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Abstract

We show how to construct a non-smooth solution to a Hessian fully nonlinear second-order uniformly
elliptic equation using the Cartan isoparametric cubic in 5 dimensions.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

This paper shows that one can use certain specific minimal cubic cone, namely, the Cartan
isoparametric eigencubic [2,5] to construct a non-smooth solution to a Hessian fully nonlinear
second-order elliptic equation.

More precisely, we study a class of fully nonlinear second-order elliptic equations of the form

F(D2u) = 0 (1.1)
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defined in a domain of Rn . Here D2u denotes the Hessian of the function u. We assume that F
is a Lipschitz function defined on the space S2(Rn) of n × n symmetric matrices satisfying the
uniform ellipticity condition, i.e. there exists a constant C = C(F) ≥ 1 (called an ellipticity
constant) such that

C−1
∥N∥ ≤ F(M + N )− F(M) ≤ C∥N∥ (1.2)

for any non-negative definite symmetric matrix N ; if F ∈ C1(S2(Rn)) then this condition is
equivalent to

1
C ′

|ξ |2 ≤ Fui j ξiξ j ≤ C ′
|ξ |2, ∀ξ ∈ Rn . (1.2′)

Here, ui j denotes the partial derivative ∂2u/∂xi∂x j . A function u is called a classical solution
of (1) if u ∈ C2(Ω) and u satisfies (1.1). Actually, any classical solution of (1.1) is a smooth
(Cα+3) solution, provided that F is a smooth (Cα) function of its arguments.

For a matrix S ∈ S2(Rn) we denote by λ(S) = {λi : λ1 ≥ · · · ≥ λn} ∈ Rn the (ordered)
set of eigenvalues of the matrix S. Eq. (1.1) is called a Hessian equation ([20,19] cf. [4]) if the
function F(S) depends only on the eigenvalues λ(S) of the matrix S, i.e., if

F(S) = f (λ(S)),

for some function f on Rn invariant under permutations of the coordinates.
In other words Eq. (1.1) is called Hessian if it is invariant under the action of the group O(n)

on S2(Rn):

∀O ∈ O(n), F(t O · S · O) = F(S). (1.3)

The Hessian invariance relation (1.3) implies the following:

(a) F is a smooth (real-analytic) function of its arguments if and only if f is a smooth (real-
analytic) function.

(b) Inequalities (1.2) are equivalent to the inequalities
µ

C0
≤ f (λi + µ)− f (λi ) ≤ C0µ, ∀µ ≥ 0,

∀i = 1, . . . , n, for some positive constant C0.
(c) F is a concave function if and only if f is concave.

Well known examples of the Hessian equations are Laplace, Monge–Ampère, Bellman, Isaacs
and Special Lagrangian equations.

Bellman and Isaacs equations appear in the theory of controlled diffusion processes; see [7].
Both are fully nonlinear uniformly elliptic equations of the form (1.1). The Bellman equation is
concave in D2u ∈ S2(Rn) variables. However, Isaacs operators are, in general, neither concave
nor convex. In a simple homogeneous form the Isaacs equation can be written as follows:

F(D2u) = sup
b

inf
a

Labu = 0, (1.4)

where Lab is a family of linear uniformly elliptic operators of type

Lab =


ai j

∂2

∂xi∂x j
(1.5)

with an ellipticity C independent on the parameters a, b and ai j being constant coefficients.
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Consider the Dirichlet problem
F(D2u) = 0 in Ω
u = ϕ on ∂Ω ,

(1.6)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω and ϕ is a continuous function
on ∂Ω .

We are interested in the problem of existence and regularity of solutions to the Dirichlet
problem (1.6) for Hessian equations and the Isaacs equation. Problem (1.6) has always a
unique viscosity (weak) solution for fully nonlinear elliptic equations (not necessarily Hessian
equations). The viscosity solutions satisfy Eq. (1.1) in a weak sense, and the best known interior
regularity [2,5,3,18] for them is C1,ϵ for some ϵ > 0. For more details see [3,6]. Note,
however, that viscosity solutions are C2,ϵ-regular almost everywhere; in fact, it is true on the
complement of a close set of Hausdorff dimension strictly less than n [1]. Until recently it
remained unclear whether non-smooth viscosity solutions exist. In the recent papers [11–14]
two of the present authors first proved the existence of non-classical viscosity solutions to a
fully nonlinear elliptic equation, and then of singular solutions to the Hessian uniformly elliptic
equation in all dimensions beginning from 12. Those papers use the functions

w12,δ(x) =
P12(x)

|x |δ
, w24,δ(x) =

P24(x)

|x |δ
, δ ∈ [1, 2[,

with P12(x), P24(x) being cubic forms as follows:

P12(x) = Re(q1q2q3), x = (q1, q2, q3) ∈ H3
= R12,

H being Hamiltonian quaternions,

P24(x) = Re((o1 · o2) · o3) = Re(o1 · (o2 · o3)), x = (o1, o2, o3) ∈ O3
= R24

O being the algebra of Cayley octonions.
As was noted by the second author (V.T.), these are (most symmetric) examples of so-called

radial eigencubics, which define minimal cubic cones. Since the family of such cubics contains
especially interesting isoparametric Cartan cubics [2,5] in dimensions 5, 8, 14 and 26 admitting
large automorphism groups, the last two being intimately connected with P12(x) and P24(x), it
is but natural to try these Cartan cubics as numerators of tentative non-classical solutions to a
Hessian uniformly elliptic equation in their respective dimensions. Our main goal in this paper is
to show that in 5 dimensions it really works at least for C1,1-solutions, and to prove the following
theorem.

Theorem 1.1. The function

w5(x) =
P5(x)

|x |

is a viscosity solution to a uniformly elliptic Hessian equation (1.1) with Lipschitz F in a unit
ball B ⊂ R5 for the isoparametric Cartan cubic form in x = (x1, x2, z1, z2, z3) ∈ R5

P5(x) = x3
1 +

3x1

2


z2

1 + z2
2 − 2z2

3 − 2x2
2


+

3
√

3
2


x2z2

1 − x2z2
2 + 2z1z2z3


.

At the time of writing it is not clear that the same is true for the function w5,δ(x) = P5(x)/|x |
δ

for δ > 1 (see Remark 4.1 below) and thus the question on the optimality of the interior C1,α-
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regularity (i.e. of possibility for α to be arbitrary small) for viscosity solutions to fully nonlinear
equations is open in dimensions up to 12.

However, the method of [12] permits to construct singular solutions in ten dimensions:

Corollary 1.1. There exist ε > 0,M > 0 such that the homogeneous order 2 − 2ε function

u10,ε,M (x, y) =
w5(x)+ w5(y)+ M(|x |

2
− |y|

2)

(|x |2 + |y|2)ε

in the unit ball B ⊂ R10 is a viscosity solution to a uniformly elliptic equation (1.1) with
smooth F.

For a proof it is sufficient just to repeat the argument of [12] which gives the result for
ε = 10−6,M = 100.

As in [13] we get also that w5 is a viscosity solution to a uniformly elliptic Isaacs equation:

Corollary 1.2. The function

w5(x) = P5(x)/|x |

is a viscosity solution to a uniformly elliptic Isaacs equation (1.4) in a unit ball B ⊂ R5.

Remark 1.1. One could hope that using a minimal cubic cone in 4 dimensions, namely, the
Lawson cubic [9] (essentially unique by Perdomo [15])

P4(x) = x3(x
2
1 − x2

2)+ 2x1x2x4,

it is possible to construct a non-smooth solution to a Hessian uniformly elliptic equation in four
dimensions, but it does not work. Namely, the function

w4(x) = P4(x)/|x |

is not a solution to such an equation, since it does not verify the conditions of Lemma 2.1 (the
corresponding matrix family is not hyperbolic).

The rest of the paper is organized as follows: in Section 2 we recall some necessary
preliminary results from [13], then we recall some facts about radial eigencubics and especially
the Cartan cubic in Section 3 and we prove our main results in Section 4.

One should note that similar results are valid for three other Cartan cubics (and other
isoparametric homogeneous polynomials) and that all of them can be used in some other similar
applications. These results will be exposed elsewhere.

2. Preliminary results

Let w = wn be an odd homogeneous function of order 2, defined on a unit ball B = B1 ⊂ Rn

and smooth in B \ {0}. Then the Hessian of w is homogeneous of order 0.
We want to give a criterion for w to be a solution of a uniformly elliptic Hessian equation or

a uniformly elliptic Isaacs equation. To do this, recall that a family A ⊂ S2(Rn) of symmetric
matrices A is called uniformly hyperbolic if there exists a constant M > 1 such that

1
M
< −

λ1(A)

λn(A)
< M

for any A ∈ A, λ1(A) ≥ · · · ≥ λn(A) being the eigenvalues of A.
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One can reformulate some results from [13] (namely, Lemma 2.1, six final lines of Section 4,
Lemmas 5.1 and 5.2) as follows, in our special case δ = 1:

Lemma 2.1. Set for x, y ∈ Sn−1 and for an orthogonal matrix O ∈ O(n),

M(x, y, O) := D2w(x)−
t O D2w(y)O.

Suppose that the family

M := {M(x, y, O) : M(x, y, O) ≠ 0, x ≠ y, x ≠ 0, y ≠ 0, O ∈ O(n)} ⊂ S2(Rn)

is uniformly hyperbolic. Then w is a solution to a uniformly elliptic Hessian equation as well as
to a uniformly elliptic Isaacs equation.

We need also the following property of the eigenvalues λ1 ≥ · · · ≥ λn of real symmetric
matrices of order n which is a classical result by Weyl [21]:

Lemma 2.2. Let A ≠ B be two real symmetric matrices with the eigenvalues λ1 ≥ λ2 ≥ · · · ≥

λn and λ′

1 ≥ λ′

2 ≥ · · · ≥ λ′
n respectively. Then for the eigenvalues Λ1 ≥ Λ2 ≥ · · · ≥ Λn of the

matrix A − B we have

Λ1 ≥ max
i=1,...,n

(λi − λ′

i ), Λn ≤ min
i=1,...,n

(λi − λ′

i ).

3. Radial eigencubics

Let us recall the Cartan cubic form P5(x) which is closely related with real algebraic minimal
cones, that is, homogeneous polynomial solutions u to the minimal surface equation

(1 + |∇u|
2)∆u −


ui j ui u j = 0.

According to Hsiang [8], the study of those is equivalent to classifying polynomial solutions
f = f (x1, . . . , xn) ∈ R[x1, . . . , xn] of the following congruence:

L( f ) = 0( mod f ), (3.1)

L( f ) := |∇ f |
2∆ f −


fi j fi f j

being the normalized mean curvature operator. This condition means that the zero-locus f −1(0)
has zero mean curvature everywhere where the gradient ∇ f ≠ 0. A non-zero polynomial
solution of this congruence is called an eigenfunction of L . The ratio L( f )/ f (a polynomial in x)
is called the weight of an eigenfunction f . An eigenfunction f which is a cubic homogeneous is
called an eigencubic.

Among them the most interesting are solutions of the following non-linear equation:

L( f ) = λ|x |
2 f, λ ∈ R, (3.2)

which are called radial eigencubics. In [8], Hsiang posed the problem to determine all solutions
of (3.2) up to a congruence in Rn (for any degree).

This classification for radial eigencubics is almost completed in [17,16], namely, any radial
eigencubic is either a member of the infinite family of eigencubics of Clifford type completely
classified in [17], or belongs to one of the exceptional families, the number of these lying between
12 and 20.
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The cubic forms P12(x) and P24(x) belong to the Clifford family; the Cartan polynomial
P5(x) is the first, that is of least dimension, in the list of exceptional radial eigencubics. Moreover,
it is an isoparametric polynomial, that satisfies the Münzner system [10]:

|∇ f |
2

= 9|x |
4, ∆ f = 0,

expressing the fact that all principal curvatures of f −1(0)


S4 are constant (and different). Since
L( f ) = −54|x |

2 f, P5(x) is a radial eigencubic as well.
The form P5(x) admits a three-dimensional automorphism group. Indeed, one easily verifies

that the orthogonal transformations

A1(φ) :=
1
2


3 cos(φ)2 − 1

√
3 sin(φ)2

√
3 sin(2φ) 0 0

√
3 sin(φ)2 1 + cos(φ)2 − sin(2φ) 0 0

−
√

3 sin(2φ) sin(2φ) 2 cos(2φ) 0 0
0 0 0 2 cos(φ) 2 sin(φ)
0 0 0 −2 sin(φ) 2 cos(φ)



A2(ψ) :=


1 0 0 0 0
0 cos(2ψ) 0 − sin(2ψ) 0
0 0 cos(ψ) 0 − sin(ψ)
0 sin(2ψ) 0 cos(2ψ) 0
0 0 sin(ψ) 0 cos(ψ)



A3(θ) :=
1
2


3 cos(θ)2 − 1 −

√
3 sin(θ)2 0 0 −

√
3 sin(2θ)

−
√

3 sin(θ)2 1 + cos(θ)2 0 0 − sin(2θ)
0 0 2 cos(θ) −2 sin(θ) 0
0 0 2 sin(θ) 2 cos(θ) 0

√
3 sin(2θ) sin(2θ) 0 0 2 cos(2θ)


do not change the value of P5(x).

Moreover, one easily gets the following lemma.

Lemma 3.1. Let G P be a subgroup of SO(5) generated by

{A1(φ), A2(ψ), A3(θ) : (φ, ψ, θ) ∈ R3
}.

Then the orbit G P S1 of the circle

S1
= {(cos(χ), 0, sin(χ), 0, 0) : χ ∈ R} ⊂ S4

under the natural action of G P is the whole S4.

Proof. Indeed, calculating the differential of the action

(S1)4 −→ S4, (φ, ψ, θ, χ) → (cos(χ), 0, sin(χ), 0, 0)A1(−φ)A2(−ψ)A3(−θ)

at (φ, ψ, θ, χ) = (0, 0, 0, 0) one sees that its rank is 4 which implies the surjectivity. �

4. Proofs

Let w5 = P5(x)/|x |. By Lemma 2.1 it is sufficient to prove the uniform hyperbolicity of the
family

M5(x, y, O) := D2w5(x)−
t O D2w5(y)O.
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Proposition 4.1. Let O ∈ O(5), x, y ∈ S4, M5(x, y, O) ≠ 0 and let Λ1 ≥ · · · ≥ Λ5 be its
eigenvalues. Then

1
20

≤ −
Λ1

Λ5
≤ 20.

Proof. We begin with calculating the eigenvalues of D2w5(x).
More precisely, we need the following lemma.

Lemma 4.1. Let x ∈ S4, let λ1 ≥ λ2 ≥ · · · ≥ λ5 be the eigenvalues of D2w5(x), and let
x ∈ G P (p, 0, q, 0, 0) with p2

+ q2
= 1. Then

λ1 =
p3

− 6p + 3


3(4 − p2)

2
, λ3 =

p3
+ 3p

2
,

λ5 =
p3

− 6p − 3


3(4 − p2)

2
.

Proof of Lemma 4.1. Since w5 is invariant under G P , we can suppose that x = (p, 0, q, 0, 0).

Then w5(x) =
p(3−p2)

2 and we get by a brute force calculation:

D2w5(x) :=
1
2


M1 0
0 M2


being a block matrix with

M1 :=

p(1 + 2p2
− 3p4) 3

√
3p(p2

− 1) 3q(1 − p4)

3
√

3p(p2
− 1) p3

− 15p 3
√

3q(p2
+ 1)

3q(1 − p4) 3
√

3q(p2
+ 1) p3

+ 3p5

 ,
M2 :=


p3

+ 3p 6
√

3q
6
√

3q p3
− 15p


which gives for the characteristic polynomial F(S) = F1(S) · F2(S) where

F1(S) =


S −

3p

2
−

p3

2


S2

+ 6pS − p3S +
63p2

4
− 3p4

+
p6

4
− 27


,

F2(S) =


S2

+
15pS

2
−

5p3S

2
−

45p2

4
+

15p4

2
−

5p6

4
− 9


have the roots

λ1 =
p3

− 6p + 3


3(4 − p2)

2
, λ3 =

p3
+ 3p

2
,

λ5 =
p3

− 6p − 3


3(4 − p2)

2

λ2 =
5p3

− 15p + 3r

4
, λ4 =

5p3
− 15p − 3r

4

with r :=


5p6 − 30p4 + 45p2 + 16.
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One needs only to verify that indeed

λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ λ5

which is elementary. For example, let us verify for p ∈ [−1, 1] the inequality

λ1 =
p3

− 6p + 3


3(4 − p2)

2
≥ λ2 =

5p3
− 15p + 3r

4
,

which by symmetry gives λ4 ≥ λ5 (the two remaining inequalities being simpler). �

Indeed,

λ1 − λ2 = 3(r1 − r)/4 with r1 := p − p3
+ 2


3(4 − p2) > 0,

r2
1 − r2

= 4(1 − p2)(s1 + s2) ≥ 0

for s1 := p4
− 6p2

+ 8 = (4 − p2)(2 − p2) > 0, s2 := p


3(4 − p2) since

s2
1 − s2

2 = (1 − p)(4 − p2)(p5
+ p4

− 7p3
− 7p2

+ 13p + 16) ≥ 0

because

p5
+ p4

− 7p3
− 7p2

+ 13p + 16 = (p + 1)(p4
− 7p2

+ 13)+ 3 ≥ 3.

End of the proof. Let now y ∈ G P ( p̄, 0, q̄, 0, 0). If p = p̄ but M5(x, y, O) ≠ 0, the trace
T r(M5(x, y, O)) = 8w5(y) − 8w5(x) = 0 and the conclusion follows as for any traceless
matrix in dimension 5. Let then p > p̄; by Lemma 2.2, one gets

Λ1 ≥ λ2(p)− λ2( p̄) =
(p − p̄)(p2

+ p p̄ + p̄2
+ 3)

2
≥

3(p − p̄)

2
,

−Λ5 ≥ max{λ3( p̄)− λ3(p), λ1( p̄)− λ1(p)}
≥ (p − p̄) inf

p∈[−1,1]

max{|λ′

1(p)|, |λ
′

3(p)|} = 3(p − p̄),

0 ≤ −T r(M5(x, y, O)) = 8w5(x)− 8w5(y)
= 8(p − p̄)(3 − p2

− p p̄ − p̄2) ≤ 24(p − p̄).

Therefore,

−Λ5 ≥ 4Λ1

since T r(M5(x, y, O)) ≤ 0 and

4Λ1 + Λ5 ≥ T r(M5(x, y, O)) ≥ 24( p̄ − p),

−Λ5 ≤ 4Λ1 + 24(p − p̄) ≤ 4Λ1 + 16Λ1 = 20Λ1,

the case p < p̄ being completely parallel which finishes the proof of our results. �

Remark 4.1. One can calculate the eigenvalues of D2(P5(x)/|x |
δ) for δ > 1 as well but then

the analogue of Lemma 4.1 does not hold, which makes impossible applying the technique of
[13, Section 4] to prove the hyperbolicity of the corresponding matrix family. Thus the question
whether P5(x)/|x |

δ is for δ > 1 a solution of a uniformly elliptic (Hessian or not) equation
remains open.
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