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1. INTR~DLJCTI~N 

The basic aim of this paper is to extend classical results on the boundary 
behavior of harmonic functions in R T + ’ = ((x, .v): x E R m, .JJ E IF!, .r > 0) to 
domains D of as general a type as possible. Many of our results also hold for 
solutions of uniformly elliptic equations, in divergence form, with bounded 
measurable coefficients. We begin by recalling some classical theorems and 
more recent results that form the background of our paper. 

A classical theorem of Fatou says that if U(Z) is a bounded harmonic 
function on the unit disc, 1 z / < 1, then u has non-tangential boundary values 
almost everywhere on the unit circle, S’. The same conclusion holds if 11 is 
only bounded from below. These results have a local analogue due to 
Privalov (441. In fact, if U(Z) is harmonic in the unit disc, and at each point 
e iB of a measurable subset E of the unit circle there is an CY > 0 such that 
u(z) is bounded from below on the set L’,(e”) = (z: /z] < 1.1 z - eiH 1 < 
(1 + a) dist(z, S’)}, then U(Z) has a non-tangential limit at almost every e’” 
in E, i.e., u restricted to r,(e’“) has a limit as z + eiH for any p. This local 
result was first proved using conformal mapping; thus the extension to higher 
dimensions required new ideas. 

In 1950, Calderon showed [ 71 that if u is a harmonic function on Ry ’ ‘, 
which is non-tangentially bounded at every point x of a measurable set 
Ecmm=m;+’ (. i e., such that given x E E, there exist CI, h, M such that 
]u(x)l<M for all XETi(x)= (YER:+‘:/Y--s]<(l +a)dist(Y,R”), 
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1 Y-x/ < h}), then u has a non-tangential limit at almost every s in E. In 
1962, Carleson [lo] obtained the same conclusion, but with the hypothesis 
of non-tangential boundedness replaced by non-tangential boundedness from 
below. Both proofs used a so-called sawtooth region over E, namely, 
R = U,,,: T:(x). In this region, the harmonic function II is bounded, or 
bounded from below, thus reducing the local question on a nice domain 
(T”‘+“) to a global question in the domain R, which is a Lipschitz domain. 
In Carleson’s proof, the harmonic measure (defined below (1.1)) for the 
domain R appears for the first time. Carleson’s technique played a key part 
in subsequent developments. 

Inspired, in part, by the recurring appearance of the regions R mentioned 
above, Stein 1461 posed the question of extending these results (as well as 
others) to the most general domains D “for which non-tangential behavior is 
meaningful.” In 1968 and 1970, Hunt and Wheeden [25,26] took up this 
question and proved that if D is a bounded Lipschitz domain in IF?“, and u is 
a harmonic function on D that is non-tangentially bounded from below at 
every Q in a subset E of D, then u has non-tangential limits at almost every 
point of E relative to harmonic measure. This result implies the theorem of 
Calder6n and Carleson, and its proof was based on ideas developed by 
Carleson in 1 lo]. 

One of the results of this paper is an extension of the theorem above to a 
class of domains in R” that we call non-tangentially accessible (NTA) 
domains. Their main property is that every boundary point is accessible from 
inside and outside the domain by means of non-tangential balls. We call the 
union of these twisting non-tangential balls corkscrews (see (3.1)). The boun- 
daries of these domains are not necessarily rectifiable and need not have 
tangent planes at any point. Examples of such domains are Lipschitz 
domains, Zygmund domains, and quasispheres. (See 125, (2.6); 53 ] for 
precise definitions.) Our first result is: 

(6.4) THEOREM. Let D be a bounded, non-tangential& accessible 
domain, and let u be harmonic in D. The set of points of D where II is nolt- 
tangentially bounded from below equals a.e. with respect to harmonic 
measure the set where u has a non-tangential limit. 

We now turn to a discussion of other ways of describing the boundary 
behavior of harmonic functions. The property of being non-tangentially 
bounded, or bounded from below, is of an elusive nature, and difficult to pin 
down analytically. In an effort to overcome this problem, Marcinkiewicz and 
Zygmund 1401 and Spencer 1451 showed that, in the case of the circle, u(z) 
has a nontangential limit a.e. d0 in E if and only if the area integral, 
A,(u)(e”)* = jr ,eiUj 1 Vu(x + &)I* dx dy, is finite a.e. dtI in E. Also, in 1950, 
Calderbn [8] sh;wed that if u is non-tangentially bounded on E c R”, then 
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A,(U)(X)’ = j,.ht.r) dist(X, IRm)iem IVu(x)l’ dX is finite a.e. dx in E. In 1961, 
Stein [46] obtzined the converse result, and gave applications to conjugate 
harmonic functions. 

In this paper we extend these results to NTA domains. We obtain: 

(6.6) THEOREM. Let D be a bounded, non-tangentially accessible 
domain, and let u be harmonic in D. The set of points of aD where the area 
integral of u is finite equals a.e. with respect to harmonic measure the set of 
points where u has a non-tangential limit. 

In 1978, in [ 161, Dahlberg took up the study of the area integral of a 
harmonic function, in a Lipschitz domain D contained in F?“. (See also 133 1 
for results when n = 2.) 

The area integral is defined by A,(u)’ (Q) = .(‘r,(@, dist(X, aD)‘-” 
IVu(X)I’ dX. The non-tangential maximal function is defined by N,(u)(Q) = 

SUPX~J'n(Q) b’dx)I. ’ ne of Dahlberg’s result is that N,(u) and A,(u) have 
comparable LP(aD, do) norms, 0 <p < co, where do denotes surface area of 
iiD. He accomplished this by proving so-called “good /1” inequalities between 
N,(u) and A,(u) (see [ 3 ] for the corresponding results in F!:’ ‘). A key tool 
in Dahlberg’s proof, is the fact, established by him in [ 151, that harmonic 
measure and surface measure are mutually absolutely continuous on 
Lipschitz domains; moreover, harmonic measure belongs to the 
Muckenhoupt class A ,(du) (see [ 121). Recall that a measure belongs to 
A,,(dv), where dv is a measure on ZJD, if there exist a, fl E (0, I), such that 
for all Bore1 sets E c A, A a surface ball of iiD (i.e., A is the intersection of a 
Euclidean ball with center at a boundary point, with aD), v(E)/v(A) < a * 
p(E)/p(A) < p. It was shown in [ 121 that ,U belongs to A, (dv) if and only if r 
belongs to A,(dp). 

This brings us to another source of ideas for this paper. When n = 2. the 
property that harmonic measure belongs to A,(du) holds for an even more 
general class of domains than Lipschitz, namely, chord-arc domains. A 
domain is called a chord-arc domain if it is bounded by a rectifiable Jordan 
curve C in m2. and there exists a constant M, such that for any z, . z2 in C, 
the length of the arc in C between z, and z2 of smaller diameter is less than 
M Iz, - ~~1. The A, property of harmonic measure, for chord-arc domains, 
was shown in 1936 by Lavrentiev [36], many years before the A, condition 
was systematically studied. The A, property of harmonic measure is a main 
ingredient in the proof of the theorem of Calderon [9] on the Cauchy 
integral on Lipschitz curven. A generalization, due to Coifman and Meyer 
113 1, to curves satisfying the chord-arc condition (provided the constant h2 
is sufficiently close to I), also relies on A,. Coifman and Meyer also give a 
new proof of Lavrentiev’s result, in the case when M is sufftciently close to 
1. On the other hand, it is shown in [27, 281 that if D is an Lf’ domain in 
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I?“, with p > n - 1, then harmonic measure on %D and surface measure on 
8D are mutually absolutely continuous. (An Lr domain is a domain whose 
boundary is given locally in some C” coordinate system as the graph of a 
function 4, with V# in Lp.) It is natural then to seek an analogue of the 
chord-arc domains in higher dimensions. This analogue is provided by the 
observation of Coifman and Meyer that if d’ E BMO then (-u. 4(x)). .Y E II; 
satisfies the chord-arc condition. Taking this point of view, we define BMO, 
domains in Iii” as domains whose boundaries are given locally in some C’ 
coordinate system as the graph of a function $5 with Vi E BMO. BMO, 
domains turn out to be a subclass of NTA domains. For them, we have: 

(10.1) THEOREM. Let D be a BMO, domain. Then the harmonic 
measure for D belongs to A ,% (do). 

This theorem has applications to the Dirichlet problem on BMO, domains 
(see (10.1)) and to area integral estimates generalizing those of Dahlberg. 

Before describing further results and background material, we need to give 
the precise definition of harmonic measure. Let D be any bounded domain in 
R”. Let f be defined on 8D. The upper class of functions U,. = {u; u is either 
identically $03 on D, or u is superharmonic in D, II is bounded from below, 
and lim inf,I EV u(X) >f(Q) for all Q E iiD). The lower class L, = (-u: u is 
an upper function of -f}. For any suchf, define Hf(X) = inf{u(X), u E U,}, 
the upper solution of the generalized Dirichlet problem for J Also _H(X) = 
sup{ u(X), u E L,.} is the corresponding lower solution. If I?f(X) = H’(X) for 
every X on D, and d(Hf) = 0 on D. f is called a resolutive boundary 
function. In that case, we set H!(X) = Z?f(X) = _Hf(X). Wiener [ 54 1 showed 
that every continuous real valued function on 2D is resolutive. This fact, and 
the maximum principle makes it possible to define harmonic measure. 

( 1.1) DEFINITION. The unique probability Bore1 measure on aD, denoted 
(u”, such that for all continuous functions f on iiD. Hf(X) = .J‘i,Jdw.‘, is 
called the harmonic measure of D. evaluated at X. 

(1.2) DEFINITION. A bounded domain D is called regular for the 
Dirichlet problem if, given any fE C(aD), Hf(X) E C(D), and 
Hf(Q) =f(Q) for every Q E aD. 

We note that as a consequence of Harnack’s inequality, for any X,, 
X2 E D, and any domain D, the measures w.li I and ox? are mutually 
absolutely continuous. 

(1.3) DEFINITION. Fix a point X, E D, and denote w = UJ’~~. Then, the 
kernel function K(A, Q) = (dw”/du)(Q), the Radon-Nikodym derivative, 
which exists by the previous remark. 
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A priori, K(A, Q) is only defined for almost every (w) Q, However, for 
NTA domains we have: 

(7.1) THEOREM. Let D be a bounded NTA domain. Then for Ji.ued 
A E D, K(A, Q) is a Hiilder continuous function of Q on ijD. 

This result has applications to the theory of Hardy spaces HO on NTA 
domains D. It is new even for C’ and Lipschitz domains. Fabes has also, 
independently, obtained this result for C’ domains. His proof, however, does 
not generalize to Lipschitz or NTA domains. We now explain the 
background for the applications to HP spaces. 

In 1960, in 1491, Stein and Weiss generalized, to the context of n~‘y ’ ‘. the 
classical notion of Hardy spaces of analytic functions in the unit disc. They 
defined HP(IRT” ) to be the set of vectors u = (u,,, U, ,..., u,,,) of harmonic 
functions, satisfying the generalized Cauchy-Riemann equations (these 
equations are equivalent to u = VU, U harmonic in iF!‘T’ ‘), such that the 
nontangential maximal function of u belongs to L,(Rm, dx). To each such 
vector U, they associated the trace of u, on 8?“, and denoted by H”(F!‘“) the 
set of traces. It is well known that for p > 1, HP(R”‘) = L”(lF:“‘). For in 
1970, Burkholder et al. [4 1 showed that if 0 < p < 00 and u has non- 
tangential maximal function in LO(R), then its harmonic conjugate has the 
same property. Thus,fE H”(lR) if and only if its harmonic extension u has a 
non-tangential maximal function in Lp(F). In 1972, Fefferman and Stein 
[ 21, 221 extended this result to n > 1, and showed that H’(F’“)* = BMO. the 
space of functions of bounded mean oscillation introduced by John and 
Nirenberg [ 301. This duality result led Fefferman to a further charac- 
terization of H’(Rm), in terms of atoms. An atom a is a function supported 
in a ball d. with J‘ a d-x = 0, and I~u~I,~- < l/Id 1. Fefferman showed that 
fE H’(V”‘) if and only if f= CAiai, where the a,‘~ are atoms, and 
~~~i/<+~.Coifman[ll~form=1,andLatter~35)form>lprovedthe 
corresponding result for HP(IHm), p < 1. Recently, the atomic theory of H” 
spaces has been extended to the abstract setting of spaces of homogeneous 
type. (See [ 14, 39,521.) 

The theory of HP spaces on non-smooth domains began in 133, 34 I, for 
Lipschitz domains in two dimensions. There, they were considered in the 
context of analytic functions, and the analogous of the results mentioned 
above were found. A new feature that arose in this study is that, if one takes 
the point of view of the Burkholder-Gundy-Silverstein theorem, and defines 
H’ in terms of harmonic functions whose non-tangential maximal function is 
in L I, there are two natural measures to consider, the arc length measure and 
the harmonic measure. In the first case, the dual space is not the analogue of 
BMO, but a weighted BMO space (see 134,42]), while the dual of the 
second one is BMO. Thus, Hardy spaces relative to harmonic measure are 
more natural. 
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For a higher dimensional version, denote H’(D, do) = {u: N,(U) E 
L’(dw)). (HP(D, dw) is defined analogously.) In [ 191, an atomic decom- 
position for the set off= u lcinr u E H’(D, do) as well as a duality theorem 
with BMO, for C’ domains, was proved. The atomic decomposition of 
H’(D, dw) and the BMO duality, for D merely Lipschitz, and n > 2, thus 
remained open. Other notions of H’ are studied in [ 17, 18, 33 1. 

In this paper we study H’(D, dto) for an arbitrary NTA domain D. This is 
the appropriate notion of H’ in these domains because their boundaries need 
not have a surface measure. We prove here the atomic decomposition of 
H’(D, do) and duality with BMO for any NTA domain (and hence in 
particular for any Lipschitz domain). We have: 

(8.13) THEOREM. Let D be a bounded NTA domain. Then, 
u E H’(D, do) if and onl~$ if there exists fE L’(dw), with f= x,lia,, 
Cinil < +co, suppaicdi, Jaidu=O and lla,ll, ,< I/U@,). such that 
u(X) = I,,J dw’. Moreover, H’(D, dw)* = BMO. 

We also prove that if fE L’(dco), and u(X) = !‘f dw’, then. there exists 
p,, < 1, depending only on D, such that for p. <p < 1. the H”(D, dw) norm 
of u is comparable to the inf of (C 1 Ai I”)‘@, over all decomposition off as 
C Aiai, where the aj’s are p-atoms (see (8.6) for the definition of p-atoms). 

NTA domains are closely related to the theory of quasiconformal 
mappings. In this connection, we refer to the work of Ahlfors [ 11 for n = 2. 
John [29]. Jones 13 1,32 1, and Gehring and Osgood 1241 for higher 
dimensions. 

We will now discuss some of the main methods and lemmas used in our 
paper. A key property of NTA domains is their dilation invariance. i.e., if D 
is an NTA domain contained in R”, and we dilate R”, the resulting domain 
will also be an NTA domain with the same NTA constant as D. This fact is 
exploited by means of the following geometric localization theorem. due to 
Jones 132 1: 

(3.1 1) THEOREM. If D is a bounded NTA domain, then there exists an 
r,,, depending only on D, such that for ayl Q E ?D. and r < rO, there exists 
an NTA domain l2 c D. such that B(Q, Mm’, r)T\I D c R c B(Q, Mr) f7 D. 
(Here B(Q, s) is the ball of radius s centered at Q.) Furthermore, the 
constant M in the NTA deJnition for I2 (see Section 3) is independent of Q 
and r. 

This theorem extends previous versions due to the authors in the case of 
Zygmund domains and in the case of quasispheres (see Appendix). This 
geometric localization replaces in our work, the local starshapedness of 
Lipschitz domains, which was a key ingredient in the work of Carleson, 
Hunt and Wheeden, and Dahlberg. (See [ 10, 15, 251.) 
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The main lemmas on harmonic measures that we use are the following: 

(4.8) LEMMA. If 2r ( r0 (here r,, is some jked constant that depends 
only on D), and X E D\B(Q, 2r), then IV--’ < d(A(Q, r))/ 
rnm2 1 G(A,(Q), X)1 < M, where A(Q, r) = B(Q, r) f? aD, G(X, Y) is the Green 
function of D, and A,(Q) a point in D, with M- ‘r < 1 A,(Q) - Q1 < Mr, and 
dist(A,(Q). aD) > M- ‘r (see (3.1)). 

This lemma is the generalization to NTA domains of a lemma of Dahlberg 
for Lipschitz domains [ 151. It is used to prove the doubling condition for 
harmonic measure (see below) and the boundary Harnack principle (see 
below). It is also very useful in the proof of the area integral theorem (see 
(6.6) and (9.1)). 

(4.9) LEMMA (Doubling condition). o”(A(Q, 2r)) < C,,u?‘(d(Q, r)). 

This lemma is needed (for example) in order to have the usual weak type 
(1, 1) and Lp estimates for the Hardy-Littlewood maxima1 function 
associated to the measure w. It also implies that 3D is a space of 
homogeneous type (see (8.5)). 

(4.11) LEMMA (Carleson-Hunt-Wheeden lemma). Let A = d(Q,,, r), 
r < r,,. Let A’ = A(Q, s) c A(Q,, r/2). If X E D\B(Q,, 2r), then LU’~(~~~‘(A’) = 
w~(A’)/w.~(A). (The notations are as in the first lemma stated here.) 

This lemma was proved by Carleson for sawtooth regions (see 3.3 of 
[lo]), and by Hunt and Wheeden [25, 261 for Lipschitz domains. It is the 
tool that allows us to pass from quantitative global results to quantitative 
local results, by means of iterations and geometric localization. For example, 
it allows us to deduce, from the continuity in Q of the kernel function 
K(A, Q) (5.5), its Holder continuity in Q (see (7.1)), and from the absolute 
continuity of harmonic measure with respect to surface measure on a chord- 
arc or BMO, domain, it allows us to deduce that harmonic measure belongs 
to the class A,(da) (see (10.1) and (2.1)). 

The idea of proving the lemmas above in the stated order comes from 
Caffarelli et al. 161. 

Other results which follow from the localization technique are the 
following: 

(5.1) THEOREM (Boundary Harnack principle). Let D be an NTA 
domain, and let V be an open set. For any compact set K c V, there exists a 
constant C such that for all positive harmonic functions u and v in D that 
vanish continuously on 3D (7 V, u(X,,) = v(X,) for some X, E D f7 K implies 
that CP’u(X) < v(X) < Cu(X) for all XE K n D. 
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This theorem was proved in [ 15, 55 1 for Lipschitz domains. We also 
obtain the following refinement of it, which is new even in the case of C’ and 
Lipschitz domains, and which answers a question posed by Wu. 

(7.9) THEOREM. Let D be an NTA domain, and let V be an open set. Let 
K be a compact subset of V. There exists a number a > 0, such that for all 
positive harmonic functions u and 1’ in D, that vanish continuous@ on 
?D f’ V, the function u(X)lc(X) is Hiilder continuous of order ct on K n 6. 
In particular, for every Q E K n FD. lim,Y,o(u(X)/~(X)) exists. 

Another useful result is the following: 

(5.9) THEOREM. If D is an NTA domain, then the Martin boundary of D 
is the Euclidean boundary of D. 

From the above, and the general representation theorem of Martin 1411. 
we obtain: 

(5.10) THEOREM. Let D be an NTA domain. If u is a positive harmonic 
function in D, there exists a unique positive Bore1 measure p on aD such that 
4X) = .fan K(X, Q) MQ), for X E D. 

In addition to the lemmas above, and the localization technique mentioned 
before, we use many of the techniques of [6. 10, 15. 25, 261. 

The plan of the paper is as follows: In Section 2 we explain how we were 
led to the notion of NTA domain and illustrate the localization technique. 
We also give several characterizations of NTA domains in two dimensions. 
Section 3 is devoted to the definition of NTA domains, and some geometric 
consequences of the definition. We also prove in this section that every 
Zygmund domain is an NTA domain. In Section 4 we establish the main 
lemmas on harmonic measure. Section 5 is devoted to the global boundary 
behavior of harmonic functions. We prove that if u is positive and harmonic 
in the NTA domain D, then u has non-tangential limits a.e. (CL)) on D. We 
also establish a global theorem (5.14) related to the area integral. In Section 
6 we prove the local analogue of Fatou’s theorem, as well as the local area 
integral theorem, for NTA domains. Section 7 is devoted to the study of the 
HGlder continuity properties of ratios of harmonic functions that vanish on a 
piece of the boundary. In particular, we prove here the Hijlder continuity of 
the kernel function. Section 8 is devoted to the atomic decomposition of 
H’(D, dw), duality with BMO(i?D), and results on H”(D, dw), p,, <p < 1. 
Section 9 treats Lp(dw), 1 <p < co, estimates for the area integral, as well 
as a Carleson measure characterization of BMO(BD). In Section 10 we show 
that in a BMO, domain, harmonic measure is in A&da). We also give 
applications to the Dirichlet problem in BMO, domains, with boundary data 
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in Lp(du), p sufficiently large. Section 11 deals with some further results and 
open questions. Finally, in the Appendix we give a proof of the geometric 
localization theorem (3.11) for quasispheres and Zygmund domains. In the 
case of Zygmund domains, our construction is quite delicate, but the region 
R we obtain has the additional advantage of being homeomorphic to a ball. 

2. MOTIVATION 

In this section we will describe how we were led to the notion of a 
nontangentially accessible domain and illustrate in two dimensions the idea 
of localization. We will also show that in two dimensions, a simply 
connected domain is non-tangentially accessible if and only if harmonic 
measure for the domain and its complement satisfies a doubling condition. 

We begin with a version of Lavrentiev’s theorem (see Introduction). 

(2.1) THEOREM. Let D be a simply connected chord-arc domain in the 
plane. Let w denote harmonic measure in D for some fixed point z. E D and 
let o denote arc-length of iiD. Then w E A,,(du). 

Proof: The procedure followed is to localize a global estimate of absolute 
continuity. It is interesting to note that the condition A, is just a uniform 
version of absolute continuity at every scale. 

Let R be a simply connected domain in the plane containing the unit disc, 
1 zJ < 1. Suppose that %i is rectifiable and denote arc-length measure of ;)a 
by u. Denote harmonic measure at the origin by oo. The global estimate we 
need is as follows. Let E denote Bore1 subset, E c XJ. 

(2.2) For any E > 0 there exists 6 > 0 such that a(E) < 6 implies 
cull(E) < ~~(80)). (The point is that 6 does not depend on Q.) 

Estimate (2.2) follows from [ 36, Theorem 6 1 

(2.3) 

for some absolute constant C. To prove (2.3), consider the conformal 
mapping 4 from the unit disc to 0 sending the origin to the origin. Since 
[t” ) d’(e”)l d0 = u(aQ), a crude estimate yields 

I.21 log’ j $‘(e”‘)I d0 < u(kX2)). 
.” 

Moreover, since J2 contains the unit disc, 

&I‘ log / qi’(e”)I d6 > log Iti’ > 0. 
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Thus, 

I log / d’(e”)l de > (‘r log 1 qd’(e”)l de 3 -a(?Q). 
.rn ‘IE) 0 

Hence, denoting ?j = w(E) = (1/2x) arc-length (4 -l(E)), 

Consequently, q < (a(PJ2) + 11 log ?/)/I log u(E)I. and (2.3) follows if we recall 
that 11 < 1. 

Denote a disc of radius r and center Q by B(Q. r). The version of the 
geometric localization required is: 

(2.4) LEMMA. Let D be a chord-arc domain. There exists r,, such that 
for aql r < r,, and any Q E iiD, there is a simply connected domain 0 such 
that 

B(Q,r)nDcncB(Q.Mr)nD. 

Furthermore, a(?fi) < Mr and there is a point A of R whose distance from 
?a exceeds M ‘r. (M depends on!v on the chord-arc constant of D.) 

A chord-arc domain is a quasicircle (see ( 1. 37 j) and hence an NTA 
domain. It follows that one can construct 0 with all the properties above 
except possibly the bound on u(K)). (See (3.11), (A.3).) In fact, one can 
even Grange that the length of c?~\?D is bounded by a multiple of r. This is 
an easy exercise using the fact that D is an NTA domain. Finally, the chord- 
arc condition implies that u(ZJ n ?D) is bounded by a multiple of r. 

The fact that a chord-arc domain is an NTA domain also implies that the 
lemma of Carleson, Hunt and Wheeden is valid. We state it in a slightly 
different form (see (4.18)). 

(2.5) LEMMA. With the notations of (2.1), (2.4), there exists r. > 0 srtch 
that for all r < r0 and all Bore1 sets E c d = B(Q, r) n FD. 

t&E) = tu(E)/w(A). 

We shall prove o E A, (da) by finding c( > 0, /I < 1 such that 

4-V 
---<Cl implies w(E) 
u(A) 

___ < p. 
MA) 

(Recall that o E A,,(&) if and only if u E A ‘I (dw).) Assume u(E)/u(A) < a: 
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then a(E)/a(X?) < Ca. We can apply (2.2) to the region R dilated by a 
factor M/r and translated so that A coincides with the origin. We conclude 
that if Ca < 6, then w.;(E) < c(M/~)a(aQ) < CE. By Lemma (2.5) 
w(E)/w(d) < Cw.A(E). Therefore, if a is sufficiently small, w(E)/cu(d) < 
C2& =p < 1. 

BMO, (lRm) (m = n - 1) is the class of functions 0 on IR” such that 04 E 
BMO(Rm). The Z-vgmund class A i(Rm) is the class of functions 4 on li? m 
such that 

sup 14(-x +z) + @(x-z)- 24(x)l 
x , : lzl 

< 00. 

Stein and Zygmund 1511 showed that BMO, c/i,. 

(2.6) DEFINITION. We call a domain D a Zq’gmund domain (respec- 
tively, BMO, domain) when for every Q E aD there is a ball B containing Q 
and a smooth diffeomorphism I]: B + R”‘+ ’ such that 

q(D n B) = {(x, y): y > 4(x), .Y E F?“‘} n q(B), 

where 4 belongs to the Zygmund class, /i, (respectively, BMO,). 

In order to prove the analogue of Lavrentiev’s theorem for BMO, domains 
we need analogues of Lemmas (2.2), (2.4), (2.5). The analogue of (2.2) (see 
(10.2)) follows from the Calderon-Zygmund decomposition and Dahlberg’s 
estimate w E A,(da) for Lipschitz domains. On the other hand, the analogue 
of (2.5), the lemma of Carleson, Hunt and Wheeden is not a simple conse- 
quence of known results. First of all, the geometry of a BMO, domain is just 
as complicated as that of a Zygmund domain. Indeed, it is easy to show that 
any function of Ai(Rm-‘) can be extended to BMO,(R”‘). (Conversely, the 
restriction of A,@“) to Rm-’ is A,(RmP1).) The boundary of a Zygmund 
domain need not be rectifiable, but fortunately the estimate in (2.5) concerns 
harmonic measure only. In order to prove (2.5) a variant of the geometric 
localization (2.4) is needed. In this case 0, while it need not have rectifiable 
boundary, must be something like a Zygmund domain with constant 
comparable to D. It is evidently impossible for Q to be a Zygmund domain 
because at the place where 30 joins JD, 30 may not even be given locally in 
smooth coordinates as the graph of a function. For this reason, we introduce 
non-tangentially accessible (NTA) domains. These domains are even wilder 
than Zygmund domains. In fact, the boundaries of NTA domains in RFi” can 
have positive Hausdorff dimension a for every a < II. 

It turns out that a quasisphere (the image under a global quasiconformal 
mapping of a ball in R”) is a non-tangentially accessible domain. In fact, the 
image of an NTA domain under a global quasiconformal mapping is an NTA 
domain (see [24]). In two dimensions there is a close relationship between 
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the various classes introduced. A simple closed curve in the plane is said to 
satisfy Ahlfors’ three point condition if for any points z, , zz of the curve and 
any Z~ on the arc between z, and z2 of smaller diameter the distance between 
z, and z3 is bounded by a constant times the distance between z, and z,. 

(2.7) THEOREM. Let D be a bounded, simpljv connected domain in the 
plane. The following are equivalent: 

(a) D is a quasicircle (the image under a global quasicorlformal 
mapping of a disc). 

(b) iiD satisfies Ahlfors’ three point condition. 

(c) D is a non-tangentially accessible domain (see Section 2). 

(d) The harmonic measure for D and ‘D satisfy the doubling condition 
(in the form stated below). 

The only new aspect of this is the equivalence with (d). The equivalence of 
(a) and (b) is due to Ahlfors [ 11. The equivalence of (a) and (c) is due to 
Jones ([ 3 I]: see also 124)). The fact that (c) implies (d) is proved in (4.9). 
We will now prove that (d) implies (a). 

A homeomorphism f from the unit circle S’ to itself is said to satisfy the 
doubling condition if for any pair of adjacent arcs I, and Zz of S’, of equal 
length, we have /f (I, U I?)1 < C 1 f (Z,)I. (1 1 denotes arc length on S’.) 

(2.8) LEMMA. Denote by o (respectively, w) a conformal mapping from 
the unit disc to D (respectively, the complement of the unit disc to ‘D). 
Define f: S’ + S’ b?l f (e”) = o-‘v/(e’“). Iff satisfies the doubling condition, 
then D is a quasicircle. 

This lemma (see (37)) is a key step in one proof of Ahlfors’ theorem 11 1. 
Suppose that D satisfies (d). Denote by w harmonic measure for D with 

pole at d(O). If V is an arc of the unit circle, then tc)($( V)) = / V//27r. Thus we 
can state the doubling condition for interior and exterior harmonic measure 
of D in the following form. Let V, and Vz be consecutive arcs of S’. 

(2.9) If diam #( V1) < diam @(I’?). then 1 V, / < N 1 I’l. 

(2.10) Ifdiam~(V,)~diamW(V,), then lV,I<NlVl. 

Now suppose that I, and Z2 are consecutive arcs of S’ and II, / = /I,/. It 
suffices to show 

diam v(Zz) < C diam I. (2.11) 

In fact, (2.11) and (2.9) imply the hypothesis on f in Lemma (2.8). 
Denote v(Z,) by (z, , z2), where z, and zz are the end points of I. 

Similarly, w(Zz) = (z2, z~). There is a natural ordering of D inherrited from 
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the circle via the mapping ly. Let r = diam y/(1,). Choose the first point u’, 
on (zz, zl) at distance r from z2. If no such point exists, then 
diam w(Z?) < 2r. Forj > 2, choose the first point nji on the interval (w;~ , , zj) 
of i?D at distance 2j-‘r from i+ljm,. If none exists, then stop. This procedure 
always ends. If it stops at stage k, then diam ~(1,) ,< 2hr. Moreover, for each 
j, diam(z,,wj)<2’r=diam(wj,wj+,). Now by (2.10), N-‘/f,\< 
N-i Iv-‘(z,, Wj)l,< IW-‘(,“ii, ti;+ ,)I. Since )I, / = )I,), it follows that 
k<N+ 1, and thus (2.11) holds with C=2”“. 

One further remark that is special to two dimensions is in order. A 
domain satisfying only the interior conditions for a non-tangentially 
accessible domain is called an (E, 6) domain or uniform domain [ 24, 32 I. 
When the domain is simply connected, the interior conditions imply that the 
exterior is also a uniform domain. (And thus the domain is an NTA domain.) 
However, the doubling condition for harmonic measure in D above does not 
imply the doubling condition for the complement of D as simple examples 
show. 

In higher dimensions we mention one result that will be stated more 
precisely and proved in Section 11. Letfbe a continuous function on the unit 
interval f(0) = 0, f(r) > 0 for ~1 > 0. Denote D = { (s,~‘): Ix <f(~-), 
XErn”, 0 <y < 1 }. If harmonic measure in D satisfies the doubling 
condition, then D contains a cone at the origin, i.e., if 0 < .r < 4, J( .r) > c~’ 
for some c > 0. 

For the reader’s convenience we will chart the known relations between 
the various classes of domains that have been introduced. 

In the plane, for simply connected domains we have: 

(i) BMO, $ chord-arc. 

(ii) Chord-arc5 quasicircle. 

(iii) Zygmund class% quasicircle. 

(iv) Quasicircle = non-tangentially accessible. 

In R” for n > 2, for domains homeomorphic to a ball, we have: 

(i) BMO, c Zygmund class. 

(ii) Zygmund class c NTA. 

(iii) Quasisphere c NTA. 

Moreover, any Zygmund domain can be locally obtained as the intersection 
of a BMO, domain with a hyperplane. It is an open question in dimensions 
greater than two whether a Zygmund domain is a quasisphere. 
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3. NON-TANGENTIALLY ACCESSIBLE DOMAINS 

For a point P and subset S of IF;“, denote the Euclidean distance between 
P and S by d(P, S) = inf( 1 P - Ql: Q E S}. Likewise, let d(S,, Sz) denote the 
distance between two subsets of R”. A ball will be denoted B(A, 1.) = 
(P: 1 P ~ A 1 < r}. An M-non-tangential ball in a domain D is a ball in D 
whose distance from 6D is comparable to its radius: MT ? 
d(B(A, r), ;ID) > M ‘Y. In what follows M will be some fixed constant that 
will depend only on D. For P, and Pz in D, a Harnack chain from P, to P, 
in D is a sequence of M-nontangential balls such that the first ball contains 
P,, the last contains Pz, and such that consecutive balls intersect. Notice 
that consecutive balls must have comparable radius. By Harnack’s principle. 
if u is a positive harmonic function in D, then C ‘u(P?) < u(P,) < Cu(P,). 
where C depends only on M and the length of the Harnack chain between P, 
and P2. 

A bounded domain D in IPI’ is called non-tangentiall!? accessible 
(abbreviated NTA) when there exist constants M and r,, > 0 such that: 

(3.1) Corkscre;v condition. For any Q E ?D, r < r,,. there exists 
A=A,(Q)ED such that M ‘r<lA-Ql<r and d(A,FD)>hl ‘r. (The 
ball B(A. +M ‘Y) is 3M-nontangential.) 

(3.2) “D satisfies the corkscrew condition. 

(3.3) Harnack chain condition. If E > 0 and P,, P, belong to D. 
d(Pj, 8D) > F and 1 P, - P,l < CE, then there exists a Harnack chain from P, 
to P2 whose length depends on C, but not s. 

Remarks. It is easy to see that Lipschitz domains are NTA domains. We 
will prove below that Zygmund domains (see (2.6). (3.6)) are also NTA 
domains. Another example of an NTA domain is a quasisphere (see 
Section 2, 124, 321). In fact. the class of NTA domains is invariant under 
quasiconformal mappings of ‘r;“. 

The corkscrew condition is so named because the union of non-tangential 
balls of radius iM--‘v as r tends to zero forms a non-tangential approach 
region tending toward Q. which is a twisting (possibly disconnected) 
replacement for the usual conical approach region in Lipschitz domains. The 
exterior corkscrew condition (3.2) implies that NTA domains are regular for 
the Dirichlet problem (1.2). The main use of the exterior corkscrew condition 
is to construct uniform barrier functions (see (4.1)). 

Condition (3.3) allows us to connect the interior corkscrews. This can be 
done in dyadic fashion. The points A,(Q) and A,,,(Q) from (3.1) are 
connected by a Harnack chain whose length depends only on M and whose 
balls all have radius approximately r. A similar argument, which is left to 
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the reader, shows that (3.1) and (3.3) combined are equivalent to a single 
condition: 

(3.4) If E > 0, Pi, P, belong to D, d(P,, 8D) > E, and (P, - P,l < 2h~, 
then there is a Harnack chain from P, to P, of length Mk. Moreover, for 
each ball B in the chain, radius (B) > M-’ min(d(P, , B), d(P,, B)). 

Harnack’s principle implies (replacing M by a larger constant that 
depends only on M and which is denoted again by M): 

(3.5) If P, and P, are as in (3.4), then every positive harmonic function 
in D satisfies 

Wku(P,) < u(PJ < MkU(PJ. 

Condition (3.4) has also arisen in the work of Jones on extension domains 
and quasiconformal mapping (see [24, 31, 321). 

(3.6) PROPOSITION. A Zygmund domain is a non-tangentially accessible 
domain. 

Proof. The properties of Zygmund domains we shall verify are local 
properties, invariant under any mapping that preserves distance in R” up to 
a bounded factor. Hence, we need only consider the special domain 
D = ((x, y): y > 4(x), x E R”’ ) with 4 in the Zygmund class, A,. Moreover, 
replacing 4 by E$, we may assume that 114 II,, , is small. 

Let 8 be a smooth, non-negative even function on R” with compact 
support, J’ B(x) dx = 1. Denote 0,(x) = r-“0(r- ‘x) and 4,(x) = #*19,(x). 

(3.7) LEMMA. Zf Iz - x/ < 1Or. then i@(z) - C(x) - V#,.(x)(z - x)1 < ar, 
where a denotes an absolute constaut times II 4 II,, , . 

(3.8) Remark. This estimate characterizes the Zygmund class. For this 
fact and a far more general result, see Nagel and Stein 143). The charac- 
terization provides an excellent geometric picture of #: For each x and each 
r > 0, there is an approximate tangent plane to the graph (z, 6(z)) given by 
the graph of the linear function of z, 4(x) + V@,(x) . (z - x). 

To prove (3.7), we first observe that 

l&(x> - 4(x)1 < ar. (3.9) 

In fact, because 0 is even 
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Igl,(x,-$(x)l=i !‘(6(x+z)+~(,~-z)-22((x))B,(Z)dz 

< + ll~ll.,, (‘I4 @r(z) dz 

which proves (3.9). 
Next, 

The first two terms are controlled by (3.9). The final term equals 

where < is some point on the segment joining x to z. It is therefore enough to 
show 

(3.10) 

Denote I&X) = (a/8x,)(a/8~~) B(x). v/ is even and has mean value zero. 
Hence, 

1 
z--r -! 2 1’ (4(< t z) t 4(< - z) - 2d(O) v,(z) ffz 

<;rm2 lhlI.\, )‘lz/ Iv,(z)l~z 

We now check the corkscrew condition (3.1) in the domain D. Denote 
Q = (x, #(x)) and A,(Q) = (x, 4(x)) + rN, where 

N = (-V~,(X)+ 1 )/I(--DWh 1 I. 

607/46/l-7 
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A,(Q) is the point above the graph of 4 at distance r from Q along N, the 
unit normal to the approximate tangent plane {(z, 4(x) + V#,(x)(z - x)): 
zER”}. Thus IA,(Q)-Ql=r. If Iz--XI < lOr, then 

IA,(Q) - (~7 @)>I = K-G 4(x)> + rN - k #(z)>l 
> /i-N - (z - x, V&(x) . (z - x))l 

- I(03 4(x) - 4(z) + VW) . (z - x))l 
> r - ar, 

by Lemma (3.7) and the fact that N and (z -x, V#,(x) . (z -x)) are perpen- 
dicular. If Iz --xl > lOr, then IA,(Q) - (z, $(z))l > 9r. In all, r > 
d@,(Q), 8D) > (1 - a) r. This proves (3.1). The exterior condition (3.2) has 
a similar proof. 

To obtain a Harnack chain between points P, and P, satisfying the 
hypothesis of (3.3) let Qj be points of D closest to Pj. Denote tj = ) Pj - Qj\ , 
j= 1, 2. 

Case 1. t, > & CE, t, > &j CE. 
For sufficiently small a, Lemma (3.7) implies that the segment joining P, 

to P, is farther than 10P3Ce from D. Thus, a sequence of 2 X 10’ balls of 
radius & min(t,, tz) with centers on that segment form a Harnack chain 
from P, to P,. 

Case 2. t, < & C.5. 
Then t, < t, + CE < (1 + &) CE. For sufficiently small a, the chain of 

balls B(Aljl,(Qi), (9/10) 2jt,), j = 0, I,..., k,, where CE < 2k’t, < 2Cs, links 
P, to the point P, =Azklr,(Q). Note that \P”, - Q,l < 2Ce, and 
d(F,, 8D) > ICE. Also, k, < log, C + 1, so the length of the chain depends 
only on C. Similarly, there is a chain from p,Z to pZ such that IF? - Q,l < 
2Ce and d(P”,,aD)> $C.S. Hence, IP",-P,l < IF,--Q,l+\Q,-Q,l+ 
IP’, - QZI < 1OCs. Therefore, p, and pZ can be linked in the same way as in 
Case 1. 

We will need a local version of non-tangential accessibility. 

(3.11) THEOREM. If D is an NTA domain, then for any Q E JD and 
r < rO. there exists an NTA domain R c D such that 

B(Q, M-‘r) n D c B c B(Q, Mr) n D. 

Furthermore, the constant M in the NTA definition for fl is independent of Q 
and r. 

This theorem is due to Jones (see [ 321). The region a is the analogue of 
the inverted cone or Carleson box frequently used in Lipschitz domains. A 
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direct construction of 0 in the case of Zygmund domains and quasispheres 
will be presented in the Appendix. The proof for quasispheres is quite simple, 
but the one for Zygmund domains is somewhat delicate. The key point of 
Jones’ theorem, which obviates our constructions, is not to demand that R be 
homeomorphic to a ball. 

4. ESTIMATES FOR HARMONIC MEASURE 

In this section we will prove several lemmas about harmonic measure. 
First, we make a comparison of harmonic measure to the Green function 
(4.8). Next, we deduce the doubling condition for harmonic measure (4.9). 
Finally, we obtain the Carleson-Hunt-Wheeden lemma (4.11) and the 
estimate (4.14) on the kernel function K(P, Q) that implies that the non- 
tangential maximal function is dominated by the Hardy-Littlewood maximal 
function with respect to harmonic measure (see Theorem (5.8)). The 
approach here is similar to that used Caffarelli et al. [6] to prove estimates 
for divergence class operators with bounded, measurable coefficients in 
smooth domains. In particular, the proof of Lemma (4.4) is taken from there. 
This lemma is the key one in Carleson’s paper [ 10. p. 398). 

We will assume throughout this section that D is a bounded non- 
tangentially accessible domain. The constants involved in the definition 
((3,1), (3.2), (3.3)) and its consequences ((3.4), (3.5)) will usually be 
denoted M. But occasionally M will be replaced by a larger constant that 
depends only on the previous value of M. 

(4.1) LEMMA. There exists p > 0 such that for all Q E 30, r < rO, and 
every positive harmonic function u in D, if u vanishes continuously on 
%D n B(Q, r), then for X E D CI B(Q, r), 

where C(u)=sup{u(Y): YEFB(Q,r)nD}. 

ProoJ: Define the harmonic function c(X) in B(Q, r)n D with boundary 
values 

v(X)= 1. X E aB(Q, r) n 0, 

= 0. X E B(Q, r) n aD. 

By the maximum principle, u(X) < v(X), so it suffices to show 
U(X) < M(]X- Q] r-‘)O. The exterior corkscrew condition (3.2) implies that 
for some r’, M-‘r < r’ < r, aB(Q, r’) n ‘D contains at least some fixed 
fraction of the full surface measure of aB(Q, r’). By the maximum principle, 
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v is dominated by the Poisson integral on the ball B(Q, r’) of a function that 
is 1 on aB(Q, r’) n D and 0 on aB(Q, r’) n ‘D. An easy lower bound for the 
Poisson kernel of the ball yields v(X) < 1 - E for X E aB(Q, 4~‘) n D, where 
F depends only on M. In particular, since Y’ > Mm ‘r, v(X) < 1 - c for 
X E aB(Q, iM-‘r) n D. Iterating this procedure, we obtain 

v(X) < (1 - &)k forXEB(Q,(fMm’)kr)nD. 

In other words, for some /3 > 0 depending on M. v(X) < M(IX - QI r ‘)‘1, as 
desired. 

Recall that a surface ball is defined by 

A(Q, r) = (aD) n B(Q, r). 

(4.2) LEMMA. Let r < rO. Zf Q E aD and A,(Q) is given by (3.1) then 

o”(A(Q, &)) > M-’ foral/XEB(A,(Q),$Mm’r). 

Proox Let v be as in (4.1). By the maximum principle, tu‘(d(Q, ar)) > 
1 - v(X) for X E B(Q, r) n D. In particular, let A ’ be a 3M-non-tangential 
point such that :M-*r < \A’ - Ql < ;M-‘r; then w,“(d(Q, 2r)) > 
1 - v(A’) > E. Since A’ can be connected to B@,(Q), fMm jr) by a Harnack 
chain of length depending only on M, the lemma follows from Harnack’s 
principle. (The value of M appearing in the conclusion of the lemma may be 
larger than the previous value.) 

Let G(X, I’) denote the Green function of D. (We will use the convention 
that the Green function is subharmonic and negative.) If r < rO, then for 
x E DW ,,,tQ). r/@f) 

rnp2 IG(X, X,,,(Q))l < Mw”(d(Q, r)). (4.3) 

This follows from (4.2) the estimate IG(X, A,,Z(Q))J <M/X -A,,z(Q)lz-“, 
and the maximum principle in D\B(A,.,,(Q), r/4M). The estimate 

IG(XJ~-,,(Q)I G &:1x-A,,,(Q)1 - * ’ is valid for X E D\B(A,,,(Q)- r/4M) 
even when n = 2, by comparison with the Green function of the region 
exterior to a ball provided by the exterior corkscrew condition. 

(4.4) LEMMA (16; 10, p. 3981). ZJ u is harmonic in D, u > 0, and u 
vanishes continuously on A(Q, 2r), then 

u(X) < M'W,(Q)) 

for all X E B(Q, r) n D for some M’ depending only on M. 
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Proof: Let Q,, E iiD. If u vanishes on d(Q,,, S) then by Lemma (4.1). 
there is M, depending only on M so that 

sup(u(X):XEB(Q,,M,~‘s)nD}~~sup(u(X):XEB(Q,,.s)nD). (4.5 1 

Normalize u so that u@,(Q)) = 1. By (3.5) there is a constant Mz 
depending only on M, such that if u(Y) > Mr and YE B(Q, r)n D. then 
d( Y, 8D) < MFhr. Choose N so that 2” > Mz. Finally, let M’ = M:. where 
h=N+3. 

Suppose that there exists Y, E B(Q, r) n D such that u( Y,,) > 
M’u(A,(Q)) = Mt. Then d(Y,, dD) < M; ‘r and if Q,, is a point of PD 
nearest to Y,,, j Q - Q,, 1 < r t MFhr < ir. Applying (4.5): 

SU~(U(X):XEB(Q,,,M;~~‘~)~D} 

> 2’ sup(u(X): XE B(Q,, MFhr)} > Mi ‘I. 

Hence, we can choose Y, E B(Q,, AJZ;~‘~‘)~? D such that u(Y,) > M$“. As 
before for YU, d( Y, , aD) < M; hm ‘r. Let Q, be a point of 8D closest to Y, . 
Continuing in this manner we obtain two sequences, (Y,} and (Qk} such that 
u(Y,) > Mtfk, d(Y,, aD) = / Y, - Qkl ( MThmkr, and YkEB(&,, 
MFhmk +“) n D. This contradicts the continuity of u at d(Q, 2r) provided we 
can show that the sequence B(Q,- , , M; h kt,Z’r) is contained in B(Q, 2r). In 
fact, 

Since / Y, - QI < r, we have 

because h = N + 3. 

w”(d(Q, r)) < M’rflm’ jG(X.A.(Q))\ 

for X E D\B(Q, Zr), 2r < r,,. 
To prove (4.6) fix X E D\B(Q, 2r) and define 

g(P) = W’. PI, PE D. 

= 0. PE “D. 

14.6) 
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g is continuous in R”\(X} and subharmonic. For all P E R”\(aD U (X)), 

g(P)=-c, ix-p12n-(i~~IQ-~(‘-~dw’(~)). (4.7) 

(‘A’- Plzmn is replaced by log IX- PI when n = 2.) 
By Fatou’s lemma, lau IQ - Plzmn d&‘(Q) < co for all P E ao. Moreover, 

if we choose Pj + P non-tangentially, that is, 1 P.i - PJ < Md(si, aD), then for 
all Q E 3D, 

Therefore, by dominated convergence (4.7) is valid for all P C Rn\(X}. 
For any 4 E C~(lR”) satisfying 4(X) = 0, 

I‘ g(P) 4W’) dp .D 

= -c, j 
R” 

]1X-PJ2-n-j 
ao 

IP-Q12-“dw”(Q)! d#(P)dP 

= c, 
II 

JP- Ql’-‘V#(P)dPdc#(Q) 
aD R” 

= - j #<Q> dw’(Q). 
.an 

Choose d > 0 so that # = I on A(Q, r), 4 vanishes outside B(Q, jr) and 
I(a/&xi)(a/;txj) d 1 < Mr 2. Then 

o"(&Q, r)) G ,fD c(Q) dw'(Q) 

= - 1 g(P) 4W’) dp G [ I g!f’)l kW’)l dp 
-D -B(Q.Zr) 

,< M’ I G(X A,(Q)){ r” 2, by Lemma (4.4). 

Combining (4.6) and (4.3). we obtain the generalization of a lemma of 
Dahlberg [ 151. 

(4.8) LEMMA. If 2r < r,, and X E D\B(Q, 2r), then 

M-’ < o”(d(Q, r)>/rnp2 IG(X,A,(Q))l <hf. 

(We have replaced M’ by M, since M’ is just a constant depending on the 
previous value of M.) 
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Observe that in (4.8) the estimate is uniform as X tends to ao\A(Q, 2r). 

(4.9) LEMMA (Doubling condition). d’(A(Q. 2r)) < C,+J~‘(A(Q, r)). 

For 2r < rO, (4.9) follows from (4.8) and Harnack’s principle. For large Y 
it follows from (4.2) and Harnack’s principle. 

(4.10) LEMMA. Let r be such that Mr < r,,. Suppose that u and I’ are 
positive harmonic functions in D vanishing continuous[v on A(Q, Mr) for 
some Q E iiD and that u@,(Q)) = r@,(Q)). Then Mm ’ < u(X)/c(X) < Mfir 
all XE B(Q,M-‘r)flD. 

Proof: Let I2 be the NTA domain of Theorem (3.11) such that 
B(Q, 2M-‘r) n D c l2 c B(Q, fMr) fI D. 

Denote 

L, = (PE afi\aD: d(P, 80) < M ‘r}. 

L,= (PEall:d(P,aD)>M-‘r}. 

L, clearly contains a surface ball (of &?) of radius comparable to r. Covering 
L, with a finite union of balls of size a small constant times r in order to 
apply (4.8), we find that wi(L, U L,) < Mo;(L,) for X E B(Q, M-‘r) n D. 
Lemma (4.4) implies u(X) < Mu(A,(Q)) for X E fi. By the maximum prin- 
ciple, since u vanishes on iiR n FD, u(X) < Mo.$;(L, U L:) u@,.(Q)). On the 
other hand, Harnack’s principle and (3.3) imply a(X) > Mv(A,(Q)) for all 
X E L,. Hence, u(X) >, Mu(A,(Q)) wi(L,) for all X E 0, and Lemma (4.10) 
follows. 

(4.11) LEMMA. Let A = A(Q,, r), r ( rO. Let A’ = A(Q, s) c A(Q,, r/2). 
(Q, Q, E c?D.l If X E D\B(Q,, 2r), then 

(I/~‘~II’(A’) rr t#(A’)/d(A). 

(C, z C, means that the ratio of C, and Cz is bounded above and below 
by a constant depending only on M.) 

Proof: By (4.8) 

o.~~~(A)=r”~~ ~G(X,A,(Q,))l, 

wx(A’) = snp2 1 G(X, A,(Q)>l, 

and 

w”‘~(~~‘(A’) = s”-’ 1 G(A,(Q,), A,(Q))l, 
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Thus it suffices to prove 

IG(ArK?o>~A,(Qo,>l = r2-n IW~A,(Q>>I IWKAr(Q,,,l. (4.12) 

Let u(Y) = G(A,.(Q,), Y); z)(Y) = G(X, Y). Choose a point A such that 
IA - A,(Q)1 = &I4,’ and d(A, aO)>, +M;‘. Then u(A) ‘v r’-” and U(A) = 

I GP’. A,(Q))1 . N ow apply (4.10) to appropriate multiples of 11 and u, and let 
Y = A,(Q) to obtain (4.12). 

(4.13) Notations. Fix a point X, E D and denote w = w’“. Denote 
K(A, Q) = (&?/do)(Q), the Radon-Nikodym derivative, which exists by 
Harnack’s principle. 

The doubling condition (4.9) implies K(A, Q) = lim ~‘(d’)/w(d’) a.e. (cu), 
as A’ shrinks to Q. A priori, K(A, Q) is only defined for almost every (w) Q. 
Actually, K(A, Q) is a Holder continuous function of Q as we will see later 
((5.5), (7.1)). 

(4.14) LEMMA. Let A = A,(Q,), Q, E aD, Ai = A(Q,, 2jr) and 
Ri=Aj\Ajm,. Then sup(K(A, Q): Q E Rj} < c~/w(A,~), with c. < CM2-“,‘. .I ’ 
a > 0, M depend only on D, (C depends only on the choice of X,.) 

Proof. First consider j such that 2,‘r < rO, Pick a small surface ball 
d’ c Rj. Denote Aj=A,,,(Q,). By (4.11) o”f(A’) = cu(A’)/o(Aj). By 
Lemmas (4.1) and (4.4), 

w”(A’)<Mu~“j(A’) i” ;rQo’)66M~2-~i! 

Hence tu.‘(A’)/o(A’) < M2 “/u(A,), and c,~ < M2 iM. 
There is only a finite number of j for which Ri is non-empty and 2 in > r,, . 

Thus it is enough to show that sup(K(A, Q): Q E iiD\A(Q,,, ro)} < C. 
Choose A’ c aD\A(Q,, ro). By (4.4) and Harnack’s inequality to,‘(A’) < 

Mc~,~r@~l’(A’) < M’o(A’). 

(4.15) LEMMA. Let A=A(Q,, r). r < ro. Then sup(K(X, Q): Q E 
aD\A}-0 as X+Qo. 

Proof, Let A’ be a small surface ball about Q. As in the proof of 
(4.14), uxY(A’) < M*o(A’) for X E B(Q,, r/2) f? D. Since wx(A’) 
vanishes continuously on B(Q,, r/2) n 3D we deduce from (4.1) the 
stronger estimate: o”(A’) < M’w(~‘)(( X - Q,l r I)‘. Thus K(X, Q) < 
M’(IX- Qol r-‘)4, and the lemma follows. 

Let us add a few variants on the preceding lemmas. Let Q be as in (3.11) 
for the distance r and boundary point Q. Choose A E 0 such that 
d(A, %2) > M-‘r. Let G,,(X) denote the Green function for D with pole at 
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X,, (see (4.13)) and denote by G,(Y, X) the Green function for 0. Let 
A = B(Q.M-‘r)naD. Choose Y so that M-‘r> IA - Yl> A4 ‘r and 
d(Y, an) > M ‘Y. By comparison with the Green function for the exterior 
and interior of a ball we find that (G,,(Y,A)I 2 Y’~“. By Lemma (4.8) and 
Harnack’s principle, 1 G,,( Y)i 2 r’-“w(A). Therefore, by Lemma (4.10) 

G,,(A, Xl 2 G,,W)/(4A 1 for X E f?(Q. M ‘r) n D. 

Using (4.16) and (4.8) we obtain 

w;,(A’) z to(A’)/w(A) for any surface ball A’ c A. 

From (4.17) and (4.11), we deduce that 

co;>(E) = to(E)/o>(A) for any Bore1 set E c A. 

(4.16) 

(4.17) 

(4.18) 

5. GLOBAL BOUNDARY BEHAVIOR OF HARMONIC FUNCTIONS 

(5.1) THEOREM (Boundary Harnack principle). Let D be an NTA 
domain and let V be an open set. For any compact set K c V, there exists a 
constant C such that for all positive harmonic functions u and ~1 in D that 
vanish continuously on 3D n V, u(X,,) = v(X,) for some X, E D n K implies 

C’u(X) < v(X) < Cu(X) forallXE Kf~fi. 

See [ 15, 55 1 for the case of Lipschitz domains. Theorem (5.1) is an 
immediate consequence of Lemma (4.10). 

For the rest of the theorems of this section we need a better understanding 
of K(X, Q) defined in (4.13). 

(5.2) LEMMA. Let D be an NTA domain. Let u be harmonic and positive 
in D and continuous in o\{ Q,}. where Q, E 8D. If u = 0 on aD\A(Q,, r). 
then for all X E D\B(Q,. Mr), 

ProoJ: By the Harnack chain condition (3.3), we can replace A,(Q,) with 
a (non-tangential) point A of aB(QO, Mr). Cover (aB(Q,,, Mr)) A 3D with a 
finite collection of surface balls of 8D of size roughly r, disjoint from 
A(Q,, r). Both u(X) and u(A) wy(A(Q,, r)) vanish continuously on these 
surface balls. Lemma (4.10) and (4.2) and Harnack’s principle imply the 
desired estimate for all X E on aB(Q,,, Mr). The full estimate then follows 
from the maximum principle. 
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A kernel function in D at Q E 30 is a positive harmonic function u in D 
that vanishes continuously on aD\(Q} an d such that u(X,) = 1. (X, is fixed; 
see (4.13).) 

(5.3) LEMMA. Let D be an NTA domain. There exists a kernel function 
u at every boundary point. 

Proof Let Q E aD, and denote u,(X) = w”(d(Q, 2-“))/w(d(Q, 2 “)). 
Note that by (4.13), u,(X,) = 1. By Harnack’s inequality, there exists a non- 
zero harmonic function u such that umj+ u uniformly on compact subsets of 
D. As in the proof of (5.2), u,(X) < Mumj(A,(Q)) a?‘(A(Q, r)), for r > 2-“‘1. 
Fix r and let m,j + 0~). We conclude that u(X) vanishes on aD\A(Q, 2r) for 
any r > 0. Thus u is a kernel function at Q. 

(5.4) LEMMA. Suppose that u, and u, are two kernel functions for D at 
Q. Then 

M-’ ,< u,GW,(x) GM for all X E D. 

Proof Since u,(X,) = 1, (5.2) implies u,(A,(Q)) w(Q. r))= 1 for all r. 
Applying (5.2) again, we have u,(X) ‘v w*(d(Q, r))/w(A(Q, r)) for all 
XE D\B(Q, Mr). Choose a subsequence rj as in (5.3) so that 

uniformly on compact subsets of D. Then u,(X) = u(X). Similarly, uz(X) = 
u(X), and (5.4) follows. 

Using (5.4) and the general theory of Martin boundaries 1411, one can 
now deduce: 

(5.5) THEOREM. Let D be an NTA domain. There is exactlv one kernel 
function at Q E aD. It is given by K(X, Q) = lim,,, c~~(d(Q, r))/w(d(Q, r)). 
The limit exists for all Q. K(X, Q) is a positive harmonic function of X for 
X E D and a continuous function of Q E aD. 

Direct proofs of (5.5) using (5.4) can also be found in 16, 261. 

(5.6) Notations. A non-tangential region (or corkscrew) at Q E ilD is 
denoted by P,(Q) = {P E D: 1 P - Qi < (1 + a) d(P, aD>}. The non-tangential 
maximal function is denoted N,(u)(Q) = sup{] u(P)11 P E P,(Q)1 for u 
defined in D. The value of a is often of little importance, in which case we 
write N(u)(Q) to mean N,(u)(Q) f or some (or any) value of a. The usual 
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Hard?,-Littlewood maximal function with respect to w = w.‘” is for 
fE L’(do), 

%(f)(Q) = s;p o(3(Q r)) !,,, .r , If( WQ'). 

We say that u converges to f non-tangentially at Q if for any CY, u(X) 
restricted to r,(Q) converges tof(Q) as X+ Q. 

As a consequence of the doubling condition (4.9) the usual estimates on 
the maximal function hold: 

(5.8) THEOREM. Let D be an NTA domain, f E L’(du) and define 

u(X) = .,‘,,f(Q> K(X Q> d4Q). Then N,&)(Q) ,< C,M,(f)(Q). and u 
conserges to f non-tangentiallv a.e. w. Thus u is the harmonic extension off 
Moreover, if ,u is a finite Bore1 measure on iiD and dp =f dw + dv, v is 
singular w.r.t. o, and u(X) = .J‘?,,) K(X, Q) dp(Q), then u concerges non- 
tangentially to f a.e. 0. 

Proof. The estimate N(u)(Q) < C,(f)(Q) follows from Lemma (4.14). 
Nontangential convergence a.e. w then follows from a well-known argument 
using Lemmas (4.9) and (4.15). (See for example, Hunt and Wheeden [ 25 I.) 

The Martin boundary 1411 of a domain D is identified with the collection 
of kernel functions on D. A consequence of Theorem (5.5) is: 

(5.9) THEOREM. If D is an NTA domain, then the Martin boundary of D 
is the Euclidean boundary of D. 

The representation theorem of Martin 1411 can be expressed in our case 
as: 

(5.10) THEOREM. Let D be an NTA domain. If u is a positizje harmonic 
function in D, then there exists a unique positive Bore1 measure p on 30 such 
that 

u(X) = 1’ K(X, Q, dp(Q). 
. iill 

(5.11) COROLLARY. If u is a positice harmonic function in D, then u has 
non-tangential limits a.e. w. 

(5.12) Remark. If u is bounded in D. then u(X) = J’?,, K(X, Q)g(Q) do 
with g E L”(do). 



106 JERISON AND KENIG 

In fact, adding a constant to u we may assume that 0 < u < C. Thus u is 
represented in (5.10) by a positive measure ,u. Let A = A(Q, r) and 
A = A,(Q). By (4.11) and (4.2), w(A) K(A, Q’) > M-’ for Q’ E A. Hence 

P(A) -<MI’ K(A,Q')dp(Q')<Mu(A)<MC. 
44 -A 

Therefore, ,u is absolutely continuous w.r.t. w and g = dp/dw < MC. 
To conclude this section, we prove a result related to the area integral (see 

Theorem (6.6)). We will make use of a theorem of Riesz 12, Chap. IX, 
paragraph 5 ] : 

(5.13) THEOREM. Suppose that c(X) is subharmonic in D. Then 
In A(X) j G(X, X,)1 dX < co for some X0 E D if and only if v has a harmonic 
majorant. Moreover, if II* denotes the least harmonic majorant of v, then for 
all YE D. 

v(Y) = v*(Y) + ( Av(X) G(X, Y) dX. 
I) 

From now on we will denote G(X) = G(X, X,). (Recall that o = w‘“.) 

(5.14) THEOREM. Let D be an NTA domain. If f E L*(dw), jf dw = 0 
and u(X) = l,,f(Q) d&(Q), then 

1’ /VuI*IG(X)IdX=+ 1’ f(Q)‘du(Q)< 00. 
. I) . i’l) 

Conversely, if u is harmonic, u(X,) = 0, and 1, IVul’ /G(X)/ dX < co, then 
there exists f E L’(dw) such that u(X) = J,,)f (Q) dw ‘(Q) and u approaches 
f non-tangentially a.e. w. 

Proof. Suppose that f is continuous on iiD and J‘f dw = 0. Let u(X) = 
.r’,,J(Q) dw’(Q). Let v(X) = u(X)‘. Then Au = 2 (VU(’ > 0. ~1 has a 
harmonic majorant beca,use it is bounded. Therefore, by Theorem (5.13), 

v(X,) = v*(X,) - 2 1 ) Vu(X)/’ / G(X)1 dX. 
. I) 

Note that v(X,) = 0 and v*(X,,) = i‘&-(Q)’ dw. Hence, 

f ) 
.an 

f (PI' WQ) = 1' I W4’ I G(X)I cm. 
I) 

Now let fE L’(do) with jf dw = 0. Choose continuous functions f, 



BOUNDARY BEHAVIOR OF HARMONIC FUNCTIONS 107 

approaching f in L* norm. If u and uj denote the harmonic extensions of J 
and f;, respectively, then VU, approaches Vu uniformly on compact subsets 
of D. Therefore 

I IW 1 G(X)/ dX < sup lim 1’ 1 VU~(X)/~ 1 G(X)/ dX 
I, ti i-r .2h 

<sup 4 ( f,(Q)’ dw < 03. 
i ?I) 

Now a simple limit procedure implies that 

1’ / Vu(X)12 ) G(X)ldX = $ 1’ f(Q)* dw(Q). 
. I) in 

For the converse, let z’ = u’. Since .j‘/) IVul’ /G(X)/ dX < co. P has a least 
harmonic majorant u *. Both u+ (1 +v*) and (1 + I’*) are positive 
harmonic functions in D. Therefore, by Theorem (5.10) 

u(X)=u+(l+~~*)-(I+P*)=) K(X,Q)&(Q) 
. ?I> 

for some finite Bore! measure ,u. If all we wanted to conclude was that u has 
non-tangential limits a.e. LL), we could stop here and apply Theorem (5.8). 
However, if dp = g dw + dv, where 11 is singular with respect to w, we wish to 
show that r = 0 and g E L ‘(dw). 

Step 1. v=o. 

(5.15) LEMMA. I’ u(X) = jcD K(X, Q) dp(Q), then for any E > 0, there 
exists a closed set F c 8D and a (sawtooth) NTA domain fi, such that 
w(iiD\F) < E, i-tR, n 3D = F. u is bounded on 0,. If CO, = wrlj denotes 
harmonic measure on i3fin, for a point X,, of fiE, then w, and o are rnutual[\? 
absolutely continuous on F. Moreover, w,(aC!,\F) < ME. 

Proof: Let F be a set on which u is non-tangentially uniformly bounded. 
The sawtooth domain is constructed exactly as in Lemma (6.3). The only 
additional property we have stated here is that w,(i)R,\F) < ME. To prove 
this recall from (6.3) that w’“(BD\F) > Mm’ for all X E afi,\F. By the 
maximum principle, 

w@D,\F) < Mu@D\F) < ME. 

It is easy to see from the proof that we can arrange for R, to increase to D 
as c-0. 
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(5.16) PROPOSITION [2 1. If ll, increase to D and f is a continuous 
function on ii, then 

( f(Q) dw,‘(Q) = lim 1’ f(Q) do$(Q). 
. c7D e--cc .a(), 

We now proceed with Step 1. By (5.12), there exists fsE L”‘(dw,) such 
that u(X) = jan,fE(Q) dwf(Q). Denote the Green function at X, of fl, by 
G,(X) = G&Y, X,). By the maximum principle, (G,(X)/ < / G(X)\. By the first 
half of Theorem (5.14), 

1” L(Q)' dw,(Q) = 2 ( WV)I* I G,(X)1 dx . OR, ?52c 

<2 1’ jVu(X)J’)G(X)JdX=C< CO. 
11 

Fix XE D; then 

Furthermow fElaREnaD = g laREnaD since both are the non-tangential limit a.e. 
o of u. Hence, u(X) = lim,,, laDEnaD g(Q) dw:(Q). Let g, be continuous on 
3D and jao I g - g,l do < 6. Denote us(X) = s,, gJQ) d&‘(Q). Since ug is 
continuous in 0, (5.16) implies 

Hence, 

u&V = Fz !,,, 
E 
nan u&(Q) dd(Q) 

=lim - 
I E’O _ aR g,(Q) dd(Q). 

E 
nan 

Thus, 
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G 1. I g(Q) - sdQ)l do.'(Q) < Cd -PD 

Thus, ug --t u uniformly on compact sets. And therefore, u(X) = J,,,g(Q) 
&I.?‘(Q). This concludes Step 1. 

Step 2. g E L*(dw). 

(5.17) LEMMA. Let D be an NTA domain. For any E > 0 there exists 
D, c c D such that D, 3 (P: d(P, 8D) < E }, and D, is an NTA domain with 
bounds independent of F. 

This lemma can be proved in the same way as Lemma (6.3) or Theorem 
(3.1 I), but is somewhat simpler. 

Denote T = {X: d(X, 8D) < & r}. Choose a family of balls Bj = B(Qi, r) 
with Qj E cYD such that U Bj I T and such that at most 10” balls intersect at 
a point. Let $j be a continuous partition of unity of T subordinate to (Bj}. 
Denote Aj = A,.(Qj). Denote h,(Q) = cj u(A,) #j(Q). For D, as in (5.17) let 
w, = ~2 denote harmonic measure at X, for D,. By (5.16), 

1’ 
. FD 

h,(Q)' do(Q) = ','y .I;,, h,(Q)*du,(Q). 
d c 

For E < Ik-‘r, 

1’ h,(Q)du,(Q) < CL‘ (_ U(Aj)* 4;(Q)’ do,(Q) 
cm, 7 . PI), 

< C 1. N”‘(u)* (Q, dw,(Q). 
“PI,, 

N’“’ denotes the non-tangential maximal function for D,. The second 
inequality follows from the observation that for sufficiently large a, if 
Q E supp dj, then Aj E r,(Q). 

By Theorem (5.8) and (5.7) applied to D,, 
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= 2M 1’ I Vu(X)l* / G,(X)1 dX 
. I), 

< 2M 1. ) Vu(X)1 * / G(X)1 dX < co. 
. I) 

(G, denotes the Green function of D, at X,.) 
The equality above is from the first part of (5.14). It is valid because u is 

continuous in 0,. 
Combining the inequalities above we conclude that /I hr(Q)ll,.r,do, is 

uniformly bounded as r--t 0. Choose h E L*(du) and a subsequence h,.l --t h 
weakly in L*(du). Notice that u approaches g non-tangentially uniformly 
except on a set of arbitrarily small harmonic measure. It is then easy to see 
that g = h a.e. w. Thus, g E L*(do) as desired. 

6. LOCAL BOUNDARY BEHAVIOR OF HARMONIC FUNCTIONS 

Throughout this section D will denote a non-tangentially accessible 
domain. A truncated non-tangential approach region (or corkscrew) at 
Q E 8D is denoted r:(Q) = r,(Q) n B(Q, h). (See (5.6).) If more than one 
domain is under consideration, we will display the dependence on the 
domain by r:,,(Q). We say that a function u defined on D is non- 
tangentially bounded from below at Q E cYD if there exist a, h, M such that 
u(X) > --M for all X E r:(Q). If F c aD, we say that u is non-tangentially 
bounded from below on F if u is non-tangentially bounded from below at 
every point of F. 

Denote S,(F)= Uycfi r,(Q) and S:(F) = UyE,, r:(Q). We will write 
S,,,>(F) if the former notation is ambiguous. 

(6.1) LEMMA. Let F c aD. For every h, F > 0, a2 > a, > 0, there e.xists a 
closed set F, c F and a number k > 0 such that w(flF,) < E and S:?(F,) c 

S%,(F). 

ProofI This lemma is proved by a well-known point of density argument 
148, p. 2021. The weak (1, 1) estimate for M, (5.7) implies that the set of 
points of density of F 

F= QEF:lim 
i 

4d (Q, r> n F) 
r+~ o(d(Q, r)) = ’ 

satisfies to(FjF1) = 0. 
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Let s = (x, + cq + 1. Choose a closed set F, c F” and k such that 0 < k < 
h/( 1 + cz,), o(nF,) < E, and for all Q E F,, r < sk, 

4A(Q, r)n F) > (1 - 7) &f(Q, r)). 

(11 will be chosen later.) 

By 
Let X E r::(Q) for some Q E F,. Denote by x’ a point of BD closest to X. 
the doubling condition (4.9). w(d) < Mo(d’), where 

A=A(Q,sIX-21) and A’=A(h, 1X-f’). 

Therefore. 

w(A’ n F) 2 to(A n F) - to(A\A’) 

>((l-r/-(I-W’))to(A)>O, 

provided q < M-‘. Thus, A’ n F # 0. It is easy to see that for Q’ E A’, 
X E rk,(Q’). Hence, X E S:,(F). 

(6.2) LEMMA. Let F c 2D. Suppose that u is continuous in D and non- 
tangentiallv bounded from below on F. For any a. E > 0, there exists a closed 
set F, c F with w(F”\F,,) < E. and a constant C such that u(X) > -C for all 
X E SJF,). 

Proof: Since u is bounded from below. for any c > 0, there exist 
constants a, h, and C’, and a set F, c F with u(X) > -C, on St,(F,) and 
w(Fh\F,) < e/2. By (6.1). for any u = a2. there exists F, c F, w(F,\F,,) < c/2 
and k > 0 such that St(F,,) c Sz,(F,). Note that S,(F,,)\St(F,,) is relatively 
compact in D, and thus the continuity of u gives the lemma. 

(6.3) LEMMA. For anv u > 0. there exist /I, ;I > 0 such that for ar?>* 
closed set F c ?D there exists an NTA domain S2 c D uYth ?D n ?(2 = F. 
5~ S&F) and r,.,(Q) c r7,,,(Q) for eL1er.v Q E F. Moreover, u(? and w,, 
are mutually absolutel~~ continuous on F. 

Proof. The construction is along the lines of the one in [ 32 1, only a few 
extra remarks are needed. Let (I,} be the dyadic Whitney decomposition of 

D, by closed cubes Ii. Given a cube I, (1 + 6) I denotes the cube with the 
same center as I, expanded (1 + 6) time. If 6 = A, and (1 + 6) Iin 
(1 + 6) I, # 0, then Zj f? I, # 0. In this case, (1 + 6) I; u (1 + 6) I, is an 
NTA domain. Let D = {Z,i: !i n S2,(F) # @}. Fix a Whitney cube I,, of D. 

For every Zj E D, make a pipe P (see [ 32 1 for the definition) connecting 1; to 
I,. These are called primary pipes. Let Z = (z: z is the center of a Whitney 
cube I with If’ P # 0 for some primary pipe P}. Let I, correspond to z,. If 
zJ, zI. satisfy f < diam(l,j)/diam(l,) < 4 and /zi - .zAI < M diam(Z;), make a 
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pipe connecting zi to zk. These are called secondary pipes. Note that if a 
pipe does not intersect a Whitney cube I, it does not intersect the expanded 
cube (1 + 6) I. Finally, let 

0 = 0 ((1 + 6) I: I E O} U (P: P is a primary or secondary pipe}. 

The verification that D satisfies the required geometric properties is now 
completely analogous to the one in [ 32 1. 

TO check that wcj and wD are mutually absolutely continuous on F, first 
observe that w, < w, on F by the maximum principle. Next, take E c F 
with w,(E) = 0. 

Claim. There exists C, > 0 such that 

w:;(‘F) > c, for all X E (S2)\F. 

In fact, because S ,g(F) c D U F, (afi)\F_c ‘S,,,(F). Denote a point of D 
nearest to X by X. For every Q E d(X, a 1X - zl), X E c,(Q). Hence, 
L&F, a /x - 21) c ‘F. And thus Us > w~(d(~, a /X-Xl)) > C,,, by 
(4.2). 

A lower function for xE in D is a function @(X) that is subharmonic in D, 
such that lim supx+o @(X) <x,(Q) for all Q E 8D. Recall that w;(E) = 
sup{ 0(X): @ is a lower function for xI- ). Hence @i(X) < w;)(E) < 1 - C,,. 
Therefore, @(X) - 1 + C, is a lower function for xl_ in R. Thus 
@p(X) - 1 + C, < o:(E) = 0, and so @(X) < 1 - C, for all X E 0. But then 
o:(E) < 1 - C, for all X E R. This shows that w,)(E) = 0, because Theorem 
(5.8) says that w;(E) converges non-tangentially to 1 a.e. w on E. 

(6.4) THEOREM. Assume that u is harmonic in D and non-tangentially 
bounded from below on F c iiD. Then u has non-tangential limits a.e. (w) on 
F. 

ProoJ: Given a > 0, we will show that u has limits in f,(Q) for a.e. Q in 
F. Let ,!I correspond to a as in (6.3). Given E > 0, choose, by (6.2) a closed 
set F, c F such that u(X) > -C on S,(F,) and co(F\FO) < E. Construct 0 as 
in (6.3) corresponding to a and P,. Then u > -C on a. By (5.11), u has 

non-tangential limits a.e. (w,) on iisZ. The theorem now follows because 
m.,(Q) czr,-q(Q) for Q E F,, and w, and o,, are mutually absolutely 
continuous on F,,. 

(6.5) DEFINITION. Let u E C’(D), a > 0. The area integral of u in D is 

given by 

4(u)(Q)2 = 1' \Vu(X)I’d(X)*-” dX for Q E 3D. 
“r,,(Y) 
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Here, d(X) = d(X, D). When there is more than one domain under 
consideration, we use the notation A ,.,(u)(Q) for the area integral of u in D. 

We say that the area integral of u is finite on F if for any Q E F, there 
exists a > 0 (depending on Q) such that A,(u)(Q) < co. 

(6.6) THEOREM. Let u be harmonic in an NTA domain D. The set of 
points of D ushere the area integral is finite equals a.e. (w) the set of points 
,r-here u has non-tangential limits. 

(6.7) LEMMA. Assume that u E C’(D). Then 

1’ A,(u)(Q)’ da(Q) < M ( IVu(X)l’ / G(X)1 dX, 
iilJ . I) 

where G(X) = G(X. X,,), OJ = toSfl. 

ProoJ 

,I;,> A,(u)(Q) MQ) = j;,, (,I;. 
t, 
,v, l-WX)12 4U2 ” dX) dw(Q) 

Denote by x’ a point of aD closest to X. Then (Q E 8D: X E r,,(Q)} c 
d(z, (a + 2) /X - 21). But (4.8) and (4.9) show that 

and the lemma is established. 
We now turn to the proof of (6.6). Assume first that u is non-tangentially 

bounded on F. As in the proof of Theorem (6.4), we can insert an NTA 
domain Q on which u is bounded and reduce matters to showing that the 
area integral of u on LJ is finite a.e. (w,,). By (5.12) u(X) = .(‘?n g(Q) do.&(Q) 
for some g E L”-(Dw) for all XE 52. Thus by (5.14), 

I’ lWX)12 I G,,Vl dX= 1. I g(Q) - 4G)12 dw,, < ~0. (1 ,?I2 

where G,,(X) = G,(X, X,), w<) = u$. Thus, by (6.7) the area integral of u 
on a is finite. 

For the converse, assume that the area integral of u in D is finite on F. 
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For any E > 0, we can choose F, c F, a > 0, and C such that w(F\F,) < E 
and A,(u)(Q) < C for all Q E F,. It follows that 

1 d(X)‘-” IVu(X)Iz w{Q E F,: X E r,(Q)} dX 
- .~,(I ()) 

< 1’ 4h)(Q)2 d4Q) < C*. . F” 

There exists a constant N and a set F, c F, such that w(F,,\F,) < F and for 
all QE F,, w(F, n d(Q, r)) > N-‘w(d(Q, r)). Let X E S,,,(F,). Choose 
Q, E F, such that X E f,,,(Q,). 

(QEF,:X~F,(Q))=F,nd(Q,, (a/2)4X)). 

Hence w{Q E F,: X E r,(Q)} > N-‘w(d(Q, (a/2) d(X))). Moreover, by the 
doubling condition (4.9). 

w@(Q, - (a/2) d(X))) 2 N-‘w@(f, d(X))). 

Finally, (4.8) implies 

I I Wx)12 I GW)I dx 
s,,>v ,)\n~.t’,.C 1/2)dWoll 

<:M 1. IVu(X)I’ d(X)‘-” w(d(zf, d(X))) dX 
. S” z(r- ,I 

<MN’ 1’ (Vu(X)I* d(X)‘-” cu(Q E F,,: XE r,(Q)} dX. 
. S”,?CFIl 

Furthermore3 !‘Bc.y,,,t I/Z)dl.Y,,J) jVu(X)I’ lG(X)j dX < co. Using (6.1) and (6.3) 
insert an NTA domain R in S,,,(F,), with to(F,\iif2) < t. We may as 
well assume that X, E a. / G,,(X)1 z 1 G,(X, X,,)l < 1 G(X, X,,)I. Hence, 
Jr2 1 G,,(X)1 IVu(X)I’ dX < co. By Theorem (5.14), u has non-tangential limits 
in Ll a.e. oo, and the theorem follows. 

The following corollary is a version of a theorem of Stein for NTA 
domains (see 146, 48 I). 

(6.8) COROLLARY. Suppose that u,,.... u, are harmonic in D and satisjj9 
the generalized Cauchy-Riemann equations XI’-, (Bui/%xi) = 0, FuJBu, = 
a~~/&~. If (n - 1) of the ui’s are non-tangentialI> bounded on a set F c iiD, 
then the remaining one has non-tangential limits a.e. (w) on F. 

Proof. The area integral of each ui is bounded by the sum of the area 
integrals of the others, so the result follows from (6.6) and (6.4). 
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7. HOLDER CONTINUITY OF THE KERNEL FUNCTION 

We shall prove an estimate on the kernel function K(X, Q) that is needed 
for the theory of HP. p < 1. on non-tangentially accessible domains (see 
Section 8). 

(7.1) THEOREM. There is a constarlt M depending only, 011 the NTA 
constatofDsuchthatifQ,,.Q,EiiD,XEDa~rdjX-Q,,~~hl’/Q,-Q,,l, 
therz 

KV-. Q, 1 1 I <M(l -A,-‘)‘. 
KV. Qo - I 

COROLLARY. K(X, Q) is H6lder contirluous as a function of Q: 
IKK(X,Q,-K(x,Q'>l<C.,lQ-Q'l~f or some a > 0, dependirlg on& 011 the 
NTA constant of D. 

The corollary is an immediate consequence of (7.1), if we multiply the 
inequality in (7.1) by K(X. Q,). 

Proof of (7.1). 

(7.2) LEMMA. Let M > 2. Let p be a positive finite measure on a set S, 
and let 0 be a measurable futlction on S such that 0 < a < .Q < A. Denote 

B(B) = sup 
i 
.(‘s O(x) 4x) 44~) . M- I < ),, < M / 

)_ w(x) Q(x) ’ . s I’ 

b(0) = inf J‘S @> W(X) 444 : Mm , < M’ < Mi 
!‘,s Nx) 44x-) I’ 

Then 

ProoJ: Without loss of generality, we may assume that a = 1 and 
p(S) = 1. Denote y = (1 - :M-‘)(A - 1). 

Case 1. B(B) < 1 + y. 
Observe that b(8) > 1 = a. Then 

B(e) -- 
W@) 

l< lsy ,-- 1 ,<(l +>I)- 1 =y. 
b(‘9 

Case 2. B(0) > 1 + y. 
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Denote S, = (x E S: 19(x) > 1 + :r}. Let m =,a(S,). Define 

B,(x) = A, XES,, 

= 1 +jy, XE s\s,. 

Since 0 ,< 8,, B(8) < B(0,). It is easy to calculate that 

we,) = 
AMm+(l ++y)(l-m)M-’ 

Mm+(l -m)M-’ ’ 

Thus 

lSY< 
AMm + (1 + +y)(l - m) M ’ 

Mm+(l -m)M-’ ’ 

Therefore, iv < ((A - 1) M* + iv - yM*) m, and hence m > $. Denote 

B,(x) = 1 + i,? XE s,, 

= 1, xES\S,. 

Bz < 19 implies b(B,) < b(8). It is easy to calculate 

b(8)) = 
MP’(l+fY)m+M(l-m)> (l++Y)M-‘+M 

Mm’m+M(l-m) M-’ SM 

since m > f . Observe that B(0) ,< A. Therefore, 

B(e) A(W’ +M) 
---< (l+iy)M-‘+M b(e) 

(7.3) LEMMA. For anq’ point Q E iiD, and distance r < rO, there is 
R c D such that B(Q, r) n LI = 0 and J2 2 D\B(Q, Mr) and 0 is an NTA 
domain with constant depending only on that of D. 

Proof: This is a variant of Jones’ theorem. (See (3.11) and (321.) 
Consider all Whitney cubes of D that do not intersect B(Q. & Mr). Enlarge 
this union of cubes by adding primary and secondary pipes as in 132). The 
NTA domain we obtain, Q, has NTA constant depending only on that of D. 
Because the pipes added are non-tangential, B(Q, r) n fI = 0. 

Let Q,, Q, belong to aD. Let r = 1 Q, - Q, 1. Denote by Q,j the region of 
Lemma (7.3) corresponding to Q, and the distance M’r, j= 1, 2,...; 
M’r < rO. 

D\B(Q,, M’r) c LIi c D\B(Q,, 2Mj- ‘r). 

(As usual, we replace M with a larger value than in (7.3)) 
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Denote S.i = (afij)\?o. We can assume that X, E Qi and d(X,,, ~32,) 2 
d(X,, aD). Denote harmonic measure for Ri by (0: and K,(X. Q) = 
(dc+hl”)(Q). 

Lemma (4.11) can be restated as follows. Let A = A,(Q,,). For all 
Q,Eao, such that IQ,-Q,i<r. M ‘<K(A,Q,)/w(d)<M. where 
A = A(Q,,, r). Hence, replacing A4 with a larger value. 

M. ’ < K(A, Q,)/K(A. Q,, < M. 

By the boundary Harnack principle (Lemma (4.10)) again replacing M by a 
larger constant we have 

M-’ < K(X, Q,)/K(X, Q,) < M for all X E D\B(Q,, , 2r). (7.4) 

Similarly, we have 

M- ’ < K,,(X, Q’)/K;(X, Q”, 

<A4 for X E D\B(Q,,, 2M’r) and Q’. Q” E S,. (7.5) 

Denote u,,(X)= K(X. Q,), u,(X)=K(X,Q,). Define 

bi = inf 

The maximum principle implies 

Since u,,(X,~) = 1 = u,(X,) we see that 

bj< 1 < Bj. 

Next, (7.4) implies that 

(7.6) 

b, > M-’ and B, <M. (7.7) 

Define e(Q) = u,(Q)/u,(Q) for Q E Si. Define C&(Q) = u”(Q) do;(Q) for 
Q E S,i. Let X E D\B(Qo, 2M’r) and Qz E S;. Denote w(Q) = K,(X, Q)/ 
K,(X, Q,) for Q E Si. By (7.5). Mm ’ < M’ < M. 

Note that since u,, and U, are harmonic and continuous in fini, 
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u,(X) = Kj(X Q,> 1 e(Q) w(Q) &(Q), 
’ s, 

Therefore, 

Bj+, = sup 
u,(X) -:x&sj+, 
ho i 

< sup \ I 
J‘si e(Q) w(Q) &(Q) : M- 1 < w < M = B(e) 

.fs, w(Q) 44Q) I 
. 

in the notation of Lemma (7.2). Similarly, bj+, > b(B). Notice that 
bi < S(Q) < Bj. Therefore, by Lemma (7.2). 

(F-lj< (l-+2) ($-lj. (7.8) 

Combining (7.7) and (7.8), we have 

B. ! I f- 1 @P(l -&)J 
i 

1 .cc-M-? 
I 1 4 * 

We deduce from (7.6) that 

Is-1 l<M2(l-Ey forXESj, 

and hence, by the maximum principle, for all X E sZj. 
We will now use the same reasoning to prove a refinement of the 

boundary Harnack principle (5.1). 

(7.9) THEOREM. Let D be an NTA domain, and let V be an open set. Let 
K be a compact subset of V. There exists a number a > 0 such that for all 
positive harmonic functions u and v in D that vanish continuously on 
aD n V, the function u(X)/v(X) is Hiilder continuous of order a in K n 6. In 
particular lim,,, u(X)/v(X) exists for every Q E 8D n K. 

Proof. Multiplying v by a constant, we may as well assume that u(X,) = 
v(X,). By the boundary Harnack principle (5.1), we conclude that M-’ < 
u(X)/v(X) < M. Choose r,, so that B(Q, 2r,) c V for all Q E K. Let 
Q E K n cYD. Denote by {O,]g, a sequence of regions corresponding to 
Q at distance M-jr O, given by Theorem (3.11). Thus, B(Q, 2M-jr,) n 
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D c fij c B(Q, M-j”r,) f? D. Denote Bj = sup{ (u(X)/v(X)): X E flj), b,i = 

inf( (u(X)/v(X)): X E flj). The sequence Bj is decreasing, and the sequence bl 
is increasing. Moreover, by the same argument as in the proof of Theorem 
(7. l), 1 Bj/bj - 11 < M2( 1 - s)j. The Holder continuity of u(X)/rl(X) at Q 
follows immediately. 

For Holder continuity at interior points, that is, points of K f? D, the 
extra estimate needed is Holder continuity on Whitney cubes of D that 
intersect K. This follows from the estimate V(u/o)(X)I < Cd(X)“-‘, which 
can be verified on Whitney cubes using Holder continuity at the boundary 
and a change of scale. We will give instead a direct proof that is valid for 
solutions to elliptic divergence class equations with bounded, measurable 
coefficients as well as the usual Laplace equation. 

Let U be a solution to an elliptic divergence class equation with bounded, 
measurable coefficients. Let I be the unit cube. The de Giorgi-Nash estimate 
is [6] 

for all X, YE cl for some c ( 1. (The constant c does not depend on the 
divergence class operator, but only its ellipticity constant.) 

Now consider u and v as above restricted to a Whitney cube W of 
diameter r. Let Q E i3D be a point at distance roughly r from W. Replace u 
by a constant multiple of u (between Mm’ and M) so that 
lim,,(u(X)/v(X)) = 1. Then the Holder continuity at Q says that 
/ u(X)/v(X) - 1 / < Cr” for all X E W. Denote L = supxEw u(X). By 
Harnack’s principle, L ‘v u(X) 2 v(X) for all XE W. Moreover, the estimate 
on u(X)/v(X) can be rewritten as 

I u(X) - v(X)1 < Cr”L for all X E W. (7.11) 

Observe that u(X)/v(X) - u(Y)/v(Y) = A, + AT, where 

A, = (u(X) - utY)>tv(Y) - 4Y))lW) vty)~ 

A, = u( Y)((u - v)(X) - (u - v)( Y))/o(X) v(Y). 

Applying (7.10) to u on W with a change of scale r- ‘, 

Iu(X)-u(Y)I<CL(F’/X-Y/)“, X, Y in W. 

Therefore by (7.1 l), for X, Y in W, 

A, < CL(r-’ (X- Yl)a (Cr”L)/L* < C/X- Yl”. 
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Applying (7.10) to (U - v) with a change of scale. and then applying (7.11). 
we have for X, Y in W 

Ku - I> - (u - v>(Y)1 < c ;;I, I@) - W)I (r ’ IX - YlJ” 

< C(r”L)(r-’ IX- Yly = CL IX- YIfk, 

Therefore, A, < C /X - Yl”. In all 1 u(X)/v(X) - u(Y)/P( Y)i < C IX - YI” for 
X. Y in W, as desired. 

8. ATOMIC DECOMPOSITION OF HP.po<p< 1 

In this section we treat the HP theory of NTA domains. 

(8.1) DEFINITION. For 0 <p < co, HP(D. dw) = (U harmonic in D: 
N,(u) E Lp(du)}. 

We first show that this definition is independent of a. This follows from 
the following standard lemma (see, for example, [ 3 I): 

(8.2) LEMMA. Assume 0 < a < 00, a0 > a. Then, there exists a constant 
C n,ao. such that w{Q E aD: N,(,(u) > A} < C,,,,,u(Q E FD: N,(u) > A}. 

(8.3) LEMMA. Let u E H’(D, du). Then, there exists f E L ‘(dw) with 
u(X) = .fao f dmx for all X E D. Also, u E HP(D, dw), p > 1, if and only if 
u(X) = J,,f dw’, f E Lp(do). 

Proof. The second statement follows from (5.8) and the proof of the first 
statement. The proof of the first statement follows the same strategy as in 
(5.14). Choose a > 0. As N,(u) is in L’(dw), u has non-tangential 1imitfa.e. 
(0). Obviously, f E L’(dw). Choose now j3 associated to a as in the 
construction of sawtooth domains (6.3). Let F-, = (Q E 3D: N,(u)(Q) < A}, 
and construct the sawtooth region a,, corresponding to a, ,l3 and F.,. In 
particular Q., c S,(F.,), and so IuI < 1 on Q.,. As in (5.15), w.~(c?.R.,\F,,) < 
Mu(3D\F.,), and the Q,, increase to D. Thus, by (5.12), there exists a 
function fk in L”(aQ,, do,) such that for all X E Q,. u(X) = lar2-,fA dw,:. 
Since w., and o are mutually absolutely continuous on F,, it follows that 
f =A at. (w) on F., , and 4X) = 1‘, J(Q) dm:(Q) + Jar, ,v , u(Q) dd(Ql. 
But, 
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Thus, we see that u(X) = lim .,+K .l’,.,f(Q) dw:(Q). Arguing as in (5.14), we 
see that u(X) = .I’,,f(Q) do.‘(Q), and the lemma is established. 

(8.4) DEFINITION. BMO(%D) = (fE L’(du): supJ( l/w(d)) J‘4 If- mdfi 
dw < +co, where A is a surface ball, and md(f) = (l/w(A)) J’Jdw}. As is 
well known, by the theorem of John-Nirenberg [ 301 this is the same as the 
set of fE L*(do), with sup,((l/o(A)) Id if- mA(f dto)“’ < +co. with 
comparable norms. 

Before turning to the main of this section, we need to recall several 
definitions and results from the general theory of spaces of homogeneous 
type [ 14, 38, 39, 521. 

(8.5) DEFINITION. The triple (X, D,p) is called a space of homogeneous 
t.tpe if X is a topological space, whose topology is given by a quasi-distance 
d (i.e., d(x j>) < K(d(x, z) + d(z, ~9)): d(.u, y) = d(y, s): d(.u, y) = 0 if and only 
if x = y), with a Bore1 measure ,D such that ,u(AJx)) < Cp(A,.(x)), where 
A,(x) = {y; d(s, ~9) < r). On such a space one defines the so-called measure 
distance m(.\-,~v) = inf(p(A): A is a ball with x,~ E A 1. m(x,j,) is also a quasi 
distance (see (141), and if A:(x) = (J’; m(.u.~>) < r}, then CY ,<,~(d:‘(x)) ,< r. 

Remark. For a bounded NTA domain D. the triple X = i’D. 
d = Euclidean distance, ,D = w is a space of homogeneous type. Also. for 
Q,?Q,EpD. ~~(Q,.Q2)-(~(A(Q,.lQ,-Q,l),. 

Let (X, d,p) be a space of homogeneous type such that X is compact, 
p(X) = 1. and such that the balls d are open sets. 

(8.6) DEFINITION. a E L’(X) is a p-atom if ,(‘adp = 0 and there is a ball 
A containing the support of a, with lla(l, < l/,u(A)’ ‘“. The constant function 
a = 1 is also assumed to be a p-atom. It can be verified (see [ 39 1) that p- 
atoms on (X, d. ,u) are the same as p-atoms on (X. m,,~), up to a bounded 
multiple. 

(8.7) DEFINITION. Let a > 0 be given. A function @(X) belongs to 

%h(u) if L(@, u, m) = sup .&,.~E.Y,.~~A @W - @(Y)l/W-/I) a) < +a. 
The norm in Lip,,,(a) is I/ @IIn.,,, = L(@,a,m)+~,l@ldp. A function 0 in 
L’(X) belongs to BMO if there exists a constant C such that 
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,~(d))’ JA 1 Q(X) - mA( dp < C for all balls A in the quasi-distance m (or 
d), where mA(@) = (l/p(A)) J‘d @ dp. 

A function Q(X) belongs to Lip,(a, q) for 1 < 9 < +co, if there exists a 
constant C, such that for all d-balls A we have 

The norm in Lip,(a, q) is the least C above plus .(‘,\. / @pl dp. 

Remark. It is easy to see from the definitions that a p-atom of (X, d,,u) 
defines a linear functional of norm less or equal to 1 on Lip,( l/p - 1, 1) for 
p < 1, and on BMO for p = 1. Also, a p-atom of (X, m,,u) defines a linear 
functional on Lip,( l/p - l),p < 1, or BMO for p = 1, with norm less than 
or equal to 1. It was shown in 1381 that @ E LipJo, q) if and only if it 
coincides almost everywhere with a function on Lip,(o). Moreover, the 
norms are equivalent. 

(8.8) DEFINITION. For 0 <p< 1 andfE Lip,(l/p- 1, l)*, or BMO for 
P = 1, let IlfllH~,c,u, = W(X1 14 1 p l’p. there exists a sequence of p-atoms 3 
(ai(X such that f = C &ai in Lip,(l/p - 1, l)*, or BMO* for p = 1 }. 

If no such sequence exists, we let ]]f]]H,P,,,u, = fco. Then, 

ff,P,m = If: Ilfll,,,p,,.u, < +m I* 

Now, for fEL’(X), let f*(x)=s~pIl/rS~f(~)~(y)d~(y)l, 0 <r< 1, 
and SUPP 4 cAXX), L(@, Y, m) < rPy3 ll4ll, < 1. 

Let K(r, x,~) be a continuous, non-negative function defined on (0, 1 ] X 
Xx X, with the following properties: 

(8.9) (a) K(r,x,y) < (1 + m(x,y)/r)P’-Y 

(b) K(r, x, x) > A -‘, 
(c) lK(r, x, y) - K(r, x, z)i < (m(y,z)/rY ((1 + m(x,y))/r)m’m-‘Y for 

m(.v, z> < (r + m(x,.v)/4A) 

for some y > 0, A > 0. 
ForfEL’(X), definef+(-Q=sup,,,,, I(llr)I,K(r,x,y)f(y)d~(y)l. 
The main results of [39] and [52] combined, give (Corollary 1’ in [ 521): 

(8.10) THEOREM. There exists a p,, < 1, depending only on X, such that 
for any f E L l(X), and any p, p,, < p < 1, we have 

llf’ IILD,.Y~ ‘v IIf* IILPW = IlfIIH#Y). 

We will now apply these genera1 results to the case X = aD, d = Euclidean 
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distance, ,D = w. In our particular case, a P-atom is an L ‘(dw) function on 
aD, with JpI1 adw = 0, supp ad, ljallcL, < l/o(d), or the constant function 1. 
BMO coincides with BMO(ilD) (see (8.4)). The main result needed to apply 
the general theory is the following: 

(8.1 1) LEMMA. There exists a non-negative continuous fiinction 
K(r, P, Q) on (0. 1 1 X BD x aD, satisfiling (8.9), and constants (I and C, 
depending only on D such that whenecer fE L ’ (du) and u(X) = ji.!) f dw ‘. 
then ft (P) < C/V,(u)(P), for ecery P E FD. 

Proof: It is easy to see that all we have to produce is a function 
K(r, P, Q) as in the statement of the lemma. but which satisfies, instead of 
(8.9). 

(8.9)’ (a) K(r, P, Q) < a( 1 + m(P. Q)/r)‘lmyl. 

(b) K(r, P. Q) Z b-‘, 

(cl lK(r, P. Q,) - K(r. P, QJ S c(m(Q,. Qz)/rlTJ (1 + 
m(P, Q,)/r)- ’ mra for m(QI, Qz) G r/4B. 

for some positive constants y, , yz. y3, a. b. c and B. 
We will start by establishing all the required properties for a function 

H(r, P, Q), not necessarily continuous in r and P. 
For fixed P E 80 and 0 < r < 1, we pick s so that w(d(P. s)) = r. s and r 

will be fixed until we verify the desired properties of H(r, P, Q). Let A,$ be a 
point such that IA, - PI = s and dist(A,, ;lD) > Mm ‘s. Then, we let 
H(r, P, Q) = rK(A,, Q). Notice that for H. we automatically have f * (P) < 
N,(u)(P) for every P E JD, for sufficiently large U. The verification that H 
satisfies all the required properties is routine, using the results in Sections 4 
and 7. We include all the details for completeness. (8.9’b) is immediate since 
K(A,, P) = l/to(d(P, s)) by (4.11). We now turn to (8.9’a). If C is small and 
m(P, Q)< Cr. then w(P, IP- Qi)< r. and hence /P - Ql < s. But then, 
rK(A,, Q) = 1, and so (a) holds in this case. Next assume that- 
tu(P.IP-Qi)>r, and so IP-Ql>s. Let JP-Ql=2’s, for somej> 1. 
(4.14) shows that rK(A,. Q) < Mrqi/w(d(P. 2’s)), where c,~= 2 ni. But. the 
doubling condition (4.9) shows that tu(d(P. 2’s)) < Z”‘to(d(P. s)) = 2”‘r. 
Thus. 2 mni = (r/w(d(P. 2’s)))” ‘. and so 

<M 1 + w(d(P. IP- Ql,, ‘-n’i’ 
\ 

i r 1 
and so (a) follows. 

We now turn to (c). The main estimate needed for establishing (c) is that 
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if IQ, - Qzl = t, IX- Q,j Z 2jt. j> 2, then lK(X, Q,)- K(X, QJl< 
A42 -‘jK(X, Q, ) (7.1). From now on, let 1 Q, - Qz / = t. Assume first that 
m(P,Q,)<Cr, so that w(d(P,(P-Q,/))<r, and hence /P-Q,I<s. If 
iA, - Q, 1 < 2t, as dist(A,, 8D) > Mm’s, we see that /Q, - Qzi > M ‘s. Thus, 
4Q, 7 ~4 I Q, - Qzl) = AV’. s), and hence, &l(Q,. /Q, - QJ)) 3 Cr. Thus, 
for (c) to hold in this case, all we have to show is that rK(A,, Q,) < C. and 
rK(A,, Qz) < C. Both estimates follow from (a). Assume then that 
IA,-Q,I 2 2”t. j > 2. Then, jrK(A,y,Q,)-rK(A,,Q,)l < rA42 “K(A,,Q,) < 
CM2-‘“. The desired estimate then reduces to showing that 2 .ri < 
C(c@(Q,, IQ, - Qz ))/w(d(P, s)))g,. But, as IA - Q, / > Mm ‘s. lP - Q, ) < s, 
d(P,s)cd(Q,,ClA,-Q,l), and so the required estimate follows from the 
doubling property of LL). 

Assume now that m(P, Q,) > Cr, so that w(A(P. j Q, ~ PI)) > I’. and thus 
IQ, -Pi > s. As before, assume first that IA, - Q,l < 2r. Then, 
IQ, - Qzl >cs. We claim that f < 2s. If not. A(P. IQ, - Q,l)c 
4Q,, 5 IQ, -Q,l) and thus M~V'IQ, - QzlJ)< W~(Q,.lQ, - Q?l))6 
C(r/4B) < Y if B is large, and so, IQ, - Qzi < s, a contradiction. Thus. 
1 P - Q, 1 < s + 2t < 5s, and hence o(Q,, ) Q, - Q2/) 2 Y. Thus. for (c) to hold 
in this case, we need the estimate in y3 only. This will follow from (a), 
provided m(P, Qz) > Cm(P, Q,). But, m(P, Qz) 3 CT, and m(P. Q,) < 
Km(P, Q,) + Km(Q,, Qz) < Km(P, Qz) + Kr/4B, and so the estimate holds if 
B is large enough. The last case is when IA, - Q, I 2 2,‘1, j > 2. Then 
irK(A,,Q,)-rK(A,.Qz)J~<2~-“K(A,,Q,),<M2 .‘j(l im(PqQ,)/r) ’ ; 
by (a). All we have to check then is that 2 -.I’ < C(&l(Q,, /Q, ~ Qzl))/ 
w(A(P, s)))~?. This will follow from the doubling condition for CL). if we can 
show that A(P, s) c d(Q,, C (A, - Q, I). This easily follows from the fact that 
IA, - Q, / > Mm ‘s. Thus. (8.9)’ is established for H(r. P, Q). 

We will now modify H so as to make it continuous. We will first define 
K(2 i, P, Q), i > 0. For each P E iiD. choose s(P) so that 
o(A(P, s(P))) = 2-j. Using the compactness of i’D. and the Besicovitch 
covering lemma (see, for example, [SO, Lemma 3.3, p. 54 I). we can select a 
finite collection of points (P,i} in 8D, so that iiD = U,A(Pi, s(Pi)), and every 
point P E 8D belongs to at most N of the d(qi, s(P;)), where N is a number 
depending only on,the dimension 12. We note that the doubling property of w 
implies that if P E A(Pi. s(Pi)), then to(A(P, s(Pi))) v 2 i, and s(Pi) 2 s(P). 
Let now (#i} be a continuous partition of unity, subordinate to the cover 
(4(<i,s(ci))} of %D. Let A,iE D be such that lAi- PiI 2 s(P;). and 
dist(A,j. dD) > M- ‘s(P;). Let K(2 ‘, P, Q) = 2 i xj Go K(A,, Q). This is 
obviously continuous in P and Q. Also, for a given P, there are at most N 
indices j so that tij(P) # 0. For each such j, IAl - PI 2 s(P). s(P) 2 s(Pi), 
w(A(P, s(P))) = 2 mi, and thus K(2 ‘, P, Q) verifies (8.9)’ by our previous 
estimates on H. Also, for u large. A j E I’,,(P). and thus 
((l/2 -‘) .(‘?,) K(2 mi, P, Q)f( Q) dw(Q)l < CN,(u)(P). We now define 
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K(r. P, Q) for 2-j-l < r < 2 ’ by linearly interpolating K(2 ‘- ‘. P, Q) and 
K(2-‘, P, Q). The resulting K(r, P, Q) satisfies all the required properties. 

An immediate consequence of (8.3). (8.10) and (8.1 1) is: 

(8.12) COROLLARY. (i) Assume uEH’(D,dm). Then ~(X)=,l‘~,,fd~u’. 
fE L’(du). Then, 

(ii) There exists a p0 < 1, depending oni~l or1 D. such that, if 
f E L ‘(d(o), and u(X) = ,l’Jdtwy. then for arr>’ p,, < p < 1, Ire haz!e 

The main results of this section are simple consequences of this corollary. 

(8.13) THEOREM. u is in H’(D, dw) if aud on/~* lf u(X) = ,l‘;,,fdu ‘. with 

fE HZ,(aD). Moreowr, Il41~.d~,~ 1 Ilf‘ll/lc:,ti’l>) 2 llf* II, ~~d,.,~ 1 IV IL k,hl- 
Also. H’(D. d(u)* = BMO(?D). 

Proof By (8.12), it remains to show only that if fE H,!,,(?D), then 
U(X) = I‘,,fdw is in H’(D, dw). Thus, all we have to show is that if a is a 
I-atom,‘and u,(X) = 12rj a dw-‘, then /lNn(~)lj,.,(dwI < C. 

More generally. we will show that if a is a p-atom, p,) <p ,< 1, then 

IIw?hALP,d,, 1 < C, if p0 is sufficiently close to 1. In fact, let a be a p-atom. 
supported on a surface ball A centered at Q,. of radius r. Let Ai = A(Q,. 2’r). 
We first observe that N,(u(~) < l/u(d)““, and thus, .I‘-\, N,(u)” dw < 
w(A,)/tu(A) ,< C. Next, assume PE ?D\A,. and XE m(P). Then. 
IX- Q,,I > C2’r. 

u,(X) = .J‘?,) a(Q)1 K(X, Q) - K(X, Q,)] dw(Q). and so, by (7.1). 

I %(X)l < c 
w(A)“” 

K(X, Q,) 2 -.%(A) 

<c 2--‘; W) 
w(A)“~ W(Q,, IV- QJ)) 

Thus, .L,A I A’,(u,)’ (P) dw < C x.7 , 2 -p.“(~~(A)/tct(A,i))‘P~ ‘I, By the 
doubling condition, o(Aj) < C24jo(A), and so the sum converges to a value 
independent of A as soon as ,I//3 > (l/p - 1). 

(8.14) THEOREM. There exists p,, < 1, depending only on D, such that, 
for every f E L ‘(dw), and u(X) = Jp,) f dw’. we have, for p0 < p < 1 
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ProoJ The theorem follows from (8.12ii), the proof of (8.13), and the 
fact (7.1) that there exists y > 0 such that, for all x E D, K(X, -) is in 
Lip,b, 1). 

Remark. If we knew that the set of functions u(X) = jr,) f do?, 
fE L’(du), is dense in HP(D, dw), p0 <p < 1, it would follow that 
u E HP(D, do), p,, < p < 1, if and only if there exists fE H,P,(aD) such that 

u(X) = .b-(Q, WC Q> du(Q), w ere h the integral is interpreted as the 
action of fE Lip,( l/p - 1, 1)” on K(X, -). This density easily follows on 
star-shaped Lipschitz domains by considering the functions u,(X) = u(rX) 
(we assume that the star-center of the domain is the origin). Thus, we have: 

(8.15) THEOREM. Let D be a star-shaped Lipschitz domain. Then, there 
exists p0 < 1, depending only on D, such that for p0 < p < 1, u E H”(D, du) 
if and only if there exists fE H,P,(aD) such that u(X) = J,,f(Q) K(X, Q) 
dw(Q) (the integral is interpreted as the action off E Lip,( l/p - 1, 1 )* on 
K(X, -)). Moreover, 

9. AREA INTEGRAL ESTIMATES AND BMO 

In this section we prove Lp(du) estimates (1 < p < 00) for the area 
integral. We also establish a Carleson measure characterization of 
BMO(BD). 

(9.1) THEOREM. Let D be a bounded NTA domain. Assume 
1 <p < 00, and fE LP(do). Let u(X) =.(‘i.,fdw.‘. and A,(u)’ (Q)= 
.(‘,.,(Q, d(X)2-n lVu(X)I’ dX. Then, 

11 Aa u I~l.u,dw, < cp lk%W,w,. 

Moreooer, if u(X,) = 0 (where w = to.‘“). then 

(9.2) 

c, ’ llf II /.D(dw) < ~~Aa(U~ll,.U,,,~ (9.3) 

Proof: The method of proof is taken from [ 47 1. The main difference is 
that we use (4.8). Also, the pole of the Green function causes some minor 
technical difficulties. To overcome them, we will also consider the truncated 
version of the area integral. It is enough to prove (9.2) for f > 0, f E C(aD). 
Fix a small h, and write 
j.i 

AZ(u)(Q) = J‘fr;,o, d(X)*-’ (Vu(X)I' dX + 
I’ \r*lQ) I WX)I* dx = Ai.&) + B%u)(Q). Harnack’s principle 

im&s that B,.,(u)(Q) < Cu(X,). Thus, Bi,h(~)(Q) < C J‘:,,, f p dtu, and we 
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only have to deal with An,h(~). The proof of the case p = 2 illustrates the 
role of (4.8) in this theorem: 

< C I’ ( G(X)/ / Vu(X)\’ dX 
. I) 

= 1. If- u(X,)I* dw < C 1’ /fl’dw by (4.8) and (5.14). 
. an an 

In the case I < p < 2, the proof is the same as the one given in 147 1, using 
(5.8) and the fact that if I,.h(Q) = jrhca) d(X)‘-” d(up)(X) dX, then 
ja,, la,h(Q) dw(Q) < C JaDfp dw. This last in%quality holds because as u > 0, 
up is subharmonic, and its least harmonic majorant is !‘f” dw’. Thus, (5.13) 
shows that u”(X,) = j,,f p dw + J‘, G(X) d(up) dX. Also, (4.8) and an 
interchange in the order of integration show that 

I‘ 
- BD 

za.AQ) do(Q) < C I‘ I W)I ~W)(X) dx. 
. I) 

We now turn to 4 <p < 00. Once (9.2) is established in this range, it will 
follow in general from the Marcinkiewicz interpolation theorem (see(501). 
Let l/q + 2/p = 1, so that 1 < q < 2. Let g > 0, g E C(aD), and 
u(X) = j,, g do..?‘. Let D, = UQEaD I’:(Q). Following 147) once more, we 
first show that 

f 
ill) 

A ‘,.,(4(Q) g(Q) do(Q) < C j;, I WI I WXI’ 4X) a. (9.4) 
h 

This follows again, interchanging the order of integration on the left-hand 
side, from (4.8), the fact that {Q E 3D: XE r:(Q)} cd(X*, cd(X)), and 
that, by (4.1 l), I/w(d(X*, cd(X))) J‘dt,Ye,cd(Xjj g dw < Cv(X), for XE D,. 
From (9.4), we will deduce, using the identity d(u* . v) = du’ . c + 
2Vu* . Vu, that 

1’ Ax.,(u)(Q)g(Q>do(Q)~C PI1 1’ f*.gdw+ ( .f’dw ( gdo PI) PI) 20 

+ 1. N,,(u) * An./,(~l . An,,AU) do . (9.5 
81) i 

As in 1471, the case 1 < q < 2, (5.8) and Holder’s inequality, imply (9.2) 

607/46/l 9 
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in general. The main technical difficulty in establishing (9.5) comes from the 
pole of the Green function. The right-hand side of (9.4) equals 

C I- /G(X)1 (A@* . v) - 2Vu* . Vv} dX. 
. Dh 

Notice that the integrand is non-negative. Let D, be a family of C” domains 
0, c D. which increase to D, and G, then corresponding Green functions. 
with pole at X,. By monotone convergence, the integral above equals 

W+, J’n,nnlb Mu* . U) - 2Vu* . VU) / G,(X)1 dX. On D\D,, by Harnack’s 
principle /Vu* 1 / VP 1 < C(J‘p,f2 dw)(J,,) g dw). Thus, 

+ lim ( 
8’0 *nEnD* IVu*/ lvcl IG,V)l dx 

Integrating by parts on D,, we see that 

1’ 4~~4 I G,(X)I dx 
.nc 

= ( u*v do, - u*(X,) v(X,) 
iin, 

<I- u*vdw,+ 
i’n, 

Also, 

1. lvu21 IVvl IG,(X)ldX . nEnDh 

< )_ lvu21 IV4 IW’I dx 
.Qh 

lul lvul lvul d(X)'-" dx) do(Q), by (4.8). 
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because X is away from the pole X,,. Thus (9.5) follows and (9.2) is 
established. 

We turn to (9.3). We use the identity .[,,,J. g du = - .(‘(.,, G(,Y) Vu(X) 
Vv(X) dX, where U(X) = j‘;,,fdw”. u(X) = ,li.,) g dw-‘. u(X,,) = 0 (see (5.14)). 

Isolating the pole. we see that 

jJ‘. s do, < 1 ~G(X)~/VU/VZ~~~X+ ( G(.Y) Vu . Vrl dX ’ 
n’\ll,,c.\ /,I II ,I.\ ,,I If 

By (4.8) and an interchange in the order of integration. we see that the 
first term is majorized by C .l‘r,, A,(u) A,((%) dtu. 

For the second term. using the fact that zc(X,,) = 27(X,,) = 0. and expressing 
u and 13 as integrals of their gradients (in B*(X,,)). an integration by parts 
shows that 

Thus, i.(‘i’,,.f’.gdq < C]i,,A,,(rt)A,(~)dto. and so (9.3) follows. 
We now turn to our characterization of sMCI(?D) (see (8.4) for the 

definition). 

(9.6) THEREOM. Let D be a bounded NTA domain. attd u harmonic it? 
D. Then, u(,U) = .(‘i’,l f dtu “. bvith f E BMO(PD) if and ot11~, if there exists a 
constant C such that, for all balls B cetttered at poitlts Q E iD. 
( ljo~(3)) .)‘J / G(X)1 1 Vu(.Y)l’ d,Y < C, Itshere A = B n D. 

This theorem was established in I19 1 for Lipschitz domains. our approach 
here is parallel to [ 19, 201. 

We need three lemmas in order to prove this theorem. 

(9.7) LEMMA. Assutne f E BMO(?D), and r < r,, (see (3.1)). Then. rhere 
exists a cottstattt C, independent of r arid f. such that if B = B( Q,,. r), attd 
.~,.ED.d(A,..i-‘D)~AM~‘r,M ‘r</A,.-Q,,l<nfr.attd3=BnD.thetr 

bvhere A, is the surface ball bvith same center as A. attd titlice the radius. 
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Proof. Let A,i be the surface ball with same center as A, and 2’ times the 
radius. Let Ri = A,j\Ajp,. Since 

On the other hand, 

Since cj < A42 - 2i the lemma is established. , 

(9.8) LEMMA. Let D be a bounded NTA domain, and r < r,,. Then, there 
exists a constant C, independent of r, such that if B = B(Q,, r), and 
A=BnaD, then 

r2(n-2) 

I 
G3W) 

o(d)3.Bnnd2(X) 
dX<C. 

Proof. Let Ij be a dyadic Whitney cube of D, which touches B n D. 
Then diam(Zj) < Cr. Let .F = {all such I,), and Kk = {Zj E .F: I(Zj) = 2-k}. 
Then, 

! @(Xl 
---dX<L- Y 

BnD d*(X) r 
GYX) dx 

T ,jz-k -,/dZ(X) * 

Now let Zj = center of Zj. Fix k, and look at Ii E L4. Let Zj* E aD, be such 
that I Zj - ZF / = dist(Zj, aD>, and Aj = A(ZT, 2 Pk). By Harnack’s principle, 
for X E Zj, G3(X) N G3(Zj). Thus, 

r 
G3(x) 2 dX N G3(Zj) 2pk(n-2) = C’(Z,) o(Aj), 

-I, d (x> 

by (4.8). Moreover, there exists a constant C such that, for every j, 
A.j c A(Q,, , Cr), and also cjxdi < N, where N depends only on the dimension 
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n. This last fact holds because if Q E di f? Aj, then /Zi - Zjl < C2 pk, and the 
claim follows because Ii and Zj are dyadic cbes of side 2-A. Also, since 
A(ZT, Cr) 3 A(Q,, 2r), (4.1) shows that 

G(Zj) < M 
2-k a 

~ 
c 1 r 

. r’-” . co(A). 

Hence, C, E,7kj”, (G3(X)/d2(X))dX<M2 ~IiE,fr (2- ‘/r)‘, r”‘~“‘w*(A)w(A,) 
< CR 2(2--<(2-k/,.)2n ~~(4). Adding all over k such that 2 -’ < Cr, we get 
the desired estimate. 

(9.9) LEMMA. Assume that u is harmonic in the NTA domain D, and 
there exists a constant C such that, for all balls B centered at points Q E 3D, 
(l/w(A)) ,fsnu 1 G(X)1 1 Vu(X)I’ dX < C, where A = B n D. Let I/u I/’ be the 
least constant in the inequality above. Let D, = (XE D: dist(X, 3D) < S}. 
Then, there exists 6 > 0, and M > 0 such that. for all X E D,, IVu(X)I Q 
M 11 u Ii/4X>. 

Proof: Fix 7 > 0 so that II,, c D. Pick 6 so small that if X E D,, 
then B(X) = {Y: IX - YJ < d(X)/2} c D\B2,(X,). For each X E D,, we have 
I Vu(X)I’ < (I/[ B(X)I) J,,,, I Vu( Y)/’ dX. Also, for each YE B(X), d(Y) v 
d(X), and by Harnack’s principle G(X) v G(Y). Thus, by (4.8) G(Y) u 
d(X)‘-” w(A(X*, d(X))) for all YE B(X). Letting B(X) = B(X*, 2d(X)), we 
see that 

x .liT.Y, no I G( Y)l I Vu( Y)I’ dY. 

and thus the proof of the lemma follows. 

Proof of (9.6). Assume f E BMO(aD). Since Jan 1 f - u(X,,)l’ dw < 
/If jIR,,,O, by (5.14) all we have to worry about is balls B with r < rO. Fix one 
such ball B, and let f, = (f - mA,(f))x,,,, fi = (f- mA,(f ))x,,,. with A, as 
in (9.7). Let u, and u, be their respective harmonic extensions. Then, Vu = 
vu, + vu,, and (5.14) shows that (l/o(A)) Innu /G(X)/ IVu,(X)I’ dX < 
(l/&f)) 10 IW3 IW412 dX= (I/w(A)) i, If, I2 dw < Ilf ll~.w 

By Harnack’s inequality, splitting fi into its positive and negative parts, 
we see that 

where 
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Applying (4.10) in B n D to v(X) and C(X), using (9.7) and (4.8), we see 
that for X E B n D, 

03 ,< C Ilfll,,,o . 2 G(X). 

Thus, by (9.8), (l/44)) J‘mo lW)l P,V)12 dx < C Ilfllm,o. 
Conversely, assume with the notation of Lemma (9.9), that (( u(/’ ( +oo 

and u(X,) = 0. Evidently, .(‘I> jG(X)j jVu(X)j’ dX < +co. Thus, by (5.14), 
there exists fe L’(dtu) such that u(X) = 18,fdoy. and Ja,fdw = 0. To 
check that fE BMO(%D) we need only consider surface balls A with small 
radius. Let A =d(Q,, r), and let 0 be the “cap” of (3.11) such that 
B(Q,, r)n DcR c B(Q,,M2r)nD. Let A be a point in R with 
B(A,r/2)c.f2. We first claim that ~,)Vu(X)121G,(A.X)(‘dX~CJJuJ12. In 
fact, in B(A, r/2), JG,(A. X)( < l/IA -Xl’-‘, while, by (9.9), IVu(X)I’< 
C IIzll/’ rP2. Thus, 

Lr:2, 
IVu(X)I’ JG,(A, X)1 dX < C!$;<,,.,:,, lA d;in-2 < clbll'. 

On the other hand, in R\B(A, (M/2) r), G,,(A, X) < C(G(X)/(u(A)), by 
(4.161, and so our claim follows. 

Next, (5.14) shows that J‘d If- u(A)l’ do& < C I1uII’. Using (4.18), we see 
that (I/(L)(~)) j‘,, [J- u(A)\’ do) < C (lu/j2, as desired. 

10. BMO, DOMAINS 

Throughout this section D denotes a BMO, domain (see (2.6)). Fix 
X, E D. We will denote w = wx’O, harmonic measure for D at X,. u denotes 
surface measure of %D. Recall that w E A,,(do) if there exist a, ,$ 0 < a, 
p < 1 such that for all surface balls A and all Bore1 sets E c A, 
o(E)/w(A) < LI implies o(E)/&A) < 0. 

(10.1) THEOREM. Let D be a BMO, domain. Then: 

(a) LU E A,(da). (In particular, w and a are mutually absolutely 
continuous.) 

(b) There exists p0 < 00 such that for all p >pO, and all f E LP(da), 
there is a unique harmonic function u in D such that u approaches f non- 
tawntia& and //N~kP,dv, < C llfllLp~dn,. (N(u) denotes the non-tangential 
maximal function (5.6)) 

Proof: Suppose that we have already proved u E A ,(du). The fact that 
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UJ and CJ are mutually absolutely continuous follows from 1281. In fact, 
LC) = g da for some g E L4(du), q > 1. Hence, if p > q’ and fE LP(du), then 
H6lder’s inequality implies fE L ‘(dw). By Theorem (5.8), f has a harmonic 
extension 11 and N(u)(Q) < CM,J(Q). By a theorem of Muckenhoupt I12 1, 

IIMwfllLDldo, < C IlflI,P~dv, for sufficiently large P. 
It remains to prove that LU E AP(da). An immediate consequence of 

Lemma (4.11) is that if d=d(Q,~), A=A,(Q), EcA, then 
o”(E) E tu(E)/to(A). Therefore, it suffices to show that to”(E) < a implies 
u(E)/a(A) < p for some U, /3 between 0 and 1. The main lemma is: 

(10.2) LEMMA. There exists a Lipschitz domain b c D srlch that ifM is 
a constant depending only on the BMO, constant of D, 

(a) A Ed, d(A,SD”)-r, 

(b) u(?+ A) > M-la(A), 

(c) the Lipschitz constant of d is dominatd bv M. 

To prove o E A,,(du) using the lemma, let (3.l denote harmonic measure 
at A for d. The maximum principle implies &‘(E n ?D”) < w,‘(E) < (;L. An 
estimate of Dahlberg on Lipschitz domains [ 15, 27 ] says that there exists 
1’ > 0 depending only on the Lipschitz constant of 6 such that 
G”(E n ;iB) < Q implies u(E n ?D)/u(A) < Ma? Hence. for sufficiently 
small CI. 

u(E) u(E\iid) u(E n 80’) 
u(A) u(A) 

+- 
u(A) 

<l--M ‘+Mu“<p< I. 

We need only Lemma (10.2) in a special domain D = ( (s,J’)~ J’ > g(x). 
s E Rm, y E I? } with 4 E BMO, . Furthermore, after a bounded dilation in J’, 
we may assume that lj#lle,rro, < E,,. for some small fixed E,,. Finally, because 
the BMO, norm is invariant under g(x)+ T&Y ‘x), i.e.. the dilation 
(x, 4(x)) tr (YX. 3(-u)), we may assume that u(A) = 1. 

Let I,Y be a Lipschitz function on 8:“‘. Denote by V(~)(X) the unit normal 
to the graph (.u- w(x)): V(~)(X) = (-VY/(.K), 1) I(-VI&X). l)/ which exists for 
almost all x. Let I denote the unit cube in R m with center 0. Let 6’ E C,“(I) 
be even, B > 0, I(_ 0(x) d-v = 1, and B = 1 on +I. An approximate unit normal 
to the graph over I of a function 4 E BMO,(Rm) is given by ~(4 c 8)(O). 

(10.3) LEMMA. Suppose that Il#ile,,o, < Ed. Then there exists a Lipschit: 
filnction I,V and an open set /r c I such that 

(a) y>$onZand$=vonI\f. 
(b) !‘/- (lV@(x)j’ + 1)“‘d.x < CE;;‘. 

(c) v(# * 8)(O) . v(y)(x) > 4 for x E I. 
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In order to see that (10.3) implies (10.2), observe that if v,, = (O,..., 0, l), 
the unit vector in iRm”, then v0 . v(~)(x) = l/(jVy/(x)(’ + 1)“‘. Thus, in 
general, the Lipschitz norm of a surface in rectilinear coordinates with v, as 
vertical direction is dominated by Iv, . v(v)(x)l-‘. Let v1 = v(# * e)(O). We 
conclude from (10.3~) that w is the graph in rectilinear coordinates with v, 
as a vertical direction of a Lipschitz function with Lipschitz norm (2. The 
Lipschitz domain 0” with diameter roughly 1 and bounded Lipschitz constant 
is constructed by dropping a cone from the vertex (O,@(O)) + v,. Let 
A = ,4((0,4(0)), 1). Denote V= {(x, 4(x)): x E P). Then by (10.3a) and (b), 
a(d n ao”) > a(d) - a(v) > 1 - CcAj2 > i = ia( This proves (10.2). 

Proof of (10.3). Denote u = V(# * 8)(O). R = (Ial’ + l)“*. Recall that 
v1 = (-a, 1)/R. Let q E Cr(IRm); ?j = 1 on I. Let h(x) = (Q(x) - a . x) q(x). 

Note that since l1411A, < I1411eMo, ( e0 and Q(0) = 0, I1 lOh( dx < s0 (see 
(3.7)). Denote the ordinary Hardy-Littlewood maximal function on iRm 
Mf(x) = sup{ (l/lJl) j, If(~)1 dy; J is a cube containing x). Define 
P = (x E I: M(l Vh I)(x) > cA’*R}. The weak type estimate for A4 tells us that 

IPI < CE;“R~‘. (10.4) 

Denote 6(x) = d(x, ‘P), and e,(x) = E -mB(~ ‘x). Define 

h(x) = h * e,,,,(x), x E 0, 

= h(x), x Q e. 

Finally, let w(x) = a s x + h(x) + CE~‘~~(X). 
The main estimate is that Vi(x) exists a.e. and 

1 V&x)1 < CE;‘~R. (10.5) 

To prove this, denote u(x, E) = h * O,(x). 2%’ = {(x, E): E > d(x)}. For 
(x, E) E 9, 

++(x+y-h(x) 

< CE;/~R + Cq,. 
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The second to last inequality holds because E > 6(x) implies the ball of 
radius E about x contains a point of ‘ct”. The final inequality holds because 

s I Y I I(W&) R(Y)1 dY < c. 
Notice that v(x, E) is continuous in &? and the estimate above says 

sup,, I Vu(x, E)/ < Cci”R. Therefore [ 481 v I # can be extended to all of R”’ ’ 
as a Lipschitz function with norm Cs, “‘R Finally, L(X) is the composition . 
x + (x, 6(x)) + v(x, 6(x)). Because 6(x) is Lipschitz with bound 1, h(x) is 
Lipschitz with bound CE~‘~R. 

We can now prove (c). By (7.5) 

VI/(x) = a + Vi(x) + V(C&,G(X)) 

= a + O(&ii2R). 

Part (c) now follows for suffkiently small 6,. 
For part (a), 

Hence, 6(x) + CsOB(x) > h(x). Thus v(x) > 4(x). Also, we clearly have 
li/ = I$ on r\p, so (a) is proved. 

For part (b), P = (J Ji, where Ti is the Whitney decomposition of p. 

i’ (Iv$(x)12 + 1)“2dx<x I‘ (1 +/V&)/2)“2d,u .P i ‘1, 

The final inequality holds because /V@(x)] < I V/z(X)] + /a / = I VA(x)] + R, and 
there is a point of ‘P in the expanded cube I,?. Thus by (10.4) 

1 
/o 

(1 + Iv#(x)l’)“’ dx < CR x lZjl = CR lPI < Cc,!,“. 
i 

This concludes the proof of (10.3) and the theorem. 
Let us compare Theorem (10.1) with a result of [28]. We call a domain D 

an Ly domain if the boundary of D is given locally as the graph of 
continuous functions I$ with Vd E Lp. 
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(10.6) THEOREM 1281. If DC R” is an Lf domainfor some p > n - 1, 
then w and o are mutually absolutely continuous. Moreover, if p > 2, and 
fE L*(do)for some q > 2(p - l)/(p - 2), thenfE L’(do) and the harmonic 
extension u off converges to f non-tangentially a.e. (w) or (a). 

The domains treated in (10.6) are far more general than BMO, domains: 
BMO c L&, for all p < 00. However. the convergence we obtain is merely 
pointwise convergence almost everywhere. Theorem ( 10.1) has the advantage 
that the non-tangential maximal function N(u)(Q) is controlled. Thus the 
convergence is dominated. 

11. FURTHER RESULTS AND OPEN QUESTIONS 

(11.1) THEOREM. Let D be a quasicircle. Then, u belongs to H’(D. dw) 
if and only if u(X) = :(‘?,) f do,’ for some f E L ‘(dw), and the harmonic 
conjugate of u, IT(X) = 1 iD g do.\’ for some g E L ’ (dw). 

Prooj Suppose that u(X) = lp,)f dw’. with f E L ‘(dw), and u’(X) = 
.(‘p,I g do?, with g E L’(dw). Denote F = u + iU: Then, ) Fl”’ is subharmonic, 
and its boundary values belong to L’(dw). By subharmonic majorization, 
and Theorem (5.8), the non-tangential maximal function of IF/“’ belongs to 
L’(dw). Therefore, u E H’(D, dto). Conversely, suppose that u E H’(D, dw). 
Then, U(X) = j,f dw,‘, where f E L’(dw) and f has an atomic decomposition 
(Theorem (8.13)). Let $ denote a conformal mapping from the unit disc to 
D. u o @(Y) = Js,fo @(eiN) dcu,;‘, and f o @ has an ordinary atomic decom- 
position as a function in the unit circle (relative to arc-length ds). Therefore, 
by the boundedness of the conjugation operator on H’ of the circle, 
(n 0 @)- (Y) = I’ ., h(e”) do,:,, where h E L ‘(ds). . s But, zi 0 @ = (u 0 @)-; 
thus, 

Ii(X) = .J‘i’lj g dw I. where g=ho@ ’ E L’(do). 

(11.2) THEOREM. Let D be a chord-arc domain kvith chord-urc constant 
sufJicientl>l close to 1. Then, u belongs to H’(D, dw) with u(X,,) = 0, fund 
only if u(X) = j,,f dtu’ for some f E L ‘(dw) with j‘f dto = 0, and such that 
the Cauch)) integral of f. (dto/du) (i.e., p . 1’ J,,,f (z) . (do/da)(z) . 
(z - i) -’ do(z) = Jr711 (f(z)/(z - i)) dw(z)) belongs to L’(da). 

ProoJ: We will only give a sketch of the proof. First, choose the chord- 
arc constant so close to 1 that the Cauchy integral is bounded in every 
L “(da), 1 < p < co. (See ( 13 1.) Now, introduce the space H:,,(dD, da) of 
f= G Qz;, c IAil < +a, such that supp ai c di, 3, a surface ball, 
.(‘?,) a, da = 0, and llail/,X < l/c@,). It is easy to see that the Lp boundedness 
of the Cauchy integral (which we are going to denote by C from now on) 
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implies that if fE H:,(iiD. dw), then CfE L’(aD, da). The fact that 
(0 E A, (da) implies that fE HA,(iiD. dw), j’fdo~ = 0 if and only if 
f. (&J/&S) E HA,(iiD, da) (see [ 141). It follows that if u E H’(i?D, kc,), 
U(X”) = 0. then C(j’. (&I/&J)) E L’(du), where u(X) = j‘r,Jdw.Y with 
fE H;,(L’D, d(o) by (8.13). 

For the converse, we follow the lines of Theorem 2.13 of 1181. Let 
Kf(z) =p . 2’ . jii,) ((2 ~ 4, N,)/I$ - zl’)f($) da($). where N, is the inward 
pointing unit normal to i’D. It is easy to see that the boundedness of C’on 
L”, 1 <p < co, implies the same result for K. Moreover, arguing as in 
Theorem 1.1 of 1181, we can show that if the chord-arc constant of D is 
sufficiently close to I, then K is not only bounded on BMO(ilD). but, in 
addition K = K + E, where t? is compact on BMO(cD), and the operator 
norm of E on BMO(SD) is small. Because of this, an argument similar to the 
one given in Theorem 1.2 of 1181 shows that if + K is invertible on 
BMO(aD), and +Z - K* is invertible on Hj,,(SD, da). From this, the 
argument of Theorem 2.13 of 1181 (with some modifications) shows that if 

fE L’(?D, da), and C/E L’(da), then fE Hb,(aD, do). 
Thus, if fE L ‘(&I), !‘fdo = 0, and C(f. (&o/da)) E L ‘(do), then 

f. (do/&) E HA,(FD, da), and so fE H:,(FD, da). Hence. u(X) = j‘i.,J&~’ 
belongs to H’(D. d(o). 

An examination of the proof of the doubling condition (4.9) shows that it 
can be stated in the following form. Let Q E FD, A = B(Q, r) n ?D, 
24 = B(Q. 2r) n %D. Then there is a constant C independent of X such that 
if d(X, 24) > ir, w’(2A) < Cw’(A). 

( 11.3 ) PROPOSITION. Let f be a continuous function on the unit interval, 
f(0) = 0, f(y) > 0 for ~1 > 0. Denote D = ((x,y): 1x1 cf(y),s E R”. 
0 < y < 1 }. If harmonic measure in D satisfies the doubling condition (as 
stated above), then there exists E > 0 depending only on C such that 
f (~1) > ey for v < 4. In other words, D contains a cone at the origin. 

ProoJ: Suppose that for some y < $, f(~)) < EJ. We will deduce a 
contradiction for E sufficiently small. Let Q = (0, 0), X, = (O,y), 
X, = (0,; .I<). Denote A = B(Q, ~1) f7 %D, B = B(X, ,i y). Choose N 
sufficiently large that B(X,, N) 3 D. Denote H = ((-U, t): t > y). Denote by 
u,(X) the harmonic function in H f? B(X,, N) such that 

u,(X) = 1, x= (x3?.), Is/ <f(.l’). 

= 0. elsewhere on the boundary. 

By the maximum principle, u,(X) > w’(A) for all X in H nB(X,. N)n D. 
In particular, u,(X) > w”(A) for all X E B n D. There is a constant C, such 
that u(X) < C,E~ for X E B. Thus, &(A) < C,P for all X E B n D. 



138 JERISON AND KENIG 

Denote by u*(X) the harmonic function in Hn B(X,, y) such that 

Q(X) = 1, x= (X>Y)? 1x1 >&f(Y), 

= 0, elsewhere on the boundary. 

By the maximum principle, u,(X) < ox(2d) for X in H flB(X,,y)n D. In 
particular, u*(X) < w’(2d) for X E B n D. There is a constant a,,, > 0 such 
that u&X) > a, for X E B. Thus, wx(2d) > a,,, for all X E B r\, D. In all, 
wX(2d)~a,C~‘~-mwx(d) for XEBnD. 

Case 1. B c B. In this case, d(X,, 24) > f y, so for sufficiently small E 
the estimate above contradicts the doubling condition at X,. 

Case 2. B Q? D. Then there exists y,, (5/4(y < y, < (7/4)y, such that 
f(y,) < (1/4)y, The estimate above shows that ox(2d) > a,C;‘c m”o,‘(d) 
for all X on the boundary of D n ((x, t): t > y, }. By the maximum principle, 
the same estimate is valid on the interior of D n ((x, t): t > y, ). For example, 
take the interior point X, = (0, 3~). X, satisfies d(X,, 24) > $ y, but for small 
E, the doubling condition at X, is violated. 

We would now like to make some remarks about elliptic operators Y, in 
divergence form, with bounded measurable coefficients, i.e., P = diaij3,j, 
where A JJ ]ri]* < Ci,j aij(x) tit; < A Ci ]&I2 (see 161). If we replace 
harmonic functions on NTA domains, by solutions to operators Y as above, 
on NTA domains, many of our theorems remain valid. 

Specifically, all the lemmas in Section 4 hold, with similar proofs, using in 
some instances the results and techniques of [6]. All the global results of 
Section 5 then also remain valid, except for (5.13) and (5.14), which use 
specific properties of the Laplacian. (However, we believe that some 
analogue of (5.13) and (5.14) must also hold for this general class of 
operators.) The theorems in Section 6 which do not deal with the area 
integral, also remain valid for the genera1 class of operators, as well as 
Sections 7 and 8 in their entirety. The proofs of the theorems in Section 9 use 
special properties of the Laplacian, and thus cannot be claimed to hold for 
the general class of divergence form operators. The results of Section 10, as 
they involve surface measure, cannot be true for genera1 divergence form 
operators, because surface measure and elliptic measure need not be 
mutually absolutely continuous for these operators, even in smooth domains 
(see 151). 

We would now like to list some open questions.* 

(1) Does the analogue of the local area integral theorem (6.6) remain 
valid for divergence form operators with bounded measurable coefficients? 
(See also (4) below.) 

* Since this paper was written in June 1980, considerable progress has been made on 
several of these questions. See the note at the end of the paper. 



BOUNDARY BEHAVIOR OF HARMONIC FUNCTIONS 139 

(2) By the methods of 1.51, it can be shown that every measure on S’, 
which satisfies the doubling condition, arises as the elliptic measure of an 
operator in divergence form. Is this true for S”, n > l? 

(3) The idea behind the proof of [5] is that quasiconformal mappings in 
two dimensions preserve the class of operators in divergence form, with 
bounded coefficients. This, however, is not true in higher dimensions. Is there 
a class of elliptic operators in higher dimensions, which is invariant under 
quasiconformal mappings of iii ‘, and such that our results hold for this class 
of operators on NT’ domains (or even smooth domains)? A natural class to 
consider is operators iz/’ = aiaijij,, with 

GACx)J+ lti123 with A(x) -<c, 4x1 
and A(x), /1(x) E A ,(dx). 

(4) Distribution function inequalities for the area integral in NTA 
domains: The proposed inequalities are of the form 

u{Q E E D: A,(u) > 21; N,(u) < pi} < C(y) w(Q E iiD: A,(u) > ,I}. 

where C(y) -+ 0 as y + 0, and a < /J The same inequality, with the roles of A 
and N interchanged, with the assumption that u(X,) = 0 is also desired. As is 
well known (see [3]), those inequalities imply the equivalence of the L”(do) 
norms of A and N, 0 <p < co. As mentioned in the Introduction, Dahlberg 
] 161 proved those inequalities for Lipschitz domains. The key point in his 
proof is the existence of constants a, b > 0 such that if F c A c 8D and A is 
a surface ball of radius r, and we construct the sawtooth region R over F. of 
diameter Y (see (6.3)) then 

w(F) w(d) < CIu,(F) lo3 > C-h,,(F). 

We have not been able to establish these inequalities for general NTA 
domains. On Lipschitz domains, they are an easy consequence of the fact 
that w E A,(&). Since on BMO, domains (see (10.1)) u E A,x (da), the 
distribution function inequalities hold in this case. 

In the case n = 2, for any NTA domain one can use a subharmonic 
majorization argument like the one used in Theorem (11.1) to show the 
equivalence in L’(do) of A and N (see [48, Chap. 71). 

The existence of distribution function inequalities of the type described 
above is also an open question (for exactly the same reason cited above) for 
divergence class operators, even on smooth domains. 

607./4h!l IO 
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(5) In connection with (8.14) we would like to pose the question of 
whether the set of functions u(X) = I&do,‘, fE L’(do), is dense in 
HP(D, dw), for p0 < p < 1, on any NTA domain. This fact, and the a priori 
estimate of (8.14) would complete the proof of the atomic decomposition of 
HP(D, dw), po < p < 1. 

(6) The following generalization of chord-arc domains to higher 
dimensions seems natural. Let D be an NTA domain such that 
a(d(Q, r)) < Cr+’ for all surface balls d(Q, r) in %D. (Of course, BMO, 
domains satisfy this property.) Does harmonic measure belong to A,,. (do) in 
this case? Conversely, if harmonic measure belongs to A,(&), does c 
satisfy a(d(Q, r)) < Cr n _ ‘7 This question is open even when IZ = 2. . 

(7) Jones asked whether the Corona theorem holds on multiply 
connected NTA domains in the plane. This might be a consequence of the 
duality of H’ and BMO (8.13). 

The last questions are of a geometric nature. 
(8) Does the conformal mapping between two simply connected 

quasicircles preserve corkscrews ? This would give a more direct proof 01 
(1 1.1). Perhaps (2.7) is relevant here. 

(9) Suppose D is an NTA domain in [R”, n > 2, which is homeomorphic 
to a ball. Can the “caps” of (3.11) be constructed so as to also be 
homeomorphic to balls? This is of course true for Zygmund domains, and 
quasispheres (see Appendix). 

(10) Is every Zygmund domain D in iR”, n > 2 a quasisphere? (The 
answer for n = 2 is yes, and follows from Ahlfors’ three point condition, set 
Section 2). 

APPENDIX: A LOCALIZATION 

We will now prove Theorem (3.11) in the special cases where D is i 
quasisphere or a Zygmund domain. Recall that in both cases D itself is ar 
NTA domain. 

Notations. @: iR”+ F?” and @-’ will denote global quasiconforma 
mappings. d(B) (d(E)) denotes the diameter of the ball B (respectively, a se 
E) and IEl denotes the Lebesgue measure of a set E c R”. As usua 
d(B, , B,) denotes the distance between balls. 

We need two properties of quasiconformal mappings. Throughout, M wil 
denote a constant that depends only on the dilatation constant of @ (an 
V’). 

(A.l) Let 0 < C <M; if d(B,) < Cd(B,) and d(B,, Bz) < Cd(B,), the1 
4@(B,)) < MC”4Wd). 
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(A.2) Let B be a ball with center X; then there exist balls B’, B” with 
center Q(X) such that B” c @(B) c B’ and d(B’) < Md(B”). 

These properties are easy consequences of theorems of Gehring and 
Vtiisala. 

THEOREM 1 123 I. IJ@l, the Jacobian of @, satisfies A, with respect to 
Lebesgue measure. In other words, there exists a > 0 such that 

I @WI I WI for any E c B. 

THEOREM 2 1531. For any ball B c R”, there exists a ball B’ such that 
@(B) c B’ and d(B’) < M 1 @(B)I”“. 

(A.3) PROPOSITION. If D = @(B,), where B, is the unit ball, then for 
every r > 0 and every Q E ?D, there exists an NTA domain R such that 
B(Q, M-‘r)n D cl2 c B(Q,Mr)n D. In fact R is a quasisphere with 
dilatation constant comparable to that of D. 

ProoJ: Let B = B(Q. M-‘r). Choose B” c W’(B) c B’ according to 
(A.2) so that d(B’) < Md(B”). Let 0 = @(B’) f7 D = @(B’ n B,). Obviously 
Q is a quasisphere with dilatation comparable to D and Q II B n D. 
Moreover, 

d(D) < d(@(B’)) < M 1 @(B’)I”” < Md(@(B’)). 

Now by (A. 1) and the inclusion @(B”) c B. 

Md(@(B’)) < M*d(@(B”)) < M’d(B) = 2Mr. 

(A.4) PROPOSITION. Let D be a Zygmund domain. For every r > 0 and 
every Q E aD there exists an NTA domain fi such that B(Q. Mm ‘r) n D c 
R c B(Q, Mr)n D. M and the NTA constant of 0 depend onlv on the 
Zygmund class constant of D. 

Proof Let. 4 E A,, the Zygmund class. As in (3.6), it will suffke to 
verify (A.4) in a special domain D = {(x, y): y > 4(x), x E m”‘) with 11 #/I,, , 
small. We will use slightly different notations from those in Section 3. If 
0 E CF(ii?“‘) is a non-negative even function with J’ B(x) dx = 1, we will 
denote Bk(x) = 2-km8(2-k~), #k(~) = Q * B,(x), aCk)(x) = V@,(x). Let a 
denote an absolute constant times /1#/1,,,. Recall that ((3.7), (3.9)) 

I $&(X) - #(x>i < a2 k. 

1$(z) - 4(x) - a’k)(x) . (z - x)1 < a2 mk for/-v-zI < 10. 2-k.(A.5) 
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It is easy to deduce from (A.5) that 

lak(x) - a(k-‘)(X)I < a. 

la”(z) - dk)(X)I < a forjx-z( < 10.2-k. b4.6) 

We will need a quantitative version of the inverse function theorem, whose 
proof is left to the reader. 

(A.7) LEMMA. Suppose that F is a Lipschitz mapping 
R” -+ R”; F(0) = 0. Let S be a convex set containing 0 and T be an 
orthogonal matrix. If II F’(x) - TI( < a < f, for all x E S, then: 

(a) (1 -a)\~-zI<IF(x)-F(z)I<(l +a)lx-z/. 

(b) If B(0, (1 + a) r) c S, then F(B(0, r)) I B(0, (1 - 2a) r). 

(11 II denotes the operator norm of a matrix.) 

A mapping F satisfying (A.7) will be called a near isometry. 
Denote 

q/Jt) = 2k+‘t - 1, 2-kP’ <f < 2mk, 

= 2 - 2kt, 2-k 6 t < 2-h+’ 3 

= 0, otherwise. 

Observe that 

qk@) = ’ for t > 0. 
k=?ir. 

2 -kqk(t) = t for t > 0. 
k-m G4.8) 

Let (t&x)} be a smooth partition of unity on R”’ subordinate to the doubles 
of dyadic cubes of side 2Pk. Denote the center of each cube by XT; RCk’(x) = 
I(-a’k’(x>, 1 )I, A’k’(~) = (-aCk’(x), l)/RCk’(x), A; = ACk’(x$. uk(x) = 

(X3 $k(X)) + Tk cj ‘#‘j”(X) AT. 
Finally, F(x, t) = JJF= _ co vk(t) uk(x). (F: IRT’ ’ -+ D.) F preserves distance 

to the boundary: 

(A.9) LEMMA. For sufficiently small a 

(a) lF(x, t) - (x, +))I = t + O(at), 
(b) d(F(x, t), 3D) = t + O(at). 
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Proox Choose i so that 2-‘,<t<2-‘+‘. Denote J= (i- 1,i). For 
Iz --xl < 10. 2-‘, by (AS), (A.6), (A.8), 

F(x, f) - (2, (j(z)) = \’ k~J Ilk(f)(Uk(X) - (zt 4(z))) 

= \‘ 
k-;; 

I?&){(@ 4(x) - qvz) - ~“‘(a~ - z)) 

+ (0, fjk(X) - q%(x)) + 2 -k y lyjk(x)(A” - A ‘“(x)) 

+ (x - z, lP(x) . (x - z)) + 2 -W(x)} 

= f((X - z. lP(x) . (x - z)) $ A “‘(x)) + O(at). 

In particular, when z = X, F(x, t) - (x, 4(x)) = M”‘(x) + O(at) and (a) 
follows since A”‘(x) has unit length. For part (b), we need only check the 
lower bound. Denote (w, y) = F(.x, t) with w E R”‘, y E R. If 1 z - x/ < 
10 . 2-‘, then the formula above shows 1 F(x, t) - (z, #(z))l > t - O(uf) 
because the vectors (X - z, U(~)(X) . (x - z)) and A”‘(x) are perpendicular. 

Part (a) for small a implies IW --xl < 2t. If lz --xl > 10. 2-‘, then 
lF(x, f) - (z, 4(z))/ > (z - WI > Iz -XI - /x - w( > f. 

Define a block B,(x)=((z,f):Iz-xl< 100.2-‘, and &2-‘<f< 
10 . 2-‘}. Denote I, the m x m identity matrix. Ri = R”‘(x), a = U(~)(X) and 
‘a the transpose (row) vector. It is not hard to calculate, for (z, f) E B,(x), 

F’(Z, f) =Ji + O(a), where Ji = zt?l 
'U 

(A. 10) 

For any m X m matrix U, denote _U = (y y ), the (m + 1) X (m + 1) matrix. 
Let Ui denote the rotation of R” that sends u/la I to the unit vector 
(1, O,..., 0) and fixes the orthogonal complement of these two vectors. (If 
a = 0, let Ui = I,.) An easy calculation yields: 

(A.1 1) .Ji =ri&, orthogonal, .Si symmetric and Si = ‘U,D, Ui, 
Di = (“,i ,mom, 1. 

Remark. The geometric meaning of calculations (A. 10) and (A. 11) is 
that if we translate x to the origin F o $7 ’ is a near isometry on Si(Bi(x)), in 
the sense of (A.7). Furthermore, (A.9) shows that the image under F of 
disjoint blocks is disjoint. Thus F is a global homeomorphism. 

Denote E,(x) = {z: IS,(z - x)1 < C}. Ei( x is an ellipsoid in R”’ containing ) 
the rectangle {z: Iz --xl < 10 . 2-‘, [q,,(x) . (z -x)1 < 10 . 2-‘) and 
contained in a multiple of this rectangle. The NTA domain of size 2- ’ at 
Q = {x0, $(x0)) is 0 = F(Ei(xo) x (0, C . 2-‘)). The reader may verify, using 
(A.5) and (A.9), that B(Q, 2-‘) n D c L2 c B(Q, C . 2-‘) n D. 
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The key point in the verification that Q is an NTA domain is to find a 
non-tangential ball at height t and distance t from the sides of R. 
F(aE,(x,) x (0, C . 2 -‘)). Without loss of generality, assume i = 1. 

(A. 12) LEMMA. Let Q = F(x, t), 0 < t < $ and x E aE. (E = E, (x,,).) 
Then there exists P E a such that 1 P - Q / = t and d(P, a0) > (1 - &) t. 

Proof. Choose k so that 2-k < t < 2Pk ‘I. We need only be concerned 
with the block Bk(x). Make a translation so that .Y = 0. Then 0 E ii.!?. 
F 0 .Sk’ is a near isometry on Jk(Bk(0)). Therefore, the problem reduces to a 
question in IRm. It suffices to prove that one can inscribe a sphere inside the 
ellipsoid S,(E) of radius at least t at 0 E B(S,(E)). (Here we are using the 
notations of (A.lO) and (A.1 l).) 

Recall that E = {z: \S,(z -xO)l < C}; thus S,(E) = (z: iS,.S, ‘z - 
S,x,( < C). For any ellipsoid (I: IAz - zOI < C), the least radius of an 
inscribed sphere at any boundary point is C/(1 A II* 11 A --’ //. Hence we must 
prove that l/S,S;‘11* liSkS;‘ll < Ct-’ ‘v C2k. 

Denote H, = U, - U, . 64.6) implies that I/H, // < ka/R, and 
1 R, - R ,I < ka. Therefore, 

= IIfU,D,D;‘Uk +‘U,D,U,fHkD~‘Uk~~ 

< lID,Dk’ll + llD,I/ IIfHAII G 2(1 + ka). 

Similarly, l(SkS;‘)l < 2(1 + ka). Hence, I/SkS;‘ll IlS,S;‘l12 < 8(1 + ka)‘< 
C2k, as desired. 

The remainder of the proof that 0 is an NTA domain is similar to the 
proof of (3.6) and will be left to the reader. The only tools needed are 
Lemma (A.12), the remark following (A.1 l), and the fact that 
ITi X (0, C e 2-j) is convex. 

Note added in proof. Questions 1 and 4 of Section I I have been resolved in the affir 
mative by B. Dahlberg, D. Jerison, and C. Kenig in a forthcoming article: “Area integral 
estimates for elliptic differential operators with non-smooth coefficients.” An answer to 
Question 3 can be found in: “The local regularity of solutions of degenerate elliptic 
equations,” Comm. in P.D.E.. 7 (1) (1982). 77-116 by E. Fabes, C. Kenig, and R. Serapioni 
and in two articles by E. Fabes, D. Jerison. and C. Kenig: “The Wiener test for degenerate 
elliptic equations,” Ann. Insf. Fourier, Grenoble and “Boundary behavior of solutions to 
degenerate elliptic equations,” Proc. ConJ in honor of A. Zygmund (1981). The two- 
dimensional part of Question 6 is treated by D. Jerison and C. Kenig in “Hardy spaces, A, 
and singular integrals on chord-arc domains,” Math. Stand., in press. Finally, the positive 
answer to Question 8 is well known (although not to us at the time). It follows easily from the 
fact that the conformal mapping between quasicircles has a global quasiconformal extension. 
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