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  Understanding the potential distribution of rare species is a key component in managing 

and regulating land-use activities.  Predictive modeling of plant distributions rests on the 

assumption that correlations exist between the presence or absence of a species and 

selected climate, topographic, substrate, and land-cover variables.   

  Using the DOMAIN algorithm along with Geographic Information Systems (GIS) 

techniques, a biophysical envelope model was applied to 21 rare plant species listed on 

the Region One Regional Forester’s Sensitive Species List.  Environmental variables, 

including annual precipitation, mean May temperature, slope, aspect, elevation, geologic 

material and dominant vegetation type, were used as predictors.  Model output was field-

verified by expert botanists who used their knowledge to assess areas predicted as 

potential habitat.  A total of 44 new rare plant species element occurrences were located, 

including two new state occurrence records for Idaho. Model evaluation used a multi-

layered approach: (1) the percentage of known occurrences within areas of predicted 

potential habitat (2) whether botanists found potential habitat within predicted areas; and 

(3) whether new occurrences were found within predicted areas.  Model success for each 

species was evaluated using error matrices populated with the number of pixels correctly 

or incorrectly classified as habitat.   

  Misclassification of suitable and unsuitable habitat is inevitable in any habitat modeling 

procedure, and sources of error may be caused by inherent problems in the modeling 

process or complications arising from an organism’s ecology.   Plant species for which 

habitat was not successfully modeled were often associated with microhabitats, had 

inappropriate environmental parameters used as input, or had unusual distribution 

patterns. 
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1. INTRODUCTION 

Nearly 25% of the estimated 250,000 species of vascular plants in the world may 

become extinct within the next fifty years, and 22% of vascular plant species in the 

United States are currently of conservation concern (Schemske et al., 1994).  Many 

species have already been reduced to one or two populations with few individuals, 

causing plant conservation to become of vital importance in forest management and 

planning.  The United States Forest Service manages threatened, endangered, sensitive 

and G1-G3 plant species (identified by NatureServe) under the statutory authority of the 

National Forest Management Act (NFMA) and the Endangered Species Act (ESA; 

USFWS, 1988).  In this study species of management concern to the Forest Service will 

be collectively referred to as TES species.   

NFMA requires the Forest Service to address goals and objectives for 

conservation of TES species and their habitats through land and resource management 

planning.  NFMA is implemented through the 1982 and 2005 planning regulations 

(USDA, 1982; USDA, 2005).  The National Environmental Protection Act (NEPA) 

requires the Forest Service to address impact to TES species during project work (NEPA, 

1986).   

Typically, land mangers conduct pre-field analysis and field surveys for TES 

species in support of project work.  Land managers and botanists concerned with the 

conservation and protection of TES species are faced with a daunting task.  Habitat 

associations for many rare plant species have not been well defined.  Element occurrence 

data, which consists of an incidence of a population, community, or ecological system in 

a specific location, is often opportunistically acquired and may not be a full reflection of 
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species distribution.  Limited resources often prevent biologists from conducting 

intensive searches for TES species or surveying large areas.  As a result, habitat modeling 

is an increasingly important tool to assist land managers and botanists in determining 

whether habitat for TES species is likely present within a proposed project area.  Habitat 

modeling increases the efficiency of agency resources for project support and in 

determining whether field surveys and/or mitigation are needed.   

Advancements in Geographic Information Systems (GIS) have revolutionized 

predictive habitat mapping by significantly improving land managers’ abilities to do 

detailed resource inventories, analysis, and management (Vogiatzakis, 2003).  The 

increasing availability of environmental information in digital formats and refinement of 

various GIS-based techniques offer an opportunity to improve and test quantitative 

mapping of species distributions (Brotons et al., 2004).  Associations between plant 

species and their environment (and predictive maps based upon these associations) have 

significantly improved efforts for plant conservation and management (e.g., Box et al., 

1993; Wiser et al., 1998; Elith and Burgman, 2002; Fertig and Reiners, 2002; Fleishman 

et al., 2002).    

The purpose of this research was to test a methodology for predicting rare plant 

habitat and occurrence at a broad scale including multiple species over a large extent.  

Twenty-one diverse plant species listed on the Forest Service Region One Regional 

Forester’s Sensitive Species List were selected for this initial effort (USDA Forest 

Service, 2004).  The potential habitats and occurrence of these species were predicted 

within three National Forests in western Montana and north-central Idaho.  The 

DOMAIN model (Carpenter et al., 1993), a simple biophysical envelope, was chosen to 
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identify the potential habitat of each species.  The algorithm uses a computerized 

procedure that calculates a Gower similarity index for each pixel in the study area based 

upon how closely the environmental values at that point correlate with the environmental 

values at points of known occurrences.  User-defined thresholds designated areas of 

suitable habitat for each species.  The resulting map products were then given to Forest 

Service botanists who used the potential habitat maps in combination with their 

knowledge of the target species to conduct field surveys within the high probability areas.  

The collected field data were utilized to assess model performance.  The model was 

evaluated by examining: (1) the percentage of known occurrences within areas of 

predicted potential habitat, (2) whether botanists found potential habitat within predicted 

areas, and (3) whether new occurrences were found within predicted areas.  We anticipate 

this approach will be able to model 85% of known occurrences for one-half of the 

species, an acceptable level of prediction (Anderson et al., 1976).   

This study was a pilot project to identify data availability and limitations, examine 

strengths and weaknesses of the DOMAIN algorithm, provide new location observations 

acquired through field survey to refine and improve the accuracy of subsequent efforts, 

and to improve our understanding of the relationships between these rare plants and their 

habitats in USFS Region One. 
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2. BACKGROUND 

2.1. Rare Plant Species  

The 2005 NFMA Planning Rule requires the Forest Service to conserve the 

diversity of plant and animal communities through the application of “Ecosystem 

Diversity” and “Species Diversity” concepts.  Forest plan components for Ecosystem 

Diversity are intended to contribute to an adequate representation and arrangement of 

ecological conditions and vegetative communities in the planning area.  Ecosystem 

Diversity components include management for community types, successional stages, 

ecological parameters, and disturbance processes important for maintaining sustainable 

populations of wildlife, fish, and plant species within a planning area.  For TES plant 

species, species’ needs are to be compared to Ecosystem Diversity components to 

determine if adequate conservation measures are present (USDA, 2005).  

Species Diversity, under the 2005 Planning Rule, is intended to complement 

management under Ecosystem Diversity by providing a species-by-species approach to 

analyzing species’ habitat needs.  Species Diversity provides for the additional 

management needs of certain species such as regional endemics, threatened and 

endangered plant species, or other species-at-risk.  In addition, Species Diversity is 

intended to provide protection for those species with specialized habitat niches.  

Application of Species Diversity concepts require the evaluation of rare or TES species 

by ecosystem conditions and plan components, at the appropriate scale, as context for 

management.  
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Regional Foresters are responsible for identifying and conserving TES species 

occurring within their Regions (USDA, 1991).  The Regional Forester’s Sensitive 

Species List for Region One currently includes 205 plant species (USDA Forest Service, 

2004).  The conservation status of a species is designated by a number from one to five, 

preceded by a letter reflecting the appropriate geographic scale of the assessment (G = 

Global, N = National, and S = State).  The numbers have the following meaning: 

1 = critically imperiled 

2 = imperiled 

3 = vulnerable to extirpation or extinction 

4 = apparently secure 

5 = demonstrably widespread, abundant, and secure. 

 

These status assessments are based on the best available information, and consider a 

variety of factors such as abundance, distribution, population trends, and threats (Master 

et al., 2000).  The Regional Forester’s Sensitive Species List includes local and regional 

endemics (G1-G3), as well as numerous species that are rare at the state or regional level 

(global ranks of G4-G5, and state ranks of S1-S2). 

To achieve management goals for conserving TES species and their habitats, the 

Forest Service conducts pre-field analysis along with field surveys to assess project 

impacts.  Pre-field analysis varies widely and may consist of an examination of known 

populations of TES plant species within or adjacent to the project area, habitat assessment 

utilizing aerial photography, or basic GIS overlay analysis.  Typically field surveys are 

conducted in areas where pre-field analysis indicates suitable habitat may be present.  

However, these techniques are often time consuming and are not statistically based.  

Habitat modeling can provide a consistent method that can assist botanists in determining 

whether habitat for TES species is likely present within a proposed project area.  Habitat 
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modeling can increase the efficiency of agency resources for project support and in 

determining whether field surveys and/or mitigation are needed.   

2.2. Predictive Habitat Models 

Statistical algorithms which spatially examine species-habitat relationships are the 

most widely employed method for predicting potential habitat (Wu and Smeins, 2000; 

Elith and Burgman, 2002; Fertig and Thurston, 2003; Beauvais et al., 2004; Decker et al., 

2005).  Predicting potential habitat and species occurrence relies upon finding broad-

scale associations between taxonomic distributions and combinations of readily available 

environmental variables (James and McCulloch, 2002).  Integrating statistical algorithms 

and spatial analysis in a GIS provides a means to rapidly review the distribution and the 

status of a species even when information is poor or non-existent and can be used to 

predict potential habitat from limited field data (Austin, 1998).   

Predictive habitat models do not directly model habitat or distribution of a target 

species – they model the distribution of environmental conditions believed to be suitable 

for occupation, and assume that results reflect the actual distribution of an element.  The 

foundation of these models is the basic ecological principal that there are biotic and 

abiotic factors that constrain where species can and cannot exist in the context of their 

own biogeographic and evolutionary histories (Pulliam, 2000).  Predictive habitat models 

seek to describe those limits by correlating known occurrences with environmental 

factors that represent or approximate those limits.  

Numerous methods have been utilized in developing predictive habitat maps.  A 

major difference between methods involves the form of occurrence data needed for the 

algorithm, either presence-only or presence and absence.  Methods such as generalized 
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linear models (GLMs) and general additive models (GAMs), which require reliable 

presence-and-absence data, are used extensively in species’ distribution modeling 

because of there strong statistical foundation and ability to realistically model ecological 

relationships (Austin, 2002).  GAMs use non-parametric, data-defined smoothers to fit 

non-linear functions, whereas GLMs fit parametric terms, usually some combination of 

linear, quadratic and/or cubic terms (Elith et al., 2006).  Another well-established 

presence-and-absence modeling technique, called genetic algorithm for rule-set 

prediction (GARP), implements a genetic algorithm to select a set of rules (e.g. 

adaptations of regression and range specifications) that best predicts the species 

distribution (Stockwell and Peters, 1999).   

In a study conducted by Brotons et al. (2004), results show that using both 

presence and absence data (GLM) predicted the distribution of songbird bird species with 

higher accuracy than presence-only data (ENFA).  This supports the view that species use 

available habitats proportionally to their suitability, making absence data reliable and 

useful to enhance model calibration (Hirtzel et al., 2000).  Recently, Zaniewski et al. 

(2002) showed that although presence-absence based methods were more discriminate 

than presence-only techniques, they appeared to be less suitable to identify areas with 

high conservation concern.  For example, if the objective were to protect rare or 

endangered species overestimating areas of potentially elevated biodiversity might be 

preferable than underestimating their existence, therefore, making presence-only methods 

useful (Zaniewski et al., 2002).  While presence-only methods might not perform as well 

in all situations, they are by far the most common type of analysis for modeling rare 
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species for which limited data are available (Godown and Peterson, 2000; Beauvais et al., 

2003; Beauvais and Smith, 2005; Decker et al., 2006). 

The vast majority of species data available for both plants and animals consist of 

presence-only records collected in an unsystematic fashion.  Therefore, another set of 

techniques have been developed to use these types of data.  BIOCLIM utilizes an 

environmental envelope algorithm to identify locations which have environmental 

conditions that fall within the environmental range recorded for known locations (Nix, 

1986).  Specifically the minimum and maximum values for each environmental predictor 

are identified to define the multidimensional environmental “box” of conditions in which 

the element is known to occur.  Study area sites that have environmental conditions 

within the boundaries of the multidimensional box are predicted as potential sites of 

occupancy.  Maximum entropy models (MAXENT) estimates species’ distributions by 

finding the distribution of maximum entropy (i.e. closest to uniform) subject to the 

constraint that the expected value of each environmental variable (or its transform and/or 

interactions) under this estimated distribution matches its empirical average (Phillips et 

al., 2006).  Ecological Niche Factor Analysis (ENFA) is based on the ordination of data 

in a multivariate space.  This technique is based on the computation of the factors 

explaining the major part of species environmental distribution.  Extracted factors are 

uncorrelated and have biological significance: the first factor is the marginality factor, 

which describes how far the species optimum is from the mean environmental profile in 

the study area; the second is a tolerance factor, which is sorted by decreasing amount if 

explained variance and describe how specialized the species is by reference to the 

available range of environments in the study area (Hirzel, 2001).  This approach is 
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implemented using BIOMAPPER (Hirzel, 2001) software to produce habitat suitability 

maps.  Mahalanobis distance is defined by having equal Mahalanobis distance to a vector 

of ‘optimal’ conditions, with ‘optimum’ being defined as the mean conditions of all the 

observations available for target species (Farber and Kadmon, 2003).  When applied to 

species prediction, an underlying assumption of the Mahalanobis distance technique is 

that the mean vector represents optimal conditions for the species.   

The DOMAIN method uses a distance-based algorithm which assesses areas of 

interest in terms of their environmental similarity to sites of known locations (Carpenter 

et al., 1993). This procedure computes potential distributions based on a range-

standardized, point-to-point similarity metric (Gower, 1971) and provides a simple, 

robust method for modeling potential distributions of rare species.  DOMAIN offers 

advantages over similar methods in its ability to operate effectively using a limited 

number of biophysical attributes.  The graded nature of habitat similarity scores can 

facilitate the use of the DOMAIN model as a prioritization tool through the use of the 

user-defined thresholds required to obtain predictions of habitat.  It also performs well 

with small sample sizes of occurrence data, an advantage when dealing with rare species. 

This algorithm was chosen for this study based upon a number of factors: 

utilization of this modeling technique for rare species by other state heritage programs 

such as Colorado (Decker et al., 2006) and Wyoming (Beauvais et al., 2004; Beauvais 

and Smith, 2005), ability to use limited occurrence data (Elith et al., 2006), availability of 

software for public as well as Forest Service use, ability of the software to use categorical 

data, and the ease by which output can be integrated into a GIS. 
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2.3.  Study Area Description 

 US National Forest System lands in Region One include thirteen National Forests 

and Grasslands encompassing 25 million acres across the states of Washington, Idaho, 

Montana, North Dakota, and South Dakota.  The Region extends from the tall grass 

prairies of the Dakotas, extending west through sagebrush communities and montane 

Douglas fir (Pseudotsuga menziesii (Mirbel) Franco), lodgepole pine (Pinus contorta 

Dougl. ex Loud.), ponderosa pine (Pinus ponderosa C. Lawson) forests of Montana, to 

the western red cedar (Thuja plicata Donn ex D. Don) and western hemlock (Tsuga 

heterophylla (Raf.) Sarg.) forests of northern Idaho.   

The study area (Figure 1) focuses on the western half of Region One in Montana 

and Idaho and includes three of the twelve National Forests: Beaverhead-Deerlodge, 

Bitterroot, and Nez Perce.  The Forests (Figure 1) were selected based upon their location 

within a similar ecological province and the availability of skilled and knowledgeable 

staff botanists to conduct field surveys for model validation.   

Figure 1 shows a portion of the Middle Rocky Mountain Steppe-Coniferous 

Forest-Alpine Meadow Ecological Province that occurs in Region One.  The total area 

covers all ownerships and encompasses 23 million acres.  An ecological province is a 

broad scale, homogeneous natural subdivision having a distinct combination of geologic 

features and ecological sites (Bailey, 1993).   Ecological provinces are commonly used as 

analysis boundaries for modeling and assessment at a regional level.  Although the forests 

share broadly similar bioclimatic ecological conditions, Table 1 briefly describes each 

forest’s distinct combination of climate, topography, and vegetation.  For this study, 

known plant occurrences were selected based on the extent of the ecological province.  
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This was done for homogeneity and to obtain as many known occurrence records as 

possible for model input.     
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3. METHODS 

3.1. Data Acquisition 

3.1.1. Element Occurrences 

 

NatureServe, an international non-profit conservation organization, is a network 

of member programs which are the leading source for information about rare and 

endangered species and threatened ecosystems.  Natural Heritage Programs (or 

Conservation Data Centers) operate throughout the United States and other countries to 

collect, analyze, and distribute detailed scientific information about the biological 

diversity found within their jurisdictions. Natural Heritage Programs and Conservation 

Data Centers are the leading sources of information on the precise locations and 

conditions of rare and threatened species and ecological communities.  

Element occurrence data for TES species were obtained from the Idaho 

Conservation Data Center and the Montana Natural Heritage Program.  Element 

occurrence data consist of individual species or plant communities known from direct 

observations with a defined level of certainty regarding the spatial location of the feature.  

An element occurrence can define a subpopulation or a population of a species.  

Adjacent, spatially separated clusters may be considered as subpopulations and may be 

grouped within an element occurrence (e.g., the subpopulations occur in ecologically 

similar habitats and within approximately one mile of one another; MNHP, 2006).   

All element occurrence records that occurred within the Middle Rocky Mountain 

Steppe-Coniferous Forest-Alpine Meadow ecological province boundary were examined.  

The data were then manipulated to generate a set of observations useful for the GIS 

approach used here.   First, element occurrence multi-part polygons were separated so 
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that each polygon would represent a single occurrence rather than a grouped species 

subpopulation.  Polygons were converted to point locations, the number of occurrence 

records for each plant species calculated, and those species with more than 20 element 

occurrence records were selected.  Statistically, more observations should be available for 

input into a predictive model, however, these rare species have a dearth of known 

location records.  Table 2 displays the 21 rare plant species that were included in the 

study. 

3.1.2. Environmental Variables   

The selection of environmental variables to predict species distributions should 

include those variables that modulate physical processes and biological response (Poon 

and Margules, 2004).  Seven variables were chosen based upon general biophysical 

processes and availability of datasets with spatial coverage across the study area.  They 

reflect the climate (mean annual precipitation and mean May temperature), physiography 

(elevation, slope, aspect, and parent material), and main vegetation types (tree-

dominance) within the study area, all of which can affect the distribution of a species 

(Nix, 1982).  GIS data layers were obtained from the Forest Service Northern Region 

Geospatial Library and several additional internet data sources.   

Elevation, slope, and aspect were derived from 30-meter Digital Elevation Model 

(USDAFS Geospatial Group, 2007) using the ArcMap 9.2 Spatial Analyst extension 

(ESRI, 2007).  Geologic parent material was acquired from the 1:100,000 land-type 

association layer (GNF, 2004).  This layer was created by Forest Service soil scientists 

using a regionally consistent legend for dominant groups of landforms and geologic 

materials occurring in repeatable patterns on National Forest System lands and was 
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intended to support broad-scale watershed and landscape level assessments (Table 3).  

The land-type association layer was chosen to replace soils data which were not available 

for the entire study area at the time of writing.  The Soil Survey Geographic Database is 

scheduled for completion during 2008 (NRCS, 2007).  Future modeling efforts should 

include soil variables important to plant growth and habitat selection such as soil texture, 

pH, percent organic matter, soil bulk density, and depth to limiting factor.  

The tree-dominance layer was developed by reclassifying the VMAP Version 6 

Tree Dominance (vegetation classification for the Nez Perce National Forest and 

Bitterroot National Forest) and SILC3 Covertype (vegetation classification for the 

Beaverhead-Deerlodge National Forest) vegetation classification datasets (Table 4).  This 

was done to obtain a consistent vegetation layer across the study area.  The VMAP tree 

dominance is a multi-source and multi-classifier hierarchical landcover dataset which was 

created using multiresolution segmentation on Landsat ETM+ satellite imagery 

(USDAFS Geospatial Group, 2006).  The SILC3 dataset was derived from sixteen 

Landsat TM images (2000-2002) of eastern Montana.  Each Landsat image was 

delineated into regions in an unsupervised classification, and each of the regions was 

assigned a land-cover class in a supervised classification (WSAL, 2002).   

Mean annual precipitation and mean May temperature (1971-2000) were derived 

from PRISM data.  PRISM data sets were specifically created to capture the spatial 

characteristics of climatic data in mountain environments and is the United States 

Department of Agriculture’s official source for climatological data (Daly et al., 1994; 

PRISM, 2006).  Temperature is one of the major factors limiting the distribution of plants 

(Monsen et al., 2004).  Mean May temperature was chosen because many plants 
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examined in the study (most associated with the lower valley and mid-montane zones) 

begin to initiate growth during this time of year.  

All datasets were processed to a geographic projection as this is the only 

projection in which DOMAIN can operate.  The layers were then clipped to the 

ecological province boundary, resampled as necessary, manipulated for alignment 

between layers and converted to ASCII file format.  As rare plant habitat can vary a great 

deal over fine scales, a 30 × 30 m cell size was initially preferred for analysis of habitat 

requirements.  Hardware computational restraints, however, limited resolution to a 60 × 

60 m cell size.   

When ASCII files are open in DOMAIN the program assumes all datasets are 

continuous.  Layers which included categorical data were manipulated using a Hex Editor 

which enabled DOMAIN to differentiate between the two data types.  First the ASCII 

grid is converted to DOMAIN grid file (.grd) format.  When a grid is saved as a .grd file 

the flag variable (byte 00000034) is automatically set to 4 (Figure 2).  Using a Hex 

Editor, the flag variables were set to the proper values (for continuous data the flag is set 

to 0, and for categorical data the flag is set to 2 (Figure 3)).   

3.2. DOMAIN Model 

The Gower-similarity approach (Gower, 1971), as implemented in DOMAIN (v 

1.6; http://clearwater.com.au/domain/), was used.  DOMAIN uses the Gower similarity 

metric to assign a value to a potential site (pixel) based upon its proximity in statistical 

environmental space to the most similar occurrence location.  The output is a new grid 

where cell values reflect the multivariate distance to the nearest known set of conditions 

where the species occurs.  This is equivalent to a continuous similarity surface, where the 
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highest values (approaching 1) represent areas most similar to known occurrence 

conditions and low values are most unlike occurrence locations (Decker et al., 2006).  

The values do not represent probability estimates, but can be interpreted as a measure of 

classification confidence (Carpenter et al., 1993).   Because the statistical surface does 

not give a discrete boundary for mapping potential habitat, user-defined thresholds are 

required to map potential species habitat.   

The Gower metric provides a means of quantifying similarity between sites.  The 

algorithm uses range standardization to equalize the contribution from each biophysical 

attribute.  This method of standardization is preferred over variance standardization in 

this application because it is less susceptible to bias arising from dense clusters of sample 

points (Carpenter et al., 1993).  By evaluating the complementary similarity measure and 

the maximum similarity for all grid points in the study area, a matrix of continuously 

varying similarity values is generated.  DOMAIN defines no discrete boundary for the 

biophysical envelope.  All candidate points are assigned similarity values and user-

defined thresholds determine the boundaries for suitable habitat.   

Environmental layers along with the locations known species occurrences were 

inputted into DOMAIN, and the model was run for each of the 21 species.  Algorithm 

output was a grid coverage of the study area, with each cell assigned a Gower metric 

value.  Figure 4 shows an example of the grid coverage for Coville Indian paintbrush.  

The DOMAIN output grid was converted to a floating-point ASCII grid then converted to 

integer grid and values were scaled by 100 to maintain an accuracy of two decimal 

places.  Then, thresholds were selected to define potential habitat for each species.  

Threshold values may be based on expert knowledge or a number of subjective 
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thresholds may be used to reveal relative trends.  Theoretically, values above the defined 

threshold indicated suitable environmental conditions (i.e., within the potential range of 

species), and values below the threshold indicated less suitable environmental conditions.  

In this case, threshold values were chosen based on previous studies (Beauvais et al., 

2004; Beauvais and Smith, 2005; Decker et al., 2006) which suggest using certain 

distributions of predicted Gower similarity values;  similarity values attributed to the top 

2.5% of pixel values (between 97.5 and 100%) were labeled ‘most likely’ habitat.  Pixel 

values between 95 and 97.4% indicated ‘likely’ habitat.  This percentage rule allowed for 

definition of predicted range in a standardized fashion for all species. 

Approximately 140 maps were produced to assess the model predictions.  For 

each species, an overview map was created which showed predicted potential habitat 

within each forest (Table 5; Figure 5).  Multiple smaller-scale maps showing the potential 

habitat layer overlaid onto the standard Forest Visitor Map were produced to illustrate 

travel routes and ownership for easy field navigation (Figure 6).  In addition, to increase 

the efficiency of field surveys, a species density map was also generated for each forest 

(Figure 7).  Potential habitat grids were combined to highlight areas that potentially 

contained multiple target species.   

3.3. Field Evaluation 

In general, the most robust way to statistically test a model is to utilize stratified 

random sampling over the study area (Vaughan and Ormerod, 2003).  However, models 

are not often evaluated in this manner due to lack of time, money, and manpower.   A 

classic validation was not performed due to the large extent of the study area which 

would have required much greater funding than was available for this study.  In a 
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previous study, USFS botanists have observed that this technique had not been successful 

at locating new rare plant occurrences (Hammet, 2005).  Most plant species have uneven 

distributions due to natural selective influences, the spatial heterogeneity of the 

environment, and the seasonal nature of some species. Therefore, a survey to determine 

absolute presence or absence of rare plants is problematic. 

The goal for the field sampling effort was to: (1) have experienced field botanists 

evaluate areas defined as suitable habitat, and (2) find new rare plant populations. 

Professional field botanists conducted assessments following the standard Forest Service 

protocol for rare plant surveys (USDA Forest Service, 1988).  The botanists participating 

in the study possess a high degree of expertise and have a combined experience of forty 

years working within the Rocky Mountain ecosystem.  Each of them was asked to 

conduct rare plant surveys in their respective forest within geographic areas identified by 

the model as potential habitat for target species.  Botanists were instructed to utilize their 

knowledge of species habitat requirements and to survey high likelihood habitat for the 

designated species.  Predicted habitat served as a primary guide to direct botanists into 

areas of potential habitat.  Once at these locations, botanical knowledge, discretion, and 

analytic skills contributed to “in situ” assessment.  At each survey site, botanists 

documented target survey species, existing suitable habitat for each predicted species, 

and a detailed description of biophysical site features (Figure 8).  If a new rare plant 

occurrence was located, site location information was documented with a global 

positioning system (GPS) device or drawn on a topographic map.  Habitat information 

was also documented in the same fashion for sites where target species were not 

observed.   
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During the predictive process, no distinctions were made for species associated 

with macrohabitats and those with an affinity to microhabitat conditions.  The study was 

purposefully broad-scale; therefore, the predictive process was intrinsically designed to 

work best for species with macrohabitat affiliations.  Table 6 lists the dominant 

macrohabitats included in the study area as defined by the VMAP tree dominance layer 

(USDAFS Geospatial Group, 2006).  Microhabitat types typically found within the study 

area include riparian swales and seeps, rock outcrops, canyon walls, footslopes, disturbed 

sites (e.g., recently burned areas and roadside habitats), and bare soil sites.   Botanists 

were asked to use their field knowledge of species to locate microhabitat types within 

predicted macrohabitat areas.  Surveyed areas were downloaded or digitized within the 

GIS and site information was used for model evaluation.     

3.4. Prediction Assessment  

The most commonly used method in predictive rare plant studies is to evaluate the 

predictions with independent occurrence data (Fertag and Thurston, 2003; Rushton et al., 

2004; Decker et al., 2006).  Several metrics are also commonly used to summarize model 

success using an error matrix (Fielding and Ball, 1997; Guisan and Zimmerman, 2000).   

For this study, model performance was evaluated using a multi-layered approach.  

The percentages of known occurrences, referred to as the “known occurrence accuracy,” 

located within defined ‘likely’ and ‘most likely’ thresholds were examined.  Known 

occurrence records used as model inputs were used as opposed to an independent dataset 

to verify if environmental variables are adequate predictors for selected species.   

Error matrices for each species were constructed to assess algorithm habitat 

prediction accuracy based on field assessment.  Each error matrix displays the 
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relationship between the predicted and observed habitats.  Each matrix or table includes 

the number of pixels that were correctly and incorrectly predicted (as assessed by the 

field botanists), and model performance is expressed with percentages of error of 

omission (exclusion) and commission (inclusion).  Pixels that were properly predicted are 

entered along the major diagonal of the table (upper left to lower right).  The habitat 

prediction accuracy for a species can be found by summing the diagonal and dividing by 

the total number of cells examined.  All non-diagonal components in the table represent 

errors of omission or commission.  Omission errors correspond to non-diagonal row 

elements and commission errors are represented by non-diagonal column elements.  

Percentage errors of omission were computed by dividing the number of correctly 

classified pixels (on the major diagonal) by the total number of pixels that were visited in 

that category (row total).  Percentage errors of commission were calculated by dividing 

the number of correctly classified pixels by the total number of pixels that were visited 

(column total).  This figure indicates the percentage of pixels classified correctly.   

An additional matrix was produced if a new population was found where the 

percentage of new occurrences found within defined ‘likely’ and ‘most likely’ predicted 

areas, referred to as new occurrence accuracy, was calculated. This table also displays a 

pixel count of predicted and found occurrences, as well as errors of omission and 

commission calculated in the same manner as described above.   

 

 

 

 

 

 

 



 21 

 

4. RESULTS 

  The results for the DOMAIN process and field verification are examined below 

by species.  A total of forty-four new TES plant element occurrences, including two new 

state occurrence records (tapered-root orogenia and Coville Indian paintbrush) in Idaho, 

were located using the habitat predictions.  Results were evaluated using the multi-

layered approach: (1) percentage of known occurrences within defined thresholds, 

referred to as the known occurrence accuracy, (2) habitat prediction accuracy of the 

algorithm based on field assessment, and (3) percentage of new occurrences found within 

predicted areas, or new occurrence accuracy.   

Table 7 displays the number of new element occurrences found, known 

occurrence accuracy (percentage of known element occurrence that fell within defined 

‘likely’ and ‘most likely’ habitat), and amount of predicted habitat by Forest.  Idaho 

Douglasia, surveyed in the Nez Perce National Forest, had the most occurrences located 

with 16 new records.  All known occurrence records for Constance’s bittercress, Pacific 

dogwood, and short-styled columbine fell within predicted habitat.  The majority of 

species had known occurrence accuracies between 83 and 98%.  The species with the 

lowest known occurrence accuracy was Lemhi beardtongue with 43%.  Coville Indian 

paintbrush, Missoula phlox, sapphire rockcress and small onion also displayed low 

known occurrence accuracies ranging from 63-74%.     

Field surveys were successfully conducted on two of the three pilot forests 

participating in the study, the Bitterroot National Forest and Nez Perce National Forest.  

Unfortunately, an unusually early growing season and drought-like conditions in 2007 on 

the Beaverhead-Deerlodge National Forest constrained effective field surveys for the 
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target species.  As a result, the habitat predictions for Jove’s buttercup, Missoula phlox, 

and sapphire rockcress were not assessed further in this study.  Two other species 

anticipated to occur within the Bitterroot National Forest (short-styled columbine and 

northern rattlesnake-plantain) were also excluded from field sampling.  The botanist 

noted these two species are closely tied to limestone, sandstone, shale, or calcareous 

soils, none of which occur within the Bitterroot National Forest.   

4.1. Broad-fruit Mariposa 

Broad-fruit mariposa’s known distribution includes Idaho, Washington, and 

Oregon.  Within Idaho, it is known to be associated with the greater Palouse area 

including both grasslands and moist swales occurring between adjacent hills.  The soils in 

these areas are primarily loess and alluvium.  It prefers 10 to 30% slopes, elevations 

between 1500 and 6400 ft (450-2000 m), and habitat dominated by perennial 

bunchgrasses and deciduous shrubs. 

Three areas predicted as potential habitat were surveyed in the Nez Perce National 

Forest and two new populations were located.  Known occurrence accuracy for broad-

fruit mariposa was 95% (Table 7).  Within the areas visited, the botanist reported that the 

model performed well in predicting mariposa grassland and swale macrohabitat and at 

limiting predictions to the geographic areas where the species is known to occur.  A total 

of 53 pixels were assessed during field survey.  Field assessment produced a habitat 

prediction accuracy of 75.5% (Table 8).  The two new populations were found within the 

‘most likely’ predicted habitat (Table 9).  Since this species has an affinity for Palouse 

areas with loess and alluvium soils, inclusion of soil attributes could further refine habitat 

and potentially produce an even more accurate assessment of habitat requirements.   
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4.2. Clustered Lady’s Slipper 

Clustered lady’s slipper distributional range includes most of the western United 

States: California, Colorado, Idaho, Oregon, Utah, Wyoming, and Montana.  Within 

Idaho, this species is found across a wide range of macrohabitats.  It primarily occurs in 

various successional stages of habitat types including mixed stands of drier Douglas fir, 

grand fir, and western red cedar to old growth cedar.  The known occurrence accuracy for 

Clustered lady’s slipper was 88% (Table 7).  Fourteen areas of predicted habitat were 

visited in the Nez Perce National Forest and two new occurrences were located. 

Field assessment results supported model habitat classification for this species.  A 

total of 245 pixels were assessed on the ground and, according to the botanist, only 36 

were misclassified producing an overall accuracy of 85% (Table 10).  Both of the new 

occurrence records were found in areas predicted to be suitable habitat (Table 11).   

4.3. Constance’s Bittercress 

  Constance’s bittercress is found along river breaks and stream terraces in areas 

associated with warm and moist environments of low elevation river canyons between 

2,000 and 4,000 feet (610 to 1200 meters) of elevation.  It prefers western red cedar and 

western hemlock habitat types.  Its distribution range extends throughout Idaho. 

Thirteen areas were visited within the Nez Perce National Forest.  No new 

occurrences for Constance’s bittercress were found.  All of the known element 

occurrences fell within predicted habitat, producing a known occurrence accuracy of 

100% (Table 7).  The predicted habitat reflected the warm and moist conditions required 

by the species.  The botanist observed that the algorithm captured the known species 

range of the Selway River Corridor but it also included southern portions of the forest 
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outside its known distribution.  Although there is a well established elevational range in 

which this species will occur, much of the modeled habitat exceeded this substantially.   

Field results show that of the 293 pixels surveyed, 98 were misclassified 

(Table 12).  While a 95% omission error for unsuitable classification was also found, this 

reflects that there were a large number of pixels misclassified as potential habitat. 

4.4. Coville Indian Paintbrush 

Coville Indian paintbrush’s distribution ranges from Idaho to Montana.  This 

species occupies stony soils on slopes and summits in the montane and subalpine zones.  

A total of eighteen areas identified as potential habitat were visited.  The known 

occurrence accuracy for Coville Indian paintbrush was low at 67% (Table 7).  Five sites 

were surveyed within the Nez Perce National Forest and seven new occurrences were 

found.  Thirteen sites were visited in the Bitterroot National Forest and four new 

occurrences were located.   

This species was not previously documented in Idaho but it was suspected that the 

species distribution extended into the state (IFG, 2007).  Within the Nez Perce National 

Forest in Idaho, the botanist found it at several locations predicted not to be suitable 

habitat.  The new occurrences were found while conducting surveys in an area predicted 

as suitable habitat for Idaho Douglasia in the eastern portion of the forest.  During field 

assessment, the botanist found that habitats for Idaho Douglasia and tapered-root 

orogenia often overlapped and the two plants were occasionally found together.  The 

surveyed area predicted to be habitat was much lower in elevation and of a different 

forest community.  Habitat predictions for this species in Idaho were based on known 

occurrences in Montana, but species can occur in very different habitat types across their 
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ranges.  More knowledge about this species’ habitat in Idaho will improve future 

predictions.   

Within the Bitterroot National Forest in Montana, Coville Indian paintbrush is 

endemic to the Bitterroot Mountains and was originally found in open, rocky 

subalpine/alpine areas near the Idaho border up to 8780 feet (2600 meters).  Recently its 

habitat and elevational range were broadened when new occurrences were found during 

an unrelated survey in open Ponderosa pine and grassland macrohabitats on the West 

Fork Ranger District of the Bitterroot National Forest.  These new occurrences were used 

as model input; this may be why the algorithm included habitats ranging from bunchgrass 

communities to subalpine fir/beargrass (Xerophyllum Michx.) groups.  The biophysical 

envelope approach led the botanist to some new insights into potential habitat as several 

occurrences were found in the transition zone between Douglas fir/pinegrass 

(Calamagrostis rubescens Buckley) and Ponderosa pine/bunchgrass habitats previously 

believed to be unsuitable habitat.   

Field results for Coville Indian paintbrush revealed a 39% habitat prediction 

accuracy (Table 13).  In almost 3/4 of the areas surveyed, the model excluded potential 

habitat.  The percentage error of commission for unsuitable habitat, 76%, was also large, 

indicating that pixels classified as suitable do not represent suitable habitat on the ground.  

New occurrence locations, which had an overall accuracy of only 20%, were mostly 

located in areas designated as unsuitable habitat suggesting that much work remains to 

improve predictions of habitat for this species (Table 14).  The new occurrence located in 

this study will assist future efforts. 
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4.5. Evergreen Kittentail 

The known distribution of evergreen kittentail is within Idaho.  This species 

occupies habitats that include grand fir, subalpine fir, and mountain hemlock, and 

occasionally western red cedar macrohabitat types.  Its range is strongly associated with 

grand fir mosaic forests and the botanist believed the predicted habitat was very good 

within zones of that forest type.  The known occurrence accuracy for evergreen kittentail 

was 83% (Table 7). 

Eleven areas predicted as suitable habitat were visited in the Nez Perce National 

Forest and four new occurrences were located.  None were visited on the Bitterroot 

National Forest as it is believed  to be outside the plant’s range, though the model 

predicted 17,978 acres (7,275 ha) of suitable habitat.  Field assessment results showed a 

habitat prediction accuracy of only 38% (Table 15).  An 82% error of omission was 

calculated for unsuitable habitat indicating that the algorithm was not including all 

potential habitats.  Within areas surveyed, pixels classified as suitable had a 71% 

commission error, indicating that a pixel classified as suitable habitat does not necessarily 

represent suitable habitat on the ground.  Promisingly, all new occurrences were found 

within areas predicted as suitable habitat (Table 16).  The botanist suggested that future 

iterations of the model should include soil as an environmental input variable with a 

focus on soil types that are limited to the grand fir mosaic forest type. 

4.6. Hall’s Rush 

The distribution of Hall’s rush extends from Montana and Idaho southward into 

Wyoming, Utah, and Colorado.  Within Montana, Hall’s rush is known to occur only on 

National Forest System lands east of the continental divide.  It is found within the 
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Beaverhead-Deerlodge, Helena, and Lewis and Clark National Forests.  This species is 

not known to occur within the Bitterroot National Forest and the botanist did not have 

previous observations of habitat affiliation for the species upon which to refer.  However, 

DOMAIN predicted suitable habitat within the Bitterroot National Forest and four survey 

sites were visited.  Typically Hall’s rush occurs in moist to dry meadows and slopes from 

valleys to montane zones.  The model did select several sites on the Forest that are known 

to contain wetlands.  The botanist focused on these areas but no new locations were 

discovered.   

The known occurrence accuracy for Hall’s rush was 83% (Table 7).  An 83% 

error of commission was calculated for suitable habitat suggesting there is poor 

probability that pixels classified as suitable habitat were found to be suitable.  The error 

of omission for suitable habitat was 65% indicating that more than half of the time the 

model was not capturing suitable habitat accurately (Table 17).  As mentioned 

previously, Hall’s rush is not known to occur in the Bitterroot National Forest.  

Unfortunately, habitat predictions in the Beaverhead-Deerlodge National Forest, within 

the species’ known distribution, were not field verified.  Assessing predicted habitat 

within these areas could provide information on if the algorithm was accurately capturing 

the species bioclimatic envelope.   

4.7. Hollyleaf Clover  

Hollyleaf clover’s distribution range extends throughout the west, excluding 

Washington State.  Within Region One, it occurs in open woodlands and slopes, usually 

in dry soil of sagebrush steppe to ponderosa pine forest in the foothills to the lower 

montane zone.  The known occurrence accuracy for this species was 83% (Table 7).  
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Fourteen sites predicted as potential habitat were surveyed in the Bitterroot National 

Forest.  Within the Forest, hollyleaf clover has only been found in the vicinity of Painted 

Rocks Reservoir.  The botanist noted the biophysical algorithm identified good habitat in 

other regions of the forest and surveyed in these areas, but no occurrences were located.   

 A total of 348 pixels were assessed and 255 were found to be misclassified 

(Table 18).  All habitats surveyed by the botanist were identified as potentially suitable.  

Seventy three percent of these pixels had been identified as unsuitable by the algorithm. 

As noted above, this species may have a geographical limitation.  The botanist was 

unaware of the environmental factors limiting this species to the Painted Rocks Reservoir 

and was greatly interested in examining possible soil associations.  Additional modeling 

efforts should include soil information to enhance and refine habitat predictions.  

4.8. Howell’s Gumweed 

Howell’s gumweed is a regional endemic known to occur only in two counties in 

Montana, and one county in Idaho.  In Montana, populations occur in a variety of natural 

habitats, but often the species prefers disturbed sites.  This species is associated with 

microhabitat types which include moist, lightly-disturbed soil adjacent to ponds and 

marshes as well as other disturbed habitats such as roadsides and grazing pastures.  

Howell’s gumweed is also known to prefer sites located along the transition zone 

between lower elevation grassland and intermixed lower forest macrohabitat types.  The 

known occurrence accuracy for this species was 90% (Table 7).   

Seven sites predicted as suitable habitat were surveyed in the Bitterroot National 

Forest.  Field assessment of predicted habitat found that of the 503 pixels surveyed, 116 

were misclassified (Table 19).   The algorithm underestimated suitable habitat, according 
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to the botanist’s assessment, resulting in an error of commission of 93%.  Despite this 

species having microhabitat associations, the model was correctly classifying a 

substantial amount of potential habitat.  Future modeling efforts should be conducted at 

the forest-level and should include fine-scale data related to disturbance conditions such 

as grazing allotments and roads as well as soil variables.  

4.9. Idaho Douglasia 

  Idaho Douglasia is endemic to the mountains of central Idaho with populations 

distributed in a series of isolated, widely separated clusters extending from the upper 

Selway River corridor southward to the Trinity Mountains.  The species occurs within 

subalpine vegetation characterized by open, forb-dominated communities as well as 

woodlands dominated by whitebark pine and subalpine fir.  The known occurrence 

accuracy for Idaho Douglasia was 95% (Table 7).   

Six areas predicted to be suitable habitat were surveyed in the Nez Perce National 

Forest and sixteen new occurrence records were located.  The botanist originally thought 

the predictions were overly broad and many areas predicted as suitable habitat were not 

appropriate (generally forested habitat types).  However, during survey work, he found 

that areas predicted as habitat were often suitable on the ground.  Focusing on areas 

predicted as suitable, the botanist twice extended the known range of this species a total 

of 16 miles (25 km) to the west.  

Within the areas surveyed, the model missed 27% of the habitat the expert found 

and predicted habitat in a similarly large area where no suitable habitat was located.  

Habitat prediction accuracy for Idaho Douglasia was 60% (Table 20).  New occurrence 

records were found within areas predicted to be unsuitable 32% of the time (Table 21).  
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Thus, the new occurrences confirmed that the species occupies broad amplitude of 

habitats and that we can increase our knowledge of species habitat relationships through 

field surveys.   

4.10. Idaho Strawberry 

Idaho strawberry is another endemic restricted to north-central Idaho and the far 

western regions of Montana.  The species occurs in open, cool, moist forest types from 

toe to mid-slopes in western red cedar, grand fir, and subalpine fir zones at elevations 

between 4,000 and 5,000 feet (1,219 to 1,524 meters).  Occasionally, it does occur in rich 

mesic and warmer sites.  Idaho strawberry requires specific ecological conditions which 

causes it to occur within four distinct geographic areas in north-central Idaho.  However, 

its occurrences are more broadly distributed than many other endemics in this area.  The 

known occurrence accuracy for Idaho strawberry was 98% (Table 7). 

Sixteen survey sites of predicted habitat were assessed in the Nez Perce National 

Forest and one new element occurrence was found.  Field assessment revealed that more 

than one-half of the area identified as suitable was not suitable, and thus the algorithm 

was not adequately capturing habitat requirements for this species though it was 

including almost all the known sites.  Habitat prediction accuracy was only 45% (Table 

22).  Only 8% of the time did the algorithm include pixels of suitable habitat.  However, 

the new occurrence was found within predicted suitable habitat (Table 23).  It can be 

extremely difficult to define the habitat requirements of Idaho strawberry due to its 

affinity for cool, moist microhabitats.  Future modeling efforts for this species should 

include higher resolution datasets for the environmental variables to reflect microhabitat 
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parameters.  Also, including a topographic wetness index should be considered to help 

capture the moist microhabitats which this species prefers.  

4.11. Lemhi Beardtongue 

Lemhi beardtongue is a regional endemic of Lemhi County, Idaho, and 

Beaverhead, Deer Lodge, Ravalli, and Silverbow Counties, in Montana.  In Montana, 

Lemhi beardtongue occurs on moderate to steep, east to southwest facing slopes, often on 

open soils.  It prefers sites below or near the lower extent of Douglas fir and/or lodgepole 

pine forest in habitats dominated by sagebrush and bunchgrasses.  This species is not 

restricted to any particular geological substrate and has been found on granitic soils as 

well as limestone and other sedimentary substrates.  It is most commonly found on 

gravelly loams, however soil texture can be variable and range from sand to fine clay.  

Lemhi beardtongue is known to respond favorably to disturbance regimes that leave bare 

soil, and it declines in undisturbed communities as vegetative succession proceeds toward 

advanced stages.  The known occurrence accuracy for Lemhi beardtongue was 43% 

(Table 7).  Ten survey areas predicted to be potential habitat were visited and one new 

population was located within the Bitterroot National Forest.  Field results showed that 

the algorithm missed three times as much suitable habitat as it correctly identified (Table 

24).  Predicted habitat areas included subalpine/beargrass habitat types which are not 

considered classic habitats for this species.  The botanist believed the algorithm 

appropriately identified the open canopy and grassland macrohabitat types preferred by 

the species.  The new population was found in an area which was predicted to be 

unsuitable (Table 25).   
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As discussed earlier, Lemhi beardtongue is associated with disturbed habitats in 

the early seral stages of succession, but the model did not include a variable that 

described successional stages and disturbance regimes.  Including disturbance variables 

such as wildfire, grazing, and roads, as well as soil type and texture, could further refine 

potential habitat predictions. 

4.12. Pacific Dogwood 

Pacific dogwood is a Pacific coastal disjunct species found in northern Idaho.  

The principal distribution of this species is west of the Cascade/Sierra crest from 

southwestern British Columbia to southern California.  A disjunction exists when a 

population segment is separated by some distance from the main or principal population.    

In Idaho, this species is ecologically restricted to the Lochsa-Selway River corridors and 

lower elevations of the western red cedar zone.  In Region One it inhabits brushfields, 

rather dense mature forests, and stream banks.  Slopes vary from flat to greater than 60% 

and plants can be found growing on all aspects though southern aspects support the 

highest concentrations.  Pacific dogwood ranges in elevation from 1,600 to 2,800 feet 

(487 to 853 meters) and is found in moderately developed spodosols with good drainage 

and humus surface.  The species grows in a variety of habitats ranging from secondary 

succestional stages induced by fire to near climax.  Most communities are mid-

successional and dominated by seral such as Douglas fir, western larch, and grand fir.  

The known occurrence accuracy for Pacific dogwood was 100% (Table 7).  

Thirteen survey areas predicted as potential habitat were visited in the Nez Perce 

National Forest and one new occurrence was located.  The botanist felt the algorithm 

correctly identified the warm and moist climatic requirements of this species.  Field 
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assessment of habitat predictions found that, of the 257 pixels assessed, only 24 were 

classified incorrectly (Table 26).  Overall, the model preformed well predicting habitat 

for this species.  The new occurrence was located within an area defined as ‘most likely’ 

habitat (Table 27).  However, the model included areas outside its known local 

geographical distribution along Lochsa-Selway River corridors.  Thus, finding a 

methodology to include this limitation could have improved habitat predictions.   

4.13. Payson’s Milkvetch 

Payson’s milkvetch is a regional endemic of the Clearwater Mountains of north-

central Idaho, the Palisades Reservoir area of east-central Idaho, and the Wyoming, Salt 

River, and Gros Ventre ranges of western Wyoming.  Payson’s milkvetch is ruderal in 

nature.  It occupies cooler grand fir habitats in early seral stage of succession, and is 

commonly is found on roadsides, clearcuts, and in other disturbed microhabitats.  It is 

usually found on sandy soils with low cover of forbs and grasses.  The known occurrence 

accuracy for Payson’s milkvetch was 92% (Table 7).    

Fifteen survey sites predicted to be potential habitat were visited on the Nez Perce 

National Forest.  The botanist found it difficult to assess whether an area was potential 

habitat due to the difficulty of determining the gradual temperature gradient between 

cooler grand fir and warmer grand fir forests.  Within the sites surveyed, the botanist 

found the algorithm was over predicting habitat, resulting in 51% error of commission 

(Table 28).  Habitat prediction accuracy was a low 47% (Table 28).  The botanist 

suggested refining the input environmental parameters for this species to include road 

corridors in grand fir forests over 4,000 feet (1,219 meters) elevation and regeneration 
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harvest units less than 20 years old in grand fir forests above 4,000 feet elevation 

(1,219 meters).   

4.14. Puzzling Halimolobos 

  Puzzling halimolobos distribution extends from Washington into Idaho.  In 

Idaho, it is regionally endemic to the Salmon River watershed.  Like Payson’s milkvetch, 

it is an early seral species requiring disturbance and bare soil to become established.  Its 

habitat is gravelly, sandy, or grassy slopes adjacent to rock outcrops in open ponderosa 

pine and Douglas fir forests.  The known occurrence accuracy for puzzling halimolobos 

was 83% (Table 7).   

Six survey sites predicted as suitable habitat were visited on the Nez Perce 

National Forest.  Puzzling halimolobos had the second lowest habitat prediction accuracy 

at 28% (Table 29).  None of the habitat surveyed was assessed by the botanist as being 

suitable.  Areas which had been predicted to be unsuitable was assessed that way as well.  

Predicted habitat often included forested areas where grasslands were severely reduced 

due to disturbance or completely lacking.  However, the model did reflect the species’ 

ecological limit along the Salmon River Corridor.  This species is strongly associated 

with specific soil types.  Including finer resolution data and additional environmental 

variables, such as soil types and disturbed areas, could improve algorithm performance. 

4.15. Small Onion 

Small onion distribution includes California, Idaho, Montana, Nevada, Oregon, 

and Utah.  This species is found in dry, open forests, woodlands or grasslands and 

generally on predominantly south-facing slopes in the montane zone.  Fifteen survey 
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areas were visited in the Bitterroot National Forest and one new population was located 

using model output. The known occurrence accuracy for small onion was 74% (Table 7). 

Field verification found the algorithm predicted habitat appropriately in Douglas 

fir/pinegrass and subalpine fir/beargrass forested habitat types but could not differentiate 

suitable understory types.   The vegetation layer used as an input variable was too coarse 

in resolution to distinguish grassland types.   

The habitat prediction accuracy for small onion was 85% (Table 30).  Field results 

showed a 93% error of commission for unsuitable habitat.  However, the new population 

was located in an area predicted to be suitable, in classic habitat of dry, rocky, south-

facing slope with bare soil (Table 31).  Inclusion of soils attributes could help future 

refine habitat predictions for this species. 

4.16. Tapered-root Orogenia 

The distribution range for the tapered-root orogenia ranges from California 

through Oregon and into Idaho and Montana.  In the northern Rocky Mountains, it is 

known to occur on open slopes, ridges, and meadows from the lower foothills to the mid-

montane zone.  A total of nineteen areas predicted as potential habitat were surveyed. 

Three areas were visited in the Nez Perce National Forest where one new occurrence was 

found, and thirteen areas in the Bitterroot National Forest where four new occurrences 

were found.   Known occurrence accuracy for tapered-root orogenia was 84% (Table 7).  

Within the Bitterroot National Forest, the tapered-root orogenia has a broad 

amplitude of habitats ranging from grasslands, open ponderosa pine/bunchgrass to 

Douglas fir/pinegrass, and mixed conifer stands.  The model did correctly predict several 

macrohabitat types where this species is expected to be found including dry grasslands 
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and opening in ponderosa pine and Douglas fir forests.  Four new occurrence locations 

were discovered in predicted areas of the Douglas fir/pinegrass habitat type. 

One new element occurrence on the Nez Perce National Forest was found while 

surveying for Idaho Douglasia.  Like Coville Indian paintbrush, habitat predictions for 

this species in Idaho were based on known occurrences in Montana but species can occur 

in very different habitat types across their ranges.  While there was predicted habitat in 

this region, it was not where the new population was found.  The predicted Gower 

similarity values for pixels where the new occurrence was found ranged from 40 to 43.  

This was quite different than the similarity values which defined suitable habitat.  Values 

which defined ‘most likely’ threshold ranged from 94 to 99, while values in the ‘likely’ 

threshold ranged from 81 to 84.  The population located was a new state record for Idaho 

and extends the known geographic range of the species according to ICDC and 

NatureServe records (IFG, 2007).  This new occurrence in Idaho changes our 

understanding of this species’ habitat requirements and will help to refine future 

predictions of potential habitat. 

The broad range of habitat types in which this species is known to occur made it 

somewhat difficult to model.  Areas predicted as suitable by the model included different 

habitats and lower elevations compared to where it was found.  It is evident that the 

algorithm did not adequately capture the species’ biophysical envelope. The habitat 

prediction accuracy of survey sites was 48% (Table 32).  This could explain why errors 

of omission and commission were extremely high for unsuitable habitat (70% and 73% 

respectively).  Further research on the species’ habitat requirements, and introducing 

additional environmental parameters, could help refine predictions.  New occurrences 
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were located within suitable habitat in half the pixels visited; this resulted in a 50% error 

of omission rate which indicates that a great deal of suitable habitat pixels was not 

classified accurately (Table 33). 
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5. DISCUSSION AND FUTURE RESEARCH  

The method of evaluation was based on a multi-layered approach: (1) percentage 

of known occurrences within defined thresholds, referred to as the known occurrence 

accuracy, (2) habitat prediction accuracy of the algorithm based on field assessment, and 

(3) percentage of new occurrences found within predicted areas.  Field evaluation of the 

habitat assessment by expert field botanists provided insight and valuable information on 

modeling rare species.  The modeling process also revealed algorithm strengths and 

weaknesses. 

Some plants lend themselves well to the biophysical envelope model approach.  

Several species had high known occurrence accuracies in which most of the known 

occurrences fell within areas defined as ‘likely’ and ‘most likely’ potential habitat.  These 

species include Constance’s bittercress, Pacific dogwood, and short-styled columbine.  

More than two thirds of the species (16 of 21) had overall accuracy values ranging from 

83% to 98% (Table 7), including broad-fruit mariposa, clustered lady’s slipper, evergreen 

kittentail, Hall’s rush, hollyleaf clover, Howell’s gumweed, Idaho Douglasia, Idaho 

strawberry, Payson’s milkvetch, puzzling halimolobos and tapered-root orogenia.  This 

method was close to the hypothesized estimate that this approach would be able to predict 

habitat correctly at 85% accuracy for known occurrences for more than one-half of the 

species.  Twelve of 21 species had accuracies of 85% or greater. 

 After examining the Gower metric values of known occurrences outside the 

thresholds defining potential habitat, it became clear that extending the threshold values 

to include the highest 10% or 15% would increase overall prediction accuracies for some 

species.  For example, Idaho Douglasia and Idaho strawberry had one known occurrence 
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that did not fall within potential predicted habitat.  The Gower similarity values at these 

locations were close to the threshold cutoff values for areas defined as ‘likely’ habitat.  

Therefore, extending threshold values would improve known occurrence accuracy and 

presumably habitat predictions.  Lemhi beardtongue had the lowest known occurrence 

accuracy at 43% (Table 7).  More research about Lemhi beardtongue’s habitat 

requirements and associated environmental variables is needed.  For this species, 153 

known occurrences were inputted into the model, which would raise the expectation that 

predicted habitat would be well defined.  However, the model did not adequately define 

its environmental envelope.  Figure 8 displays the number of found element occurrences 

verses the number of known input element occurrences used in the model.  As presented 

in the graph, species with large sets of known element occurrence records used as inputs 

did not necessarily increase the chance of finding new occurrence records.  For instance 

Idaho Douglasia, which had the most new records located, had the least number of known 

element occurrence records (Table 7).   

Field assessment of predicted habitat showed Pacific dogwood was predicted best, 

with habitat prediction accuracy of 91% (Table 26); clustered lady’s slipper and small 

onion shared the second highest classification accuracy of 85% (Table 10; Table 30).  

These species are associated with macrohabitat types which the algorithm distinguished 

across the landscape using the seven input variables.  The botanist found that the 

predicted habitat was usually suitable on the ground and all new occurrence records for 

these species were found in predicted habitat.   

On the other hand, the predicted habitat for several species was found to be 

inaccurate or overestimated.   Misclassification of suitable and unsuitable habitat is 
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inevitable in any habitat modeling procedure and sources of error may be caused by 

inherent problems in the modeling process or complications arising from an organism’s 

ecology (Luck, 2002).   Some of these pitfalls include: microhabitat associations not 

adequately resolved, inadequate environmental parameters used as input, or an 

unpredictable distribution pattern due to evolutionary reasons (Skov, 2000).  Hollyleaf 

clover, Lemhi beardtongue, and puzzling halimolobos had the lowest habitat 

classification accuracy, ranging from 25% to 27% (Table 18; Table 24; Table 29).  

Hollyleaf clover has a geographical limitation due to unknown ecological reasons that led 

to an over prediction of habitat.  Lemhi beardtongue and puzzling halimolobos had low 

habitat classification accuracies most likely due to inadequate environmental variables 

used as input.  These species have an affinity towards disturbed habitats in early seral 

stages of succession.  No layer describing these variables was included and thus 

biophysical envelopes for these species were inadequate.    

The biophysical envelope was calculated at a 60 × 60 m scale over a substantial 

region, making it virtually impossible to identify microhabitat variations and accurately 

assess site suitability for some plant species.  A number of species that were associated 

with microhabitat types had poor habitat classification accuracies.  These species include: 

Howell’s gumweed, Hall’s rush, Idaho strawberry, and Payson’s milkvetch.  Technical 

limitations prevented microhabitats from being described and measured on a regional 

scale.  Species with microhabitat associations should be modeled at the forest level using 

15 × 15 m pixel size.  However, modeling at the forest level would result in a 

compromise in the number of known occurrences used as model inputs as well as size of 

the study area.  Suggestions for future research include prescreening for marcohabitat 
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verses microhabitat associations, as well as species with affinities for disturbance and 

early successional stages, and model accordingly at the appropriate scale.  These species 

may occur across a wide variety of habitat types and should only be modeled when GIS 

layers describing these factors are included.   

Habitats for Coville Indian paintbrush, Idaho Douglasia, Lemhi beardtongue, and 

small onion were not adequately predicted.  The development of a habitat model should 

always rely on the understanding of the ecology of the species (Wu and Smeins, 2000).  

Variables for this study were chosen based on available datasets and consistency across 

the region and were not tailored to specific species habitat requirements.  Because these 

plants species are rare, quite often botanists are not aware of their specific habitat 

requirements beyond the very general.  The algorithm seemed to be selecting the 

appropriate overstory habitats but did not accurately distinguish differences in understory 

microhabitats.  Since the layers were analyzed by the algorithm at a 60 × 60 m pixel size, 

it may be that there was not enough variation to differentiate past broad habitat 

requirements.  Future efforts could employ procedures for variable selection, such as 

principal components analysis (PCA).  A PCA of all variable values in the study area will 

indicate which variables explain the most variation and which variables are inter-

correlated for each species. 

Other species were inaccurately predicted due to lack of available data at a 

regional scale.  This included broad-fruit mariposa, tapered-root orogenia, evergreen 

kittentail, and hollyleaf clover.  These species all have a high affinity for certain soil 

types not included as environmental variables in the algorithm.  Soil parameters could not 

be included due to a lack of complete data within National Forest System lands across the 
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study area.  For all four species, the lack of consistent regional soils datasets was a 

limiting factor in estimating suitable habitat.  In future efforts, it may be cost effective to 

fund digitization of printed soil maps.  In addition to soils, other environmental 

parameters should be considered which could refine a species biophysical envelope such 

as: number of frost-free days, annual growing degree days, precipitation frequency 

(proportion of wet days), and evapotransporation.  

Experts also noted that certain species have specific ecological limitations 

governing where they are known to occur, which resulted in over-prediction of suitable 

habitat by the model.  Constance’s bittercress, hollyleaf clover, Idaho strawberry and 

puzzling halimolobos all have ecological limits.  Some of these factors remain unknown 

while others are due to a specific soil type or river corridor.  These ecological and 

geographic limitations should be investigated further and included in subsequent efforts.  

However, using the model to identify geographic areas outside the known range and 

surveying within these areas should be pursued because the known range might be 

extended for the species.  This could be done for all four of these species. 

A number of additional potential pitfalls that may affect the accuracy of a 

presence-only model must be considered.  First, occurrence records may be biased.  They 

are often correlated with the nearby presence of roads, rivers, or other access conduits 

(Reddy and Davalos, 2003).  The location of occurrence records may also be limited to 

one region (e.g., specimens collected from several near-by locations in a restricted area) 

which may result in the perception that they grow under certain conditions when other 

areas were simply not examined.  Similarly, mapping intensity and sampling methods 

often vary widely across a study area.   In addition, errors may exist in occurrence data 
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due to transcription error or species misidentification.  Selected environmental variables 

may not be sufficient to describe all the parameters of species habitat requirements.  

Finally, errors may be included within predictor variables themselves, perhaps due to data 

manipulation, inaccuracies in the generation of the environmental layers, or interpolation 

of lower-resolution data (Phillips et al., 2006).    

DOMAIN offers advantages over similar methods in its ability to operate 

effectively using presence-only records and a limited number of biophysical attributes.  

The graded nature of habitat similarity scores can facilitate the use of the DOMAIN 

model as a prioritization tool through the use of the user-defined thresholds required to 

obtain predictions of occurrence.  The model is user friendly and can easily be 

represented as a prediction map within a GIS.  Another major advantage in terms of rare 

plant modeling is that this algorithm is known to perform well with small sample sizes of 

occurrence data.   

However, as with all modeling procedures, DOMAIN does have its limitations.  

One disadvantage is that it does not address potential correlations and interactions among 

environmental variables.  All environmental predictors are given equal weight.  In 

addition, there is no way to investigate the influence each environmental predictor 

actually has on the species’ distribution pattern.  Lastly, there is no procedure for variable 

selection other than the layers included as inputs. 
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6. CONCLUSION 

A prerequisite to developing a strategy for the conservation of rare plant species is 

an understanding of the habitats in which the populations of the species occur (Wiser et 

al., 1998).  In this study, the goal was to predict the distribution of habitats for rare 

species for which limited ecological information is available.  Additionally, because these 

are rare plants, it was important to locate new occurrences to enhance knowledge of their 

habitat requirements.   With 44 new populations located and two new state occurrence 

records for Idaho, results demonstrate the DOMAIN biophysical approach proved to be a 

simple, efficient technique for predicting rare plant potential habitat at a broad-scale.  The 

algorithm predicted habitat well for some species but for others further refinement of 

input variables is needed.   Implementing this procedure at the Forest level could improve 

habitat predictions, aid botanists in locating new plant occurrences, and become a useful 

tool in the management of rare plant and animal species.  This study was an initial 

attempt to predict habitat for rare plants within Region One and is the beginning of an 

iterative procedure whereby the development, validation, refinement and re-validation of 

this algorithm, or other presence-only modeling techniques, will continue until consistent 

patterns of habitat use are identified.   

The biophysical envelope procedure explored in this study demonstrates that 

opportunistically-collected occurrence data can produce usable predictions of species 

distribution over a large region.  This conclusion is supported by other studies as well 

(e.g., Elith et al., 2006 and Phillips et al., 2006).  The DOMAIN algorithm provided a 

simple method to incorporate limited occurrence data and environmental predictor 

variables to predict potential habitat across a landscape.  This method can be utilized for 
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both common and rare species to increase knowledge of species habitat requirements, 

assist botanists in efficient field sampling efforts during project work, and help 

conservation managers in decision making and project evaluation.    

A broad-scale habitat-based approach to conservation assessment has associated 

benefits.  By identifying locations of potential habitat for rare species using 

environmental factors, measures can be taken for their management and protection.  The 

complexity of nature and, in particular, the variation of species interactions and their 

environment, make habitat prediction a difficult task.  DOMAIN provides a useful choice 

for potential habitat mapping, and it is particularly well-suited to applications where 

available site location records or environmental data are limited.   

These predictions are not intended as substitutes for field survey and should not 

provide the sole basis for management decisions.  Rather, they should be used as 

spatially-explicit predictions on the distribution of the target species based on current 

knowledge of occurrence in the region.  As with all models, the predictions are 

approximations of the true distribution of each species rather then a direct mapping.  

Predictive habitat maps must be tested rigorously in the field to identify methodological 

flaws, incorrect assumptions, and faulty input data so that future iterations can be 

improved.  Plant and animal distributions are dynamic in both space and time 

necessitating careful interpretation, re-evaluation, and updating of range maps as new 

information becomes available. 
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Table 1.  Brief description of physiographic, vegetative, and climatic characteristics for each forest located 

within the study area.  Descriptions are based upon Bailey’s (1993) ecological sections and species 

scientific nomenclature follows the USDA Plants Database listings (USDA, 2008).   

   

 Beaverhead-Deerlodge NF Bitterroot NF Nez Perce NF 

 

 

Physiography 

High, steep mountains, 

glacial and fluvial valleys, 

and alluvial terraces and 

flood plains.  Elevation 

ranges from 2,500 to 6,500 ft 

(763 to 1,983 m) in valleys to 

4,000 to 10,000 ft (1,220 to 

3,000 m) in the mountains. 

High glaciated mountains 

with alpine ridges and 

lacustrine basins at lower 

elevations.  Elevation ranges 

from 2,500 to 6,000 feet (763 

to 2,440 m) in basins to 3,000 

to 10,000 ft (915 to 3,000 m) 

in the mountains. 

Large U-shaped valleys 

extending to mountains 

with alpine ridges and 

cirques.  Elevation 

ranges from 3,000 to 

10,000 ft (900 to 

3,000 m). 

Vegetation Sagebrush steppe with small 

areas of alpine vegetation 

above 9,500 ft (2,880 m), and 

Douglas fir forest in 

elevations 1,000 to 1,500 ft 

(300 to 450 m).  Typical 

steppe species include big 

sagebrush (Artemisia 

tridentate Nutt.), fescues, 

wheatgrass (Agropyron 

Gaertn.), and needlegrass 

(Achnatherum P. Beauv.).  

Douglas fir, limber pine 

(Pinus flexilis James), and 

lodgepole pine are common 

tree species. 

Douglas fir, western larch 

(Larix occidentalis Nutt.), 

subalpine fir (Abies 

lasiocarpa (Hook.) Nutt.), 

and ponderosa pine.  Lower 

valleys are dominated by 

bluebunch wheatgrss 

(Pseudoroegneria spicata 

(Pursh) A. Löve), Idaho 

fescue (Festuca idahoensis 

Elmer), and rough fescue 

(Festuca campestris Rydb). 

Common tree species 

include grand fir (Abies 

grandis (Douglas ex D. 

Don) Lindl.), Douglas 

fir, Engelmann spruce 

(Picea engelmannii 

Parry ex Engelm.), and 

ponderosa pine. 

Climate Precipitation ranges from 10 

to 15 in (250 to 1,270 mm).  

Winters are cold, and 

growing season conditions 

are dry.  Soil moisture is not 

sufficient for tree growth on 

some south and west aspects 

below timberline; hence, 

grasslands often extend from 

the valley to mountain tops.  

Climate is cold dry 

continental.  Temperature 

averages 36 to 46°F (2 to 

8°C). 

Precipitation ranges from 14 

to 80 in (360 to 2,030 mm).  

Climate is cool temperate 

with some maritime 

influence.  Temperature 

averages 36 to 46°F (2 to 

8°C). 

Precipitation ranges 

from 20 to 80 in (510 to 

2,030 mm).  Maritime-

influenced, cool 

temperatures ranging 

from 35 to 46°F (2 to 

7ºC) with dry summers. 
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Table 2.  Species used for habitat prediction, including the state status, the global and state rank, and 

number of occurrences used as input. Species scientific nomenclature follows the USDA Plants Database 

listings (USDA, 2008), common names follow state natural heritage lists (MNHP, 2006; IFG, 2007).  

Species designated with two ranks are assessed as agreeing with both ranking classifications. 

Species  State 

Listed 

Global 

Rank 

State 

Rank 

Number of  

Occurrences 

Broad-fruit mariposa (Calochortus nitidus 

Dougl.) 

ID G3 S3 261 

Tapered-root orogenia (Orogenia fusiformis S. 

Wats.) 

MT G5 S2 69 

Clustered lady’s slipper (Cypripedium 

fasciculatum Kellogg ex S. Wats.)   

ID/MT G4 S3/S2 81 

Constance’s bittercress (Cardamine constancei 

Detling) 

ID G3 S3 74 

Coville Indian paintbrush (Castilleja 

covilleana Henderson) 

MT G3G4 S2 86 

Evergreen kittentail (Synthyris platycarpa Gail 

& Pennell) 

ID G3 S3 83 

Hall’s rush (Juncus hallii Engelm.) MT G4G5 S2 24 

Hollyleaf clover (Trifolium gymnocarpon 

Nutt.) 

MT G5 S2 47 

Howell’s gumweed (Grindelia howellii 

Steyermark) 

MT G3 S2S3 100 

Idaho Douglasia (Douglasia idahoensis D. 

Henderson) 

ID G2 S2 20 

Idaho strawberry (Waldsteinia idahoensis 

Piper) 

ID G3 S3 45 

Jove’s buttercup (Ranunculus jovis A. Nels.) MT G4 S2 27 

Lemhi beardtongue  

(Penstemon lemhiensis (Keck) Keck & 

Cronq.) 

MT G3 S3 153 

Missoula phlox (Phlox kelseyi var. 

missoulensis Wherry) 

MT G2 S2 25 

Northern rattlesnake-plantain  

(Goodyera repens (L.) R. Br. Ex Ait. F.) 

MT G5 S2S3 133 

Pacific dogwood (Cornus nuttallii Audubon ex 

Torr. & Grey) 

ID G5 S1 99 

Payson’s milkvetch (Astragalus paysonii 

(Rydb.) Barneby) 

ID G3 S3 190 

Puzzling halimolobos  

(Halimolobos perplexa (Henerson) Rollins 

var. perplexa) 

ID G4 S3 42 

Sapphire rockcress (Arabis fecunda Rollins) MT G2 S2 43 

Short-styled columbine (Aquilegia brevistyla 

Hook.) 

MT G5 S2 47 

Small onion (Allium parvum Kellogg) MT G5 S2S3 102 
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Table 3.  List of the major geologic parent materials attributed in the Region One Land-type Association 

layer. 

 

Land-type Association- 

Geologic Parent Material 

Alluvium 

Alluvium, deltaic sediments 

Gneiss, schist 

Granitics 

Granitics, highly weathered 

Granitics, weakly weathered 

Loess 

Mixed geology 

Metasediments 

Metasediments, glacial till 

Quartzite, calc-silicates 

Carbonates 

Shale, siltstone, sandstone 

Soft sedimentary 

Sandstone, shale 

Tertiary sediments 

Volcanics 

Wind deposited sediments 
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Table 4.  Reclassification table for VMAP and SILC3 vegetation cover grids.  The grids were reclassified 

to obtain a consistent vegetation layer for the study area.  Species scientific nomenclature follows the 

USDA Plants Database listings (USDA, 2008).    

 

VMAP SILC3 Reclassification 

Very low cover grassland 

Low/moderate cover 

grassland 

Grass/forb dominated 

 

Moderate/high cover 

grassland 

Grassland 

Shrub dominated Mesic shrub Mesic shrub 

 Sagebrush/xeric shrublands Xeric shrub 

Aspen (Populus 

tremuloides Michx.) 

 

Mixed broadleaf/ 

cottonwood forest 

Broadleaf forest 

 

Ponderosa pine Ponderosa pine Ponderosa pine 

Douglas fir Douglas fir Douglas fir 

Western larch Western larch Western larch 

Lodgepole pine Lodgepole pine Lodgepole pine 

Subalpine fir 

Engelmann spruce 

Subalpine fir/spruce 

 

Subalpine fir/ 

Engelmann spruce 

Western red cedar  Western red cedar 

Mountain hemlock (Tsuga 

mertensiana (Bong.) Carriére) 

Whitebark pine (Pinus 

albicaulis Engelm.) 

Whitebark pine/ 

mountain hemlock 

Shade-intolerant mixed conifer Mixed xeric conifer forest Shade-intolerant mixed 

conifer 

Shade-tolerant mixed conifer 

(subalpine fir, Engelmann spruce, 

mountain hemlock) 

Mixed upper subalpine 

conifer forest 

Shade-tolerant mixed 

conifer (subalpine fir, 

Engelmann spruce, 

mountain hemlock) 

Shade-tolerant mixed conifer (grand 

fir, western red cedar) 

Mixed lower subalpine 

conifer forest 

Shade-tolerant mixed 

conifer (grand fir, 

western red cedar) 

Rocky mountain juniper 

(Juniperus scopulorum 

Sarg.) 

 

Limber pine 

Rocky mountain 

juniper/limber pine 

 Douglas fir/lodgepole pine Douglas fir/lodgepole 

pine 

 Douglas fir/ponderosa pine Douglas fir/ponderosa 

pine 

 Burned area Burned area 

 Water Water 

 Rock Rock 

Mines/quarries 

Urban or developed lands 

Agriculture-dry 

Agriculture-irrigated 

Snow 

Cloud 

 

Cloud shadow 

Non-vegetated 
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Table 5.  Species surveyed within each National Forest. 

 

Beaverhead-Deerlodge NF Bitterroot NF Nez Perce NF 

Tapered-root orogenia Tapered-root orogenia Broad-fruit mariposa 

Coville Indian paintbrush Coville Indian paintbrush Tapered-root orogenia 

Hall’s rush Hall’s rush Clustered lady’s slipper 

Hollyleaf clover Hollyleaf clover Constance’s bittercress 

Jove’s buttercup Howell’s gumweed Coville Indian paintbrush 

Lemhi beardtongue Lemhi beardtongue Evergreen kittentail 

Missoula phlox Northern rattlesnake- plantain Idaho Douglasia 

Sapphire rockcress Short-styled columbine Idaho strawberry 

 Small onion Pacific dogwood 

  Payson’s milkvetch 

  Puzzling halimolobos 
 

Table 6.  Macrohabitat types of Region One (USDAFS Geospatial Group, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Macrohabitat Types 

Grand fir Lodgepole pine 

Subalpine fir Ponderosa pine 

Grassland/shrub dominated Douglas fir 

Western larch Western red cedar 

Engelmann spruce Mountain hemlock 
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Table 7.  The number of new element occurrences located through field surveys, known occurrence 

accuracy (percentage of known EO that fell within predicted habitat), and amount of predicted habitat in 

both ‘likely’ and ‘most likely’ thresholds by Forest.   
 

Acreage (Hectares) of Potential 

Predicted Habitat 

 

 

Species 

 

 

New  

Occurrences 

 

Known 

Occurrence  

Accuracy 
Nez Perce NF Bitterroot NF 

Broad-fruit mariposa 2 95% 304,173 (123,094) 13,068 (5,288) 

Tapered-root orogenia 5 84% 67,624 (27,366) 258,823 (104,741) 

Clustered lady’s slipper 2 88% 542,224 (219,430) 24,767 (10,022) 

Constance’s bittercress 0 100% 552,866 (223,736) 13,425 (5,432) 

Coville Indian 

paintbrush 

11 67% 75,823 (30,684) 225,597 (91,295) 

Evergreen kittentail 4 83% 586,778 (237,460) 17,978 (7,275) 

Hall’s rush 0 83% 4,964 (2,008) 52,690 (21,322) 

Hollyleaf clover 0 83% 5,539 (2,241) 63,393 (25,654) 

Howell’s gumweed 0 90% 2,145 (868) 62,776 (25,404) 

Idaho Douglasia 16 95% 179,061 (72,463)  237,956 (96,297) 

Idaho strawberry 1 98% 531,617 (215,137) 41,361 (16,738) 

Jove’s buttercup Not surveyed 96% 557 (225) 7,279 (2,945) 

Lemhi beardtongue 1 43% 3,391 (1,372) 71,542 (28,952) 

Missoula phlox Not surveyed 52% 1,478 (598) 15,954 (6,456) 

Northern rattlesnake-

plantain 

Not surveyed 89% 11,287 (4,567) 82,700 (33,467) 

Pacific dogwood 1 100% 552,866 (223,736) 13,425 (5,432) 

Payson’s milkvetch 0 92% 596,401 (241,354) 12,520 (5,066) 

Puzzling halimolobos  0 83% 385,235 (155,899) 130,160 (52,673) 

Sapphire rockcress Not surveyed 76% 196 (79) 24,486 (9,909) 

Short-styled columbine Not surveyed 100% 100 (40) 108,749 (44,009) 

Small onion 1 74% 26,950 (10,906) 231,776 (93,796) 
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Table 8.  Results from field verification of predicted habitat for broad-fruit mariposa.  Table shows the 

number of pixels as assessed by the botanist.   

 

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  38 2 0 40 

Unsuitable 9 4 0 13 F
o

u
n

d
 

H
ab

it
at

 
Total 53 0 53 

Habitat Prediction Accuracy = 40/53 = 75.5% 

Error of Commission   Error of Omission 

Suitable = (13/53) = 25%        Suitable = (0/40) = 0% 

Unsuitable = (0/0) = 0%   Unsuitable = (0/13) = 0% 

 

Table 9.  The table presents predicted occurrence vs. found occurrence for broad-fruit mariposa.  

  

Predicted Occurrence 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  18 0 0 18 

Unsuitable 0 0 0 10 F
o

u
n

d
 

O
cc

u
rr

en
ce

 

Total 18 0 18 

New occurrence accuracy = 18/18 = 100% 

Error of Commission   Error of Omission 

Suitable = (18/18) = 0%        Suitable = (18/18) = 0% 

Unsuitable = (0/0) = 0%   Unsuitable = (0/0) = 0% 

 

 

Table 10.  Results from field verification of predicted habitat for clustered lady’s slipper.  Table shows the 

number of pixels as assessed by the botanist. 

   

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  156 53 27 236 

Unsuitable 9 0 0 9 F
o

u
n

d
 

H
ab

it
at

 

Total 218 27 245 

Habitat Prediction Accuracy = 209/245 = 85% 

Error of Commission   Error of Omission 

Suitable = (9/218) = 4%        Suitable = (27/236) = 11% 

Unsuitable = (0/27) = 0%   Unsuitable = (9/9) = 100% 
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Table 11.  The table presents predicted occurrence vs. found occurrence for clustered lady’s slipper.   

 

Predicted Occurrence 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  2 1 0 3 

Unsuitable 0 0 0 0 F
o

u
n

d
 

O
cc

u
rr

en
ce

 
Total 3 0 3 

New occurrence accuracy = 3/3 = 100% 

Error of Commission   Error of Omission 

Suitable = (0/3) = 0%         Suitable = (0/3) = 0% 

Unsuitable = (0/0) = 0%   Unsuitable = (0/0) = 100% 

 

 

Table 12.  Results from field verification of predicted habitat for Constance’s bittercress.  Table shows the 

number of pixels as assessed by the botanist. 

   

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  114 76 12 202 

Unsuitable 27 59 5 91 F
o

u
n

d
 

H
ab

it
at

 

Total 276 17 293 
Habitat Prediction Accuracy = 195/293 = 67% 

Error of Commission   Error of Omission 

Suitable = (86/276) = 31%        Suitable = (12/202) = 6% 

Unsuitable = (12/17) = 71%  Unsuitable = (86/91) = 95% 

 

Table 13.  Results from field verification of predictive habitat for Coville Indian paintbrush.  Table shows 

the number of pixels as assessed by the botanist.   

   

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  89 44 158 291 

Unsuitable 100 30 50 180 F
o

u
n

d
 

H
ab

it
at

 

Total 263 208 471 

Habitat Prediction Accuracy = 183/471 = 39% 

Error of Commission   Error of Omission 

Suitable = (130/263) = 49%        Suitable = (158/291) = 54% 

Unsuitable = (158/208) = 76%  Unsuitable = (130/180) = 72% 
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Table 14.  The table presents predicted occurrence vs. found occurrence for Coville Indian paintbrush.   

   

Predicted Occurrence 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  6 2 33 41 

Unsuitable 0 0 0 0 F
o

u
n

d
 

O
cc

u
rr

en
ce

 
Total 8 33 41 

New occurrence accuracy = 8/41 = 20% 

Error of Commission   Error of Omission 

Suitable = (0/8) = 0%         Suitable = (33/41) = 80% 

Unsuitable = (33/33) = 100%  Unsuitable = (0/0) = 0 

 

 

Table 15.  Results from field verification of predictive habitat for evergreen kittentail.  Table shows the 

number of pixels as assessed by the botanist. 

   

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  33 9 0 42 

Unsuitable 63 40 22 125 F
o

u
n

d
 

H
ab

it
at

 

Total 145 22 167 
Habitat Prediction Accuracy = 64/167 = 38% 

Error of Commission   Error of Omission 

Suitable = (103/145) = 71%        Suitable = (0/42) = 0% 

Unsuitable = (0/22) = 0%   Unsuitable = (103/125) = 82% 

 

Table 16.  The table presents predicted occurrence vs. found occurrence for evergreen kittentail.   

   

Predicted Occurrence 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  8 6 0 14 

Unsuitable 0 0 0 0 F
o

u
n

d
 

O
cc

u
rr

en
ce

 

Total 14 0 14 

New occurrence accuracy = 14/14 = 100% 

Error of Commission   Error of Omission 

Suitable = (0/14) = 0%         Suitable = (0/14) = 0% 

Unsuitable = (0/0) = 0%   Unsuitable = (0/0) = 0% 
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Table 17.  Results from field verification of predicted output for Hall’s rush.  Table shows the number of 

pixels as assessed by the botanist. 

   

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  9 13 40 62 

Unsuitable 59 49 277 385 F
o

u
n

d
 

H
ab

it
at

 
Total 130 317 447 

Habitat Prediction Accuracy = 299/447 = 67% 

Error of Commission   Error of Omission 

Suitable = (108/130) = 83%        Suitable = (40/62) = 65% 

Unsuitable = (40/317) = 13%  Unsuitable = (108/385) = 28% 

 

Table 18.  Results from field verification of predictive habitat for hollyleaf clover.  Table shows the number 

of pixels as assessed by the botanist. 

   

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  45 48 255 348 

Unsuitable 0 0 0 0 F
o

u
n

d
 

H
ab

it
at

 

Total 93 255 348 
Habitat Prediction Accuracy = 93/348 = 27% 

Error of Commission   Error of Omission 

Suitable = (0/93) = 0%         Suitable = (255/348) = 73% 

Unsuitable = (255/255) = 100%  Unsuitable = (0/0) = 0% 

 

Table 19.  Results from field verification of predicted habitat for Howell’s gumweed.  Table shows the 

number of pixels as assessed by the botanist. 

   

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  300 78 116 494 

Unsuitable 0 0 9 9 F
o

u
n

d
 

H
ab

it
at

 

Total 378 125 503 

Habitat Prediction Accuracy = 387/503 = 77% 

Error of Commission   Error of Omission 

Suitable = (0/378) = 0%        Suitable = (116/494) = 23% 

Unsuitable = (116/125) = 93%  Unsuitable = (0/9) = 0% 
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Table 20.  Results from field verification of predicted habitat for Idaho Douglasia.  Table shows the number 

of pixels as assessed by the botanist. 

   

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  292 39 124 455 

Unsuitable 99 9 15 123 F
o

u
n

d
 

H
ab

it
at

 
Total 439 139 578 

Habitat Prediction Accuracy = 346/578 = 60% 

Error of Commission   Error of Omission 

Suitable = (108/439) = 25%        Suitable = (124/455) = 27% 

Unsuitable = (124/139) = 89%  Unsuitable = (108/123) = 88% 

 

Table 21.  The table presents predicted occurrence vs. found occurrence for Idaho Douglasia.   

   

Predicted Occurrence 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  58 9 32 99 

Unsuitable 0 0 0 0 F
o

u
n

d
 

O
cc

u
rr

en
ce

 

Total 67 32 99 

New occurrence accuracy = 67/99 = 68% 

Error of Commission   Error of Omission 

Suitable = (0/67) = 0%         Suitable = (32/99) = 32% 

Unsuitable = (32/32) = 100%  Unsuitable = (0/0) = 0% 

 

Table 22.  Results from field verification of predictive habitat for Idaho strawberry.  Table shows the 

number of pixels as assessed by the botanist. 

   

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  101 53 14 168 

Unsuitable 143 53 15 211 F
o

u
n

d
 

H
ab

it
at

 

Total 350 29 379 

Habitat Prediction Accuracy = 169/379 = 45% 

Error of Commission   Error of Omission 

Suitable = (196/350) = 56%        Suitable = (14/168) = 8% 

Unsuitable = (14/29) = 48%  Unsuitable = (196/211) = 93% 
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Table 23.  The table presents predicted occurrence vs. found occurrence for Idaho strawberry.   

   

Predicted Occurrence 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  3 0 0 3 

Unsuitable 0 0 0 0 F
o

u
n

d
 

O
cc

u
rr

en
ce

 
Total 3 0 3 

New occurrence accuracy = 3/3 = 100% 

Error of Commission   Error of Omission 

Suitable = (0/3) = 0%         Suitable = (0/3) = 0% 

Unsuitable = (0/0) = 0%   Unsuitable = (0/0) = 0% 

 

Table 24.  Results from field verification of predictive habitat for Lemhi beardtongue.  Table shows the 

number of pixels as assessed by the botanist. 

   

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  72 19 272 363 

Unsuitable 0 0 0 0 F
o

u
n

d
 

H
ab

it
at

 

Total 91 272 363 

Habitat Prediction Accuracy = 91/363 = 25% 

Error of Commission   Error of Omission 

Suitable = (0/91) = 0%         Suitable = (272/363) = 75% 

Unsuitable = (272/272) = 100%  Unsuitable = (0/0) = 0% 

 

Table 25.  The table presents predicted occurrence vs. found occurrence for Lemhi beardtongue.   

   

Predicted Occurrence 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  0 0 2 2 

Unsuitable 0 0 0 0 F
o

u
n

d
 

O
cc

u
rr

en
ce

 

Total 0 2 2 

Predicted Occurrence Accuracy  = 0/2 = 0% 

Error of Commission   Error of Omission 

Suitable = (0/0) = 0%         Suitable = (2/2) = 100% 

Unsuitable = (2/2) = 100%   Unsuitable = (0/0) = 0% 
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Table 26.  Results from field verification of predicted output for Pacific dogwood.  Table shows the number 

of pixels as assessed by the botanist. 

   

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  101 132 17 250 

Unsuitable 4 3 0 7 F
o

u
n

d
 

H
ab

it
at

 
Total 240 17 257 

Habitat Prediction Accuracy = 233/257 = 91% 

Error of Commission   Error of Omission 

Suitable = (7/240) = 3%        Suitable = (17/250) = 7% 

Unsuitable = (17/17) = 100%  Unsuitable = (7/7) = 100% 

 

Table 27.  The table presents predicted occurrence vs. found occurrence for Pacific dogwood.   

   

Predicted Occurrence 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  1 0 0 1 

Unsuitable 0 0 0 0 F
o

u
n

d
 

O
cc

u
rr

en
ce

 

Total 1 0 1 

New occurrence accuracy  = 1/1 = 100% 

Error of Commission   Error of Omission 

Suitable = (0/1) = 0%         Suitable = (0/1) = 0% 

Unsuitable = (0/0) = 0%   Unsuitable = (0/0) = 0% 

 

Table 28.  Results from field verification of predictive habitat for Payson’s milkvetch.  Table shows the 

number of pixels as assessed by the botanist. 

   

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  114 64 9 187 

Unsuitable 147 41 0 188 F
o

u
n

d
 

H
ab

it
at

 

Total 366 9 375 

Overall = 178/375 = 47% 

Error of Commission   Error of Omission 

Suitable = (188/366) = 51%        Suitable = (9/187) = 5% 

Unsuitable = (9/9) = 100%   Unsuitable = (188/188) = 100% 
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Table 29.  Results from field verification of predictive habitat for puzzling halimolobos.  Table shows the 

number of pixels as assessed by the botanist. 

   

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  0 0 0 0 

Unsuitable 81 46 49 176 F
o

u
n

d
 

H
ab

it
at

 
Total 127 49 176 

Habitat Prediction Accuracy = 49/176 = 28% 

Error of Commission   Error of Omission 

Suitable = (127/127) = 100%        Suitable = (0/0) = 0% 

Unsuitable = (0/49) = 0%   Unsuitable = (127/176) = 72% 

 

Table 30.  Results from field verification of predictive habitat for small onion.  Table shows the number of 

pixels as assessed by the botanist. 

   

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  135 50 137 322 

Unsuitable 16 1 17 28 F
o

u
n

d
 

H
ab

it
at

 

Total 202 148 350 
Habitat Prediction Accuracy = 209/245 = 85% 

Error of Commission   Error of Omission 

Suitable = (17/202) = 8%        Suitable = (137/322) = 43% 

Unsuitable = (137/148) = 93%  Unsuitable = (17/28) = 61% 

 

Table 31.  The table presents predicted occurrence vs. found occurrence for small onion. 

 

Predicted Occurrence 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  1 0 0 1 

Unsuitable 0 0 0 0 F
o

u
n

d
 

O
cc

u
rr

en
ce

 

Total 0 0 1 

New occurrence accuracy = 1/1 = 100% 

Error of Commission   Error of Omission 

Suitable = (0/0) = 0%         Suitable = (0/1) = 0% 

Unsuitable = (0/0) = 0%   Unsuitable = (0/0) = 100% 
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Table 32.  Results from field verification of predicted habitat for tapered-root orogenia.  Table shows the 

number of pixels as assessed by the botanist. 

   

Predicted Habitat 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  154 33 139 326 

Unsuitable 98 21 52 171 F
o

u
n

d
 

H
ab

it
at

 
Total 306 191 497 

Habitat Prediction Accuracy = 239/497 = 48% 

Error of Commission   Error of Omission 

Suitable = (119/306) = 39%        Suitable = (139/326) = 43% 

Unsuitable = (139/191) = 73%  Unsuitable = (119/171) = 70% 

 

Table 33.  The table presents predicted occurrence vs. found occurrence for tapered-root orogenia.  

  

Predicted Occurrence 

Suitable  

97.5% 95% 

Unsuitable 

 

Total 

 

Suitable  4 0 4 8 

Unsuitable 0 0 0 0 F
o

u
n

d
 

O
cc

u
rr

en
ce

 

Total 4 4 8 

New occurrence accuracy = 4/8 = 50% 

Error of Commission   Error of Omission 

Suitable = (0/4) = 0%         Suitable = (4/8) = 50% 

Unsuitable = (0/0) = 0%   Unsuitable = (0/0) = 0% 
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00000000: fa   ca  00  00  38  00  00  00  cc  36  00  00  6c  1f  00  00 

00000010: a4  70  3d  0a  d7  c3  5b  c0  1f  85   eb  51  b8  7e  44 40 

00000020: fc   a9  f1  d2  4d  62  40  3f   fc  a9   f1  d2  4d  62  40  3f  

00000030: 00  3c  1c  c6  04  00  00  00  00  3c  1c  c6  00  3c  1c  c6 

 

Figure 2.  Original header for DOMAIN grid file when opened within a Hex Editor.  Flag 

variable (byte 00000034) is automatically set to 4. 

 

  

 dem.grd 

00000000: fa   ca  00  00  38  00  00  00  cc  36  00  00  6c  1f  00  00 

00000010: a4  70  3d  0a  d7  c3  5b  c0  1f  85   eb  51  b8  7e  44 40 

00000020: fc   a9  f1  d2  4d  62  40  3f   fc  a9   f1  d2  4d  62  40  3f  

00000030: 00  3c  1c  c6  00  00  00  00  00  3c  1c  c6  00  3c  1c  c6 

 

 landtype.grd 

00000000: fa   ca  00  00  38  00  00  00  cc  36  00  00  6c  1f  00  00 

00000010: a4  70  3d  0a  d7  c3  5b  c0  1f  85   eb  51  b8  7e  44 40 

00000020: fc   a9  f1  d2  4d  62  40  3f   fc  a9   f1  d2  4d  62  40  3f  

00000030: 00  3c  1c  c6  02  00  00  00  00  3c  1c  c6  00  3c  1c  c6 

 

 Figure 3.  Using a Hex Editor the flag variables were set to the proper values, continuous 

data the flag is set to 0, and categorical data the flag is set to 2.
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Figure 5.  Map of predicted habitat in the Bitterroot National Forest for 

Coville Indian paintbrush. 
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Predictive Model Field Site Form 

 

Date: 

 

National Forest: 

 

Surveyor (s): 

 

 

Target rare plant species: 

 

 

Location data (GPS coordinates):   

 

 

Presence/Absence data: 

 

 Was habitat present for any target species?  If yes, briefly describe the habitat. 

 

 

 Were any rare plant populations located?  If yes, which species? 

 

  

 

Biophysical features of survey area: 

 

 Briefly describe primary habitat (dominant/co-dominant species):  

 

  

 

 

 

Presence of microsites as inclusions within the primary habitat? 

 (Please circle any that are present) 

 

riparian swales, riparian seeps, rock outcrops, canyon walls, footslopes, disturbed 

sites, bare soil sites, recently burned areas, roadside habitat 

 

Other microsites (please list):   

  
Figure 8.  Predictive model site evaluation form used during field verification of model 

predictions. 
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New Element Occurrences vs. Number of Input Element 
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Figure 9.  Number of new element occurrence vs. the number of element occurrences 

used as input into the model.  

 


