collected in each of 

three different countries, Mexico, China and India. Plants were grown side by side in a 
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greenhouse at the Max Planck Institute of Chemical Ecology with additional illumination 

by sodium lamps. Temperature was maintained at 20-22°C during a 16 h light period and 

at 18-20°C during the night; relative humidity was 30 – 55 %.  Plants were potted in 

commercial soil (Tonsubstrat, Klasmann, Geeste/Groß-Hesepe, Germany) and watered 

every day with tap water.  Five months after germination, leaves of plants from three 

populations of the three different origins were collected and dried for 10 d at room 

temperature (approx. 25°C). Dried leaves were homogenized using metal beads with 

agitation by a paint shaker two times for 3 minutes each. To collect VOCs from 

homogenized A. adenophora leaves, we applied a closed-loop stripping method.  We 

placed 200 mg of homogenized leaves in a 1L desiccator and VOCs were collected for 2 

h by recirculating desiccator air through a charcoal trap with a pump.  VOCs were eluted 

from the trap with 60 µl of ethyl acetate containing 20 ng µl
-1

 nonyl acetate as an internal 

standard (IS).  

 Plant material from the same harvest was also used for direct solvent extraction of 

potential VOCs. Here 200 mg homogenized leaves were extracted with 1ml of ethyl 

acetate containing 20 ng µl
-1

 IS for 24 h at room temperature under continuous rotation.  

Solvent extracts were purified and dried over Na2SO4.  All extractions were performed as 

four replicates on three populations from each of the three regions. Products of volatile 

collection and solvent extractions were identified by gas chromatography (Agilent 

Hewlett-Packard 6890, Agilent Technologies, Santa Clara, CA, USA) coupled to a 

Network Mass Selective Detector (MS) (Agilent Hewlett-Packard 5973, Agilent 

Technologies) or a Flame Ionization Detector (FID).  For analyses, 2 μl of ethyl acetate 

extracts were injected at 230°C.  Compounds were separated on a DB5-MS column (30 
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m length, 0.25 mm inner diameter and 0.25 µm film by JandW Scientific; GC-program 

40°C for 2 min, first ramp 3°C min
-1

 to 175°C, second ramp 90°C min
-1

 to 250°C, final 3 

min hold). GC-MS carrier gas: helium at 1 ml min
-1

; GC-FID carrier gas: hydrogen at 2 

ml min
-1

.  All terpene products were identified by using Agilent Technologies software 

with the Wiley 275.L and NIST 98.1 MS libraries, as well as by comparison of mass 

spectra and retention times with those of authentic standards where available.  

 

RESULTS 

 

Ageratina adenophora decreases plant species diversity in its invaded range 

 

In its native range in Mexico, A. adenophora had no significant effect on quadrat-

based species richness at each site tested separately (Fig. 1), but across both sites A. 

adenophora had a significant stimulating or positive effect (site x treatment ANOVA; 

Ftreatment= 5.45; df=1,76; P=0.022).  In contrast, species richness under A. adenophora 

canopies or in A. adenophora patches at all sites in the invaded ranges of China and India 

was significantly lower than in the open where there was no A. adenophora. The total 

number of species recorded at Moctezuma in Mexico was 45, with 34 species occurring 

under A. adenophora and 35 species occurring in the open; a decline in diversity of 3%.  

At Querétaro there were 38 species, with 30 found in the open and 26 under A. 

adenophora; a decline in diversity of 13%.  In China there were 111 species at Xujiba, 

with 98 of these species found in the open away from A. adenophora but only 54 species 

beneath A. adenophora; a decline in species richness of 54%.  There were 91 species in 
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total at the Taizhong in China and 79 were found in the open; however, only 35 were 

found under A. adenophora; a decline in richness of 56%.  In India, at both sites species 

richness declined significantly in locations with A. adenophora compared to the locations 

where A. adenophora has not yet invaded.  At Mussoorie 1, there was a decline of 85% 

(7.5±0.3 to 1.2±0.2 species/m
2
; t-test, df=1, 38; t= 20.76; P<0.0001) and at Mussoorie 2 

there was a decline of 69% (20.7±0.7 vs. 6.4±0.7 species/ m
2
; t-test, df= 1, 38; t= 14.96; 

P<0.0001; Fig. 1). Biogeographical differences in total cover were even more striking.  

The total cover of other species associated with A. adenophora canopies in Mexico was 

71% higher than in the open (44.8 ± 2.6 vs. 76.8 ± 6.2 percent; t-test, df=1,38; t=4.78; P 

< 0.001), a strong facilitative effect.  But in China A. adenophora canopies decreased 

total cover by 75% at the high site (102.6 ± 6.3 vs. 25.5 ± 3.8 percent; t-test, df=1,38; 

t=10.46; P<0.001), and by 79% at the low site (83.3 ± 6.9 vs. 17.2 ± 3.6 percent; t-test, 

df=1,38; t=8.44; P < 0.001); indicating strong competitive effects.   

 

Volatiles of A. adenophora leaf litter collected from invasive plants inhibit the growth of 

other species 

 

Bambusa arundinacea seed germination was not inhibited (t=0.180, P=0.858) after 

7 d by A. adenophora VOCs, but the germination of B. biternata seeds was highly 

suppressed (for final percentages; t=6.767; P<0.0001; (See Fig. S1 in supporting 

information).  The growth of the roots and shoots of both B. arundinacea (troot=15.232, 

P<0.0001; tshoot=8.224, P<0.0001) and B. biternata (troot=9.329, P<0.0001; tshoot=14.109, 



 77 

P<0.0001) was significantly suppressed by VOCs from A. adenophora leaf litter (See 

Fig. S1).  

 

Volatiles of A. adenophora cause more mortality of species from invasive vs. native 

ranges 

 

This experiment served another purpose, because ecologically realistic 

concentrations of VOCs are very difficult to determine. Biogeographic differences in a 

chemical‟s effects yield strong evidence for whether or not allelopathy actually 

contributes to invasive success, but also adds to the argument for the ecological relevance 

of the interaction.  The germination or growth of some individual species showed 

significant responses, either positive or negative, to VOCs emitted from A. adenophora 

litter, but exposure to VOCs had no significant overall effect on the germination or 

biomass of the combined pool of species from any of the three regions.  However, VOCs 

from A. adenophora litter increased the mortality of all species from the combined 

invaded ranges, but in the same VOC treatments the mortality of species from the native 

range tended to be lower than in controls (Fig. 2).  In a two-way ANOVA with region as 

a fixed factor (combining species from both invaded regions), bin as a fixed factor, and 

with the mean for each species as a single replicate, the region x treatment interaction 

was significant (F=5.201; df=1,37; P=0.029).   

 

Major volatiles of A. adenophora leaf litter differ between populations from native and 

invasive ranges 
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Many monoterpenes and sesquiterpenes were identified in the headspace analysis 

of A. adenophora leaf litter produced by plants raised from seeds collected from Mexico, 

China and India (see Fig. S2; Table S1).   The native Mexican populations were 

significantly different from both the invasive Chinese and Indian populations in terms of 

emitting six VOCs (Fig. 3; see Table S2). The Chinese and Indian populations, however, 

showed similar pattern in emitting VOCs.  Two monoterpenes, 2-carene and -

phellandrene, were at higher concentrations in the headspace of litter of plants from the 

invasive ranges; whereas the monoterpene -pinene, and the three sesquiterpenes (E)--

caryophyllene, (E)-- bergamotene and bicyclogermacrene, were at higher levels in the 

headspace of litter from plants of the native range. Direct extraction of leaf liter with 

organic solvent gave the same terpenes in the same proportions as present in the 

headspace (See Fig. S3). 

  

DISCUSSION 

 

Ageratina adenophora, an invader throughout the subtropics, appears to have no 

negative effects on adjacent plants in its native range in Mexico, and some cases A. 

adenophora has strong facilitative effects.  In contrast, in non-native populations in China 

and India the presence of A. adenophora shrubs correlated with substantial decreases in 

the diversity and cover of native species.  Although our limited number of field sites 

warrants caution in extrapolating to the whole of its invasive range, other studies of A. 

adenophora in Asia have shown effects on native species that are similar to or stronger 
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than ours.  Based on regression relationships at the scale of 25 m
2
 plots in southwest 

China, Lu and Ma (2005) found that, native species richness averaged >25 species per 

plot when A. adenophora cover was near zero; however, when A. adenophora cover 

reached 60%, native species richness declined to <5 species per plot.  To our 

knowledge, no other study has quantitatively estimated the impact of an invasive plant 

species in the field in both its native and non-native ranges, but a number of studies have 

clearly documented strong negative impacts of many invaders in their non-native ranges 

(Hejda et al. 2009).   

 Many factors are likely to contribute to the invasive success of A. adenophora, 

but our findings point to one factor in particular: the allelopathic effects of VOCs from 

the litter of A. adenophora are stronger on species from the non-native range than from 

the native range; a finding consistent with the Novel Weapons Hypothesis.  Our results 

add a new dimension to an emerging body of work emphasizing the biological 

importance of VOCs emitted from plants as allelopathic agents (Kessler and Baldwin 

2002, Karban 2007).  Ens et al. (2009a) examined VOCs produced by the roots of the 

invasive Chrysanthemoides monilifera in Australia and detected three volatile 

compounds that were found exclusively in C. monilifera roots and its rhizosphere.  

Higher production of terpenes was observed in C. monilifera roots, while Acacia 

longifera, a native species, produces more alkanes.  Extracts from leaves and roots of C. 

monilifera suppressed more native Australian species than extracts from the dominant 

native Acacia (Ens et al. 2009b).  This study, however, lacks biogeographical 

comparisons of VOCs in native and invaded ranges.  
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 Production of a novel volatile compound to which plant species growing in 

invaded regions appear to more susceptible, may contribute to the invasive success of A. 

adenophora. However, this may not fully explain A. adenophora invasion and does not 

rule out the importance of other mechanisms.  For example, Niu et al. (2007) found that 

A. adenophora and soil biota in the invaded range interacted to establish positive 

feedbacks on A. adenophora, and that A. adenophora modifies soil communities in ways 

that negatively impact other species in the invasive range, suggesting the possibility that 

escape from soil pathogens may be important for invasion.  In China, field surveys found 

an absence of specialist herbivores on A. adenophora (with the exception of a galling 

insect, Procecidochares utilis Stone, which was introduced into China in 1984), and 

virtually no native generalists attack the plant (Feng et al. 2009).  Procecidochares utilis 

was introduced as a biological control agent in India in 1963, but has been reported to 

cause only minor damage (Jayanth 2000).  As for any exotic invasion, the relative 

importance of different mechanisms must be disentangled in order to explain the process.  

 So far, the NWH has been explored in the context of regional novelty; i.e. the idea 

that some secondary metabolites might be unusually potent as allelopathic, antibiotic, or 

defense agents because of their novelty to organisms in non-native ranges. However, it 

was not necessarily assumed that the invasive species would introduce new compounds 

in its non-native ranges, as we have demonstrated here.  Our results raise two potentially 

different interpretations of biochemical novelty in A. adenophora invasion, and do not 

favor one interpretation over the other.  First, we used leaves from India in our 

biogeographical experiment with VOCs (Fig. 2); and thus the effects in this experiment 

may be due the adaptive naiveté of species from China and Mexico to chemicals 
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produced by A. adenophora, no matter what the biogeographical source of the invader.  

But we also found that VOCs from leaf litter from populations of A. adenophora from 

China and India (grown under common conditions) were strikingly different in 

biochemical composition than VOCs from the leaf litter of A. adenophora grown from 

seed collected from Mexican plants.  Although our population-scale sampling was small 

to exclude founder effects, the finding that all populations from India and China differed 

from all populations from Mexico raises the possibility that invasive populations of A. 

adenophora have evolved to produce much higher levels of some biologically effective 

compounds in their non-native ranges.  Both of these perspectives on novelty are 

conceptually consistent with ideas for the importance of biochemical novelty in 

evolutionary arms races between plants and their herbivore enemies (Ehrlich and Raven 

1966).  In other words, evolving a new version of a defense compound, or simply 

possessing a defense compound that is novel in a particular part of the world, are both 

strategies that may lead to ecological success.   

 The concentrations of 2-carene in the VOCs of leaf litter produced by A. 

adenophora plants from the invaded range (grown in a common garden) were three 

orders of magnitude higher than concentrations in VOCs from litter produced by A. 

adenophora plants from the native range (Fig. 3).  -Phellandrene emission was about 

twice as high for populations from the invaded ranges as for populations from the native 

range.  2-Carene has been reported to have allelopathic effects (Vokou et al. 2003), and 

Kpoviessi et al. (2009) found that -phellandrene, a constituent of the essential oil of 

Justicia anselliana, had allelopathic effects.  If these compounds contribute to the 

allelopathic effects of A. adenophora VOCs, high concentrations may have been selected 
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for in the non-native ranges (Callaway and Ridenour 2004).  However, -pinene and 

trans--caryophyllene were emitted in far higher amounts from litter from Mexican 

plants than from the litter of Indian or Chinese plants and these chemicals have also been 

reported to have important defense properties (Köllner et al. 2008).  Perhaps these 

compounds are less active as allelopathic agents than 2-carene and α-phellandrene. Or, 

perhaps they are important in defense against specialist enemies which should be less 

abundant in the invaded ranges (Feng et al. 2009). 

 Our spatially and regional explicit results suggest regional evolutionary 

trajectories (Thompson 2005) which have several interesting implications for community 

ecology.  First, they add to a growing body of literature indicating that there is some 

degree of species-specificity in plant-plant interactions.  Second, our results suggest that 

assemblages of plants, or communities, may be more tightly knit entities than generally 

thought.  Under these conditions, interactions among plant species may drive natural 

selection.  Finally, regional evolutionary trajectories suggest that novel competitive 

mechanisms used by invaders may disrupt coevolved interactions among long-associated 

native species.  Mixing species that do not share common evolutionary trajectories may 

have important consequences. 
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Figure Legends  

FIG. 1. Quadrat-based plant species richness under Ageratina adenophora canopies and in the 

open (mean + SE) at sites in Mexico, India, and China.  Error bars represent 1 SE and P values 

above paired bars are from independent t-tests. 

 

FIG. 2. Effects of volatiles from leaf litter of Ageratina adenophora on the mortality of 

species native to its invaded (China or India) ranges and species from its native (Mexico) 

range.  Error bars represent 1 SE and ANOVA results are in text. 

 

FIG. 3.  Biogeographical differences in the emission of -pinene, 2-carene, -

phellandrene, (E)--caryophyllene, (E)--bergamotene and bicyclogermacrene. Error 

bars represent 1 SE. P values shown for two-way ANOVA.  
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 FIG. S1. Seedling (root and hypocotyls) length and germination (%) (mean + SE) 

of Bidens biternata and Bambusa arundinacea grown in the presence or absence of 

Ageratina adenophora leaf litter.  

 

FIG. S2. Volatiles collected from headspace of leaf material of three different origins.  

 

FIG. S3. A comparison of volatiles collected through solvent extraction or from headspace 

of leaf material of three different origins. 
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