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1. Introduction

1.1. In this paper, we study mirabolic D-modules, following earlier works [16,12], and 
[13]. Mirabolic D-modules form an interesting category of regular holonomic D-modules 
on the variety SLn(C) × Cn. This category has a “classical” counterpart, a certain cat-
egory of admissible D-modules on an arbitrary complex reductive group, which was 
studied in [19]. Similarly to that “classical” case, there are two different definitions of 
mirabolic D-modules. The first definition involves characteristic varieties, while the sec-
ond definition involves an action of the enveloping algebra. The first definition is more 
geometric and it can be used to establish a connection with perverse sheaves via the 
Riemann–Hilbert correspondence. The resulting perverse sheaves are “mirabolic ana-
logues” of Lusztig’s character sheaves on a reductive group. Furthermore, a conjectural 
classification of simple mirabolic D-modules, modeled on Lusztig’s classification of char-
acter sheaves, was suggested in [14]. A proof of this conjectured classification has recently 
appeared in [48].

The second definition of mirabolic D-modules is more algebraic and it is better 
adapted, in a sense, for applications to Cherednik algebras, see below. In particular, 
there is an important mirabolic D-module, the mirabolic Harish–Chandra D-module. 
This D-module has a very natural algebraic definition, while its geometric definition is 
not completely understood so far, see however [13], Theorem 5.1.2.

Our first result establishes an equivalence of the two definitions of mirabolic 
D-modules. Although this result was, in a way, implicit in [13], its actual proof turns out 
to be more complicated than one could have expected. The idea of the proof is similar 
to the one used in [19] in the “classical” case. However, certain steps of the argument do 
not work in the mirabolic setting and require a different approach.

1.2. In order to state our results in more detail, we introduce some notation. 
Throughout the paper, we work over C, the field of complex numbers. We write DX

for the sheaf of algebraic differential operators on a smooth algebraic variety X and 



G. Bellamy, V. Ginzburg / Advances in Mathematics 269 (2015) 71–161 73
let D(X) = Γ (X, DX) denote the algebra of global sections. We write T ∗X for the 
cotangent bundle of X and SS(M ) ⊂ T ∗X for the characteristic variety of a coherent 
DX -module M .

Convention 1.2.1. Throughout the paper, we let V = Cn be an n-dimensional vector 
space, and write GL := GL(V ) = GLn. Given an algebraic group L, let L′ = [L, L] denote 
the derived group. In particular, we have GL′ = SL(V ) =: SL. Let gl = gl(V ) = Lie GL
and sl = sl(V ) = sln be the Lie algebras of the groups GL and SL, respectively. We will 
explicitly write SLm, resp. slm, in all cases where m �= n.

Let N ⊂ sl be the nilpotent cone. Let Z be the algebra of bi-invariant differential 
operators on the group SL. This algebra is nothing but the center of U(sl), the enveloping 
algebra of the Lie algebra sl.

We set X = SL×V , and put D := D(X) = D(SL) ⊗ D(V ). We view a bi-invariant 
differential operator z on SL as an element z ⊗ 1 ∈ D(SL) ⊗ D(V ). We identify the 
cotangent bundle T ∗X with SL×sl × V × V ∗, where we have used the trace pairing to 
identify the vector space sl with its dual.

We also consider the group GL with Lie algebra gl. The group GL acts naturally 
on V and acts on SL by conjugation (this action clearly factors through an action of 
PGL(V )). We let GL act diagonally on X. The GL-action on X induces a morphism of 
Lie algebras μ : gl → D. The GL-action on X also induces a Hamiltonian action of GL
on the cotangent bundle T ∗X with moment map μX : (g, Y, i, j) �→ gY g−1 − Y + i ⊗ j. 
Following [16], we define the following subvariety of T ∗X:

Mnil :=
{
(g, Y, i, j) ∈ T ∗X = SL×N × V × V ∗ ∣∣ gY g−1 − Y + i ⊗ j = 0

}
. (1.2.2)

We recall the following, cf. [12, Definition 4.5.2]:

Definition 1.2.3. A coherent DX-module M is called a mirabolic D-module if one has 
SS(M ) ⊆ Mnil and, moreover, M has regular singularities.

It was shown in [16] that Mnil is a Lagrangian subvariety of T ∗X. Hence the inclusion 
SS(M ) ⊆ Mnil ensures that M is holonomic, so that the condition that M has regular 
singularities makes sense.

The following result, which was implicit in [13], will be proved in Section 2.6 below.

Theorem 1.2.4. For a coherent DX-module M , the following are equivalent:

(i) M is a mirabolic D-module.
(ii) Both the Z-action and the μ(gl)-action on Γ (X, M ) are locally finite.

Let 1 ∈ gl denote the identity map. Thanks to the above theorem, the action of the 
element 1 on any mirabolic D(X)-module M is locally finite. Thus, one has a vector
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space decomposition M =
⊕

c∈C
M (c), into generalized eigenspaces of 1, where

M (c) :=
{

m ∈ M
∣∣ (μ(1) − c

)�(m) = 0 for some � = �(m) 	 0
}

.

Let C̃ be the category of all mirabolic D-modules and, for each q ∈ C∗, let C̃q be the 
full subcategory of C̃ formed by the mirabolic D-modules M such that one has

M =
⊕

exp(2π
√
−1 c)=q

M (c).

The objects of the category C̃q may be viewed as having ‘monodromy q’ along the 
C∗-orbits of the dilation action on V , the second factor in X = SL×V . The category C̃q

is a Serre subcategory of C̃ .
Let Cq be the full subcategory of C̃q formed by the mirabolic D-modules M such that 

the μ(1)-action on M is semisimple.

1.3. The functor of Hamiltonian reduction

Let W denote the symmetric group on n letters and write e ∈ C[W ] for the averaging 
idempotent in the group algebra of W . Let T be the standard maximal torus of SL =
SL(V ) formed by diagonal matrices, and write t = Lie T . The group W acts naturally 
on T and on t by permutation of coordinates.

Associated with a complex number κ ∈ C, there is an algebra Htrig
κ (SL), the trigono-

metric Cherednik algebra of type SL at parameter κ, see Appendix A.1 for a precise 
definition. Let Uκ := eHtrig

κ (SL)e denote the spherical subalgebra of Htrig
κ (SL). The alge-

bra Uκ contains the algebra (Sym t)W ∼= C[t∗]W as a commutative subalgebra.
An important role in the representation theory of Cherednik algebras is played by 

category Oκ. By definition, this is the category of finitely generated left Uκ-modules 
which are locally finite as (Sym t)W -modules, see Section 6. The link between mirabolic 
D-modules and representations of the Cherednik algebra is provided by the functor of 
Hamiltonian reduction introduced in [16]. We recall the construction of this functor.

First, one associates with κ ∈ C two other complex parameters, q and κ, defined by 
the formulas:

κ = 1 − c, q = exp(2π
√
−1c). (1.3.1)

Let gc be the Lie subalgebra of D defined as the image of the map gl → D, a �→
μ(a) − c Tr(a), which is a Lie algebra homomorphism. For any DX-module M , we put

Hc(M ) := Γ (X, M )gc =
{

m ∈ Γ (X, M )
∣∣ gc · m = 0

}
.

Further, let Oκ be the category of finitely generated left Uκ-modules which are locally 
finite as (Sym t)W -modules, see Section 6. Then, it was shown in [16, Section 6] that the 
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functor M �→ Hc(M ) restricts to an exact functor Hc : Cq → Oκ and, moreover, this 
yields an equivalence Cq/ Ker(Hc) 

∼→ Oκ.
In this paper, we give a description of the kernel of the functor Hc. Our description 

involves a stability condition in the sense of Geometric Invariant Theory. To formulate the 
stability condition, one equips the trivial line bundle over T ∗X with a GL-equivariant 
structure using the determinant character. Explicitly, we let GL act on T ∗X × C by 
g · (x, t) = (g · x, det(g)−1t) for all x ∈ T ∗X, g ∈ G and t ∈ C. Write (T ∗X)unst,+ for 
the set of unstable points with respect to this line bundle and (T ∗X)unst,− for the set 
of unstable points with respect to the inverse line bundle, which corresponds to the 
character det−1.

To state our result, we also need the following

Definition 1.3.2. Put BAD = {a
b | a, b ∈ Z, 1 ≤ b ≤ n}. We say that the parameter 

c ∈ C is good if c /∈ BAD ∩ (0, 1). We say that c is admissible if c /∈ BAD ∩ Q>0 and, 
additionally, if n = 2 then c /∈ BAD.

Theorem 1.3.3. Assume c ∈ C is admissible and let M ∈ C̃q be a mirabolic module on X. 
Then, we have SS(M ) ⊂ (T ∗X)unst,+ if and only if Hc(M ) = 0.

The above theorem will be proved in Section 7. The theorem can also be deduced, in 
the rational case, from more general results of McGerty and Nevins which appeared at 
the same time as (the first version of) our paper (see Remark 7.5.2 for more details).

Theorem 1.3.3, together with Proposition 1.4.1 below imply that:

Corollary 1.3.4. For any c ∈ C \ BAD, the functor Hc : Cq → Oκ is an equivalence.

Our next result says that the functor of Hamiltonian reduction commutes with shift 
functors. When studying shift functors, it is more convenient to work with twisted
Dc-modules on X = SL×P(V ) rather than ordinary D-modules on X = SL×V , see 
Section 7. An advantage of working with twisted Dc-modules is that the category Cq, 
of mirabolic D-modules on X, gets replaced by a category Cc, of mirabolic twisted 
Dc-modules on X.

Tensoring with the line bundle O(n), on P(V ), gives a natural geometric shift functor 
Cc → Cc−1, M �→ M (n). On the other hand, based on Opdam’s theory of shift operators, 
there is a shift functor S : Uκ-mod → Uκ+1-mod.

In Section 7.6, we prove the following strengthening of an earlier result established 
in [21].

Theorem 1.3.5. Assume that c is admissible. Then, the following diagram commutes

Cc

M �→M (n)

∼

H

Cc−1

H

Oκ
S

∼ Oκ+1
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1.4. The support of simple mirabolic D-modules

The space X has a partition into a finite union of smooth locally-closed strata, see 
Section 3 for details. Every irreducible component of the Lagrangian variety Mnil is the 
closure of the conormal bundle to a certain stratum. The strata which arise in this way 
are called relevant. These relevant strata, X(λ, μ), are labeled by the bi-partitions (λ, μ)
of n. The support of any simple mirabolic module is the closure of a relevant stratum.

Let Xcyc ⊂ X be the open subset formed by the pairs (g, v) such that the vector v is 
cyclic for g, i.e. such that we have C[g] ·v = V . Further, let Xreg ⊂ Xcyc be the open subset 
formed by the pairs (g, v) ∈ Xcyc, such that g ∈ SL, is a regular semi-simple element – 
that is, a matrix with determinant one, and with n pairwise distinct eigenvalues. The 
set Xcyc is a union of relevant strata and the set Xreg is the unique open stratum in X.

The following result provides some information about the support of simple mirabolic 
modules. This information is an important ingredient in the proof of Theorem 1.3.3, as 
well as in the analysis of the mirabolic Harish–Chandra D-module, see Theorem 1.5.2.

Proposition 1.4.1. Let M ∈ Cq be a simple mirabolic module. If q is a primitive m-th 
root of unity, where 1 ≤ m ≤ n, then

SuppM = X
((

mv, 1w
)
,
(
mu
))

for some u, v, w ∈ N such that n = (u + v)m + w. Otherwise, SuppM = X.

Independent of Theorem 1.3.3 above, one can ask whether a simple mirabolic 
D-module supported on the closure of a given stratum is killed by the functor of Hamil-
tonian reduction. The following proposition gives a partial answer to that question. First, 
introduce the following sets of rational numbers:

Sing− =
{

r

m
∈ Q≤0

∣∣∣ 2 ≤ m ≤ n, (r, m) = 1
}

, Sing+ = {−c + 1 | c ∈ Sing−},

where (r, m) denotes the highest common factor of r and m, and we set Sing0 = Z. Let 
Sing ⊂ C be the union of these three sets.

Proposition 1.4.2. Let c ∈ C and set q = exp(2π
√
−1c). Let M ∈ Cq be a simple mirabolic 

module such that SuppM ⊂ X \ Xreg.

(1) If SuppM = X((mv, 1w), ∅) for some v, w ∈ N such that n = vm + w then 
Hc(M ) �= 0 implies that c = r

m ∈ Sing−.
(2) If SuppM = X((1w), (mu)) for some u, w ∈ N such that n = um + w then 

Hc(M ) �= 0 implies that c = r
m ∈ Sing+.

(3) If SuppM = X(∅, (1n)) then Hc(M ) �= 0 implies that c ∈ Z>0.

For all other M , one has Hc(M ) = 0 for all c.
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The proof of Propositions 1.4.1 and 1.4.2 are given in Sections 5.2 and 6.5 respectively. 
We note that Proposition 1.4.2 can be used to classify the possible supports of simple 
modules in category Oκ for the algebra Uκ.

1.5. The mirabolic Harish–Chandra D-module

In the seminal paper [24], Hotta and Kashiwara have defined, for any complex semisim-
ple group G, a holonomic D(G)-module that they called the Harish–Chandra D-module. 
This D-module is important, for instance, because of its close relation to the system 
of partial differential equations on the group G introduced by Harish–Chandra around 
1960 in his study of irreducible characters of infinite dimensional representations of the 
group G.

The definition of the Harish–Chandra D-module involves a choice of “central char-
acter”, a closed point λ ∈ SpecZ, where Z is the algebra of bi-invariant differential 
operators on G. Write Zλ for the corresponding maximal ideal in Z and put g := Lie G. 
The adjoint action of the group G on itself induces a Lie algebra map ad : g → D(G), cf. 
Section 1.2. Then, following Hotta and Kashiwara in [25], the Harish–Chandra D-module 
at parameter λ is defined to be

Jλ := D(G)/
(
D(G) · ad(g) + D(G) · Zλ

)
. (1.5.1)

It is not difficult to show that Jλ|Greg , the restriction of Jλ to the open set Greg of 
regular, semi-simple elements, is a local system of rank |W |, the order of the Weyl group 
of G. Furthermore, one of the main results proved by Kashiwara, [28], using a famous 
theorem of Harish–Chandra on regularity of invariant eigen-distributions says that one 
has Jλ � j!∗(Jλ|Greg), i.e. Jλ is the minimal extension with respect to the natural open 
embedding j : Greg ↪→ G of the local system Jλ|Greg .

We now return to the setting of Section 1.2 with G = SL. We identify SpecZ with 
t/W via the Harish–Chandra homomorphism. Motivated by formula (1.5.1), in [16], the 
authors introduced, for each pair (λ, c) ∈ t∗/W ×C, the following D-module on the space 
X = SL×V

Gλ,c := D/(D · gc + D · Zλ),

called the mirabolic Harish–Chandra D-module with parameters (λ, c).
The mirabolic Harish–Chandra D-module is an example of a mirabolic D-module and 

it was further studied in [13]. It is known, in particular, that the restriction of Gλ,c to 
Xreg is a local system of rank n!.

One of the motivations for the present work was our desire to understand whether 
or not one has an isomorphism Gλ,c

∼= j!∗(Gλ,c|Xreg), where j : Xreg ↪→ X denotes the 
open embedding. It turns out that if c is generic then the isomorphism holds. However, 
for non-generic values of the parameter c, the isomorphism may fail. In other words, 
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for certain values of c, the D-module Gλ,c may have either nonzero simple quotients or 
submodules (or both) supported on X \ Xreg.

Our main result about the mirabolic Harish–Chandra D-module describes the possible 
supports of simple quotients, resp. submodules, of Gλ,c as follows.

Theorem 1.5.2. Let c ∈ C. For any λ ∈ t∗/W , the following hold:

(1) If c /∈ Sing then Gλ,c has no submodules or quotients supported on X \Xreg.
(2) If c = r

m ∈ Sing− then: The simple quotients of Gλ,c are supported on the closure of 
the strata X((mv, 1w), ∅) where v, w ∈ N such that n = vm + w.
The simple submodules of Gλ,c are supported on the closure of the strata X((1w),
(mu)), where u, w ∈ N such that n = um + w.

(3) If c = r
m ∈ Sing+ then: The simple quotients of Gλ,c are supported on the closure of 

the strata X((1w), (mu)), where u, w ∈ N such that n = um + w;
The simple submodules of Gλ,c are supported on the closure of the strata X((mv,

1w), ∅), where v, w ∈ N such that n = vm + w.

Remark 1.5.3. The behavior of Gλ,c, when c ∈ Z = Sing0, is quite different from (and, 
in a sense, less interesting than) the case where c /∈ Z and it will not be considered in 
this article. When c ∈ Sing, it is likely that Gλ,c will also have subquotients supported 
on the closure of the strata X((mv, 1w), (mu)), where n = (v + u)m + w.

Corollary 1.5.4. Let c ∈ C and λ ∈ t∗/W .

(1) If c /∈ Sing then the Harish–Chandra D-module is the minimal extension of its 
restriction to Xreg.

(2) If c ∈ Sing−, resp. c ∈ Sing+, then Gλ,c has no quotient modules, resp. submodules, 
supported on Xcyc \ Xreg.

1.6. Specialization

P. Etingof introduced certain ‘sheafified’ versions of Cherednik algebras. Specifically, 
associated to any smooth quasi-projective variety X and finite group W of automor-
phisms of X, Etingof [9] defines a sheaf Hκ(X, W ) of associative algebras on the quotient 
X/W . Here κ is a (multi-)parameter and the family of the algebras Hκ(X, W ) is a flat 
deformation of the algebra DX � W . In this paper, we restrict ourselves to the (most 
interesting) case where the action of W on X is ‘generated by pseudo-reflections’ in the 
sense of Section 8.2 below.

A subgroup of W is called a parabolic subgroup if it is equal to the stabilizer of some 
point x ∈ X. Fix a parabolic subgroup W ′ ⊂ W and a connected component Y of 
the set of points in X with stabilizer W ′. Let NX/Y denote the normal bundle to Y

in X and WY := {w ∈ W | w(Y ) = Y }. Mimicking a construction of Kashiwara, we 
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introduce a canonical Z-filtration on Hκ(X, W ), which we call the V -filtration. We show 
that the associated graded of Hκ(X, W ) with respect to the V -filtration is isomorphic to 
Hκ′(NX/Y , WY ), the Cherednik algebra associated to the variety NX/Y and the group 
WY that acts on NX/Y by vector bundle automorphisms. This allows one to define a 
functor

SpX/WY : Hκ(X/W Y )-mod → Hκ′(NX/Y , WY )-mod,

on an appropriate category of specializable Hκ(X, W )-modules. This is a Cherednik 
algebra analogue of Verdier specialization of D-modules, as defined by Kashiwara. Our 
functor SpX/WY enjoys the expected properties of specialization, in particular, it is an 
exact functor and it comes equipped with a canonical monodromy automorphism.

Next, we return to the case of trigonometric Cherednik algebras of type A. Thus, let 
T be the maximal torus of SL. Given a Levi subgroup L ⊂ SL, let WL ⊂ W = Sn be the 
Weyl group of L and Y the set of points in T with stabilizer WL. The group W acts on the 
Lie algebra t of T as a reflection group. Bezrukavnikov and Etingof, [4], defined for each 
b ∈ t such that ZSL(b) = L, a restriction functor Resb : O(W ) → O(WL) from category O
for the rational Cherednik algebra Hκ(t, W ) to category O for Hκ(tL, WL). We construct 
an analogous restriction functor ResY : Hκ(T, W )-mod → Hκ′(Y × tL, WY )-mod. We 
show that, on the category of Hκ(T, W )-modules that are coherent over OT/W , the 
restriction functor and specialization functors agree:

Theorem 1.6.1. Let M be an Hκ(T, W )-module, coherent as an OT/W -module. Then, M
is specializable along W Y and SpT/WY (M ) = ResY (M ).

The proof of Theorem 1.6.1 is given in Section 8.7.
Our general construction of V -filtration associates to the data (WL, Y ) the canonical 

V -filtration on the algebra Hκ(T, W ). The latter induces, by restriction, a similar filtra-
tion on Uκ = eHκ(T, W )e, the spherical subalgebra. On the other hand, we consider a 
certain Zariski open subset Z(L)◦ of Z(L). Then, SL ·(Z(L)◦×{0}), the SL-saturation of 
the set Z(L)◦×{0} ⊂ SL×V , is a G-stable locally-closed subvariety of X. Therefore, there 
is an associated Kashiwara V -filtration on the algebra D(X). We show that the Kashi-
wara filtration on D(X) goes, via quantum Hamiltonian reduction, to our V -filtration 
on Uκ. In more detail, the quantum Hamiltonian reduction construction provides an iso-
morphism of Uκ with a quotient of the algebra D(X)GL. The V -filtration on D(X) gives, 
by restriction, a filtration on D(X)GL and the latter induces a quotient filtration on the 
Hamiltonian reduction. We prove that the resulting filtration on Uκ equals the filtration 
obtained by restricting the V -filtration on Hκ(T, W ) to the spherical subalgebra.

There is also a parallel story for module categories over the algebras in question. To 
explain this, let l′ be the Lie algebra of L′ := [L, L] and let NL := Z(L)◦ × l′ × V be a 
trivial vector bundle over Z(L)◦, which plays the role of a normal bundle. In Section 9, 
we use the standard specialization functor on D-modules to construct an exact functor 
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spL : Cc → CNL,c, that takes mirabolic modules on X to mirabolic modules on NL. The 
main result of Section 10 says that the functor of Hamiltonian reduction intertwines the 
specialization functor for mirabolic modules with the specialization functor for modules 
in category O for the trigonometric Cherednik algebra, that is, we have

Theorem 1.6.2. Assume that c is admissible. Then, the following diagram commutes

Cc

Hc

spL

Oκ

SpWL

CNL,c
HL

Oκ(WL).

The proof of Theorem 1.6.2 is given in Section 10.5. As a consequence of Theo-
rem 1.6.2, one can exploit Saito’s theory of mixed Hodge modules to prove non-trivial 
results about the Bezrukavnikov–Etingof restriction functor, cf. Corollary 10.6.1.

1.7. Outline of the article

In Section 2, we first recall the definition of G-monodromic D-modules and describe 
some of their basic properties. Then, we give two definitions of mirabolic modules and 
prove Theorem 1.2.4 from the introduction, which claims that these two definitions are 
equivalent. We use this theorem to construct the spectral decomposition of the category 
of mirabolic modules.

In Section 3, we introduce a stratification of the space X and remind the reader of the 
definition of the relevant strata in this stratification. Then, cuspidal mirabolic modules 
on Levi subgroups of SL are studied in Section 4. We explicitly describe all cuspidal 
modules.

In order to be able to use this classification of cuspidal modules, we study the restric-
tion of mirabolic modules to a relevant stratum in Section 5. This produces, for each 
simple mirabolic module supported on the closure of a given relevant stratum X(L, Ω), 
a cuspidal module associated to L.

In Section 6, we study the functor H of Hamiltonian reduction, which is one of the main 
objects of interest in the article. We show that H possess both a left and right adjoint. 
Moreover, H is shown to be compatible with the reduction functor, in an obvious sense. 
Combining this with an explicit description of the cuspidal mirabolic modules, we are 
able to deduce considerable information about the kernel of the functor H.

The proof of the main results, Theorems 1.3.3 and 1.3.5, are contained in Section 7. 
Here, we study the compatibility of H with shift functors on Cc and Oκ.

Then, in Section 8, we define the V -filtration on sheaves of Cherednik alge-
bras. Using this definition, we construct the corresponding specialization functor for 
Hκ(X, W )-modules. It is shown that the specialization functor agrees with the restric-
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tion functor defined by Bezrukavnikov–Etingof when restricted to sheaves coherent over 
OX/W .

Similarly, in Section 9, a specialization functor spL is defined on the category of 
mirabolic modules. We give a formula for the characteristic variety of spL(M ) in terms of 
the characteristic variety of M . It is show in the final section that the functor of Hamilto-
nian reduction intertwines the specialization functor on category O for the trigonometric 
Cherednik algebra of Section 8 with the specialization functor for mirabolic modules of 
Section 9.

Appendix A contains some details on the radial parts map and summarizes the results 
of [21] (in the trigonometric case).

2. Mirabolic modules

In this section we give two definitions of mirabolic D-modules. Our main result, The-
orem 1.2.4, says that these definitions are equivalent. Before we do that, we recall some 
of the basic properties of monodromic D-modules.

2.1. Monodromic D-modules

Let G be a connected linear algebraic group with Lie algebra g. We fix a smooth 
G-variety X and let μ : T ∗X → g∗ be the moment map for the induced action on the 
cotangent bundle of X. By a local system we always mean an algebraic vector bundle 
equipped with an integrable connection that has regular singularities.

Definition 2.1.1. A coherent DX -module M on X is said to be G-monodromic if SS(M ) ⊂
μ−1(0). Let (DX , G)-mon denote the category of G-monodromic DX-modules.

We begin with a general result, which is probably well-known. We provide a proof 
since we were unable to find the statement in the existing literature.

Proposition 2.1.2. Let X and Y be smooth quasi-projective G-varieties.

(i) For any G-equivariant morphism f : X → Y and k ∈ Z, the functors f∗, f!, 
f∗, f ! (more precisely, the cohomology in every degree of the derived functor in 
question), as well as Verdier duality, preserve the categories of G-monodromic, 
regular holonomic D- modules.

(ii) Let M be a G-monodromic, regular holonomic D-module on X. Then the action of 
g on Hk(X, M ) is locally finite.

(iii) Conversely, let M be a coherent DX-module generated by a finite dimensional 
g-stable subspace of Γ (X, M ). Then M is G-monodromic.

Part (ii) of the proposition was also stated (without proof) as Proposition B1.2 in [19].
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Proof. The proof of (i) mimics the standard argument [26, Theorem 6.1.5] in the non-
monodromic case. First of all, Verdier duality doesn’t affect the characteristic variety, 
so it takes G-monodromic modules into G-monodromic modules. Next, given a map 
f : X → Y , one has the standard diagram, cf. [26, §2.4]:

T ∗X X ×Y T ∗Y
ρf ωf

T ∗Y.

Let M be a G-monodromic DX -module. In the special case where f is a proper 
morphism we have f∗ = f! and, thanks to a result of Kashiwara, [26, Remark 2.4.8], one 
has SS(Rkf∗M ) ⊂ ωf (ρ−1

f (SSM )). This yields the statement of part (i) involving the 
functors f∗, f!. A similar estimate, [26, Theorem 2.4.6], yields the statement involving 
the functors f ! and f∗ in the case where f is a smooth morphism.

Next, let f be an affine open embedding. Then, all four functors f∗, f!, f∗, f ! are 
exact. The statement of part (i) involving pull-back functors is clear. Thus, thanks to 
duality, it remains to consider the functor f∗. To this end, we put Z := Y \ f(X). 
Since f is assumed to be affine, Z is a G-stable divisor in Y . Then, one shows that 
there exists a G-equivariant line bundle on Y , a section s of that line bundle, and a 
character χ ∈ g∗ such that μ(a)(s) = χ(a) · s holds for all a ∈ g (i.e. s is a semi-invariant 
section) and, moreover, set-theoretically one has Z = s−1(0), see [13], Lemma 2.2.1. The 
semi-invariance property implies that for any t ∈ C, we have μ(μ−1(0) + t ·d log s) = t ·χ
in g∗, cf. [13, §2] for a discussion of the relevant geometry.

Now, let M be a G-monodromic, holonomic DX -module with regular singularities. 
Then, using [18, Theorem 6.3] in the first equality below, we find

SS(f∗M ) = lim
t→0

[
SS(M ) + t · d log s

]
⊂ lim

t→0

[
μ−1(0) + t · d log s

]
⊂ lim

t→0
μ−1(t · χ)

= μ−1(0).

We conclude that f∗M is a G-monodromic DY -module.
Finally, let f : X → Y be an arbitrary G-equivariant morphism. Then, by Sumihiro’s 

Theorem, [8, Theorem 5.1.25], the variety X has a G-equivariant completion, i.e., there 
exists a projective G-variety X̄ and a G-equivariant open embedding j : X ↪→ X̄, with 
dense image. Applying, if necessary, the equivariant version of Hironaka’s Resolution of 
Singularities Theorem, [6], we may ensure that the variety X̄ is smooth and that X̄ \ X

is a divisor in X̄. The morphism f factors as a composition

X
graph(f)

X × Y
j�idY

X̄ × Y
prY

Y , (2.1.3)

where the first map is a closed embedding via the graph of f .
The statement of part (i) involving direct image functors holds for each of the three 

maps in (2.1.3), thanks to the special cases considered above. Therefore, it holds for the 
map f itself. A similar argument yields the statement of part (i) involving pull-back 
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functors provided the statement holds for the first map in (2.1.3). More generally, let 
i : X ↪→ Y be an arbitrary closed embedding and let N be a G-monodromic, regular 
holonomic DY -module. Put U := Y \i(X); let j : U ↪→ Y be the natural open embedding 
and let M := j∗N . Then, there is a canonical exact triangle i!i!N → N → j∗M . We 
know that both N and j∗M are G-monodromic and regular holonomic. It follows that 
i!N is also G-monodromic. This completes the proof of part (i).

To prove (ii), we choose a G-equivariant completion j : X ↪→ X̄, as above, and 
let N := j∗M . Thus, N is a G-monodromic, regular holonomic D-module. Such a 
D-module has a canonical good filtration FiN such that the support of the associated 
graded sheaf is reduced [31, Corollary 5.1.11]. We know that the characteristic variety of 
N is contained in μ−1(0), where μ is the moment map for the action of G on T ∗X̄. This 
means that if σa is the vector field on X̄ corresponding to a ∈ g then multiplication by the 
symbol of σa is the zero map FiN /Fi−1N → Fi+1N /FiN . Hence the g-action respects 
the filtration. Note that, for any k and i, the space Hk(X̄, FiN ) is finite dimensional, 
since FiN is a coherent sheaf on X̄ and X̄ is a projective variety.

Finally, since j is an affine embedding, we get

Hk(X, M ) = Hk(X̄, j∗M ) = Hk(X̄, N ) = lim
−→
i

Hk(X̄,FiN ).

We deduce that the g-action on Hk(X, M ) is locally finite.
(iii) Let M0 ⊂ Γ (X, M ) be a finite dimensional, g-stable subspace that generates M as 

a D-module. If DX,≤i for i ∈ Z denotes the order filtration on DX , then Fi := DX,≤i ·M0

defines a g-stable, good filtration on M . Since μ(g) ⊂ DX,≤1 \ DX,≤0, this implies that 
SS(M ) ⊆ μ−1(0) i.e. M is G-monodromic. �
2.2. (G, q)-monodromic D-modules

From now on, we assume that G is a reductive, connected group with Lie algebra g. Let 
Hom(G, C×) be the character lattice of G. Taking the differential of a character at the 
identity element of the group G yields an embedding of the character lattice into the vec-
tor space (g/[g, g])∗, of Lie algebra characters. We put Q(G) = (g/[g, g])∗/ Hom(G, C×).

Given an element χ ∈ (g/[g, g])∗, let Oχ
G := D(G)/D(G) · {x − χ(x), x ∈ g}. This 

D-module is a rank one local system on G. It is easy to show that every rank one local 
system on G is isomorphic to Oχ

G, for some χ ∈ (g/[g, g])∗. Any two local systems Oχ
G and 

Oψ
G are isomorphic if and only if the image of χ and ψ in Q(G) are the same. Therefore, 

given q ∈ Q(G), the local system Oq
G is well-defined up to isomorphism.

Next, fix a smooth G-variety X and write a : G × X → X for the action map.

Definition 2.2.1. Let q ∈ Q(G). A coherent D-module on X is said to be (G, q)-mono-
dromic if there is an isomorphism a∗M

∼→ Oq
G � M of D-modules on G × X.
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It is clear that for q = 1 we have Oq
G = OG. Thus, since we have assumed that G

is connected, being (G, 1)-monodromic is the same thing as being G-equivariant, cf. [39, 
§1.9]. If G is connected and semisimple then the only linear character of g is χ = 0, so 
any (G, q)-monodromic D-module is G-equivariant. In general, any (G, q)-monodromic 
D-module is a G-equivariant, quasi-coherent OX -module.

Further, any (G, q)-monodromic D-module is clearly G-monodromic. An extension of 
two (G, q)-monodromic D-modules is a G-monodromic D-module which is not necessar-
ily (G, q)-monodromic, in general.

Let (DX , G, q)-mon be the full subcategory of the category (DX , G)-mon, of 
G-monodromic DX -modules, whose objects are (G, q)-monodromic DX -modules. It is 
clear that (DX , G)-mon is an abelian category and (DX , G, q)-mon is an abelian subcat-
egory (which is not, however, a Serre subcategory of (DX , G)-mon, in general).

The above is complemented by the following result.

Lemma 2.2.2.

(i) Let M be a simple, holonomic G-monodromic D-module with regular singularities. 
Then, there exists some q ∈ Q(G) such that M is (G, q)-monodromic.

(ii) Assume there exists some q ∈ Q(G) such that M is (G, q)-monodromic and more-
over G acts on X with finitely many orbits. Then M has regular singularities.

(iii) Let M be a coherent D-module, generated by a μ(g)-semi-invariant global section 
of weight χ ∈ (g/[g, g])∗. Then M is (G, q)-monodromic, where q is the image of 
χ in Q(G).

Proof. (i) Let S̃uppM be the closure of the conormal to (SuppM )reg in T ∗X. Thus, 
S̃uppM is an irreducible component of SS(M ), a G-stable Lagrangian subvariety in 
T ∗X. Let SS′(M ) be the union of all the irreducible components of SS(M ) but S̃uppM . 
Thus, SS′(M ) is a G-stable closed subvariety of T ∗X. Hence, U := S̃uppM \ SS′(M )
is a G-stable open subvariety of S̃uppM . Replacing U by its smooth locus if necessary, 
we may assume in addition that U is smooth.

Let j : U ↪→ X denote the (locally closed) embedding and let L = j!M . Applying 
Kashiwara’s theorem, cf. [26, Theorem 1.6.1], we find that the characteristic variety of L
equals the zero section of T ∗U . It follows that L is a local system on U . Further, since M
is simple, we deduce that the canonical morphism M → j∗j!M yields an isomorphism 
M

∼→ j!∗L. Moreover, the local system L must be irreducible.
Let a : G ×U → U be the action map. Since L is simple, a∗L is a simple local system on 

G ×U . Since M is assumed to have regular singularities we may identify the local system 
a∗L with a representation of π1(G ×U), thanks to the Riemann–Hilbert correspondence. 
It follows from the isomorphism π1(G × U) = π1(G) × π1(U) that our local system has 
the form L1 � L2 for some simple local systems L1 on G and L2 on U . If i : U → G × U , 
x �→ (e, x), then i ◦ a = IdU implies that L2 � i∗(L1 � L2) = L (here we have used 
the fact that the rank of L1 is one). Hence, by the functorality of minimal extensions, 
a∗M � L1 � M , and (i) follows. Part (ii) is [13, Lemma 2.5.1].
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(iii) Let u ∈ Γ (X, M ) be a semi-invariant section of weight χ ∈ (g/[g, g])∗ that 
generates M . Let μX : g → DX be the differential of the action map a : G ×X → X and 
μG : g → DG the embedding as right invariant vector fields (i.e. the map obtained by 
differentiating the action of left multiplication by G on itself). Then a is G-equivariant, 
where G acts on G × X by acting on G by left multiplication and acts trivially on X. 
This implies that

μG(A) ⊗ m = 1 ⊗ μX(A) · m ∈ DG×X→X ⊗a−1DX
a−1M ∀A ∈ g, m ∈ M .

Hence, there is a nonzero homomorphism φ : Oχ �M → a∗M , given by 1G �u �→ 1 ⊗u. 
This is surjective since a∗M is generated by 1 ⊗ u. Therefore, we have a short exact 
sequence

0 K Oχ
G � M

φ
a∗M 0.

For each g ∈ G, let jg : X ↪→ G × X be given by jg(x) = (g, x). The module Oχ
G � M is 

non-characteristic for jg, hence so too are K and a∗M . Thus, the sequence

0 j∗gK M
j∗g (φ)

j∗ga∗M 0

is exact. Since j∗g (φ) = IdM , we have j∗gK = 0. The fact that K is non-characteristic 
for jg and j∗gK = 0 for all g ∈ G implies that K = 0. �

The special case G = GL(V ) will be the most important for us. In that case, we have 
g = gln so the vector space (g/[g, g])∗ is one dimensional with Tr, the trace function, 
being the natural base element. Similarly, the character lattice Hom(G, C×) is, in this 
case, a free abelian group with generator det, the determinant character. The above 
mentioned canonical embedding Hom(G, C×) ↪→ (g/[g, g])∗ sends det to Tr. Thus, we 
have Q(G) ∼= C×. Explicitly, one has C ∼→ (g/[g, g])∗ by c �→ c Tr, and hence

C
∼→
(
g/[g, g]

)∗ → Q(G) ∼→ C×, c �→ q := exp(2π
√
−1 c). (2.2.3)

2.3. (H, χ)-monodromic D-modules

Later, we will need to consider non-connected subgroups H of GL(V ). In this case, 
we use the notion of (H, χ)-monodromicity. Therefore, let G be a connected, reductive 
group and H a Levi subgroup. Recall that a : G × X → X is the action map and 
m : G × G → G the multiplication map. Let s : X → G × X, s(x) = (e, x).

Choose χ ∈ (g/[g, g])∗ and let q be its image in Q(G). Recall that a coherent D-module 
M is said to be (G, q)-monodromic if there exists an isomorphism θ : Oχ

G �M
∼→ a∗M . 

We say that the (G, q)-monodromic module M satisfies the cocycle condition if s∗θ =
idM and θ can be chosen so that the following diagram is commutative:
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Oχ
G � Oχ

G � M
idG×θ

=

Oχ
G � a∗M

=

(m × id)∗(Oχ
G � M )

(m×idX)∗θ

(idG × a)∗(Oχ
G � M )

(idG×a)∗θ

(m × idX)∗a∗M
= (idG × a)∗a∗M

(2.3.1)

The cocycle condition allows us to extend the definition of monodromicity to non-
connected groups.

Definition 2.3.2. Let H be a (not necessarily connected) reductive group acting on X. 
Then, a coherent D-module is said to be (H, χ)-monodromic if there is a fixed isomor-
phism θ : Oχ

H � M → a∗M , satisfying the cocycle condition.

The category of all (H, χ)-monodromic modules on X is denoted (DX , H, χ)-mon. 
The following proposition is well-known in the equivariant case, and the proof in the 
monodromic case is identical.

Proposition 2.3.3. Let M a (G, q)-monodromic, regular holonomic D-module. Then M
can be endowed with a (non-unique) (G, χ)-monodromic structure.

Remark 2.3.4. The proposition implies that every regular holonomic (G, q)-monodromic 
module is weakly G-equivariant, and hence the cohomology groups Hi(X, M ) are 
rational G-modules. It also implies that the forgetful functor (DX , G, χ)-monreg →
(DX , G, q)-monreg is essentially surjective.

It is still useful to work with the weaker notion of (G, q)-monodromicity because 
we will encounter local systems which are (G, q)-monodromic, but have no canonical 
(G, χ)-monodromic structure. The strong notion of monodromicity given in Defini-
tion 2.3.2 agrees with the definition commonly found in the literature cf. [13, §2.5] and 
[29, §4].

Example 2.3.5. There are three natural left actions of G on itself, multiplication on the 
left, multiplication on the right and the adjoint action. The corresponding action maps 
are denoted aL, aR, aAd : G × G → G. If we stipulate that the generator 1 of Oχ

G is 
G-invariant, then there are canonical isomorphisms

Oχ
G � Oχ

G
∼→ a∗

LOχ
G, O−χ

G � Oχ
G

∼→ a∗
ROχ

G, OG � Oχ
G

∼→ a∗
AdOχ

G.

In particular, Oχ
G is G-equivariant for the adjoint action of G on itself.
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Corollary 2.3.6. Let H ⊂ G be a (not necessarily connected) closed subgroup of G and 
M a regular holonomic, (G, q)-monodromic module. Then M can be endowed with an
(H, χ|h)-monodromic structure.

Proof. Let iH : H ↪→ G be the inclusion. Apply (iH × iH × idX)∗ to the cocycle diagram 
for M . �

2.4. Fix T ⊂ B ⊂ G, a maximal torus contained inside a Borel subgroup of G, and 
let U be the unipotent radical of B. Write t ⊂ b ⊂ g and U , for the corresponding 
Lie algebras. The group T acts freely on the affine base space G/U by multiplication 
on the right, and B := G/B = (G/U)/T is the flag manifold. Let TΔ ⊂ T × T be the 
diagonal and T := (T × T )/TΔ. Let Y = (G/U ×G/U)/TΔ, the horocycle space, be the 
quotient of G/U ×G/U by the T -diagonal action on the right. Thus, the (T ×T )-action 
on G/U × G/U on the right descends to a free T-action on Y .

Consider the diagram

G × B
p q

G Y ,

(2.4.1)

where p is projection along B and q(g, F ) = (F, g(F )).
Given a holonomic D-module M on G and i ∈ Z, let H i(q!p∗M ) denote the i-th 

cohomology DY -module of the complex q!p∗M .

Lemma 2.4.2. Let M be a holonomic D-module on G. Then, for any i ∈ Z, one has

(i) If SS(M ) ⊆ G × N and M has regular singularities, then H i(q!p∗M ) is a 
T-monodromic D-module.

(ii) Let H be a subgroup of G and let M be H-monodromic with respect to the ad-
joint action of H on G. If M has regular singularities, then H i(q!p∗M ) is an 
H-monodromic D-module with respect to the H-diagonal action on Y on the left.

(iii) If the Z-action on Γ (G, M ) is locally finite then, for any T -stable open subset 
U ⊂ Y , the U(LieT)-action on Γ (U, H i(q!p∗M )) is locally finite.

Proof. (i) Since p is smooth, the characteristic variety of p∗M will be contained in 
G ×N × B × {0}. The map q is also smooth and the fiber of q over (h1U, h2U) can be 
identified with h2Uh−1

1 . Moreover, one can show that q makes G × B a locally trivial 
(in the Zariski topology) fiber bundle over Y . Therefore the result [44, Proposition B.2], 
based on [17, Theorem 3.2], shows that

SS
(
q!p∗M

)
⊆ ωq

(
ρ−1

q
(
G ×N × B × {0}

))
. (2.4.3)
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We identify g with left invariant vector fields on G. Then T ∗(G/U) is naturally identified 
with G ×U b. The differential of q is given by

(d(g,hU)q)(A, B) =
(
B, B − Adh(A)

)
, ∀A ∈ g, B ∈ g/b.

The moment map for the right T × T -action on T ∗
(hU,h′U)(G/U × G/U) is the map

(G ×U b) × (G ×U b) → t⊕ t, (g1, X, g2, Y ) �→ (X mod U , Y mod U).

Therefore, if (X, Y ) ∈ T ∗
(g1U,g2U)Y then (X + Y ) ≡ 0 mod U . We have

ρq
(
(g, hU), (X, Y )

)
=
(
g,−Adh−1(X), hU, X + Y

)
Hence, if (hU, X, ghU, Y ) is contained in the right-hand side of (2.4.3), then
−Adh−1(X) ∈ N implies that X is nilpotent. But then (X + Y ) ≡ 0 mod U implies 
that Y is nilpotent too. This implies that (X, Y ) ∈ U ⊕ U = μ−1

T×T (0)(hU,ghU). Thus, 
since μ−1

T×T (0) is closed in T ∗Y , the right-hand side of (2.4.3) is contained in μ−1
T×T (0). 

Part (i) follows.
(ii) Define a G-action on G × B by h : (g1, g2B) �→ (hg1h−1, hg2B). With respect 

to this action, each of the maps p and q is G-equivariant. In particular, these maps 
are H-equivariant, for any subgroup H ⊂ G. Therefore, part (ii) follows from Proposi-
tion 2.1.2(i).

(iii) For U = Y , this is stated in [19, Proposition 8.7.1] and proved in [20, p. 158]. 
The proof given in loc. cit. works in the more general case of an arbitrary T -stable open 
subset U ⊂ Y as well. �

2.5. Given an action of the abelian Lie algebra t on a vector space E and an element 
θ ∈ t∗, let E(θ) denote the corresponding generalized weight space – the subspace of 
E formed by all elements annihilated by a sufficiently high power of the maximal ideal 
Ker θ of the algebra U(t). Similarly, given an action of the Lie algebra t ⊕ t on E, and 
an element (θ1, θ2) ∈ t∗ ⊕ t∗, we write E(θ1,θ2) for the corresponding generalized weight 
space. The projection γ : G/U → (G/U)/T = G/B, by the T -action on the right, is 
a principal T -bundle, in particular, it is an affine morphism. Let t → D(G/U) be the 
Lie algebra embedding induced by the T -action. Let ρ ∈ t∗ be the half-sum of positive 
roots.

Later on, we will use the following consequence of the Localization Theorem of Beilin-
son and Bernstein.

Theorem 2.5.1. Let K be an object of the bounded derived category of coherent D-modules 
on G/U such that, for every j ∈ Z, the t-action on the sheaf γ•H

j(K) is locally finite. 
Let θ ∈ t∗ be such that (γ•H k(K))(θ) �= 0 for some k ∈ Z and let ν ∈ t∗ be such that 
ν − θ ∈ Hom(T, C∗) and ν + ρ is a regular element in t∗. Then, one has
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(i) There exists � ∈ Z such that R�Γ (G/U, K)(ν) �= 0.
(ii) Assume in addition that the object K is concentrated in degree zero, i.e. is a 

D-module, and the weight ν + ρ ∈ t∗ is dominant. Then, one has Γ (G/U, K)(ν) �= 0.

Here, part (ii) follows from [2] and part (i) is a reformulation of a result from [3].

2.6. From now on, we use the setup of Section 1.2, see Convention 1.2.1. Thus, 
V = Cn and GL = GL(V ). The group GL acts on SL = SL(V ) by conjugation and acts 
naturally on V . We equip the space X := SL×V with the GL-diagonal action.

Let σ : SL×V → SL×V be the map given by the assignment (g, v) �→ (g, g(v)). It is 
immediate to check that σ is a GL-equivariant automorphism of X.

Lemma 2.6.1. The pull-back functors M �→ σ∗M , σ!M and the push-forward functors 
M �→ σ!M , σ∗M give auto-equivalences of the category C .

Proof. Let d∗σ be the automorphism of T ∗X induced by σ. In both cases, proving the 
claim amounts to showing that d∗σ(Mnil) ⊂ Mnil. The map σ being GL-equivariant, it 
follows, on general grounds, that one has d∗σ(μ−1

X
(0)) ⊂ μ−1

X
(0). It remains to show that 

if (g, Y, i, j) ∈ Mnil ⊂ T ∗X = SL×sl×V ×V ∗ and d∗σ(g, Y, i, j) = (g′, Y ′, i′, j′), then Y ′ is 
a nilpotent matrix. To this end, one first calculates that d(g,i)σ(X, v) = (X, gX(i) +g(v)). 
Hence the map d∗σ is given by the following explicit formula

d∗σ : (g, Y, i, j) �→
(
g, Y − i ⊗ j, g(i), g∗(j)

)
.

Hence, for (g, Y, i, j) ∈ Mnil, from the equation in the right-hand side of (1.2.2), we 
deduce that Y − i ⊗ j = −gY g−1. Thus, Y ∈ N implies that Y − i ⊗ j ∈ N , and we are 
done. �

It will be convenient for the proof of Theorem 1.2.4 to consider the group G :=
C××SL. We make X into a G-variety by letting the group SL act through its embedding 
into GL and letting C× act on X = SL×V via the natural action by dilations on the 
second factor. It is clear that a D(X)-module is GL-monodromic iff it is G-monodromic. 
The latter condition is also equivalent to being SL-equivariant and C×-monodromic. 
Further, let pr : C× × X → X denote the projection map. We have an identification 
C× × X = C× × SL×V = G × V . Replacing M by pr∗ M , X by G × V and g by 
G := Lie(G), it suffices to prove the analogue of Theorem 1.2.4 in this setting.

We let the group SL act diagonally on the variety Y × V , resp. on the variety 
SL×(SL /U) × V . We let C× act on Y × V , resp. on SL×(SL /U) × V , via its action 
on V , the last factor. Thus, we obtain a G-action on Y × V , resp. on SL×(SL /U) × V . 
Further, let the torus T act on Y × V through its action on Y , the first factor. The 
actions of G and T commute, making Y × V a G × T-variety. It will be crucial for us 
that the number of G × T-orbits on Y × V is known to be finite [49], see also [40].
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Our arguments below involve the following analogue of diagram (2.4.1):

G × B × V
p q

G × V Y × V

(2.6.2)

where p is projection along B and q(λ, g, F, v) = (F, g(F ), v) for all λ ∈ C×, g ∈ SL, 
F ∈ SL /U , and v ∈ V . Each of the maps p and q is easily seen to be G-equivariant.

Fix M , a D-module on G ×V with regular singularities such that SS(M ) ⊆ Mnil(G). 
It is G-monodromic and holonomic. Put M := q!p

∗M and, for each integer k, let H k(M)
denote the k-th cohomology D-module of M . The characteristic variety of p∗M is con-
tained in Mnil(G) × T ∗

BB. Therefore it follows from Lemma 2.4.2(i) that H k(M) is a 
T-monodromic D-module on Y ×V . Furthermore, the maps p and q being G-equivariant, 
part (ii) of Lemma 2.4.2 ensures that H k(M) is a G-monodromic D-module.

Remark 2.6.3. The following diagram, similar to (2.6.2), has been considered in [13, §4.3]:

SL×P(V ) SL×B × P(V )
p̃ q̃

Y × P(V ).

Here, the map p̃ is the projection along B and the map q̃ is given by the formula 
q̃(g, F, v) = (F, g(F ), g(v)). Let q̂ : G × B × V → Y × V be similarly defined by 
q̂(g, F, v) = (F, g(F ), g(v)). The relation between these two settings is provided, es-
sentially, by the automorphism σ of Lemma 2.6.1. Specifically, write � : V \{0} → P(V )
for the canonical projection and q̄ : SL×B × (V \ {0}) → Y × (V \ {0}) for the map 
induced by the map q in diagram (2.6.2). Then, one clearly has:

q̂ = q ◦ (σ × IdB) and q̃ ◦ (IdSL ×B ×�) = (IdY ×�) ◦ q̄ ◦ (σ × IdB).

In loc. cit. the pair of adjoint functors (between the appropriate derived categories) 
hc(−) = q̃! ◦ p̃∗(−)[dimB] and ch(−) = p̃∗ ◦ q̃!(−)[− dimB] were studied. Analogously, 
we define the functors hc(−) = q! ◦ p∗(−)[dimB] and ch(−) = p∗q! ◦ (−)[− dimB]. Then,

hc = q! ◦ p∗ ◦ σ!(−)[dimB], ch = σ! ◦ p∗ ◦ q!(−)[− dimB].

Moreover, the results of Section 7.2 imply that hc◦Fc = F̄c◦hc and ch◦Fc = F̄c◦ch, where 
F̄c : DY ×V -mod → DY ×P(V )-mod is defined by F̄c(M ) = Ker(euV − c; (IdY ×�)•j∗M )
and j is the inclusion Y × (V \ {0}) ↪→ Y × V .

2.7. Proof of the implication (i) ⇒ (ii) of Theorem 1.2.4

Let M be a GL-monodromic, holonomic DX-module with regular singularities. Propo-
sition 2.1.2 implies that the action of μ(G) on Γ (G × V, M ) is locally finite.
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Thus, we must show that the Z-action on Γ (G × V, M ) is also locally finite. To this 
end, we will need to apply the results of Section 2.5 in a slightly different setting. In more 
detail, recall the notation Y = (SL /U ×SL /U)/TΔ. We consider the following diagram:

Y := SL /U × SL /U × V

−→ Y × V

π−→ B × B × V, (2.7.1)

where the first map is a torsor of the group TΔ and the second map is a torsor of the 
group (T × T )/TΔ. We put N = �∗(q!p

∗M ) and write N j := H j(N ) for the j-th 
cohomology D-module of N , an object of some derived category.

The group T ×T acts along the fibers of the map π◦�. We claim first that the induced 
action of the Lie algebra t ⊕ t on (π ◦ �)•N j , is locally finite, for any j ∈ Z. To prove 
this, let V ⊂ B × B × V be an open subset. The morphism π ◦ � being affine, we have 
Γ ((π ◦ �)−1(V ), N j) = Γ (V , (π ◦ �)•N j). Observe that N j is a T × T -monodromic 
D-module, by Proposition 2.1.2(i). Therefore, part (ii) of the same proposition implies 
that the (t ⊕ t)-action on the space Γ ((π ◦ �)−1(V ), N j) is locally finite. Hence, the 
(t ⊕ t)-action on Γ (V , (π ◦ �)•N j) is also locally finite, and our claim follows.

We conclude that there exists an integer j ∈ Z and an element (θ1, θ2) ∈ t∗ ⊕ t∗ such 
that we have ((π ◦ �)•N j)(θ1,θ2) �= 0. Observe that, the morphism ϑ being smooth and 
affine, the projection formula yields �•N = �•�∗(q!p

∗M ) = �•OY ⊗ q!p
∗M , where 

the tensor product is taken over OY ×V . It follows, that the action on (π ◦ �)•N j of 
the Lie subalgebra Lie TΔ ⊂ t ⊕ t can be exponentiated to an action of the torus TΔ. 
Therefore, we must have θ1 +θ2 ∈ Hom(T, C∗). This implies that there exists θ ∈ t∗ such 
that θ1−θ, θ2 +θ +2ρ ∈ Hom(T, C∗) and, moreover, the weights θ +ρ and −(θ +2ρ) +ρ

are both regular.
Next, we are going to apply the results of Section 2.5 in a slightly different setting, 

where the variety G/U is replaced by Y , resp. B is replaced by B ×B × V , and the map 
γ is replaced by the map π ◦ �. Theorem 2.5.1 has an obvious analogue in this setting. 
Furthermore, we have shown that the object N satisfies the assumptions of that analogue 
of Theorem 2.5.1. Thus, applying the corresponding version of part (i) of the theorem, 
we deduce that there exists an integer k ∈ Z such that one has RkΓ (Y, N )(θ,−θ−2ρ) �= 0.

Fix θ as above and let λ = λ(θ) be the image of θ in t∗/W . We may (and will) identify 
λ(θ) with a point in SpecZ via the Harish–Chandra isomorphism. Then, according to 
[13, formula (4.5.2)], which is based on [25, Theorem 1], one has a canonical isomorphism

[
RkΓ (Y, N )

](θ,−θ−2ρ) ∼=
[
RkΓ (G × V, M )

](λ(θ))
. (2.7.2)

We know, by our choice of θ, that the left-hand side of this formula is nonzero. On 
the other hand, the variety G × V being affine, the right-hand side of (2.7.2) vanishes 
for any k �= 0. Thus, we conclude that k must be equal to zero and, then, we get 
[Γ (G × V, M )](λ(θ)) �= 0.

To complete the proof of the implication (i) ⇒ (ii), it suffices to consider the case 
where M is a nonzero simple D-module. Assuming this, we will use the above to prove 



92 G. Bellamy, V. Ginzburg / Advances in Mathematics 269 (2015) 71–161
that the action of Z ⊂ D(G ×V ) on Γ (G ×V, M ) is locally finite. Recall that G = LieG
and identify U(G) with the algebra of left-invariant differential operators on G. Then, 
one has a G-module isomorphism D(G) = C[G] ⊗ U(G). Therefore, we get a G-module 
isomorphism D(G × V ) = D(G) ⊗D(V ) = C[G] ⊗ (U(G) ⊗D(V )), where the G-action 
on the tensor factor D(V ) is taken to be the trivial action. Thus, since M is simple, for 
any nonzero element m ∈ Γ (G × V, M ) we have

Γ (G × V, M ) = D(G × V ) · m =
[
C[G] ⊗

(
U(G) ⊗ D(V )

)]
· m.

We let E := (U(G) ⊗D(V )) ·m, which is a G-stable subspace. We conclude that Γ (G ×V,

M ) is isomorphic, as a G-module, to a quotient of C[G] ⊗ E.
We now use the fact that there exists λ ∈ SpecZ such that Γ (G × V, M )(λ) �= 0. 

Thus, we may (and will) choose our nonzero element m so that (Zλ)km = 0, for some 
k > 0. Then, since Z ⊗ 1 is a central subalgebra of the algebra U(G) ⊗D(V ), we deduce 
that the ideal (Zλ)k annihilates the G-module E. On the other hand, the G-action on 
C[G] is clearly locally finite. It follows, by a result due to Kostant [32], that the Z-action 
on Γ (G × V, M ) = C[G] ⊗ E is locally finite.

2.8. Proof of the implication (ii) ⇒ (i) of Theorem 1.2.4

Fix M such that both the Z-action and the μ(G)-action on Γ (G × V, M ) are locally 
finite. This implies that SS(M ) ⊂ Mnil(G) and hence M is a holonomic D-module. 
Moreover, it is G-monodromic by the last statement of Proposition 2.1.2(ii). Therefore, 
it remains to show that M has regular singularities. By [13, Proposition 4.3.2(ii)], it 
suffices to show that q!p

∗M has regular singularities. This amounts to proving that, for 
any j ∈ Z, the DY -module N j = H j(�∗q!p

∗M ) has regular singularities, cf. (2.7.1).
To this end, we put Y := SL /U ×SL /U ×V . We equip Y with the SL-diagonal action 

“on the left” and with a (T ×T )-action induced by the (T ×T )-action on SL /U ×SL /U

on the right. Also, put T := (LieC×) ⊕ t ⊕ t.

Claim 2.8.1. For any k ∈ Z, the D-module N k is SL-equivariant. Moreover, the T-action 
on (π ◦ �)•N k is locally finite.

Proof. Observe first that the group SL is simply connected. Hence the locally finite 
sl-action on Γ (G ×V, M ) can be exponentiated to an algebraic SL-action. It follows that 
M is an SL-equivariant D-module. This implies, by functoriality, that H k(�∗q!p

∗M )
is an SL-equivariant, D-module.

The second statement of the claim follows from Lemma 2.4.2(iii). �
The proof of the implication (ii) ⇒ (i) is now completed by the following claim.

Claim 2.8.2. Let H be an SL-equivariant, holonomic D-module on Y such that the 
T-action on (π ◦ �)•H is locally finite. Then, H has regular singularities.
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Proof. Using that any holonomic module has finite length and that the direct image 
functor (π ◦ �)• is exact on the category D-modules, one reduces the claim to the 
special case of simple D-modules. Hence, we will assume (as we may) that H is simple. 
Thus H is a holonomic, SL-equivariant simple DY -module such that the action of the 
Lie algebra T on (π ◦�)•H is locally finite. Therefore, applying an appropriate version 
of the Beilinson–Bernstein Theorem 2.5.1(ii), we deduce that there exists Θ ∈ T∗ such 
that Γ (Y, H )(Θ) �= 0. It follows that one can find a nonzero element u ∈ Γ (Y, H ) such 
that one has a(u) = Θ(a) · u for all a ∈ T∗. The element u generates H since H is 
a simple module. Therefore we may apply Lemma 2.2.2(iii) and conclude that H is 
(C× × T × T, q)-monodromic where q is the image of Θ.

Next, we may extend Θ to a linear function on (LieG) × t × t that vanishes 
on the subalgebra sl ⊂ LieG. Abusing notation, we write q for the analogue of 
the corresponding element for the group G × T × T . Combining the SL-equivariant 
structure and (C× × T × T, q)-monodromic structure on H together makes H a 
(G × T × T, q)-monodromic DY -module. The number of G × T × T -orbits on Y be-
ing finite, we conclude that H has regular singularities, thanks to Lemma 2.2.2(ii). �
Remark 2.8.3. The proof of the analogue of Theorem 1.2.4 for mirabolic modules on 
sl × V is more straight-forward due to the fact that one can make use of the Fourier 
transform, see [16, Proposition 5.3.2].

Corollary 2.8.4. The mirabolic Harish–Chandra D-module Gλ,c is a mirabolic D-module.

Proof. By Theorem 1.2.4, it suffices to show that the action of Z and μ(gl) on Γ (X, Gλ,c)
are both locally finite. The adjoint action of μ(gl) on D(X) is locally finite, therefore it 
is clear that μ(gl) acts locally finitely on Γ (X, Gλ,c).

To show that the action of Z is locally finite on Γ (X, Gλ,c), we let m be the canonical 
generator of Gλ,c. By definition, Zλ · m = 0. Now one just repeats the argument in the 
proof of the implication (i) ⇒ (ii) of Theorem 1.2.4, Section 2.7, based on Kostant’s 
result [32] (with the section m replaced by m). �
2.9. Spectral decomposition

Theorem 1.2.4 implies, as in [19] and [13], that there is a spectral decomposition of C̃ . 
Let P0 ⊂ t∗ be the root lattice of T (thought of as the abstract torus associated with 
SL). We write Waff = P0 �W for the affine Weyl group. The weights of D(X) under the 
adjoint action of μ(t) are contained in P0. Let M ∈ C̃ and M =

⊕
λ∈t∗/W M (λ) the 

decomposition of M into generalized eigenspaces with respect to the action of Z.
For any Θ ∈ t∗/Waff , we put M 〈Θ〉 :=

⊕
λ∈Θ M (λ). This is a D-submodule of M . 

Let C̃q〈Θ〉 be the full subcategory of the category C̃q formed by the mirabolic modules 
M such that one has M 〈Θ〉 = M .

Remark 2.9.1. Note that Gλ,c, the mirabolic Harish–Chandra D-module, is an object of 
category C̃q〈Θ〉, where Θ is the image of λ in t∗/Waff and q = exp(2π

√
−1c).
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One has the following simple result whose proof is left to the reader.

Proposition 2.9.2. We have C̃q =
⊕

Θ∈t∗/Waff
C̃q〈Θ〉, i.e. any object M ∈ C̃q has a 

canonical D-module direct sum decomposition

M =
⊕

Θ∈t∗/Waff

M 〈Θ〉, M 〈Θ〉 ∈ C̃q〈Θ〉.

Moreover, for any pair Θ, Θ′ ∈ t∗/Waff such that Θ �= Θ′, and any mirabolic modules 
M ∈ C̃q〈Θ〉 and M ′ ∈ C̃q〈Θ′〉, one has HomD(M , M ′) = 0.

Remark 2.9.3. Using arguments analogous to those in [19, Remark 1.3.3], the last state-
ment of the above proposition may be strengthened by showing that, with the same 
assumptions as above, one has ExtkD(M , M ′) = 0 for all k ≥ 0.

3. A stratification

3.1. The following notation will be used, without further mention, throughout the 
article. Given a group H, we write Z(H) for the center of H and ZH(h) for the centralizer 
of an element h ∈ H. Given a subgroup K ⊂ H, we let NH(K) denote the normalizer of 
K in H.

Let T (GL) be the maximal torus of GL formed by diagonal matrices. The symmetric 
group W , on n letters, acts on T (GL) by permutations. The corresponding maximal 
torus in SL is denoted T .

Let M(GL) ⊂ GL be a Levi subgroup. We write M = M(GL) ∩SL for the correspond-
ing Levi subgroup of SL and m, resp. m(gl), be the Lie algebra of M , resp. M(GL). Given 
g ∈ M , write gs for the semi-simple part of g. Then, ZSL(gs) is a connected group. Let 
M◦ denote the Zariski open subset of M formed by the elements g ∈ M , such that the 
group ZSL(gs) is contained in M . Let Z(M)◦ = M◦ ∩ Z(M). If M is a proper subgroup 
of SL then Z(M) is a connected torus. The set Z(M)◦ is a dense open subset of Z(M). 
Note that SL◦ = SL. Let U ⊂ SL be the unipotent variety, and let UM := U ∩ M be 
the unipotent variety of the Levi subgroup M . The group M acts diagonally on UM ×V

with finitely many orbits.

3.2. In the paper [12] a partition of the variety X is given, based on a stratification 
of sl × V given in [16, §4.2]. We recall this partition now. The strata of the partition 
are labeled by elements of the finite set of GL-conjugacy classes of pairs (M, Ω), where 
M ⊂ SL is a Levi subgroup and Ω is an M(GL)-diagonal orbit in UM × V . Given such 
a pair (M, Ω), we define

X(M, Ω) :=
{
(g, v) ∈ SL×V

∣∣ (g, v) ∈ GL(z · u, v), for some z ∈ Z(M)◦, (u, v) ∈ Ω
}

.
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Here and below, we write GL(g, v) for the GL-diagonal orbit of an element (g, v) ∈
SL×V ; we also use similar notation for M(GL)-diagonal orbits. In the extreme case 
M = SL, we have Z(SL)◦ = Z(SL), is a finite set. In that case, the connected compo-
nents of a stratum X(SL, Ω) are labeled by the elements of Z(SL). Abusing notation, we 
regard each connected component as a separate stratum. This way, any stratum becomes 
a smooth, connected, locally-closed GL-stable subvariety of X.

Definition 3.2.1. A pair (g, v) ∈ X, resp. the stratum X(M, Ω) ⊂ X that contains a pair 
(g, v), is said to be relevant if dim ZSL(g) = n − 1 (i.e. g is regular) and, moreover, the 
subspace C[g]v ⊂ V has a g-stable complement.

As shown in [41, Lemma 4.2.1], there is a natural parameterization of the relevant 
strata in X by bi-partitions of n. It is described as follows. Let g ∈ SL. The action of gs
on V defines a decomposition V = V1 ⊕ . . . ⊕ Vk where, after reordering summands if 
necessary, ν = (dim V1 ≥ . . . ≥ dim Vk) is a partition of n. If (g, v) is a relevant pair then 
v = v1 + . . . + vk with vi ∈ Vi and either vi = 0 or C[g]vi = Vi. This dichotomy defines 
a bi-partition (λ, μ) of n such that λ + μ = ν. Under this parameterization, the Levi 
subgroup M is specified up to conjugacy by the partition λ + μ. The stratum labeled by 
the pair (λ, μ) is denoted X(λ, μ).

Proposition 3.2.2. (See [16], Theorem 4.3.)The conormal bundle to a stratum X(M, Ω)
is contained in Mnil if and only if X(M, Ω) is a relevant stratum. �

3.3. Let L be a Levi subgroup of SL. We put

XL = L × V, X◦
L = L◦ × V, X(L) =

⋃
Ω

X(L, Ω),

∂X(L) = X(L) \ X(L), (3.3.1)

where in the third equation the union is over all L(GL)-orbits Ω in UL × V .
Later, we will use the following two lemmas.

Lemma 3.3.2. For any Levi subgroup L ⊆ SL, each stratum X(M, Ω) ⊆ X meets the set 
X◦

L transversely.

Proof. Pick a point p := (g, v) ∈ Ω ∩ X◦
L. An element of the vector space T ∗

pX is a pair 
(Y, w) ∈ sl×V ∗. Write Np ⊂ sl×V ∗ for the conormal space at p to the stratum X(M, Ω).

The conormal space to X◦
L at p equals l⊥ ×{0} ⊂ sl×V ∗. Thus, the statement of the 

lemma amounts to the claim that Np ∩ (l⊥ ×{0}) = 0. Equivalently, we must prove that 
the only element Y ∈ l⊥ such that (Y, 0) ∈ Np, is the element Y = 0.
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To prove the latter claim, let zm be the center of the Lie algebra m. According to 
(1.2.2), we have Np = (z⊥m × V ∗) ∩ μ−1(0), where μ(Y, j) = g · Y · g−1 − Y + v ⊗ w. This 
way, we are reduced to showing that, for a point of the form (Y, 0) ∈ sl× {0}, we have

Y ∈ l⊥ ∩ z⊥m and g · Y · g−1 − Y = 0 =⇒ Y = 0. (3.3.3)

To see this, write g = z · u, where z ∈ Z(M)◦, and u ∈ M is a unipotent element. 
Observe that zsl(z), the centralizer of z in sl, equals m. Further, since g ∈ L◦, we also 
have z ∈ L◦. We deduce m = zsl(z) ⊂ l. Hence, we have Y ∈ l⊥ ⊂ m⊥. It is also clear 
that Y ∈ zsl(g) ⊂ zsl(z) = m. Therefore, the conditions on Y imposed on the left-hand
side of (3.3.3) imply that Y ∈ l⊥ ∩ zsl(g) ⊂ m⊥ ∩m = 0, and (3.3.3) is proved. �
Lemma 3.3.4. For a Levi subgroup L of SL, one has X(L) ∩ X◦

L = Z(L)◦ × UL × V .

Proof. Let Y be the union of all strata X(M, Ω) such that M is conjugate to some Levi 
subgroup of SL containing L. The set X(L) is contained in Y . If g · (z · u, v) belongs 
to the intersection X(M, Ω) ∩ X◦

L for some Levi subgroup M of SL, then gzug−1 ∈ L◦

and hence zu ∈ (g−1 · L)◦. By definition, this means that ZSL(z) ⊆ g−1 · L. However, 
z ∈ Z(M)◦ which means that ZSL(z) = M . Thus g · M ⊆ L. Therefore we have shown 
that

X(L) ∩ X◦
L = XL ∩ L◦ × V.

Finally, let g·(zu, v) ∈ X(L, Ω) ∩(L◦×V ) for some Ω. Since gzug−1 ∈ L◦, the element l :=
gzg−1 is contained in L◦ too. Hence z = g−1 ·l ∈ Z(L)◦. This implies that ZSL(g−1 ·l) = L

and hence ZSL(l) = g · L. However, ZSL(l) = L implies that g ∈ NSL(L) and thus 
g · Z(L) = Z(L). Therefore l ∈ Z(L)◦ as required. �
4. Cuspidal DDD-modules

In this section we define, and classify, the cuspidal mirabolic modules. As in the 
classical case, [38], there are relatively few Levi subgroups of SL that support cuspidal 
mirabolic modules.

4.1. The center Z(SL) of the group SL is a cyclic group, the group of scalar matrices 
of the form z · Id, where z ∈ C is an n-th root of unity. Let j : Ureg ↪→ U be the 
open embedding of the conjugacy class formed by the regular unipotent elements. The 
fundamental group of Ureg may be identified canonically with Z(SL). For each integer 
r = 0, 1, . . . , n − 1, there is a group homomorphism Z(SL) → C× given by z · Id �→ zr, 
and a corresponding rank one SL-equivariant local system Lr on Ureg with monodromy 
θ = exp(2π

√
−1r ).
n
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From now on, we assume that (r, n) = 1, i.e. that θ is a primitive n-th root of unity. 
Then the local system Lr is known to be clean, that is, for D-modules on SL, one has, 
cf. [39]:

j!Lr
∼→ j!∗Lr

∼→ j∗Lr.

Given a central element z ∈ Z(SL), we have the conjugacy class zUreg, and we let 
zLr := zj!Lr denote the corresponding translated D-module supported on the closure 
of zUreg. According to Lusztig [39], zj!Lr is a cuspidal mirabolic D-module on SL.

4.2. Let L be a Levi subgroup of SL and l = Lie L. By restricting the trace form on 
sl to l, we identify l with its dual. Write μL : T ∗(L × V ) → l for the moment map of the 
Hamiltonian action of L on T ∗(L × V ). Then, the variety

Mnil(L) :=
{

x = (g, Y, i, j) ∈ L × l× V × V ∗ ∣∣ μ(x) = 0 and Y nilpotent
}

, (4.2.1)

is a Lagrangian subvariety in L ×l ×V ×V ∗. Each Levi subgroup M of L and M(GL)-orbit 
Ω in UM × V defines a stratum XL(M, Ω) of XL. The set of all strata forms a partition 
of XL. Since L′ is a product of special linear groups, [16, Theorem 4.4.2] implies that

Lemma 4.2.2. We have

Mnil(L) =
⋃

(M,Ω)

T ∗
XL(M,Ω)XL,

where the union is over all L-conjugacy classes of Levi subgroups M of L and relevant 
M(GL)-orbits Ω in UM × V .

Definition 4.2.3. An L-equivariant, regular holonomic D-module on XL with support in 
UL ×V and characteristic variety contained in Mnil(L) is called an L-cuspidal mirabolic 
module.

4.3. The Levi subgroups of SL are parameterized up to conjugacy by partitions of 
n (we say that L is a Levi of type λ � n). Recall that a partition of n is a multiset 
{{λ1, . . ., λs}} of positive integers such that 

∑s
i=1 λi = n. However, we will think of a 

partition as being an ordered tuple of positive integers (λ1, . . ., λs) such that λ1 ≥ · · · ≥
λs > 0. Clearly the two notions are equivalent but the second will be more convenient 
when dealing with signed partitions. The set of all relevant strata in XL is labeled by 
the set of all bi-partitions

(μ,ν) =
((

μ(1), ν(1)), . . .,
(
μ(s), ν(s)))
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of λ, where each (μ(i), ν(i)) a bi-partition of λi. The relevant strata contained in UL×V

are labeled by those bi-partitions (μ, ν) such that each (μ(i), ν(i)) is either of the form 
((λi), ∅) or (∅, (λi)).

Definition 4.3.1. A signed partition of n, λ± � n, is a partition (λ1, . . ., λs) of n such that 
each λi is assigned a sign sgn(λi) ∈ {+, −}. If λ± is a signed partition then λ+ is the 
tuple (λ+

1 , . . ., λ+
s ) such that λ+

i = λi if sgn(λi) = + and λ+
i = 0 otherwise. The tuple 

λ− is defined similarly. We write λ± = (λ+, λ−).

Thus, the relevant strata contained in UL × V can be labeled XL(λ±), by signed 
partitions whose underlying partition is λ. The following signed partitions will play 
an important role in the classification of L-cuspidal sheaves. Choose 2 ≤ m ≤ n and 
u, v, w ∈ Z≥0 such that n = (u + v)m + w. Let λ be the partition (mu+v, 1w) of n. We 
associate to λ the signed partitions λ±(u; v, w) = (λ+(v, w), λ−(u)), where λ+(v, w) is a 
tuple with v entries equal to m, w equal to 1 and the other u are 0 (hence λ−(u) has u
entries equal to m and all other entries are zero). There are 

(
u+v
u

)
such signed partitions.

4.4. Given t ∈ C/Z, define the simple DC-module Et to be the minimal extension of 
the local system on C× with monodromy θ = exp(2π

√
−1t). If L is of type (mu+v, 1w), 

then the center of L defines a canonical decomposition V = V
⊕(u+v)
m ⊕Cw, where Vm ⊆ V

is m-dimensional. For each 0 ≤ r ≤ m − 1 with (r, m) = 1, we define the DXL
-module

M (r, u, v, w) :=
[(

Lr � C[Vm]
)�v]�

[
w

�
i=1

E− r
m

]
�
[
(Lr � δVm

)�u
]
. (4.4.1)

Its support is the closure of a relevant stratum labeled by a signed partition of the type 
λ±(u; v, w).

Proposition 4.4.2. Let L �= T be a Levi subgroup of SL of type λ (�= (1n)).

(1) If λ = (mu+v, 1w) for some 2 ≤ m ≤ n and λ±(u; v, w) is some signing of λ, then, 
for each 0 ≤ r ≤ m − 1 with (r, m) = 1, the D-module M (r, u, v, w) is a simple, 
L-cuspidal mirabolic module whose support is the closure of XL(λ±(u; v, w)). Up to 
isomorphism, these are all simple, L-cuspidal mirabolic modules whose support is 
the closure of XL(λ±(u; v, w)).

(2) For any other signed partition λ±, there are no simple, L-cuspidal mirabolic modules 
whose support is the closure of XL(λ±).

The classification when L = T is a torus is slightly different. It is given in (4.5).

Proof. We begin by fixing some GL-orbits in U × V . Firstly, there is the unique open, 
dense orbit, which we denote O(0). Then there is the orbit O(1) = Ureg ×{0} ⊂ U ×{0}. 
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Finally, we let O(2) be the GL-orbit consisting of all pairs (X, v) such that X ∈ Ureg

and v ∈ Im(X − 1) \ Im(X − 1)2. It is the unique codimension one GL-orbit in U × V .
Fix a signing (λ+, λ−) of λ. Without loss of generality we may assume that

λ+ = (λ1, . . ., λk, 0, . . ., 0), λ− = (0, . . ., 0, μ1, . . ., μl),

where, for clarity, we have set μi = λi+k. Let k = v + w such that λi = 1 if and only if 
v + 1 ≤ i ≤ k and u ≤ l such that μj = 1 if and only if u + 1 ≤ i ≤ l.

The relevant stratum in UL × V labeled by λ± is the L(GL)-orbit

Oλ± = O(0)
λ1

× · · · ×O(0)
λk

×O(1)
μ1

× · · · ×O(1)
μl

.

If there exists a simple, L-cuspidal mirabolic module M supported on the closure of the 
stratum XL(λ±) then, since the orbit Oλ± is a dense, open subset of the smooth locus of 
this closure, M will be the minimal extension of some simple, L-equivariant local system 
on Oλ± . Since the fundamental group of O(0) is Z and the fundamental group of O(1)

is Zn, the fundamental group of Oλ± is Zk ×
∏l

i=1 Zμi
. For each 1 ≤ i ≤ v, swapping 

the orbit O(0)
λi

for O(2)
λi

we get an L(GL)-orbit O(i)
λ± . It is a codimension one orbit in 

Oλ± . Let θ = (θλ, φλ, θμ, φμ) be our choice of local system on Oλ± , where θλ is the local 
system on O(0)

λ1
× · · · ×O(0)

λv
, φλ the local system on O(0)

λv+1
× · · · ×O(0)

λk
and similarly for 

μ. Note that O(1)
μi = {0} for i > u and hence φμ is the trivial local system on a point. 

The Lagrangian T ∗
O

(i)
λ±

XL is not a component of Mnil(L) because O(i)
λ± is not a relevant 

stratum. Therefore the monodromy around the divisor O(i)
λ± , which is given by (θλ)λi

i , 
must be trivial i.e. (θλ)λi

i = 1. Also, taking monodromy around lines in V o
λi

is given by 
(θλ)λi

i = 1. Therefore if we define

Õλ± = O(1)
λ1

× · · · ×O(1)
λv

×O(0)
λv+1

× · · · ×O(0)
λk

×O(1)
μ1

× · · · ×O(1)
μl

,

then we see that θ is the pullback, via the natural projection Oλ± → Õλ± of a local 
system η on Õλ± . This implies that

M �
[

v

�
i=1

(
Lθλi

� C[Vλi
]
)]

�
[

w

�
i=1

Eφλi

]
�
[

u

�
j=1

(Lθμj
� δVμj

)
]

�
[
l−u

�
j=1

δVμj

]
.

If M is a mirabolic D-module then it is L-equivariant. Therefore η must be an 
L-equivariant local system. Choose some x ∈ Õλ± . The local system η must come from 
a representation of the group

StabL(x)/ StabL(x)◦ � StabZ(L)(x)/ StabZ(L)(x)◦ � Zm,

where m is the greatest common divisor of λ1, . . ., λv, μ1, . . ., μl. However, for M to be 
a mirabolic module, it must have the correct characteristic variety. In particular, this 
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implies that each Lθλi
and Lθμj

must be a cuspidal mirabolic module for SL(Vλi
) and 

SL(Vμj
) respectively. As explained in Section 4.1, this is equivalent to requiring that the 

restrictions θλi
and θμj

, of η, to the centers Zλi
of SL(Vλi

) and Zμj
of SL(Vμj

) must be 
primitive representations. Thus, λi and μj divide m. Hence we find that λi = μj = m

for all 1 ≤ i ≤ v and 1 ≤ j ≤ l. Moreover, thinking of η as an integer 0 ≤ η ≤ m − 1, it 
must be coprime to m. Note also that this shows that if l > u then m = 1 and ν = (1n), 
contradicting our initial assumptions. Thus l = u.

Finally, for u +1 < i ≤ k, we must calculate the monodromy of η along a loop in O(0)
λi

�
C× in order to determine the monodromy φλi

. But it follows from the identification of 
π1(L) = Zu+v

m ×Zw that θλi
is the representation Z → Zm → C× which, identifying Zm

with the m-th roots of unity in C×, is given by z �→ zr. See the proof of Corollary 4.6.1
for details. �

4.5. When L = T is a maximal torus inside SL, we have UT × V = V and the 
relevant strata, again labeled by signings of (1n), are precisely the T (GL)-orbits in V . The 
T -cuspidal mirabolic modules are those T -equivariant, regular holonomic DV -modules 
whose characteristic variety is contained in

Mnil(T ) = T × {0} ×
{
(i, j) ∈ V × V ∗ ∣∣ it · jt = 0, ∀t = 1, . . ., n

}
⊂ T × t× V × V ∗.

Denote by Oq
T (GL) the simple local system on T (GL) which is obtain from pulling back 

along the map det : T (GL) → C× the rank one local system on C× with monodromy q. 
The local systems Oq

T (GL) are precisely the T -equivariant, simple local systems on T (GL). 
There is a unique open T (GL)-orbit in V . It is a free T (GL)-orbit and choosing a base 
point in that orbit gives an open embedding j : T (GL) ↪→ V .

Proposition 4.5.1. The simple T -cuspidal mirabolic modules on T × V are:

M (q) := j∗!Oq
T (GL), ∀q ∈ C×, and also M (k) := C[Vk] � δVn−k

, ∀0 ≤ k ≤ n − 1,

where dim Vk = k.

Proof. Let M be a simple mirabolic module supported on the closure of a stratum of type 
λ±(k; n −k), where λ = ((1k), (1n−k)) and k �= n. Then, this stratum is a T -orbit O ⊂ V . 
The group T is connected and the stabilizer of a point v ∈ O is a connected subgroup of 
T . Therefore the only simple T -equivariant local system on O is the trivial local system. 
Its minimal extension to V is M (k). This D-module is a mirabolic D-module. Now 
assume that O = T (GL) is the open stratum. It is easy to see that the T -equivariant, 
simple local systems on T (GL) are precisely the modules Oq

T (GL), q ∈ C×. Therefore, we 
conclude that M = j!∗Oq

T (GL), for some q ∈ C×. �
4.6. In all cases, the simple L-cuspidal mirabolic sheaves supported on UL×V have 

a natural L(GL)-monodromic structure.
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Corollary 4.6.1.

(i) The D-module M (r, u, v, w) defined in (4.4.1) is (L(GL), q)-monodromic, where q =
exp(2π

√
−1r

m ).
(ii) The DV -modules M (k) are T (GL)-equivariant and M (q) is (T (GL), q)-mono-

dromic.

Proof. We explain the L(GL)-monodromic structure on the module M (r, u, v, w); state-
ment (ii) is straight-forward. Recall that M (r, u, v, w) is the minimal extension of a local 
system Lθ defined on the orbit Oλ± . This local system is, in turn, the pull-back of a local 
system Lη on O := Õλ± . The spaces Oλ± and O are L(GL)-orbits such that the projection 
Oλ± � O is equivariant. Therefore, if Lη has the structure of an (L(GL), q)-monodromic 
D-module for some q it follows by functorality, Proposition 2.1.2, that both Lθ and 
M (r, u, v, w) are also (L(GL), q)-monodromic.

Let a : L × O → O be the action map. Choose x ∈ O and let b : L(GL) → O be 
defined by g �→ g · x. This induces a group homomorphism b∗ : π1(L(GL)) → π1(O). 
Since Lη is a simple local system and L(GL) is connected, a∗Lη is a simple local system 
on L(GL) ×O. Since the rank of Lη is one, the local system a∗Lη is isomorphic to L′�Lη, 
where L′ � b∗Lη.

Let p = u + v + w. We have

π1(L) =
{

(ai) ∈ Zp
∣∣∣ ∑

i

ai = 0
}

, π1
(
L(GL)

)
= Zp, π1(O) = Zu+v

m × Zw.

The image of π1(L) in π1(O) equals {(ai) ∈ Zu+v
m × Zw |

∑
i ai = 0 in Zm} so that the 

quotient of π1(O) by Im (π1(L)) is isomorphic to Zm. Recall that η is the representation 
of Zm defined by z · Id �→ zr. Therefore the representation of π1(L(GL)) corresponding 
to the local system Lη is

π1
(
L(GL)

)
−→ π1(O)/ Im

(
π1(L)

)
� Zm

η−→ C×

which, under the convention (2.2.3), is given by exp(2π
√
−1r

m ). �
5. Reduction to a Levi

In this section we study the restriction of mirabolic modules to the locally closed 
subsets X◦

L = L◦ × V .

5.1. Let Υ denote the locally closed embedding X◦
L ↪→ X.

Proposition 5.1.1. We have ρΥ (ω−1
Υ (Mnil)) ⊆ Mnil(L◦).

Proof. Firstly, ω−1
Υ (Mnil) = Mnil ∩ T ∗X◦

L. Write x = (g, i) ∈ X◦
L = L◦ × V and let 

(Y, j) be a covector in Nx. We may identify: T ∗
xX = sl × V ∗ and T ∗

xX
◦
L = l × V ∗. 
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Further, we have a decomposition sl = l ⊕ l⊥, with respect to the trace pairing on sl. 
For any Y ∈ sl, we thus have Y = Y ′ + Y ′′, the corresponding decomposition. The 
map p is then given by (Y, j) �→ (Y ′, j). Now, the moment map equation on (g, Y, i, j) is 
gY g−1 − Y + i ◦ j = 0. Let V = V1 ⊕ · · · ⊕ Vm be the decomposition of V with respect 
to the action of Z(L). Since g ∈ L, we have gY ′g−1 − Y ′ +

∑m
k=1 ik ◦ jk = 0, where ik

is the component of i in Vk and similarly for j. Since (g, Y, i, j) ∈ Mnil, there exists a 
complete flag F• = (0 = F0 ⊂ · · · · Fn = V ) in V that is stabilized by g and Y [10, 
Lemma 12.7]. Therefore, writing g = s.u for the Jordan decomposition of g, we deduce 
that F is also s-stable. Let b = Stabsl(F) be the Borel in sl corresponding to the flag F . 
Thus, Y, s ∈ b.

Since g ∈ L◦, we deduce that the centralizer m of s in sl is contained in l. It follows 
that zl ⊂ zm. But the center of m is contained in b (to see this, we may diagonalize s so 
that b are the upper triangular matrices in sl). Thus, zl ⊂ b and hence zl stabilizes F . 
This implies that the flag F is compatible with the decomposition V = V1 ⊕ · · · ⊕ Vm

in the sense that Fi =
⊕m

k=1 F
(k)
i with F (k)

i ⊂ Vk. The set of all flags admitting such 
a decomposition can be identified with the flag variety l/b′ for some Borel b′ in l. This 
Borel is

Stabl(F) = Stabsl(F) ∩ l = b ∩ l.

It follows that l ∩ b is a Borel in l. Let t ⊂ (l ∩ b) be a Cartan subalgebra. Then, 
b = t ⊕n, and l ∩b = t ⊕n0 for some t-stable subspaces n0 ⊂ n. The space n has a unique
decomposition n = n0⊕n1 as t-modules. Since the decomposition sl = l ⊕l⊥ is t-stable, the 
uniqueness of the above decomposition implies that l⊥ ∩ b = n1. Thus, the assumption 
that Y is nilpotent in sl implies that Y ∈ n and the decomposition Y = Y ′ + Y ′′

corresponds to the image Y in n0 and n1 respectively, under the projections from n. In 
particular, Y ′ ∈ n0 ⊂ n implies that Y ′ is nilpotent. �

A regular holonomic (NGL(L), c)-monodromic D-module on X◦
L, whose singular sup-

port is contained in Mnil(L◦), is called a mirabolic module. The category of all mirabolic 
modules on X◦

L is denoted CX◦
L,c. Associated with the embedding Υ , there is a (right 

exact) underived restriction functor

Υ ∗ : DX-mod → DX◦
L
-mod.

Corollary 5.1.2. The image of Cc under Υ ∗ is contained in CX◦
L,c and Υ ∗ : Cc → CX◦

L,c

is exact, commutes with Verdier duality and preserves semi-simplicity.

Proof. Lemma 3.3.2 implies that every mirabolic module on X is non-characteristic for 
Υ and hence Υ ∗ : Cc → DX◦

L
-mod is exact. It also implies that Υ ∗ commutes with Verdier 

duality, [26, Theorem 2.7.1], and preserves semi-simplicity. Proposition 5.1.1, together 
with [26, Theorem 2.7.1], implies that SS(Υ ∗(M )) is contained in Mnil(L◦) (as defined 
in (4.2.1)), for all M ∈ Cc. �



G. Bellamy, V. Ginzburg / Advances in Mathematics 269 (2015) 71–161 103
5.2. We denote by ZL′ the subalgebra of L′ bi-invariant differential operators in 
D(L′). Set XL := Z(L)◦×L′×V and let ς : D(L′) → D(XL) be the natural embedding.

Lemma 5.2.1. Let M be a simple, regular holonomic, (L(GL), q)-monodromic D-module 
on XL. We assume that the support of M is contained in Z(L)◦ × UL × V and its 
characteristic variety is contained in T ∗XL ∩Mnil(L).

(i) There exists a local system L on Z(L)◦ and simple D-module N on L′ × V such 
that M � L � N .

(ii) The action of ς(ZL′) on Γ (XL, M ) is locally finite.

Proof. (i) The support of M equals Z(L)◦×O, where O is a relevant stratum in UL×V . 
This relevant stratum O is an L(GL)-orbit. Since L(GL) is connected, O is irreducible. 
There is some open subset U of Z(L)◦ × O and simple, L-equivariant local system M
on U such that M = IC(U, M). The set U is necessarily L(GL)-stable. Choose some 
(z, x) ∈ U . Then Z(L)◦ × {x} ∩ U is open and non-empty, hence dense, in Z(L)◦ and 
thus equals Ux × {x} for some open subset Ux of Z(L)◦. This implies that

L(GL) ·
(
Ux × {x}

)
= Ux ×O

is contained in U . The closure of Ux×O equals Z(L)◦×S, hence, if M′ is the restriction 
of M to Ux × O, one has M = IC(Ux × O, M′). The local system M′ is an irreducible 
representation of π1(Ux) × π1(O) and hence is isomorphic to L′ � N. Thus

M = IC
(
Ux ×O, M′) � IC

(
Ux, L′)� IC(O, N).

The constraints on the characteristic variety of M imply that L = IC(Ux, L′) is a local 
system.

(ii) The module M has finite length. Therefore, by induction on length, it suffices to 
assume that M is simple. By part (i), such a simple module is isomorphic to L �N , for 
some local system L on Z(L)◦ and simple D-module N . Then, since L′ is a product of 
SLm’s, Theorem 1.2.4 implies that ZL′ acts locally finitely on Γ (L′ × V, N ). �

We are now in a position to prove Proposition 1.4.1.

Proof of Proposition 1.4.1. Assume that we are given a simple mirabolic module M ∈ Cq

such that SuppM ∩ Xreg = ∅. Let c ∈ C such that exp(2π
√
−1c) = q. By Proposi-

tion 2.3.3, we can endow M with the structure of a (GL, c)-monodromic module i.e. 
M ∈ Cc. Choose a proper Levi subgroup L of SL and relevant stratum X(L, Ω), whose 
closure is SuppM .

The variety Y := Z(L)◦ × UL × V is a closed subspace of both X◦
L and XL, which 

are open subsets of XL. Therefore, Kashiwara’s Theorem implies that the category of 
coherent DX◦ -modules supported on Y can be canonically identified with the category 
L
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of coherent DXL
-modules supported on Y . Lemma 3.3.4 implies that Υ ∗M is supported 

on Y . The fact that M is non-characteristic for Υ and SuppM ∩ X◦
L �= ∅ implies that 

Υ ∗M is non-zero D-module on XL.
Let N be a simple, (L(GL), q)-monodromic submodule of Υ ∗M . By Lemma 5.2.1, N

is isomorphic to L � N ′ for some simple local system L on Z(L)◦ and (L(GL), q)-mono-
dromic, L-cuspidal mirabolic module on UL × V . Corollary 4.6.1 implies that L, Ω and 
q are as in the statement of Proposition 1.4.1. �

5.3. In order to use the restriction functor to study the Harish–Chandra D-module, 
we need to understand how it relates to taking invariants.

Proposition 5.3.1. Let M be a simple mirabolic module whose support is X(L, Ω). The 
natural map

Γ (X, M )SL → Γ
(
X◦

L, Υ ∗M
)NSL(L) (5.3.2)

is an embedding.

Proof. Consider the standard diagram

X◦
L

j−→ SL×X◦
L

π−→ Z := SL×NSL(L)X
◦
L

p−→ X,

where p([g, x]) = g · x and j(v) = (e, v). The image of p is a (non-affine) open subset 
X◦ of X. Since M is simple, Supp m = SuppM for all non-zero sections m ∈ Γ (X, M ). 
Therefore, since X◦ ∩ X(L, Ω) �= ∅, the natural map Γ (X, M ) → Γ (X◦, M ) is an em-
bedding (its kernel consists of all section with support in the complement of X◦). Hence 
Γ (X, M )SL ↪→ Γ (X◦, M )SL. Now take a non-zero section m ∈ Γ (X◦, M )SL. We wish to 
show that p∗m is a non-zero section of Γ (Z, p∗M ).

Although the map p is not finite, it is locally strongly étale, see Lemma 5.3.3 be-
low. It follows that there exists an affine open, SL-saturated, covering {X◦

i }i∈I of 
X◦ such that {Ui = p−1(X◦

i )}i∈I is an affine open, SL-saturated, covering of Z and 
Ui � Ui/ / SL×X◦

i // SLX
◦
i for all i. The section m may be written m = (m1, . . ., mk), 

where mi is the image of m in Γ (X◦
i , M ). Since each X◦

i is open in X, either the re-
striction of M to X◦

i is simple or is zero. Either way, we may assume that mi generates 
M |X◦

i
for all i. Hence p∗M |X◦

i
= DUi

· p∗mi. The restriction of p to each Ui is a finite 
morphism. Therefore C[Ui] is a locally free C[X◦

i ]-module and M |X◦
i
�= 0 implies that 

p∗M |X◦
i
�= 0. Hence mi �= 0 implies that p∗mi �= 0 and we have shown that p∗m is a 

non-zero section of p∗M (which actually locally generates the module).
Therefore, Γ (X, M )SL embeds inside Γ (Z, p∗M )SL. Since Υ = p ◦ π ◦ j, Proposi-

tion 9.1.1(ii) implies that Γ (Z, p∗M )SL ∼→ Γ (X◦
L, p∗M )NSL(L) as required. �

A G-equivariant morphism f : X → Y between affine varieties X and Y is said 
to be strongly étale if the induced map f ′ : X/ /G → Y/ /G is étale and f ′ induces 
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an isomorphism X � Y ×Y//G X/ /G such that f corresponds to projection onto Y ; 
see [37]. By locally strongly étale, we mean that for each point x in Z, there exists an 
affine, SL-saturated open neighborhood of x in such that the restriction of p to this 
neighborhood is strongly étale.

Lemma 5.3.3. The morphism p : Z → X◦ := p(X) is locally strongly étale.

Proof. We begin by showing that p is quasi-finite. Let (g1, (x1, v1)) and (g2, (x2, v2)) be 
points of Z such that (g1 ·x1, g1(v1)) = (g2 ·x2, g2(v2)) in X. If the Jordan decomposition 
of xi is siui with si semi-simple, then si ∈ L◦ and g1 · s1 = g2 · s2. Thus, s1 is conjugate 
in SL to s2. Since we only want to show the map is quasi-finite, using the fact that the 
intersection SL ·s1 ∩ L consists of finitely many L-orbits, we may assume that s1 = s2. 
Thus, we are reduced to showing that number of cosets of ZSL(s1) ∩NSL(L) in ZSL(s1) is 
finite. Since s1 ∈ L◦, we actually have ZSL(s1) ⊂ L, hence ZSL(s1) ∩ NSL(L) = ZSL(s1).

Since p surjects onto X◦ and is quasi-finite, it is proper. Therefore Zariski’s main 
theorem implies that it is finite. The map p will be étale if its differential is everywhere 
surjective. It suffices to show that the differential of q = p ◦π : SL×X◦

L → X is surjective. 
If we identify g with left invariant vector fields on G, then for g ∈ SL, l ∈ L◦

n and v ∈ V ,

d(g,l,v)q : (X, y, w) �→
(
gyg−1 + g[X, l]g−1, g(w) + X(v)

)
.

This is surjective: one can check this at g = e.
Next we show that it is locally strongly étale. Since both domain and image of p are 

smooth varieties, [37, Lemme Fondamental] says that it suffices to check that, for each 
x ∈ Z such that the orbit SL ·x is closed, we have p(SL ·x) is closed in X and p|SL ·x is 
injective. The closed orbits of SL in Z are all of the form SL ·(1, z, 0), where z ∈ L◦

n∩SLss

(here SLss is the set of all semi-simple elements in SL). Since the orbit of (g · z, 0) is 
closed in X for any g ∈ SL, p(SL ·x) is closed in X. Now assume that (g, n ·z, 0) is mapped 
to (z, 0) under p. Then (gn) · z = z and hence gn ∈ ZSL(z). Since z ∈ L◦

n this implies 
that gn ∈ L and hence (g, n · z, 0) = (1, gn · z, 0) = (1, z, 0). Thus p|SL ·x is injective. �
6. The functor of Hamiltonian reduction

6.1. Recall that Htrig
κ (SL) denotes the trigonometric Cherednik algebra of type SL, 

as defined in Appendix A.1, and Uκ = eHtrig
κ (SL)e is the corresponding spherical subal-

gebra. As in Appendix A.1, by using the Dunkl embedding, we think of Uκ as subalgebra 
of the simple ring Ureg = D(T reg)W . The algebra Uκ has two obvious commutative subal-
gebras: the subalgebra C[T ]W of W -invariant regular functions on T , and the subalgebra 
(Sym t)W .

The algebra Uκ is noetherian and we let Uκ-mod denote the abelian category of 
finitely generated left Uκ-modules. In this paper, we will also consider the following full 
subcategories of the category Uκ-mod:
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• Category (Uκ : C[T ]W )-mod, whose objects are Uκ-modules which are finitely gener-
ated over the subalgebra C[T ]W ⊂ Uκ.

• Category Oκ, whose objects are finitely generated Uκ-modules, such that the action 
of C[t]W is locally finite.

The fact that the natural map (T ∗T )/W � T/W × t/W is a finite morphism implies 
that Oκ is a full subcategory of (Uκ : C[T ]W )-mod. As in (2.9), we also have a spectral 
decomposition, cf. [50],

Oκ =
⊕

Θ∈t∗/Waff

Oκ〈Θ〉.

Recall from Section 1 that gc = (μ − c Tr)(gl), D = D(X) and κ = −c + 1. We consider 
the left D-module D/D · gc, resp. the right D-module D/gcD. According to [16], the 
space D/D ·gc has the natural structure of a (weakly) GL-equivariant (D, Uκ)-bimodule. 
Similarly, the space D/gcD has the natural structure of a (weakly) GL-equivariant 
(Uκ, D)-bimodule. One has an (infinite) direct sum decomposition

D/gcD =
⊕

σ∈Irr GL
(D/gcD)(σ) (6.1.1)

into GL-isotypic components. The left Uκ-action on D/gcD commutes with the GL-action 
and gr(D/gcD), the associated graded of D/gcD with respect to the order filtration, is a 
finitely generated C[T ∗X]-module. Hence, a well-known result of Hilbert, [33, Zusatz 3.2], 
to be referred to as ‘Hilbert’s Theorem’ in the future, implies that each isotypic compo-
nent of gr(D/gcD) is a finitely generated module over the subalgebra of GL-invariants, 
that is,

gr
[
(D/gcD)(σ)] =

[
gr(D/gcD)

](σ)

is a finitely generated gr[(D/gcD)G] = grUκ-module.

6.2. The functor of Hamiltonian reduction Hc : (D, GL, q)-mon → Uκ-mod is defined 
by

Hc(M ) =
{

m ∈ Γ (X, M )
∣∣ �u · m = c Tr(u)m, ∀u ∈ gl

}
Next, using the fact that the adjoint action of μ(gl) on D/Dgc and D/gcD is locally 

finite, we introduce a pair of functors Uκ-mod → (D, GL)-mon as follows

†H(E) := D/Dgc

⊗
Uκ

E,

H†(E) :=
⊕

HomUκ

(
(D/gcD)(σ), E

)
.

σ∈Irr GL
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It is clear that the functor †H is right exact and the functor H† is left exact.

Lemma 6.2.1.

(i) The functor †H is a left adjoint, resp. H† is a right adjoint, of the functor Hc. 
Each of the canonical adjunctions Hc ◦ †H(E) → E and E → Hc ◦ H†(E) is an 
isomorphisms.

(ii) For any E ∈ Uκ-mod, the module †H(E) has no quotient modules, resp. H† has no 
submodules, annihilated by Hc.

Proof. For any (GL, q)-monodromic D-module M , Proposition 2.1.2 implies that one has 
a canonical isomorphism M gc

∼→ M /gcM . Therefore, for each M ∈ (D, GL, q)-mon, we 
obtain

HomUκ

(
Hc(M ), E

)
= HomUκ

(M /gcM , E)

= HomUκ
(D/gcD ⊗D M , E) = HomD

(
M , HomUκ

(D/gcD, E)
)
.

Let f : M → HomUκ
(D/gcD, E) be a D-module morphism. The GL-action on M being 

locally finite, any element m ∈ M is contained in a finite sum of GL-isotypic components. 
Hence, f(m) is also contained in a finite sum of GL-isotypic components. It follows that 
the morphism f factors through a map M →

⊕
σ∈Irr GL HomUκ

((D/gcD)(σ), E). Thus, 
H† is a right adjoint of Hc. Furthermore, we clearly have

Hc

(
H†(E)

)
=
[ ⊕
σ∈Irr GL

HomUκ

(
(D/gcD)(σ), E

)]GL

= HomUκ

(
(D/gcD)GL, E

)
= HomUκ

(Uκ, E) = E.

This proves the statements in (i) concerning the functor H†.
Now, let M be a module annihilated by Hc. We get

HomD
(
M ,H†(E)

)
= HomUκ

(
Hc(M ), E

)
= 0.

We deduce that H†(E) cannot have a submodule annihilated by Hc. This proves (ii) 
for H†.

The statements concerning the functor †H are proved similarly. �
Recall from (1.2.2) the Lagrangian subvariety Mnil of T ∗X. To state our next result, 

we need to introduce the category (D, Mnil)-mod, whose objects are coherent D-modules 
M such that SS(M ) ⊂ Mnil. Any object M ∈ (D, Mnil)-mod is a GL-monodromic, 
holonomic DX-module. Such a module is a mirabolic D-module if and only if it has 
regular singularities. Thus, one has a strict inclusion C̃q ⊂ (D, Mnil)-mod.
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Proposition 6.2.2. The functors (†H, H) induce the following pairs of adjoint functors

(1) (D,Mnil)-mod
Hc

(Uκ : C[T ]W )-mod
†
H

(2) Cq〈Θ〉
Hc

Oκ〈Θ〉, ∀Θ ∈ t∗/Waff .
†
H

Proof. For the left pair above, the result was proved in the course of the proof of [12], 
Proposition 4.6.2 (although part (ii) of that proposition, claiming that the functor †H
sends category O(Aκ,ψ) to Cψ,c, is incorrect, as stated).

Recall next that the radial parts homomorphism R : DGL → Uκ of Theorem A.2.1
yields an algebra isomorphism Z ∼→ (Sym t)W . This result, combined with Theorem 1.2.4, 
implies that the functor Hc sends the category C̃q〈Θ〉 to category Oκ〈Θ〉.

For each N ∈ N, let G(N)
λ,c be a generalized Harish–Chandra D-module, where we quo-

tient out by ZN
λ instead of Zλ. The module G(N)

λ,c has a finite filtration whose subquotients 
are quotients of Gλ,c. Thus, Corollary 2.8.4 implies that G(N)

λ,c ∈ C̃q〈Θ〉, where Θ is the 

image of λ in t∗/Waff . Since the adjoint action of μ(gl) on D(X) is semi-simple, G(N)
λ,c

actually belongs to the full subcategory Cq〈Θ〉 of C̃q〈Θ〉. Let m1, . . ., mk be generators of 
M ∈ Oκ. Then †H(M) is generated by 1 ⊗ m1, . . ., 1 ⊗ mk. For each i, arguing as in the 
proof of Corollary 2.8.4, one can find λi ∈ t∗ and N 	 0 such that G(N)

λ,c � D · (1 ⊗mi). 
Thus, †H(M) belongs to Cq, since the latter category is closed under submodules and 
quotients. Moreover, if M ∈ Oκ〈Θ〉, then the image of λi in t∗/Waff will equal Θ for 
all i. This proves the second statement. �
Remark 6.2.3. It is straight-forward to see that, for E ∈ Oκ, the Z-action on H†(E) is 
also locally finite.

6.3. For any E ∈ Uκ-mod, there is a canonical vector space embedding

ı : E = HomUκ
(Uκ, E) = HomUκ

(
(D/gcD)triv, E

)
↪→ H†(E).

The map ı induces a D-module morphism †H(E) = D/Dgc ⊗Uκ
E → H†(E). The latter 

morphism corresponds to the identity via the isomorphisms

id ∈ Hom(E, E) = Hom
(
E,Hc

(
H†(E)

))
= Hom

(†H(E),H†(E)
)
.

We put E!∗ := Im[†H(E) → H†(E)]. Equivalently, E!∗ is the D-submodule of H†(E)
generated by the subspace ı(E).

It is clear from definitions that Hc(E!∗) = E and that the object E!∗ has neither 
quotient nor sub objects annihilated by Hc. This implies the following
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Corollary 6.3.1. For any simple object E ∈ Oκ, one has

(i) The mirabolic module †H(E) has a simple top.
(ii) The top of †H(E) is E!∗ and Hc(E!∗) = E.

Proof. It was shown in [16] that the functor Hc is an exact, quotient functor. Hence, for 
E simple, the D-module †H(E) has exactly one simple composition factor, call it M , such 
that Hc(M ) = E. Now, suppose f : †H(E) � M ′ is a nonzero morphism onto a simple 
module M ′. The morphism f gives, by adjunction, a nonzero morphism E → Hc(M ′). 
Hence, one must have Hc(M ′) �= 0. We see that, for any simple summand M ′, of the 
top of †H(E), one has Hc(M ′) �= 0. Thus, there is exactly one such summand and that 
summand must be the module M . �

Let α : Xcyc ↪→ X be the open, affine, embedding. Combining Lemma 6.2.1 with 
Proposition 1.4.2 gives:

Corollary 6.3.2. Assume that c /∈ Sing+, and let E ∈ Oκ. Then

(i) †H(E) has no quotients supported on X \ Xcyc;
(ii) H†(E) has no submodules supported on X \ Xcyc; and
(iii) E!∗ is the minimal extension α!∗(E!∗|Xcyc) of E!∗|Xcyc .

For λ ∈ t∗/W , let mλ be the corresponding maximal ideal in (Sym t)W ⊂ Uκ. Define 
Pκ,λ = Uκ/Uκ · mλ. Then, it follows from Remark A.2.4 that †H(Pκ,λ) = Gλ,c and thus 
Hc(Gλ,c) = Pκ,λ. Corollary 6.3.2 implies that, for c /∈ Sing+,

(Pκ,λ)!∗ = α!∗
[
(Pκ,λ)!∗

∣∣
Xcyc

]
is the minimal extension of its restriction to the cyclic locus. This is not true in general 
of the Harish–Chandra module Gλ,c because it will have quotients supported on the 
complement X \ Xcyc when c ∈ Sing−. Thus, (Pκ,λ)!∗ is “better behaved” than Gλ,c. 
Note also that Proposition 1.4.2 implies that (Pκ,λ)!∗ has no submodule supported on 
the complement of Xreg.

6.4. We define an analogue of Hc for the Levi subgroup L of SL by setting

Hc(M ) =
{

m ∈ Γ (XL, M )
∣∣ �u · m = c Tr(u)m, ∀u ∈ l(gl)

}
,

where XL = L × V and l(g) = Lie L(GL). Since we have an explicit description of the 
L-cuspidal mirabolic modules, we can determine which of them belong to the kernel 
of Hc.



110 G. Bellamy, V. Ginzburg / Advances in Mathematics 269 (2015) 71–161
Proposition 6.4.1. Let c ∈ C and M (r, u, v, w) the module defined in (4.4.1). If c /∈ Q

then Hc(M (r, u, v, w)) = 0. Otherwise,

(i) if c ∈ Q≤0 then Hc(M (r, u, v, w)) �= 0 if and only if u = 0 and c − r
m ∈ Z≤0.

(ii) If c ∈ Q>0 then Hc(M (r, u, v, w)) �= 0 if and only if v = 0 and c + r
m ∈ Z>0.

Proof. If we decompose the Lie algebra l(gl) of L(GL) as gl⊕(u+v)
m ⊕ gl

⊕w
1 then the 

character c Tr of gl restricts to the character mc
n Tr on glm and c

n Tr on gl1. Noting that 
there is a minus sign in the definition of χr given in [7, §9.8] that does not appear in our 
definition of θ as given in Section 4.1, the result [7, Theorem 9.8] says that if r is coprime 
to n then Hc(Lr�C[V ]) is nonzero if and only if nc ∈ Z≤0 and r ≡ −nc mod n. Similarly, 
Hc(Lr � δV ) is nonzero if and only if −nc ∈ Z≥n and r ≡ −nc mod n. Therefore, if 
Hc(M (r, u, v, w)) �= 0 then either u = 0 or v = 0.

If v �= 0, and hence λ− = (0, . . ., 0), then we must have −mc ∈ N and r ≡
−mc mod m i.e. c = − r

m − a for some a ∈ N. In particular, c ∈ Q≤0. To show that 
Hc(M (r, 0, v, w)) �= 0 we need to check that

Hc(E r
m

) = H− r
m−a(E r

m
) �= 0.

Noting that r
m �= 0 in C/Z, the module E r

m
equals C[z, z−1] · z

r
m . Since μC(1) = −z∂z, 

the nonzero section za+ r
n belongs to Hc(E r

m
). On the other hand, if u �= 0 we must have 

c = r
m + a for some a ∈ Z≥1. This implies that λ+ = (1u). �

Recall from (4.5) that the T -cuspidal mirabolic modules on V are M (k) := C[Vk] �
δVn−k

, for k = 0, . . ., n −1 and M (q) = j!∗Oq
T (GL), where j : T (GL) ↪→ V is the embedding 

of the open T (GL)-orbit and q ∈ C×.

Proposition 6.4.2.

(1) If k �= 0, n then Hc(M (k)) = 0 for all c.
(2) If k = 0 then Hc(M (0)) �= 0 if and only if c ∈ Z>0.
(3) If k = n and q �= 1 then Hc(M (q)) �= 0 if and only if q = exp(2π

√
−1c). If q = 1

then Hc(M (q)) �= 0 if and only if c ∈ Z≤0.

Proof. (1) We fix a basis x1, . . ., xn of V ∗ such that x1, . . ., xk is a basis of Vk and 
xk+1, . . ., xn a basis of Vn−k. Then

Hc

(
M (k)

)
=
{

m ∈ M (k)
∣∣ (xi∂i + c) · m = 0, 1 ≤ i ≤ n

}
. (6.4.3)

For i ≤ k, there exists some 0 �= m ∈ M (k) with (xi∂i +c) ·m = 0 if and only if c ∈ Z≤0. 
Similarly, for i > k, there exists some 0 �= m ∈ M (k) with (xi∂i + c) · m = 0 if and only 
if c ∈ Z≥1. Therefore Hc(M (k)) = 0.
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(2) This follows from (6.4.3), noting that xi∂i · m = εm implies that ε ∈ Z≥1 for 
m ∈ δV .

(3) Let x1, . . ., xn be a basis of V such that T (GL) = (xi �= 0, ∀i) and T =
V (x1 · · ·xn = 1). If q = 1 then Oq

T (GL) is the trivial local system on T (GL) and its min-
imal extension to V is just C[V ]. As in part (2), Hc(C[V ]) �= 0 if and only if c ∈ nZ≤0. 
If q �= 1 then consider

M ′(q) =
[
D1/D1(x1∂1 − c)

]
� · · · �

[
Dn/Dn(xn∂n − c)

]
,

where Di = C〈xi, ∂i〉. The module M ′(q) is a simple D-module whose restriction to T
is the quotient of DT (GL) by xi∂i −xj∂j and euV −nc. This is precisely the local system 
Oq

T (GL). Hence M ′(q) = j!∗Oq
T (GL). �

6.5. The group NGL(L), the normalizer of L in G, is not connected. Therefore, for 
an (NGL(L), c)-monodromic D-module M on XL, we define

HL(M ) := Γ (XL, M )NGL(L) ⊂ Hc(M ).

Corollary 6.5.1. Let M ∈ Cq be a simple mirabolic module whose support is X(L, Ω).

(1) The natural map Hc(M ) → HL(Υ ∗M ) is an embedding.
(2) If Hc(M ) �= 0 then there exists an L-cuspidal mirabolic module N such that 

Hc(N ) �= 0.

Proof. We endow M with the structure of a (GL, c)-monodromic module. Then,

Γ (X, M )GL =
{

m ∈ Γ (X, M )SL ∣∣ �1 · m = c Tr(1)m
}

= Hc(M ),

and similarly,

HL

(
Υ ∗M

)
=
{

m ∈ Γ
(
XL, Υ ∗M

)NSL(L) ∣∣ �1 · m = c Tr(1)m
}

,

are independent of the choice of lift of M to Cc. Therefore the first claim follows from 
Proposition 5.3.1. As shown in Theorem 5.1.2, Υ ∗M is a mirabolic D-module (which, as 
in the proof of Proposition 1.4.1, we may think of Υ ∗M as a D-module on XL, supported 
on Z(L)◦ ×UL ×V ). Since Hc is a left exact functor, Hc(K ) �= 0 implies that there is a 
simple submodule K ′ of K such that Hc(K ′) �= 0. Thus, if HL(Υ ∗M ) ⊂ Hc(Υ ∗M ) is 
nonzero, then there exist a simple submodule N ′ of Υ ∗M such that Hc(N ′) is nonzero. 
As noted in the proof of Lemma 5.2.1, N ′ is isomorphic to L � N , where N is an 
L-cuspidal mirabolic module. The fact that Hc(N ) �= 0 implies that Hc(N ) �= 0 too. �

The above results allow us to prove Proposition 1.4.2.
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Proof of Proposition 1.4.2. By Proposition 1.4.1, the support of M is the closure of some 
relevant stratum S = X((mv, 1w), (mu)). Assume that m �= 1, so that the associated Levi 
subgroup L is not a torus. If Hc(M ) �= 0 then Corollary 6.5.1 implies that Hc(N ) �= 0 for 
some L-cuspidal mirabolic module on XL. Proposition 6.4.1 implies that either c = rn

m ∈
Sing+ and N must be supported on XL(λ±(0; v, w)) (in which case, S = X((mv, 1w), ∅)), 
or c = − rn

m ∈ Sing− and N must be supported on XL(λ±(u; 0, w)) (in which case, 
S = X((1w), (mu))).

Similarly, if m = 1 then Proposition 6.4.2 implies that the support of M must be 
the closure of X(∅, (1n)), which equals SL×{0} (recall that we have assumed in the 
statement of Proposition 1.4.2 that SuppM �= X, so we disregard possibility (3) of 
Proposition 6.4.2). �
6.6. Proof of Theorem 1.5.2 and Corollary 1.5.4

Let M be a simple quotient of Gλ,c. Such a quotient must be generated by a global 
section m such that gc · m = 0. Hence Hc(M ) �= 0.

First we consider the case where M is supported on the complement of Xreg. Then, 
Proposition 1.4.2 implies that either

• c = r
m ∈ Sing− and the support of M is the closure of a stratum X((mv, 1w), ∅), for 

some v, w ∈ N such that n = vm + w,
• c = r

m ∈ Sing+ and the support of M is the closure of a stratum X((1w), (mu)), for 
some u, w ∈ N such that n = um + w.

Let U be the enveloping algebra of sl and denote by τ : Uop ∼→ U the isomorphism 
defined by τ(x) = −x for x ∈ sl. Since D(SL) = C[SL] ⊗U , τ extends to an isomorphism 
τ : D(SL)op ∼→ D(SL), τ(f⊗u) = (1 ⊗τ(u)) ·(f⊗1). Then τ restricts to an automorphism 
of Z. For λ ∈ t∗/W , write Zτ(λ) := τ(Zλ). Under the Harish–Chandra homomorphism, 
τ corresponds to the map W · λ �→ W · (−λ − 2ρ). By [13, Proposition 6.2.1], D(Gλ,c) �
Gτ(λ),−c+1 (the parameter c′ of loc. cit. is related to our parameter c by c = − c′

n ). 
Therefore, if Gλ,c has a submodule supported on the closure of some stratum X(μ, ν), 
then Gτ(λ),−c+1 will have a quotient supported on the closure of X(μ, ν). Hence if N is 
a simple submodule of Gλ,c that is supported on the complement of Xreg then either, in 
case (1), the support of N must be the closure of a stratum X((1w), (mu)), for some 
u, w ∈ N such that n = um + w or, in case (2), the support of N must be the closure of 
a stratum X((mv, 1w), ∅), for some v, w ∈ N such that n = vm + w.

Corollary 1.5.4 now follows from the fact that X(μ, ν) is contained in Xcyc if and only 
if ν = ∅.

Remark 6.6.1. The D-module Gλ,0 has been studied earlier by Galina and Laurent [15], in 
connection with Kirillov’s conjecture, cf. [1]. In [15], the authors claim that the D-module 
Gλ,0 has no quotients supported on X \ Xreg. However, the argument on page 17 of [15]
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seems to have a serious gap. Specifically, the three options considered there do not 
exhaust all the possibilities since there may be other relevant strata, see Definition 3.2.1, 
that need to be considered.

6.7. Finite generation of H†(E)

We expect, but cannot prove, that H†(E) is a coherent D-module, for any finitely 
generated Uκ-module E. However, in the rational situation, it is possible to show that 
H†(E) is a coherent D-module for E in category O.

Therefore, for the remainder of this section, let X = sl × V , gl = gl(V ), and let eusl
denote Euler vector field along the factor sl. Let Uκ be the spherical subalgebra of the 
rational Cherednik algebra Hκ(t, W ). In the rational situation, Oκ is the full subcategory 
of Uκ-mod consisting of all modules on which the action of C[t∗]W+ is locally nilpotent. 
The functor of Hamiltonian reduction, H, and its left (resp. right) adjoint †H (resp. H†) 
are defined as in the trigonometric case.

Theorem 6.7.1. For any M in Oκ, the D-module H†(M) is finitely generated. Hence, it 
is a mirabolic module.

A coherent, GL-monodromic D-module F on X is said to be mirabolic if the action 
of Sym(sl)SL

+ ⊂ D(X) on Γ (X, F ) is locally nilpotent and the action of eusl on Γ (X, F )
is locally finite. The category of all mirabolic modules is denoted C̃ . Proposition 2.1.2
implies that the action of gl on Γ (X, F ) is locally finite.

Lemma 6.7.2. For any mirabolic module F , any (gl, eusl)-isotypic component in F is 
finite dimensional.

Proof. Passing to the associated graded, we are reduced to showing that any (gl, eusl)-
isotypic component of C[Mnil(sl)] is finite dimensional. To see this, let M(sl) be the zero 
fiber of the moment map T ∗X = sl×sl×V ×V ∗ → gl. According to [16, Proposition 8.2.1]
one has an algebra isomorphism C[M(sl)]GL ∼= C[t × t∗]W . The variety Mnil(sl) is a 
GL-stable closed subvariety of M(sl). Furthermore, the proof in [16, Proposition 8.2.1]
shows that the restriction map C[M(sl)] → C[Mnil(sl)] induces, via the isomorphism 
above, an algebra isomorphism

C
[
Mnil(sl)

]gl = C
[
Mnil(sl)

]GL = C
[
t× t∗

]W
/
〈
C
[
t∗
]W
+

〉
. (6.7.3)

The grading on C[Mnil(sl)]gl coming from the action of the element eusl goes, under 
(6.7.3), to the grading on C[t × t∗]W /〈C[t∗]W+ 〉 by polynomial degree with respect the 
t-variable. It is clear that C[t × t∗]W /〈C[t∗]W+ 〉 is a finitely generated C[t]W -module. 
Therefore, any homogeneous component of C[t × t∗]W /〈C[t∗]W+ 〉 is finite dimensional. It 
follows that any eusl-isotypic component of C[Mnil(sl)]gl is finite dimensional as well.
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Further, Hilbert’s Theorem implies that any gl-isotypic component of C[Mnil(sl)] is a 
finitely generated C[Mnil(sl)]gl-module. We conclude that any eusl-isotypic component 
of a gl-isotypic component C[Mnil(sl)] is finite dimensional. �
Remark 6.7.4. The (sl, eusl)-isotypic components of a mirabolic module F are not in 
general finite dimensional.

Write F =
⊕

(λ,α) F(λ,α) for the (gl, eusl)-isotypic decomposition of a mirabolic mod-
ule F . We define the restricted dual of such an F by

F � =
⊕
(λ,α)

F ∗
(λ,α).

It is clear that F � is a right D-module. Furthermore, Lemma 6.7.2 implies that the 
functor F �→ F � is exact and one has a canonical isomorphism F � (F �)�.

Lemma 6.7.5. For any mirabolic module F , F � is a mirabolic module. In particular, it 
has finite length and hence is finitely generated over D(X).

Proof. First, the adjoint action of μX(gl) is trivial on the algebra Sym(sl)SL and the ad-
joint action of eusl on Sym(sl)SL induces the usual N-grading on this algebra. Therefore, 
if z ∈ Sym(sl)SL is homogeneous of degree k and f ∈ F(λ,α) then there is some N 	 0
such that zN · f ∈ F(λ,α+kN) equals zero. Since the space F(λ,α) is finite dimensional, 
we may assume that N is independent of f . This implies that zN ·F ∗

(λ,α) = 0. Thus, the 
action of Sym(sl)SL on F is locally nilpotent.

Since the action of the pair (g, eusl) on F � is locally finite, with finite dimensional 
(g, eusl)-isotypic components, any submodule E of F � also has this property. Thus, 
the restricted dual of E makes sense and E � is a quotient of (F �)� � F . Since F is 
holonomic, it has finite length. This implies that F � has finite length (take a strictly 
ascending chain of D-submodules E1 ⊂ E2 ⊂ · · · of F �, then we get a chain of quotients 
· · · � E �

2 � E �
1 of F ; the length of this chain is bounded by the length of F). �

Let euκ be the Euler element in Uκ. For any M ∈ Oκ, let M =
⊕

β Mβ be the euκ
generalized eigenspace decomposition. The eigenspaces Mβ are finite dimensional. The 
standard duality functor on Oκ can be defined in the following equivalent ways:

M� :=
⊕
β

(Mβ)∗ =
(
M∗)nil

,

where (M∗)nil denotes the set of functionals in M∗ that are locally nilpotent with respect 
to the (right) action of C[t∗]W+ . To avoid the issues involved in making right Uκ-modules 
into left Uκ-modules (or right D-modules into left D-modules), we work with both left 
and right modules. So Oop

κ will be the category of finitely generated right Uκ-modules 
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for which the action of C[t∗]W+ is locally nilpotent and similarly for C op. Thus, by 
Lemma 6.7.5, we have contravariant equivalences (−)� : Oκ

∼→ Oop
κ and (−)� : C

∼→ C op
c . 

Put Kr = gcD(X)\D(X) and K = D(X)/D(X)gc so that †H(M) = K ⊗Uκ
M and 

†Hr(N) = N ⊗Uκ
Kr.

Proposition 6.7.6. There is an isomorphism of functors:

H† ◦ (−)� � (−)� ◦ †Hr : Oop
κ → Cc.

Proof. We begin with the following claim.

Claim 6.7.7. Let N be a (euκ, Uκ)-bimodule, finitely generated as a Uκ-module and locally 
finite with finite dimensional eigenspaces for the adjoint action of euκ. Let M be a finitely 
generated left Uκ-module that is locally finite with respect to euκ with finite dimensional 
eigenspaces. Then, as right C[euκ]-modules, HomUκ

(N, M�) � (N ⊗Uκ
M)�.

Proof. Naive adjunction says that

η : HomUκ

(
N, M∗) ∼→ (N ⊗Uκ

M)∗,

where η(φ)(n ⊗ m) = φ(n)(m). Since HomUκ
(N, M�) is a subspace of HomUκ

(N, M∗)
and (N ⊗Uκ

M)� a subspace of (N ⊗Uκ
M)∗, it suffices to show that η restricts to an 

isomorphism between these subspaces. Let I be the subspace of N ⊗C M such that 
N ⊗Uκ

M = (N ⊗C M)/I. Then each η(φ) is a functional on N ⊗C M vanishing on I. 
Let N =

⊕
α Nα be the ad(euκ)-decomposition of N . We choose α1, . . ., αl such that N

is generated as a right Uκ-module by N ′ = Nα1 ⊕ · · · ⊕Nαl
. The fact that η(φ) vanishes 

on I implies that η(φ) ∈ (N ⊗Uκ
M)� iff η(φ)|N ′⊗CMβ

= 0 for all but finitely many β. 
But this holds iff φ(N ′) ⊂ M� i.e. iff φ ∈ HomUκ

(N, M�). �
As in the proof of the claim, for any M ∈ Oop

κ , we have

η : HomUκ

(
K, M∗) ∼→ (K ⊗Uκ

M)∗.

Furthermore, HomUκ
(K, M�) is clearly a subspace in HomUκ

(K, M∗). Therefore, H†(M�)
is a subspace of (K ⊗Uκ

M)∗. As a right Uκ-module, K =
⊕

σ K(σ), where the decompo-
sition is into G-isotypic components. Arguing as in the proof of Lemma 6.7.2, each K(σ)

is a (euκ, Uκ)-bimodule, finitely generated as a Uκ-module, and locally finite with finite 
dimensional eigenspaces for the adjoint action of euκ. Therefore, the proposition follows 
from the claim, since it is clear that η restricts to an isomorphism

η :
⊕
σ

HomUκ

(
K(σ), M∗) ∼→

⊕
σ

(
K(σ) ⊗Uκ

M
)∗

. �

There is also another proof of Proposition 6.7.6, using the uniqueness of adjunctions.
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Proof. Let D = D(X) and Ind C̃ be the category of (not necessarily finitely generated) 
D-modules F such the action of Sym(sl)SL

+ on F is locally nilpotent and the action of both 
eusl and g on F is locally finite with the eigenspaces Fλ,α finite dimensional. Similarly, 
let IndOκ be the category of all (not necessarily finitely generated) Uκ-modules such 
that the action of C[t∗]+ is locally nilpotent and the action of euκ is locally finite with 
finite dimensional generalized eigenspaces. We also have the opposite categories Ind C̃ op

and IndOop
κ .

Then, the restricted dualities (−)� : Ind C̃
∼→ Ind C̃ op and (−)� : IndOκ

∼→ IndOop
κ

are well-defined. Moreover, the functors H and †H, †Hr are also well-defined in this set-
ting. The same is true of H† : IndOκ → Ind C̃ . To see this, it suffices to show that the 
eusl-generalized eigenspaces of HomUκ

(K(σ)
r , E) are finite dimensional for all E ∈ IndOκ. 

The left Uκ-module K
(σ)
r is finitely generated, therefore we fix a finite dimensional, 

ad(eu)-stable subspace K0 such that Uκ · K0 = K
(σ)
r . Then, restriction defines an em-

bedding HomUκ
(K(σ)

r , E) ↪→ K∗
0 ⊗C E. Since K0 is finite dimensional, it is clear that the 

eusl-generalized weight spaces in K∗
0 ⊗C E are finite dimensional.

Now, the proposition follows from the fact that both (−)� ◦ †Hr ◦ (−)� and H† are 
right adjoints to H. �

Theorem 6.7.1 follows from Lemma 6.7.5 and Proposition 6.7.6.

7. Hamiltonian reduction and shift functors

7.1. Recall from Section 1.3 that the character det defines a GL-equivariant structure 
on the trivial line bundle over T ∗X by g ·(x, t) = (g ·x, det(g)−1t) for all x ∈ T ∗X, g ∈ GL
and t ∈ C. The set of stable points with respect to this line bundle is

(
T ∗X

)ss,+ =
{
(g, Y, i, j) ∈ SL×sl× V × V ∗ ∣∣ C〈g, Y 〉 · i = V

}
, (7.1.1)

and the set of points that are stable with respect to the inverse det−1 equals

(
T ∗X

)ss,− =
{
(g, Y, i, j) ∈ SL×sl× V × V ∗ ∣∣ j · C〈g, Y 〉 = V ∗}.

In both cases, a point is stable if and only if it is semi-stable. By definition, the comple-
ment (T ∗X)unst,± is the unstable locus.

Let μ : T ∗X → gl
∗ be the moment map for the action of GL on T ∗X.

Lemma 7.1.2. For any module M ∈ C̃ the following hold:

(i) If c ≤ 0 and Hc(M ) �= 0 then SS(M ) ∩ (T ∗X)ss,+ �= ∅.
(ii) If c > 0 and Hc(M ) �= 0 then SS(M ) ∩ (T ∗X)ss,− �= ∅.
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Proof. If Hc(M ) �= 0 then there is some simple sub-quotient M ′ of M such that 
Hc(M ′) �= 0. Therefore we may assume that M is simple. Clearly Hc(M ) �= 0 implies 
that M ∈ C̃q. Thus, by simplicity, we may in fact assume that M ∈ Cq.

(i) By Proposition 1.4.2, M must be supported on the closure of X((mv, 1w), ∅) and 
hence the closure of the conormal to this stratum is contained in SS(M ). It follows from 
[41, Lemma 4.2.3] that the T ∗

X(λ,μ)X ⊆ (T ∗X)ss,+ if and only if μ = ∅. Hence, the set 
SS(M ) ∩ (T ∗X)ss,+ is nonempty.

(ii) By Proposition 1.4.2, M must be supported on the closure of X((1w), (mu)). If 
(g, Y, i, j) is a point of μ−1(0) ∩(T ∗X)ss,− then [16, Lemma 2.1.3] says that i = 0. Arguing 
again as in [41, Lemma 4.2.3], one sees that if the intersection (T ∗

X(λ,μ)X) ∩ (T ∗X)ss,− is 
nonempty, then λ = ∅. Therefore, if w > 0, the conormal to X((1w), (mu)) is contained 
in the unstable locus, and we need some more information about SS(M ) to conclude 
that SS(M ) ∩(T ∗X)ss,− �= ∅. Let L be the block diagonal Levi subgroup of SL consisting 
of u blocks of size m and w blocks of size one. Then, Propositions 4.4.2 and 6.4.1 imply 
that the simple subquotients of RedSL

L (M ) are of the form L � M (r, u, 0, w) for some 
simple local system L on Z(L)◦ and r coprime to m. Recall that

M (r, u, 0, w) =
[

w

�
i=1

E r
m

]
�
[
(Lr � δVm

)�u
]
.

Since r
m �= 0 in C/Z, the characteristic variety of E r

m
equals (x = 0) ∪ (y = 0) in T ∗C. 

Therefore, the closure of the conormal to XL′(∅, (mu, 1w)) in T ∗XL′ is a component of 
SS(L � M (r, u, 0, w)). This implies that it must also be a component of RedSL

L (M ). 
Since Υ is non-characteristic for M , this implies that the closure of the conormal to 
X(∅, (mu, 1w)) in T ∗X is a component of SS(M ), as required. �
Remark 7.1.3. The statements of Lemma 7.1.2 are false if the inequalities are removed. 
If we take c = − r

n −k < 0, where (r, n) = 1, and let M be the unique cuspidal mirabolic 
module whose support equals U × V , then Hc(M ) �= 0. However, the characteristic 
variety of M is T ∗

X((n),∅)X, which is contained in (T ∗X)us,−. Similarly, if we take c =
r
n + k > 0 and let N be the unique cuspidal mirabolic module whose support equals 
U × {0}, then Hc(M ) �= 0. The characteristic variety of M is T ∗

X(∅,(n))X, which is 
contained in (T ∗X)us,+.

7.2. For each c ∈ C, there exists a sheaf of twisted differential operators DP,c on 
P := P(V ). In order to agree with our conventions on G-monodromic modules, (2.2.3), we 
parameterize these twisted differential operators so that, for each m ∈ Z, the line bundle 
OP(m) is a DP,−m

n
-module. This implies that the Euler vector field euV =

∑n
i=1 xi∂i

acts as the scalar −nc on the global sections Γ (P, M ) of any DP,c-module M .
Set X := SL×P(V ) = SL×P and let Dc be the sheaf of twisted differential operators 

on X (the twist entirely in the P direction). Recall that we have defined V o = V \ {0}. 
Put X̃ := SL×V o. We have a natural diagram X 

j←↩ X̃
p
� X. Let (DX, GL, q)-mod0
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be the full subcategory of (DX, GL, q)-mod whose objects have support contained in the 
subset SL×{0} ⊂ SL×V .

Let Γ be the center of the group SL. Thus, Γ is a cyclic group of order n, with generator 
ζ := exp(−2π

√
−1

n ) · id ∈ SL. The group Γ acts trivially on P and it also acts trivially 
on SL by conjugation. Thus, the action of Γ on an SL-equivariant Dc-module commutes 
with the Dc-action. This gives a morphism of the group Γ into the automorphism group 
of the identity functor of the category (Dc, SL)-mod. Therefore, this category decomposes 
into a direct sum of subcategories

(Dc, SL)-mod =
⊕

k∈Z/nZ

(
Dc, SL; ζk

)
-mod,

where the subcategory (Dc, SL; ζk)-mod consists of Dc-modules M such that ζ acts on 
M via multiplication by exp(−2π

√
−1k
n ). Notice that (Dc, SL; ζ0)-mod = (Dc, PSL)-mod, 

where PSL = PSLn(C) is the projective special linear group.

Proposition 7.2.1. The assignment M �→ ker(euV + nc; p•j∗M ) gives an exact functor

Fc : (DX, G, c)-modhol → (Dc, SL)-modhol.

Furthermore, this functor kills the subcategory (DX, GL, c)-modhol
0 and induces an equiv-

alence

(DX, GL, c)-modhol/(DX, GL, c)-modhol
0

∼→ (Dc, PSL)-modhol.

Proof. Recall that we have set G = SL×C×. Let a : GL×X → X, resp. ã : G ×X → X, 
be the action map for GL, resp. for G, and write ρ : G � GL for the quotient map. The 
kernel of ρ is denoted Γ̃ , a cyclic group of order n generated by (ζ, exp( 2π

√
−1

n )). Then, 
the fact that ã = a ◦ ρ and ρ∗Oc

GL � Oc
G implies that every (GL, c)-monodromic module 

on X is a (G, c)-monodromic, such that the action of Γ̃ is trivial. Conversely, let M be a 
(G, c)-monodromic module such that the action of Γ̃ on M is trivial. By definition, we 
are given an isomorphism φ : Oc

G � M
∼→ ã∗M satisfying the cocycle condition. Then, 

one can check that the isomorphism

(ρ•φ)Γ̃ :
(
Oc

G � M
)Γ̃ = Oc

GL � M
∼−→ a∗M =

(
ã∗M

)Γ̃
satisfies the cocycle condition too. These rules define an equivalence between the cate-
gory of (GL, χ)-monodromic modules on X and (G, χ)-monodromic modules on X such 
that the action of Γ̃ is trivial. The latter category will be denoted (DX, G, Γ̃ , c)-mod. 
Then, j∗ is an exact functor (DX, G, Γ̃ , c)-mod → (D

X̃
, G, Γ̃ , c)-mod, whose kernel is 

(DX, G, Γ̃ , c)-mod0. In order for j∗ to be essentially surjective, we restrict to holonomic 
D-module. Then, given M ∈ (D

X̃
, G, Γ̃ , c)-modhol, H0(j∗M ) ∈ (DX, G, Γ̃ , c)-modhol

and j∗H0(j∗M ) � M , implying that j∗ is essentially surjective.
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Since the action of SL and C× on X̃ commute, the pull-back functor p∗ :
(Dc, SL)-modhol → (D

X̃
, G, c)-modhol is an equivalence with quasi-inverse M �→

ker(euV + nc; p•M ) = (p•M )C× . If the action of Γ̃ on M is trivial then Γ acts trivially 
on (p•M )C× too. �

Observe that the image of 1 ∈ gl under the quantum moment map μX is −euV . 
Therefore, given a GL-monodromic DX-module M and m a section of Γ (X, M ), we 
have euV · m = −ncm if and only if μX(1) · m = c Tr(1)m. This justifies our unusual 
parameterization of twisted differential operators on P(V ).

From now on we assume that c is admissible, cf. Definition 1.3.2. This assumption 
on c ensures, thanks to the Beilinson–Bernstein localization theorem, that the functor 
Γ (P, −), of global sections, provides an equivalence between the categories of sheaves of 
quasi-coherent DP,c and of Γ (P, DP,c)-modules, respectively. Admissibility also implies, 
[21, Lemma 6.2], that

Dc(X) = Γ
(
X,
(
p•DX̃

/p•DX̃
(euX + nc)

))C×
=
(
D/D(euX + cn)

)C×
.

Therefore, for any D-module M , the vector space

ker(euX + nc; M) :=
{

m ∈ M
∣∣ euX(m) = −nc · m

}
has a natural Dc(X)-module structure. In this case, we also have an equivalence between 
Dc-modules and Dc(X)-modules. Thus, below we will freely switch between the setting 
of sheaves of Dc-modules and that of Dc(X)-modules, whichever is more convenient.

A regular holonomic Dc-module M ∈ (Dc, PSL)-mod will be called “mirabolic” if 
SS(M ) is contained in (SL×N ) × T ∗P, where N is the nilpotent cone in sl. Let Cc be 
the full subcategory of (Dc, PSL)-mod formed by all mirabolic Dc-modules. The reader 
may notice that we have now used Cc to denote both the category of (GL, c)-monodromic, 
mirabolic modules on X and the category of mirabolic modules on X. If it is not clear 
from the context which of these two categories is being referred to, we will write Cc(X) to 
denote the former and Cc(X) the latter. Further, let Cc(X)0 = Cc(X) ∩ (DX, GL, c)-mod0

be the category of mirabolic D-modules supported on the subset SL×{0} ⊂ SL×V . 
Then, the equivalence of Proposition 7.2.1 induces an equivalence

Cc(X)/Cc(X)0
∼→ Cc(X). (7.2.2)

The functor of Hamiltonian reduction H : Cc(X) → Oκ is defined to be H(M ) =
Γ (X, M )SL. Proposition 7.2.1 implies that

Hc = H ◦ Fc, whenever c is admissible. (7.2.3)
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7.3. For m ∈ Z, let O(m) be the pull-back of the standard line bundle OP(m) under 
the projection G × P → P. Tensoring by O(nm) defines an equivalence Cc

∼−→ Cc−m, 
M �→ M (nm). Define

c−mDc =
[
p•DX̃

/p•DX̃
(euX + cn)

](nm)
,

where, for a C×-equivariant, quasi-coherent sheaf of O
X̃

-modules M , (p•M )(i) is de-
fined to be the sheaf of all sections m such that λ · m = λim for all λ ∈ C×. By [21, 
Lemma 2.2], c−mDc is a (Dc−m, Dc)-bimodule (we remark that the “d” of loc. cit. equals 
our parameter “c”).

Lemma 7.3.1. (See [21], Lemma 6.7 (1).)Assume that c is admissible. For each positive 
integer m and M ∈ Cc, we have

M (nm) = c−mDc ⊗Dc
M

In Appendix A below (see Corollary A.1.2), we will introduce natural (Uκ, Uκ+1), resp. 
(Uκ+1, Uκ)-bimodules κPκ+1, resp. κ+1Qκ, for all κ ∈ C. We then define inductively

κPκ+m = (κPκ+1) · (κ+1Pκ+m), κ+mQκ = (κ+mQκ+m−1) · (κ+1Qκ),

where the multiplication is defined inside Ureg, making κPκ+m, resp. κ+mQκ, into 
a (Uκ, Uκ+m), resp. (Uκ+m, Uκ)-bimodule. Define the shift functor S : Uκ-mod →
Uκ+1-mod by

S(M) = κ+1Qκ ⊗ UM.

Theorem A.1.3 implies that S that provides, for any κ such that both κ and κ + 1 are 
good, an equivalence S : Oκ

∼→ Oκ+1. Recall that κ = −c + 1. We will use the following 
version of [21, §6.4]:

Proposition 7.3.2. Assume that c is admissible.

(i) For any M ∈ Cc there is a canonical morphism ψc : S(H(M )) → H(M (n)).
(ii) Let M ∈ Oκ and M := †H(M). Then, the morphism ψc : S(M) = S(H(M )) →

H(M (n)) is an isomorphism.

Proof. By Lemma 7.3.1, one has: M (n) = c−1Dc ⊗Dc
M . Taking SL-invariants, we 

obtain a natural map

f : (c−1Dc)SL ⊗(Dc)SL M SL −→ (c−1Dc ⊗ Dc
M )SL.
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We claim that the map f descends to [(c−1Dc)SL/(c−1Dcgc)SL] ⊗ (Dc)SLM SL, a quotient 
space. To see this, let (−)sl denote the functor of sl-coinvariants, cf. Section 6.1. The 
natural projection

h : (c−1Dc ⊗ Dc
M )SL −→ (c−1Dc ⊗ Dc

M )sl

is an isomorphism since the sl-action involved is locally finite. Note that we have an 
equality (c−1Dcgc)SL = (glc−1(c−1Dc))SL and that the composite map h ◦ f clearly kills 
the subspace (glc−1(c−1Dc))SL ⊗DSL

c
M SL. Hence, the map f kills this subspace as well, 

and our claim follows.
We conclude that the map f descends to a well defined map

ψc : (c−1Dc/c−1Dcgc)SL ⊗ (Dc/Dcgc)SLM SL −→ (c−1Dc ⊗ Dc
M )SL.

Further, we have (Dc/Dcgc)SL = Uκ and also κ+1Qκ = (c−1Dc/c−1Dcgc)SL, see part (ii) 
of [21, Lemma 6.7]. Thus, the map ψc takes the following form

ψc : S
(
H(M )

)
= κ+1Qκ ⊗Uκ

M SL −→ H
(
M (n)

)
.

This proves (i). The statement of part (ii) is [21, Theorem 6.5]. �
7.4. Recall that we defined two notions of stability in Section 7.1, one with respect 

to det and the other with respect to det−1. By analogy with the description of (T ∗X)ss,+
given in (7.1.1), we say that a point of T ∗X is semi-stable if it is contained in(

T ∗X
)ss :=

{
(g, Y, �, j) ∈ SL×sl× T ∗P

∣∣ C〈g, Y 〉 · � = V
}

.

The set of unstable points in X is denoted (T ∗X)unst. For each m ∈ Z we denote by 
O(m) the line bundle on T ∗X obtained by pulling back OP(m) along the projection 
T ∗X → X → P.

Lemma 7.4.1. Let F be an SL-equivariant, coherent OT∗X-module. Then, we have 
SuppF ∩ (T ∗X)ss �= ∅ if and only if Γ (T ∗X, O(mn) ⊗F)SL �= 0 for m 	 0.

Proof. Let Y = μ−1
C×(0) ⊂ T ∗X, where μC× is the moment map for the Hamiltonian 

C×-action on T ∗X. Recall that G = SL×C×. Let det : C× → C× be the character 
λ �→ λn and denote by the same symbol the corresponding character of G. Then Y ss,G ⊆
Y ss,C× , where stability is with respect to det. The group C× acts freely on Y ss,C× and the 
quotient space is T ∗X. Therefore, in the notation of [21, Proposition 7.4], there exists a 
coherent, G-equivariant sheaf G on Y such that

F = F

(⊕
Γ (Y,G)(C

×,det−m)
)

= F

(⊕
Γ
(
T ∗X,O(nm) ⊗F

))
.

m≥0 m≥0
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Thus, for m 	 0, we have Γ (Y, G)(C×,det−m) = Γ (T ∗X, O(nm) ⊗F) and hence

Γ (Y,G)(G,det−m) = Γ
(
T ∗X,O(nm) ⊗F

)SL
.

By [21, Proposition 7.4(2)], Γ (Y, G)(G,det−m) �= 0 for m 	 0 if and only if SuppG ∩
Y ss,G �= ∅. Since (T ∗X)ss is just the image of Y ss,G in T ∗X, and the coherent sheaf on 
Y ss,G/G corresponding by descent to G is also the sheaf corresponding by descent to F , 
we conclude that SuppF ∩ (T ∗X)ss �= ∅ if and only if Γ (T ∗X, O(m) ⊗ F)SL �= 0 for 
m 	 0. �
Lemma 7.4.2. Given M ∈ Cc, there exists an integer �(M ) 	 0 such that, for all 
k ≥ �(M ) one has

(i) The canonical morphism ψc−k : S(H(M (kn))) → H(M ((k + 1)n)) is surjective.
(ii) The set SS(M ) contains semistable points if and only if H(M (kn)) �= 0.

Proof. Let A0 = C[T × t∗]W be the invariants, resp. A1 ⊂ C[T × t∗] the sign-isotypic 
component, of the diagonal W -action. For each k ≥ 1, we let Ak ⊂ C[T ⊕ t∗] be the 
C-linear span of the set of elements of the form a1 · a2 · . . . · ak, for ai ∈ A1. Thus, 
Â :=

⊕
k≥0 Ak is a commutative, graded algebra.

Since M is a regular holonomic, SL-equivariant D-module on T ∗X, we may choose, 
by [31, Corollary 5.1.11], a good, SL-stable filtration on M such that the annihilator 
in OT∗X of the associated graded sheaf is a reduced ideal. This gives a good, reduced 
filtration on M (kn) for each k ≥ 0. Let gr(M (kn)) denote the associated graded space. 
Then, we have (

gr M (kn)
)SL = gr

(
M (kn)SL),

and, if μX : T ∗X → sl
∗ is the moment map, then grM (kn) is supported on μ−1

X (0) and, 
the filtration being reduced, it is in fact a coherent Oμ−1

X (0)-module. If Y = μ−1
C×(0) as in 

the proof of Lemma 7.4.1 and p : Y ss,C× → T ∗X the quotient map, then the closure of 
p−1(μ−1

X (0)) in T ∗X is contained in μ−1
X

(0) since the action of SL×C× on T ∗X factors 
through the action of GL. Thus, the direct sum 

⊕
k≥0 (grM (kn)) is a finitely generated 

module for the graded algebra 
⊕

k≥0 C[μ−1
X

(0)](C×,det−k). Since SL is reductive, Hilbert’s 
Theorem implies that the space 

⊕
k≥0 (grM (kn))SL is a finitely generated module for 

the algebra (⊕
k≥0

C
[
μ−1
X

(0)
](C×,det−k)

)SL

=
⊕
k≥0

C
[
μ−1
X

(0)
](G,det−k) � Â,

where the isomorphism of the right-hand side is given by [16, Proposition A2]. It follows, 
since the algebra Â is generated over A0 by its degree one component A1, that for all 
k 	 0, one has an equality (grM ((k + 1)n))SL = A1 · (gr M (kn))SL.
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One has an isomorphism gr(κ+1Qκ) = A, see [21, Theorem 5.3] and also [22, 
Lemma 6.9(2)]. We deduce that the map gr(κ+1Qκ) ⊗gr(M (kn)SL) → gr(M ((k+1)n)SL)
is surjective. This implies that the map κ+1Qκ ⊗ (M (kn))SL → (M ((k + 1)n))SL is sur-
jective, proving (i).

To prove (ii), we apply Lemma 7.4.1 to gr M , a coherent sheaf on T ∗X. Specifically, 
Lemma 7.4.1 says that the set Supp(grM ) = SS(M ) contains semistable points if and 
only if Γ (T ∗X, O(nk) ⊗ gr M )SL �= 0 for all sufficiently large positive integers k. The 
latter holds if and only Γ (X, O(nk) ⊗ M )SL �= 0. �

7.5. The following is an analogue of Theorem 1.3.3 for mirabolic D-modules on X.

Theorem 7.5.1. Assume c ∈ C is admissible and let M ∈ Cc. Then, SS(M ) ⊂ (T ∗X)unst

if and only if H(M ) = 0.

Proof. The functor H being exact, it suffices to prove the result for simple modules. 
Thus, let M ∈ Cc be a simple module. If the set SS(M ) does not contain semistable 
points then H(M ) = 0 by the previous lemma.

So, assume that the set SS(M ) contains semistable points. We choose and fix an 
integer � = �(M ) as in the statement of Lemma 7.4.2. For any k ≥ �, by part (ii) of 
the lemma we have that H(M (kn)) is a (nonzero) simple object. Furthermore, writing 
M� := H(M (�n)), we deduce from part (i) of Lemma 7.4.2 that the canonical map 
ψk−� : Sk−�(M�) � H(M (kn)) is surjective for any k ≥ �. Note that the object Sk−�(M�)
is simple since the functor Sk−� is an equivalence. It follows that the above map ψk−� is in 
fact an isomorphism. Thus, from Lemma 6.3.1, we conclude that M (kn) = [Sk−�(M�)]!∗
is the simple top of the object †H(Sk−�(M�)).

Observe next that the functor S� is also an equivalence. It follows that there is a unique 
simple object M ∈ Oκ such that one has M� = S�(M). Then, using Proposition 7.3.2, 
we find

H
(
M (kn)

)
= Sk−�(M�) = Sk(M) = H

(†H(M)(kn)
)
, k ≥ �.

We consider the following composition

u : †H
(
H
(
M (kn)

))
−→ †H

(
H
(†H(M)(kn)

))
−→ †H(M)(kn),

where the first map is obtained by applying †H(−) to the composite isomorphism above 
and the second map is the canonical adjunction. Note that, the morphism H(u) induced 
by u is, by construction, the identity map on Sk(M). Let M ′ = M!∗ be the simple top 
of †H(M). Hence, M ′(kn) is the simple top of †H(M)(kn). Note that since H(M ′) =
M �= 0, the set SS(M ′) contains semistable points, by Lemma 7.1.2. Therefore, for 
k 	 0 by Lemma 7.4.2(ii) one has H(M ′(kn)) �= 0. Thus, we choose (as we may) k ≥ �

such that H(M ′(kn)) �= 0. Recall that the object H(†H(M)(kn)) = Sk(M) is simple. 
Therefore, the D-module †H(M)(kn) contains a single composition factor that has a 
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nonzero Hamiltonian reduction. But, M ′(kn) is a simple quotient of †H(M)(kn) that 
has this property. Thus, we deduce that H(M ′(kn)) = H(†H(M)(kn)) = Sk(M).

To complete the proof, we consider a diagram

M (kn) †H(H(M (kn))) upr †H(M)(kn)
pr′

M ′(kn),

where the map pr, resp. pr′, is the projection of †H(H(M (kn))), resp. †H(M)(kn), 
onto its simple top. Our construction implies that ker(pr) is the largest submodule of 
†H(H(M (kn))) annihilated by the functor H, resp. ker(pr′) is the largest submodule of 
†H(M)(kn) annihilated by the functor H. It follows that the morphism u in the above 
diagram maps ker(pr) into ker(pr′). Hence, the morphism descends to a map

ū : M (kn) ∼= †H
(
H
(
M (kn)

))
/ ker(pr) → M ′(kn) ∼= †H(M)(kn)/ ker

(
pr′
)
.

Note that the induced map H(ū) : H(M (kn)) → H(M ′(kn)) may be identified with 
the composite isomorphism H(M (kn)) = Sk(M) = H(†H(M)(kn)). In particular, H(ū)
is a nonzero map. We conclude that ū is a nonzero map between two simple objects. 
Thus, this map is an isomorphism. It follows that M ∼= M ′.

We deduce that H(M ) = H(M ′) = H(M!∗) = M �= 0. Furthermore, we obtain a chain 
of isomorphisms S�(H(M )) = S�(H(M ′)) = S�(M) = H(M (�n)). Using this and the fact 
that S is an equivalence, one deduces by induction on i that the canonical morphism 
S�−i(H(M )) → H(M (in)) must be an isomorphism for any i = 0, 1, . . . , � − 1. This 
completes the proof. �
Remark 7.5.2. Theorem 1.3.3 can also be deduced, in the rational case, from results 
of McGerty and Nevins as follows. First of all, it is known that Uκ has finite global 
dimension when c is admissible. Therefore, by [42], Hc induces a derived equivalence 
between C̃q/C̃ unst,+

q , the quotient of C̃q by the localizing subcategory of modules with 
singular support in Xunst,+, and category Oc. As shown in [43, Section 8], the derived 
equivalence is induced from the exact functor Hc when c is admissible. Hence Hc gives 
an abelian equivalence C̃q/C̃ unst,+

q � Oc when c is admissible. Presumably, a calculation 
similar to that of [43, Section 8] can also be done in the trigonometric case too.

Remark 7.5.3. One can ask if a result similar to Theorem 1.3.3 holds for the negative 
stability condition. In order to prove such a result, one must consider c ∈ Q>0, and 
in particular values of c which are not admissible. The arguments used in the proof of 
Theorem 1.3.3 are not applicable because of the failure of localization for D-modules on 
SL×P(V ). However, Lemma 7.1.2 implies: if c > 0 then SS(M ) ⊂ (T ∗X)unst,− implies 
that Hc(M ) = 0.
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7.6. Proof of Theorem 1.3.3

As in the proof of Theorem 7.5.1, we may assume that M ∈ C̃q is simple. Hence M
belongs to the subcategory Cq. We lift M to Cc. Clearly the characteristic variety of this 
lift is independent of any choice and, as shown in the proof of Corollary 6.5.1, so too is 
Hc(M ). If M ∈ (Cc)0 then Proposition 1.4.1 implies that the support of M is the closure 
of X(∅, (mu)) for some n = um, hence SS(M ) ⊂ (T ∗X)unst,+. Then Proposition 1.4.2, 
together with our assumption that c is admissible, implies that Hc(M ) = 0. Therefore we 
may assume that Fc(M ), the image of M in Cc/(Cc)0 � Cc is nonzero. By Theorem 7.5.1
and Eq. (7.2.3) it suffices to show that

SS(M ) ∩
(
T ∗X

)ss,+ �= ∅ ⇐⇒ SS
(
Fc(M )

)
∩
(
T ∗X

)ss �= ∅.

The fact that SS(Fc(M )) ∩ (T ∗X)ss �= ∅ implies that SS(M ) ∩ (T ∗X)ss,+ �= ∅ follows 
from the fact that (T ∗X)ss,+ ⊂ T ∗X̃ and SS(Fc(M )) = (T ∗

C×X̃ ∩ SS(M ))/C×.
On the other hand, if SS(M ) ∩ (T ∗X)ss,+ �= ∅ then, as noted in the proof of 

Lemma 7.1.2, we can find some relevant stratum X(λ, ∅) such that the conormal T ∗
X(λ,∅)X

to this stratum has non-empty intersection with (T ∗X)ss,+; in fact, the conormal is 
contained in (T ∗X)ss,+. The intersection T ∗

X(λ,∅)X ∩ T ∗
C×X̃ is dense in T ∗

C×X̃. Thus, 
SS(Fd(M )) ∩ (T ∗X)ss �= ∅ as required. �
Proof of Theorem 1.3.5. We are going to show that the canonical morphism ψc :
S(H(M )) → H(M (n)) is an isomorphism for any M ∈ Cc. The functors S, H, and 
also the twist functor (−)(n), all being exact, it suffices to prove the result for simple 
mirabolic modules. Thus, let M ∈ C̃c be a simple module.

Assume first that the set SS(M ) does not contain semistable points. Since SS(M (n)) =
SS(M ), we deduce from Lemma 7.1.2 that H(M ) = 0 and H(M (n)) = 0. Therefore, the 
map ψc is, in this case, a map between two zero vector spaces and we are done.

Assume now that the set SS(M ) contains semistable points. Since SS(M (kn)) =
SS(M ), we deduce that H(M (kn)) �= 0, by Theorem 1.3.3. Thus, H(M ) and H(M (n))
are nonzero simple objects. Therefore, to complete the proof it suffices to show that the 
canonical map ψc : S(H(M )) → H(M (n)) is nonzero.

Choose an integer � = �(M ) as in Lemma 7.4.2 and use the notation of the proof 
of Theorem 1.3.3. In particular, by definition, we have S�(H(M ′)) = M� = H(M (�n)). 
Furthermore, we have shown in the course of the proof that, in fact, one has an isomor-
phism M ′ ∼= M . Therefore, we get an isomorphism φ : S�(H(M )) ∼→ H(M (�n)). On the 
other hand, going through the construction of the isomorphism M ′ ∼= M , one sees that 
the map φ may be factored as a composition of the following chain of maps

S�
(
H(M )

)
= S�−1(S(H(M )

)) S
�−1(ψc)

S�−1(H(M (n)
))

= S�−2(S(H(M (n)
)))

S
�−2(ψc−1)

S�−2(H(M (2n)
))

= S�−3(S(H(M (3n)
)))
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S
�−3(ψc−2)

. . . S
(
H
(
M (� − 1)n

))
ψd−(�−1)

H
(
M (�n)

)
.

We deduce that S�−1(ψc), the first map in the chain, is nonzero. Hence, the map ψc

is itself nonzero, and we are done. �
7.7. The KZ-functor

Let � : X = SL×V → SL → SL / / AdSL ∼→ T/W be a composition of the first 
projection, the adjoint quotient morphism, and the Chevalley isomorphism. We have 
�−1(T reg/W ) = Xreg and the map � restricts to a GL-torsor Xreg → T reg/W . Thus, 
there is a short exact sequence

1 → π1(GL) → π1
(
Xreg)→ π1

(
T reg/W

)
→ 1, (7.7.1)

of fundamental groups. A construction given in [5, Section 4.4] produces (although it 
was not explicitly stated in loc. cit. in this way), for each c ∈ C, a flat connection on 
the sheaf OXreg such that the monodromy action of the canonical generator of the group 
π1(GL) = Z is given by multiplication by q = exp(2π

√
−1c). The connection gives the 

sheaf OXreg the structure of a (GL, q)-monodromic D-module, to be denoted Oc
Xreg . It 

follows that the functor M �→ [�•(O−c
Xreg⊗M )]G gives an equivalence of the categories of 

(GL, q)-monodromic DXreg-modules and DT reg/W -modules, respectively. Observe further 
that we have

Γ
(
T reg/W,

[
�•
(
O−c

Xreg ⊗ M
)]GL) = Γ

(
Xreg, M

)gc
.

The variety T reg/W being affine, we conclude that the assignment M �→ Γ (Xreg, M )gc

gives an equivalence of the categories of (GL, q)-monodromic DXreg -modules and 
D(T reg/W )-modules, respectively.

Next, let δ denote the Weyl denominator, cf. Appendix A, so δ2 ∈ C[T ]W . There is a 
natural isomorphism Uκ[ 1

δ2 ] � D(T reg/W ). Hence, for any Uκ-module M one can view 
M |T reg/W := M [ 1

δ2 ], a localization of M , as a D(T reg/W )-module.
Thus, associated with a mirabolic module M ∈ Cq, there are a pair of D(T reg/W )-

modules defined as follows

Hloc(M ) :=
(
Hc(M )

)∣∣
T reg/W

=
(
Γ (X, M )gc

)∣∣
T reg/W

and

H(Mloc) := Γ
(
Xreg, M |Xreg

)gc
.

This gives a pair of exact functors Cq → D(T reg/W )-mod. Furthermore, there is a 
canonical morphism Hloc(M ) → H(Mloc).
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Proposition 7.7.2. Assume that c is admissible. Then, for any M ∈ Cq, the canonical 
morphism Hloc(M ) → H(Mloc) is an isomorphism.

Proof. Both functors are exact. Therefore, by induction on length it suffices to prove the 
isomorphism of the proposition when M ∈ Cc is simple. If M is supported on X \ Xreg

then H(Mloc) = 0 and we must show that Hloc(M ) = 0. This is equivalent to showing 
that M is supported on X \ π−1(T reg/W ). The relevant strata contained in the locally 
closed set π−1(T reg/W ) \Xreg are precisely those of the form X(1m, 1n−m) with m < n. 
Since c is assumed to be admissible (and in particular not in Z) Proposition 1.4.1 says 
that M cannot be supported on the closure of any of the strata X(1m, 1n−m). Hence 
Hloc(M ) = 0.

Therefore, we are left with showing that if SuppM = X, then Hloc(M ) ∼→ H(Mloc). 
Since M is assumed to be simple, M |Xreg is a simple local system and Hc, being a quotient 
functor, sends M |Xreg to a simple local system on T reg/W . Similarly, M �→ Hloc(M ) =
Hc(−)|T reg/W is also a quotient functor, sending simple modules to simple modules. 
Hence it suffices to show that the map Hloc(M ) → H(Mloc) is non-zero. Theorem 1.3.3
says that Hc(M ) is non-zero. The simplicity of M implies that any non-zero section of 
Hc(M ) is supported on the whole of T/W , hence Hc(M ) embeds in Hloc(M ). By the 
same argument, Hc(M ) embeds in H(Mloc). Then the map Hloc(M ) → H(Mloc) is just 
the localization of the identity on Hc(M ). As we have explained, Hc(M ) �= 0, hence, the 
localized map is nonzero. �

Next, write DR(F) for the local system associated with a lisse D-module F . For 
any M ∈ Oκ, the D(T reg/W )-module M |T reg/W gives a local system DR(M |T reg/W ), 
on T reg/W . Let Haff

q (W ) denote the affine Hecke algebra of type A at parameter 
q = exp(2π

√
−1c). The algebra Haff

q (W ) is a quotient of the group algebra of the funda-
mental group π1(T reg/W ). It is shown in [50, Theorem 4.1(ii)] that for M as above the 
monodromy action of π1(T reg/W ) on DR(M |T reg/W ) factors through Haff

q (Sn). Thus, 
M �→ DR(M |T reg/W ) gives a functor KZκ : Oκ → Haff

q (W )-mod, the trigonometric KZ-
functor.

On the other hand, the discussion preceding Proposition 7.7.2 shows that, for any 
M ∈ Cq, the monodromy action of π1(Xreg) on DR(O−c) ⊗DR(M |Xreg) factors through 
π1(T reg/W ), cf. (7.7.1). Then, Proposition 7.7.2 yields the following result

Corollary 7.7.3. Assume that c is admissible and let M ∈ Cq. Then, the mon-
odromy representations of π1(T reg/W ) on DR(O−c) ⊗ DR(M |Xreg) is isomorphic to 
KZκ(Hc(M )|T reg/W ); in particular, the π1(T reg/W )-action on DR(O−c) ⊗ DR(M |Xreg)
factors through the affine Hecke algebra.

8. Specialization for Cherednik algebras

In this section, we define a Verdier type specialization functor on category O for the 
(sheaf of) Cherednik algebras introduced by Etingof [9].
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8.1. Specialization

Let X be a smooth variety and Y ↪→ X a smooth, locally closed subvariety. We write 
ρ : NX/Y → Y for the normal bundle to Y in X and I for the sheaf of ideals in OX

defining Y . There is a canonical graded algebra isomorphism ρ∗ONX/Y
∼=
⊕

k≥0 Ik/Ik+1.
One defines an ascending Z-filtration on DX , to be called the Y -filtration, by setting

V Y
k DX =

{
D ∈ DX

∣∣ D
(
Ir
)
⊂ Ir−k, ∀r ∈ Z

}
, (8.1.1)

where Ir = OX for r ≤ 0. It is known [27] that grY DX := grV Y DX , the associated 
graded of DX with respect to the Y -filtration, is a sheaf of algebras on Y isomorphic to 
ρ•DNX/Y

. The C×-action on NX/Y defines an Euler vector field eu on ONX/Y
. Locally on 

X, we can (and will) choose a lift θ ∈ V0DX of the Euler vector field eu on ONX/Y
.

An ascending filtration Mk, k ∈ Z, on a coherent D-module M is said to be a Y -good 
filtration if each Mk is a coherent V Y

0 DX -module and the following standard conditions 
hold (

V Y
k DX

)
· Ml ⊂ Mk+l,

(
V Y
k DX

)
· Ml = Mk+l,

⋃
k∈Z

Mk = M ,

where the second equality holds for any fixed k ≥ 0 and all l 	 l(k) > 0, resp. for any 
fixed k ≤ 0 and all l � l(k) < 0. For a Y -good filtration Mk, k ∈ Z, the associated 
graded grM acquires the natural structure of a coherent ρ•DNX/Y

-module.

Remark 8.1.2. The Y -filtration on DX , considered as a left DX -module, is a Y -good 
filtration.

Let C := {z ∈ C | 0 ≤ Re(z) < 1}, a set of coset representatives of Z in C.
Kashiwara [27] proved the following

Proposition 8.1.3. Let M be a coherent DX-module. Assume that, locally on X, there 
exists a coherent V Y

0 DX-submodule F of M and non-zero polynomial d such that

(i) d(θ) · F ⊂ (V Y
−1DX) · F ,

(ii) DX · F = M .

Then, there is a unique (globally defined) Y -good filtration V Y
• M on M and a non-

zero polynomial b with b−1(0) ⊂ C such that b(eu +k) · (V Y
k M /V Y

k−1M ) = 0 for all 
k ∈ Z.

A coherent DX-module M is said to be spealizable at Y if the conclusions of the above 
proposition hold for M . In this case, we refer to the filtration V Y

• M as the Y -filtration on 
M and write grY M for the associated graded ρ•DNX/Y

-module. We let ΨX/Y (M ) denote 
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the DNX/Y
-module such that ρ•ΨX/Y (M ) = grY M . Property (ii) of Proposition 8.1.3

ensures that ΨX/Y (M ) is a C∗-monodromic DNX/Y
-module.

A deep result of Kashiwara and Kawai [30] reads

Theorem 8.1.4. Let M be a holonomic DX-module with regular singularities. Then, M
is specializable along any smooth subvariety Y ⊂ X and, moreover, ΨX/Y (M ) is a holo-
nomic DNX/Y

-module with regular singularities.

It follows from the theorem that ΨX/Y yields an exact functor, the specialization 
functor, from the category of regular holonomic D-modules on X, to the category of 
regular holonomic, C×-monodromic D-modules on NX/Y .

8.2. Specialization for Cherednik algebras

We begin by recalling the definition of sheaves of Cherednik algebras as given in [9].
Let X be a smooth, connected, quasi-projective variety and W ⊂ Aut(X) a finite 

group. Given x ∈ X we write Wx for the isotropy group of x in W . The group W is 
said to act on X as a pseudo-reflection group if, for every x ∈ X, the group Wx acts 
on TxX as a pseudo-reflection group. From now on we assume that W acts on X as a 
pseudo-reflection group. By the Chevalley–Shephard–Todd Theorem, this implies that 
X/W is smooth and π•OX is a locally free OX/W -module of rank |W |, where π is the 
quotient map.

Let S(X, W ) denote the set of pairs (w, Z), where w ∈ W and Z is a connected 
component of Xw of codimension one. The group W acts on the set S(X, W ) by

g · (Z, w) =
(
g(Z), gwg−1)

and we fix a W -equivariant function κ : S(X, W ) → C.
On any sufficiently small affine, W -stable, open subset U of X, the closed subvarieties 

Z ∩ U , for (w, Z) ∈ S(X, W ), are defined by the vanishing of a function fZ say. The 
Dunkl–Opdam operator associated to a vector field v ∈ Γ (U, ΘX) is the rational section

Dv = ∂v +
∑

(Z,w)∈S

2κ(Z, w)
1 − λZ,w

· v(fZ)
fZ

(w − 1) (8.2.1)

of Γ (U, DX � W ), where λZ,w is the eigenvalue of w on each fiber of the conormal of Z
in X. On U , the Cherednik algebra Hκ(U, W ) is the affine C-subalgebra of EndC(C[U ])
generated by Γ (U, OX � W ) and all Dunkl–Opdam operators. The algebras Hκ(U, W )
glue to form the sheaf of Cherednik algebras Hκ(X, W ) on X/W .

8.3. We fix a subgroup W ′ ⊂ W such that the set X ′ := {x ∈ X | Wx = W ′} is 
nonempty. Let Y be a connected component of X ′. Thus, Y is a smooth, locally closed 
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subset of X. Let WY := {w ∈ W | w(Y ) = Y }. The group WY contains W ′ as a normal 
subgroup.

The normal bundle ρ : NX/Y → Y is a WY -equivariant vector bundle on Y , equipped 
with a linear W ′-action on the fibers. If a point v ∈ NX/Y is fixed by an element 
w ∈ WY then so is the point ρ(v). It follows that any element w ∈ WY \ W ′ acts on 
NX/Y without fixed points. Further, for any w ∈ W ′, the fixed point set Nw

X/Y is a vector 
sub-bundle of the normal bundle on Y . We deduce that the group WY acts on NX/Y by 
pseudo-reflections.

For any pair (w, C ′), where w ∈ W ′ and C ′ is a codimension one component of Nw
X/Y , 

there is a unique connected component C of Xw such that Y ⊂ C and the normal 
bundle to Y in C equals Nw

X/Y . The assignment (w, C ′) �→ (w, C) yields a canonical 
injective map S(NX/Y , WY ) = S(NX/Y , W ′) ↪→ S(X, W ). Moreover, since each w ∈ W ′

acts linearly on the fibers of NX/Y and trivially on Y , the space Nw
X/Y is connected and 

hence the projection map S(NX/Y , W ′) → W ′ is also an embedding.
Given a W -invariant function κ : S(X, W ) → C, one obtains via the above injection, 

a WY -invariant function κ′ : S(NX/Y , WY ) → C. Associated with the WY -action on the 
variety NX/Y and the function κ′, one has the sheaf of Cherednik algebras on NX/Y /WY . 
The morphism ρ̄ : NX/Y /WY → Y/WY being affine, we will abuse the notation and 
also write Hκ′(NX/Y , WY ) for the direct image of the sheaf of Cherednik algebras on 
NX/Y /WY via ρ̄. Thus, we view Hκ′(NX/Y , WY ) as a sheaf of algebras on Y/WY .

Following [4], we write FunWY
(W, Hκ′(NX/Y , WY )) for the sheaf on Y/WY consist-

ing of all WY -equivariant functions f : W → Hκ′(NX/Y , WY ), where WY acts on 
Hκ′(NX/Y , WY ) by conjugation and WY acts on the group W by multiplication on 
the left. Then the sheaf FunWY

(W, Hκ′(NX/Y , WY )) is a right Hκ′(NX/Y , WY )-module 
and hence a left module for

Z
(
W, WY ,Hκ′(NX/Y , WY )

)
:= EndHκ′ (NX/Y ,WY )

(
FunWY

(
W,Hκ(NX/Y , WY )

))
.

The sheaf Z(W, WY , Hκ′(NX/Y , WY )) is Morita equivalent to Hκ(NX/Y , WY ).

8.4. Let X◦ be the set of points x ∈ X such that the group Wx is conjugate (in W ) 
to a subgroup of W ′. The set X◦ is a W -stable Zariski open subset of X. We write W Y

for the W -saturation of the set Y . The set W Y is a W -stable closed subvariety of X◦. 
Furthermore, W Y is a disjoint union of the subvarieties w(Y ) where w runs over a set 
of coset representatives of W/WY in W . Therefore, the image of W Y in X◦/W equals 
Y/WY . We have a commutative diagram of natural maps:

NX/Y

ρ

ν
ν

Y

πY

X◦

π

NX/Y /WY

ρ̄
Y/WY X◦/W

(8.4.1)
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Let IWY be the sheaf of ideals in OX◦ defining W Y , and let I := π•IWY . We replace 
X by X◦ and assume that W Y is closed in X.

Since the algebra Hκ(X, W ) acts on π•OX , we may define a V -filtration on Hκ(X, W ).

Definition 8.4.2. The W Y -filtration on Hκ(X, W ) is defined to be

V WY
m Hκ(X, W ) =

{
D ∈ Hκ(X, W )

∣∣ D
(
Ik
)
⊂ Ik−m, ∀k ∈ Z

}
, (8.4.3)

where Ik := π•OX for k ≤ 0.

One can show that V WY
m Hκ(X, W ) defines a quasi-coherent subsheaf of Hκ(X, W ). 

In particular, for all x ∈ X/W , the stalk of V WY
m Hκ(X, W ) at x equals {D ∈

Hκ(X, W )x | D(Ij
x) ⊂ Ij−m

x , ∀j}. We write grWY Hκ(X, W ) for the corresponding as-
sociated graded algebra. Then, clearly grWY Hκ(X, W ) is supported on Y/WY .

We have a grading ν•ONX/Y
=
⊕

�∈Z
(ν•ONX/Y

)(�) by the homogeneity degree along 
the fibers of the vector bundle NX/Y → Y . The sheaf Hκ′(NX/Y , WY ) acts naturally on 
ν•ONX/Y

. We put

H(�)
κ′ (NX/Y , WY ) :=

{
h ∈ Hκ′(NX/Y , WY )

∣∣ h(ν•ONX/Y
)(k) ⊂ (ν•ONX/Y

)(�+k), ∀k ∈ Z
}

.

This gives a canonical Z-grading Hκ′(NX/Y , WY ) =
⊕

�∈Z
H(�)

κ′ (NX/Y , WY ).

Lemma 8.4.4. The grading on the algebra Hκ′(NX/Y , WY ) is inner, specifically, there is 
a unique element eu ∈ Γ (Y/WY , Hκ′(NX/Y , WY )) such that for any � ∈ Z one has

eu(f) = � · f and [eu, h] = � · h, ∀f ∈ (ν•ONX/Y
)(�), h ∈ H(�)

κ′ (NX/Y , WY ).

Proof. Choose an open affine covering Y =
⋃

Ui such that the restriction of the 
normal bundle is a trivial bundle NX/Y |Ui

∼= Ui × h. Then, we have Hκ′(Ui, W ′) ∼=
D(Ui) ⊗Hκ′(h, W ′). In the algebra D(Ui) ⊗Hκ′(h, W ′) there is a unique element eu (neces-
sarily belonging to Hκ′(h, W ′)) satisfying the properties stated in the lemma. Uniqueness 
implies that these elements glue to a global section of Hκ′(NX/Y , WY ). �

Let e denote the trivial idempotent in CW and eY the trivial idempotent in CWY . 
The main result of this section is the following (cf. (8.4.1) for the definition of ρ̄):

Theorem 8.4.5. There is an isomorphism of graded sheaves of algebras on Y/WY ,

grWY Hκ(X, W ) ∼−→ Z
(
W, WY , ρ̄•Hκ′(NX/Y , WY )

)
,

which restricts to an isomorphism grWY eHκ(X, W )e ∼−→ ρ̄•(eY Hκ′(NX/Y , WY )eY ).
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8.5. Proof of Theorem 8.4.5

Let NX/WY denote the normal bundle of W Y in X. The canonical map NX/WY �
W Y � Y/WY is denoted η. The natural action of each of the algebras grWY Hκ(X, W )
and Z(W, WY , ρ̄•Hκ′(NX/Y , WY )) on the sheaf η•ONX/WY

is faithful. Therefore, in order 
to show the existence of the isomorphism of Theorem 8.4.5, it suffices to show that the 
sheaves are equal as subsheaves of the endomorphism sheaf EndC(η•ONX/WY

). Being a 
local statement, we can check this on stalks. Fix some y ∈ Y and denote its image in 
Y/WY by y.

At y, we have a decomposition of stalks of sheaves

(π•OX)y =
⊕

w∈W/W ′

OX,w(y) and (η•ONX/WY
)y =

⊕
w∈W/W ′

ONX/w(Y ),w(y). (8.5.1)

Analogous to the main result of [4], the left hand equality in (8.5.1) implies that there 
is an isomorphism of algebras

Hκ(X, W )y � Z
(
W, W ′,Hκ′

(
X, W ′)

y

)
. (8.5.2)

Also, since grWY OX = η•ONX/WY
is a subalgebra of grWY Hκ(X, W ), the equality on 

the right hand side of (8.5.1), together with Lemma 2.3.1 of [36], implies that

(
grWY Hκ(X, W )

)
y � Z

(
W, W ′, p

(
grWY Hκ(X, W )

)
yp
)
, (8.5.3)

where p ∈ Z(W, W ′, (η•ONX/WY
)y � W ) is the idempotent defined by (pf)(w) =

f(w) if w ∈ W ′ and (pf)(w) = 0 otherwise; equivalently p is the projection 
map from (η•ONX/WY

)y onto ONX/Y ,y. We may identify p(grWY Hκ(X, W ))yp with 
grY Hκ′(X, W ′)y.

Similarly, the fact that

(ρ̄•ONX/Y
)y =

⊕
w∈WY /W ′

ONX/w(Y ),w(y)

implies that

(
ρ̄•Hκ′(NX/Y , WY )

)
y � Z

(
WY , W ′,Hκ′

(
NX/Y , W ′)

y

)
. (8.5.4)

Combining the isomorphisms (8.5.2), (8.5.3) and (8.5.4), we see that it is enough to 
show that grY Hκ′(X, W ′)y is isomorphic to Hκ′(NX/Y , W ′)y. Replacing W by W ′ we 
may assume that y is fixed by W and that X is affine.

Proposition 8.5.5. Assume that y ∈ Y := XW . Then grWY Hκ(X, W )y � Hκ(NX/Y , W )y.
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Proof. We choose x1, . . ., xn in the maximal ideal my of OX,y such that x1, . . ., xn are 
a basis of my/m2

y, the space h∗ := C{x1, . . ., xn} is a W -submodule of OX,y, and Y =
V (xk+1, . . ., xn). For each s ∈ S(X, W ), we fix αs ∈ C{x1, . . ., xn} such that Xs = V (αs). 
Then the PBW theorem implies that we have an OX,y-module isomorphism

Hκ(X, W )y � OX,y ⊗ CW ⊗ C[y1, . . ., yn]

where yi is the Dunkl operator corresponding to the vector field ∂xi
. By assumption, the 

vectors αs belong to C{xk+1, . . ., xn}, which means that yi = ∂xi
for i = 1, . . ., k. The 

ideal I = I(Y ) is generated by xk+1, . . ., xn. It suffices to identify

VmHκ(X, W )y =
⊕

i−j=m

Ij ⊗ CW ⊗ C[y1, . . ., yk][yk+1, . . ., yn]i,

where C[yk+1, . . ., yn]i is the space of homogeneous polynomials of degree i, and show 
that the symbol ȳi of yi in grWY Hκ(X, W )y equals the corresponding Dunkl operator 
in Hκ(NX/Y , W )y.

However, both of these facts can be shown to follow from the PBW property for 
Hκ(X, W )y by considering the action of Hκ(X, W )y on C[h] ∩ Im ⊂ OX,y. �
8.6. Specialization

In this section we define a specialization functor for Hκ(X, W )-modules, analogous to 
the specialization functor defined for D-modules in Section 8.1.

Definition 8.6.1. A coherent Hκ(X, W )-module M is said to be specializable along W Y

if, locally on X/W , there exists a W Y -good filtration F•M on M , with respect to the 
W Y -filtration on Hκ(X, W ), such that, for some lift θ ∈ Hκ(X, W ) of eu, there exists a 
polynomial b with

b(θ) · F0M ⊆
(
V−1Hκ(X, W )

)
· F0M .

Remark 8.6.2. Definition 8.6.1 is independent of the choice of lifts, since the difference 
of any two choices lies in V WY

−1 Hκ(X, W ).

The category of all coherent Hκ(X, W )-modules, specializable along W Y , will be 
denoted Hκ(X/W Y )-mod.

Recall that we have fixed a set C of coset representatives of Z in C. Arguing as in 
the proof of [27, Theorem 1], one obtains the following analogue of Proposition 8.1.3 for 
Cherednik algebras.

Proposition 8.6.3. Let M be specializable along W Y . Then, there exists a unique (global) 
W Y -good filtration V WY

• M , the W Y -filtration, on M and nonzero polynomial b such 
that b−1(0) ⊂ C and

b(θ + k) ·
(
V WY
k M /V YW

k−1 M
)

= 0, ∀k ∈ Z.
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Fix an idempotent ed ∈ Z(W, WY , Hκ′(N, WY )) such that edZ(W, WY , Hκ′(N, WY ))ed
is isomorphic to Hκ′(N, WY ). Proposition 8.6.3 allows us to define the specialization 
functor

SpX/WY : Hκ(X/W Y )-mod → Hκ′(N, WY )-mod, SpX/WY (M ) = ed · grV M .

The proposition also implies that SpX/WY is an exact functor, cf. Proposition 5.1.3 
of [34].

For any specializable module M , the action of the Euler element eu ∈ Hκ′(N, WY )
on SpX/WY (M ) is locally finite, by construction. Hence this action can be exponenti-
ated to a well-defined operator exp(2π

√
−1 eu) : SpX/WY (M ) → SpX/WY (M ), called 

the monodromy operator. Using the defining relations of the algebra Hκ′(N, WY ), it is 
straight-forward to verify that the monodromy operator commutes with the action of 
Hκ′(N, WY ) on SpX/WY (M ).

Remark 8.6.4. We note that the eu-action on SpX/WY (M ) is not necessarily semisimple, 
in general. Let eunil be the nilpotent component in the Jordan decomposition of the linear 
operator eu : SpX/WY (M ) → SpX/WY (M ). Then, the fact that the map exp(2π

√
−1 eu)

commutes with the Hκ′(N, WY )-action implies that the map eunil commutes with the 
Hκ′(N, WY )-action on SpX/WY (M ) as well.

8.7. Bezrukavnikov and Etingof, [4], constructed a restriction functor ResBE from 
category O for the rational Cherednik algebra Hκ(t, W ) to category O for the 
rational Cherednik algebra associated with a parabolic subgroup of W . Via the 
isomorphism (8.7.1), one can define an analogous restriction functor for modules 
over the trigonometric Cherednik algebra Hκ(T, W ). We show below that, on those 
Hκ(T, W )-modules that are coherent over OT/W , the specialization functor agrees with 
the restriction functor.

Fix b ∈ t and let W ′ := StabW (b), a parabolic subgroup of W . Let N ′ denote the 
normalizer of W ′ in W . Following the notation of Section 8.4 one has the set T ◦ of all 
points in T whose stabilizer is conjugate to a subgroup of W ′. Further, let Y be the 
set of all points in T whose stabilizer equals W ′. Thus, Y is a closed N ′-stable subset 
of T ◦. Let Y/N ′, resp. T ◦/W , denote the images of Y , resp. T ◦, under the quotient map. 
Thus, Y/N ′ is a closed subset of T ◦/W . Let t = tW

′ ⊕ t′ be the canonical W ′-module 
decomposition.

The exponential map gives a canonical isomorphism C[Ŷ ] ∼−→ C[Y ]�t′�, where Ŷ

denotes the formal neighborhood of Y in T . Thus, we can canonically identify Ŷ = Y × t̂′. 
Let ÔT/W and Ô(Y×t′)/N ′ denote the sheaves of functions on the formal neighborhood 
of Y/N ′ in T/W and (Y × t′)/N ′, respectively. These sheaves are also isomorphic. We 
set Ĥκ(T, W ) = ÔT/W ⊗OT/W

Hκ(T, W ) and

Ĥκ

(
Y × t′, N ′) = Ô(Y×t′)/N ′ ⊗O ′ ′ Hκ

(
Y × t′, N ′).
(Y ×t )/N
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Analogous to the isomorphism of [4, Section 3.7], we have an isomorphism

Ĥκ(T, W ) ∼→ Z
(
W, N ′, Ĥκ

(
Y × t′, N ′)) (8.7.1)

of sheaves of algebras on Y/N ′.
By Lemma 8.4.4, there exists a global section eu in the algebra Z(W, N ′, Hκ(Y × t′,

N ′)), which we may consider, via the natural inclusion, as a section of Z(W, N ′, Ĥκ(Y ×t′,

N ′)). If N is a Z(W, N ′, Ĥκ(Y × t′, N ′))-module, then we denote by N fin the subsheaf 
of all sections that are locally finite with respect to the action of eu. The Bezrukavnikov–
Etingof restriction functor is defined to be

ResBE : Hκ(T, W )-mod → Hκ

(
Y × t′, N ′)-Mod,

ResBE(M ) = ed · (ÔT/W ⊗OT/W
M )fin.

We can now prove Theorem 1.6.1 that states that if M is an Hκ(T, W )-module, 
coherent as an OT/W -module, then M is specializable along W Y and SpT/WY (M )
equals ResBE(M ).

Proof of Theorem 1.6.1. Let K be the sheaf of ideals defining Y/N ′ in T/W . The same 
notation will be used to denote the corresponding ideal in ÔT/W � Ô(Y×t′)/N ′ . The 
proof of the theorem depends on the following key claim.

Claim 8.7.2. Let N be a Z(W, N ′, Ĥκ(Y × t′, N ′)), coherent over Ô(Y×t′)/N ′ . For all 
� > 0, there exists a non-zero polynomial d� such that d�(eu) · (N /K�N ) = 0.

Proof. The algebra D := Γ (Y, DY ) = Γ (Y/N ′, ν•(ρ−1DY )) is a subalgebra of the global 
sections of Hκ(Y × t′, N ′). Hence Z(W, N ′, D�N ′) is a subalgebra of the global sections 
of Z(W, N ′, Ĥκ(Y × t′, N ′)) and the spaces N� = Γ (Y/N ′, N /K�N ) are Z(W, N ′, D �

N ′)-modules. Since the idempotent ed defines a Morita equivalence between Z(W, N ′, D�

N ′) and D � N ′,

E� := EndZ(W,N ′,D�N ′)(N�) � EndD�N ′(edN�)

is contained in EndD(edN�). The D-modules edN� are finitely generated over C[Y ]N ′ and 
hence holonomic. Thus, EndD(edN�) is finite-dimensional. The global section eu defines 
an element in the finite dimensional algebra E� and hence the claim follows. �

The sheaf M ′ := ÔT/W ⊗OT/W
M is a Z(W, N ′, Ĥκ(Y × t′, N ′))-module via the 

isomorphism (8.7.1). Since M is coherent over OT/W , for all � > 0 the modules M /K�M

and M ′/K�M ′ are equal. Therefore eu ∈ Z(W, N ′, Ĥκ(Y × tL, N ′)) acts on M /K�M .
Since K ⊂ V WY

−1 Hκ(T, W ), Claim 8.7.2 implies that d1(θ) ·M ⊂ V WY
−1 Hκ(T, W ) ·M . 

Thus, to show that the conditions of Definition 8.6.1 are satisfied we need to define 
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a W Y -good filtration F•M on M such that F0M = M . Since OT/W is a sub-
sheaf of V WY

0 Hκ(T, W ), M is a coherent V WY
0 Hκ(T, W )-module. Thus, FkM :=

(V WY
k Hκ(T, W )) ·M is a W Y -good filtration on M , and hence M ∈ Hκ(T/W Y )-mod.
Let M V denote the completion lim← M /V WY

m of M with respect to the W Y -filtra-
tion. By a well-known argument, cf. e.g. the proof of Theorem 6.10.1 of [17],

grWY (M )i =
⊕
α∈C

M V (α − i),

where M V (α) denotes the space of generalized eigenvectors of eu with eigenvalue α. In 
other words, SpT/WY (M ) equals ed · (M V )fin. Therefore, SpT/WY (M ) = ResBE(M )
provided the sheaves M ′ and M V are equal. For this, it suffices to show that the 
W T ′-filtration and the K-adic filtration on M are comparable.

Since M is coherent over OT/W , there exists some N 	 0 such that M = V WY
N M . 

Thus, Km · M ⊂ V WY
N−mM for all m > 0. Hence it suffice to show that, for each � there 

exist some k(�) such that V WY
k(�) M ⊂ K� · M . For this, we first remark that the eigen-

values of eu on K/K2 are all strictly positive. Consider the filtration by eu-submodules 
(V WY

k M +K� ·M )/K� ·M of M /K� ·M . Using Claim 8.7.2, we let d� be the non-zero 
polynomial of smallest degree such that d�(eu) · (M /K� ·M ) = 0. From the definition of 
the W Y -filtration, there is some non-zero polynomial b such that

b(eu +k) ·
(

V WY
k M + K� · M

V WY
k−1 M + K� · M

)
= 0.

Moreover, the polynomials b(t +k) and b(t +k′) have no roots in common if k �= k′. This 
implies that the filtration (V WY

k M + K� · M )/K� · M of M /K� · M is finite. Hence, 
there exists some k(�) 	 0 such that V WY

k(�) M ⊂ K� · M . �
Remark 8.7.3. (i) Theorem 1.6.1 is false if the coherence condition is dropped.

(ii) In Theorem 1.6.1 we could have taken W to be any Weyl group acting on the 
abstract maximal torus of the corresponding simple Lie group.

(iii) Similarly, Theorem 1.6.1 also holds for any complex reflection group acting on its 
reflection representation h.

Let Oκ denote category O for either the trigonometric Cherednik algebra Htrig
κ (T, W )

or the rational Cherednik algebra Hκ(h, W ), where in the trigonometric case W is as-
sumed to be a Weyl group. For each parabolic subgroup W ′ of W , let Y be the set of 
all points in T , resp. in h, whose stabilizer is W ′. Theorem 1.6.1 implies.

Corollary 8.7.4. Every module in Oκ is specializable along W Y and we have
SpX/WY (M ) = ResY (M ).
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9. Specialization of mirabolic modules

In this section we define a specialization functor for mirabolic modules.

9.1. In this subsection we let G be a connected, reductive group and H a reductive 
subgroup. Let Y be a smooth, affine H-variety and set X = G ×H Y . Denote by Υ :
Y ↪→ X the closed embedding. We assume that the embedding h = Lie H ↪→ g = Lie G

induces an isomorphism (g/[g, g])∗ ∼→ (h/[h, h])∗. We fix χ ∈ (g/[g, g])∗ and, abusing the 
notation, also write χ for its image in (h/[h, h])∗.

Proposition 9.1.1.

(i) The functor Υ ∗ defines an equivalence between the category of (G, χ)-monodromic 
D-modules on X and (H, χ)-monodromic D-modules on Y .

(ii) The natural map Γ (X, M )G → Γ (Y, Υ ∗M )H is an isomorphism for all (G, χ)-mono-
dromic D-modules M .

Proof. (i) The functor Υ ∗ is exact on the category of G-monodromic, coherent D-modules 
on X because all such modules are non-characteristic for Υ . If iH : H ↪→ G is the inclusion 
then i∗HOχ

G = Oχ
H . Functorality implies that Υ ∗ maps (G, χ)-monodromic D-modules 

on X to (H, χ)-monodromic D-modules on Y . To show that it is an equivalence, it 
suffices to exhibit an inverse. Let π : G × Y → X be the quotient map. As noted in 
Example 2.3.5, since H act on G by multiplication on the right, the module Oχ

G is 
(H, −χ)-monodromic. Hence, if N is an (H, χ)-monodromic module on Y then Oχ

G�N

is an (H, 0)-monodromic = H-equivariant D-module on G × Y . In fact, it is a (G ×
H, (χ, 0))-monodromic module. Then, (π•Oχ

G �N )H is a (G, χ)-monodromic module on 
X. The fact that π∗(π•Oχ

G �N )H � Oχ
G �N and that Υ = π ◦ j, where j : Y → G ×Y , 

j(y) = (e, y) implies that

Υ ∗(π•Oχ
G � N

)H � N .

Going the other way, π∗ defines an equivalence between (G, χ)-monodromic D-modules 
on X and (G ×H, (χ, 0))-monodromic modules on G ×Y . Therefore, given a (G, χ)-mono-
dromic D-module on X, it suffices to show that

π∗M � Oχ
G � Υ ∗M .

But, noting that a ◦ (idG × Υ ) = π, we have

(id × Υ )∗θ : Oχ
G � Υ ∗M = (id × Υ )∗

(
Oχ

G � M
) ∼→ (id × Υ )∗a∗M = π∗M .

(ii) A (G, χ)-monodromic D-module M is a quasi-coherent, G-equivariant OX-module. 
It is well-known that Γ (X, M )G → Γ (Y, Υ ∗M )H is an isomorphism for any such mod-
ule. �
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Let g → D(X) and ν : h → D(Y ) be the Lie algebra maps induced by the G-action 
on X and H-action on Y , respectively. For any χ as above, we put gχ := (μ − χ)(g), 
resp. hχ := (ν − χ)(h).

Lemma 9.1.2. Restriction via Υ induces an algebra isomorphism

(
D(X)/D(X)gχ

)G ∼=
(
D(Y )/D(Y )hχ

)H
.

Proof. Let μL : g → DG denote the differential of the action of G on itself by left 
multiplication and μR : g → DG the differential of the action G × G → G, (g1, g2) �→
g2g−1

1 of G on itself by right multiplication. We will use the following claim.
The algebra D(G ×H Y ) is obtained from D(G ×Y ) by quantum Hamiltonian reduc-

tion, i.e., there is a canonical isomorphism, see [47, Corollary 4.5],

D(X) � D(G × Y )H/
[
D(G × Y )μΔ(h)

]H
,

where μΔ : h → D(G × Y ) is the differential of the diagonal H-action on G × Y . This 
implies that

D(X)/D(X)gχ � D(G × Y )H/
[
D(G × Y )μΔ(h) + D(G × Y )gχ

]H
,

where gχ = (μL − χ)(g) and we have used the fact that H is reductive. Now, it 
is well-known, and easy to prove, that for any character χ of g one has the follow-
ing equality of left ideals: DG(μL − χ)(g) = DG(μR + χ)(g). It follows that we have 
D(G × Y )gχ = D(G × Y )(μR − χ)(g). Since μΔ = μR ⊗ 1 + 1 ⊗ ν, we obtain

D(G × Y )gχ + D(G × Y )μΔ(h) = D(G × Y )gχ + D(G × Y )(ν − χ)(h).

Therefore,

D(X)/D(X)gχ �
[
Oχ

G �
(

D(Y )
D(Y )hχ

)]H
.

The proof of Proposition 9.1.1 shows that this implies Υ ∗(D(X)/D(X)gχ) ∼= D(Y )/
D(Y )hχ. Then part (ii) of the proposition completes the proof. �
9.2. Specialization of monodromic modules

Let f : X ′ → X be a smooth morphism and Y ⊂ X a smooth, locally closed, 
subvariety. Let Y ′ = f−1(Y ). The morphism f induces a morphism df : NX′/Y ′ → NX/Y

given by df(y, v) = (f(y), (dyf)(v)), for y ∈ Y ′ and v ∈ TyX ′/TyY ′.
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Lemma 9.2.1. (See Théorème 9.3.1, [34].) The following diagram commutes

DX-modreg
ΨX/Y

f∗

DNX/Y
-modreg

(df)∗

DX′-modreg
ΨX′/Y ′

DNX′/Y ′ -modreg.

Proof. The result, as stated in [34, Théorème 9.3.1], is for DV
X -modules, where DV

X is the 
completion of DX with respect to the V -filtration, and involves f !. However, as noted in 
the final paragraph of subsection (9.4) of loc. cit., the result is also valid for DX-modules 
and the functors f ! and f∗ only differ by a shift, since f is a smooth morphism. �

Assume that G acts on X and Y is G-stable. The category of (G, χ)-monodromic 
D-modules on X, resp. on NX/Y , that have regular singularities is denote (DX , G, χ)-
monreg, resp. (DNX/Y

, G, χ)-monreg.

Lemma 9.2.2. Specialization restricts to an exact functor

(DX , G, χ)-monreg → (DNX/Y
, G, χ)-monreg,

with image in the subcategory of C×-monodromic modules.
An analogous statement also holds for (G, q)-monodromic modules.

Proof. Write a : G × X → X and da : G × NX/Y → NX/Y for the action maps. 
Let M ∈ (DX, G, χ)-monreg. Let θ : Oχ

G � M
∼→ a∗M be the isomorphism defining 

the monodromic structure on M . Let Ψ ′ be the specialization functor with respect to 
G × Y ⊂ G × X. The uniqueness of the V -filtration implies that

Ψ ′(θ) : Ψ ′(Oχ
G � M

)
= Oχ

G � ΨX/Y (M ) → Ψ ′(a∗M
)

is an isomorphism. Since the action map a is a smooth morphism, Lemma 9.2.1 implies 
that Ψ ′(a∗M ) = (da)∗ΨX/Y (M ).

Arguing in the same way, one can also show that Ψ(θ) also satisfies the cocycle con-
dition. �

Clearly, there is an analogue of Lemma 9.2.2 for (G, q)-monodromic modules.
We returning to the setting of Section 9.1. So, let H ⊂ G be a Levi subgroup and Y a 

smooth, affine H-variety. We set X = G ×H Y . Assume that Z ⊂ Y is a smooth, closed, 
H-stable subvariety. Let Z ′ = G ×H Z ↪→ X, then one can identify NX/Z′ = G ×H NY/Z .
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Lemma 9.2.3. The following diagram commutes

(DX , G, χ)-monreg
ΨX/Z′

Υ∗

(DNX/Z′ , G, χ)-monreg

(dΥ )∗

(DY , H, χ|h)-monreg
ΨY/Z

(DNY/Z
, H, χ|h)-monreg.

Proof. Let j : Y ↪→ G × Y and π : G × Y → X so that Υ = j ◦ π. Since the map π
is smooth, Lemma 9.2.1 implies that Ψ ′ ◦ π∗ = (dπ)∗ ◦ ΨX/Z′ , where Ψ ′ is specialization 
with respect to π−1(Z ′) = G × Z ⊂ G × Y . The proof of Proposition 9.1.1 shows that 
π∗M � Oχ

G�(Υ ∗M ), for M ∈ (DX , G, χ)-monreg. Then, as in the proof of Lemma 9.2.2, 
we have Ψ ′(Oχ

G � (Υ ∗M )) = Oχ
G � ΨY/Z(Υ ∗M ). We have: dΥ = (dj) ◦ (dπ) where the 

map dj : NY/Z ↪→ G × NY/Z is given by (dj)(v) = (e, v). Thus, we find

(dj)∗Ψ ′(Oχ
G �

(
Υ ∗M

))
= (dj)∗

[
Oχ

G � ΨY/Z

(
Υ ∗M

)]
= ΨY/Z

(
Υ ∗M

)
,

(dΥ )∗ΨX/Z′(M ) = (dj)∗Ψ ′(Oχ
G �

(
Υ ∗M

))
= ΨY/Z

(
Υ ∗M

)
,

and the commutativity of the diagram of the lemma follows. �
9.3. Specialization for mirabolic modules

Let L ⊂ SL be a Levi subgroup. We refer the reader to table (3.3.1) for the notation 
used in this section. The following varieties will play an important role below:

Y := SL ·
(
Z(L)◦ × {0}

) ∼= SL×NSL(L)
(
Z(L)◦ × {0}

)
,

X◦ := SL ·X◦
L
∼= SL×NSL(L)X

◦
L.

Thus, Y = X(L, Ω) is a GL-stable locally closed stratum associated with the L(GL)-orbit 
through the point {1} × {0} ∈ L × V , cf. Section 3.2.

Let � denote the composite map X = SL×V → SL → SL / /GL ∼= T/W . The group 
GL acts on X and we let X/ /GL denote the categorical quotient. By [12, Lemma 3.2.1], 
the map � induces an isomorphism X/ /GL ∼→ T/W . Thus, one has a diagram

X

−→ X//GL = T/W

π←− T.

We let W ′ = WL be the parabolic subgroup of W associated with the Levi L and we 
use the corresponding notation of Section 8.7. We observe that X◦ = �−1(T ◦/W ), and 
Y is properly contained in �−1(Y/N ′). So, there is a commutative diagram
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Y



X◦




Y/N ′ T ◦/W

Z(L)◦



X◦
L




(9.3.1)

Remark 9.3.2. The sets X◦ and T ◦/W are not affine. However, the sets Y and Z(L)◦ are 
affine. If we decompose gl = l ⊕ p as a Z(L)-module and further decompose p =

⊕
α pα, 

for appropriate characters α : Z(L) → C×, then Z(L)◦ = {z |
∏

α(α(z) − 1) �= 0} is 
affine. The group NSL(L) being reductive, it follows from Lemma 9.3.3 below that Y is 
also affine.

We will use simplified notation NL for the normal bundle to Z(L)◦ in X◦
L. Explicitly, 

NL = Z(L)◦ × (l′ × V ), is a (trivial) vector bundle over Z(L)◦. The group NGL(L) acts 
on NL, making it an NGL(L)-vector bundle. The following result is clear.

Lemma 9.3.3. The following diagram commutes

NL
i SL×NSL(L)NL NX/Y

Z(L)◦ SL×NSL(L)(Z(L)◦ × {0}) Y

Let Λ = N∗
L be (the total space of) the conormal to Z(L)◦ in X◦

L. In general, there 
are canonical isomorphisms

T ∗(NL) ∼= T ∗(N∗
L

) ∼= TT∗(X◦
L)/Λ, (9.3.4)

cf. Sections 5 and 7 of [17]. In our case, we have Λ = N∗
L
∼= Z(L)◦ × (l′)∗ × V ∗ and each 

of the varieties in (9.3.4) is naturally isomorphic to T ∗(Z(L)◦) × l′ × l′ × V × V ∗.
Recall that, for any algebraic cycle S ⊂ T ∗X◦

L, there is an algebraic cycle CΛ(S) in 
NT∗(X◦

L)/Λ, the normal cone of S at Λ. It is defined as follows. Let IΛ and IS be the 
ideals in C[T ∗X◦

L] defining Λ and S, respectively. The IΛ-adic filtration on the algebra 
C[T ∗X◦

L] induces a filtration IS ∩ Ik
Λ, k ≥ 0, on IS . Let

grΛ C
[
T ∗X◦

L

]
:=
⊕
k≥0

Ik
Λ/Ik+1

Λ , resp. grΛ(IS) :=
⊕
k≥0

(
IS ∩ Ik

Λ

)
/
(
IS ∩ Ik+1

Λ

)
be the associated graded spaces. There is a canonical graded algebra isomorphism 
C[NT∗(X◦

L)/Λ] = grΛ C[T ∗X◦
L]. Using this isomorphism, one can identify grΛ(IS) with 

a homogeneous ideal of the algebra C[NT∗(X◦ )/Λ].

L
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One defines the cycle CΛ(S) as the support cycle of C[NT∗(X◦
L)/Λ]/ grΛ(IS), viewed 

as a C[NT∗(X◦
L)/Λ]-module. We let ϕ∗CΛ(S) be the pull-back of the cycle CΛ(S) via 

the composite isomorphism ϕ : T ∗(NL) ∼→ TT∗(X◦
L)/Λ in (9.3.4). Let 0Z(L)◦ ⊂ T ∗Z(L)◦

denote the zero section and set

Mnil
(
l′
)

=
{
(X, Y, v, w) ∈ l′ × l′ × V × V ∗ ∣∣ [X, Y ] + v ◦ w = 0 and Y nilpotent

}
.

Lemma 9.3.5. One has a set-theoretic inclusion ϕ∗CΛ(Mnil(L◦)) ⊂ 0Z(L)◦ ×Mnil(l′).

Proof. The algebra C[l] is a subalgebra of C[T ∗X◦
L], via the projection T ∗X◦

L → l. Since l

decomposes as l′ ⊕ zl, the subspaces C[l′]L+ and C[zl]+ are contained in the ideal of 
definition of Mnil(L◦). We have C[l′]L+∩Ik

Λ = 0 unless k ≤ 0 (in which case Ik
Λ = C[T ∗X◦

L]). 
Therefore the restriction of the IΛ-adic filtration on C[T ∗X◦

L] to C[l′]L+ is the filtration 
whose degree k part is (C[l′]L+)≥k, the sum of all homogeneous parts of degree at least k. 
Hence grΛ C[l′]L+ = C[l′]L+. On the other hand, C[zl]+ ∩ Ik

Λ = (C[zl]+)k. Since C[zl] is 
graded by putting z∗l in degree one, one can check that this implies that

VkC[zl]+ =
(
C[zl]+

)k = C[zl]≥k.

Again, we see that the associated graded of C[zl]+ is naturally identified with itself.
Since Z(L)◦ is L(GL)-stable, the vector fields μ(l(gl)) are tangent to Z(L)◦. Therefore, 

μ(l(gl)) ⊂ IΛ and hence the dim l(gl) many functions defining the equation gY g−1−Y +
v ◦ w, where g ∈ L, Y ∈ l, belong to IΛ. We calculate the image of these functions in 
IΛ/I2

Λ. Let z ∈ Z(L)◦ and (X, v) ∈ l′ × V , which is the fiber of NZ at z. Then,

z(1 + εX)Y (1 − εX)z−1 − Y + (εv) ◦ w = ε
(
[X, Y ] + v ◦ w

)
.

Thus, the functions defining [X, Y ] + v ◦ w belong to the associated graded of the ideal 
in C[T ∗X◦

L] generated by the functions defining gY g−1 − Y + v ◦ w. Hence, we have 
shown that ϕ∗CΛ(Mnil(L◦)) is contained in closed subvariety of T ∗NL defined by the 
vanishing of all functions in C[l′]L+, C[zl]+ and [X, Y ] + v ◦w. This closed set is precisely 
0Z(L)◦ ×Mnil(l′). �

9.4. Mimicking [16], we introduce the following

Definition 9.4.1. Let CNL,c be the abelian category of regular holonomic D-modules M
on NL that are (NGL(L), c)-monodromic, such that

(1) The action of eul′ on Γ (NL, M ) is locally finite.
(2) SS(M ) ⊆ 0Z(L)◦ ×Mnil(l′).
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The fact that M ∈ CNL,c is C×-monodromic with respect to the C×-action on l′ ⊂ NL

means that one can use the Fourier transform, as in [16, Proposition 5.3.2], to show that 
the action of Sym(l′)L+ ⊂ D(l′) on Γ (NL, M ) is locally nilpotent.

Associated with the subvariety Y ↪→ X◦, is the V -filtration on DX◦ . Since Y is 
G-stable, each piece VkDX◦ of the V -filtration on DX◦ is a G-equivariant subsheaf. Hence 
G acts on grV DX◦ , such that the identification grV DX◦ � DNX/Y is G-equivariant. Thus, 
we have the exact specialization functor ΨX/Y , from the category of regular holonomic 
D-modules on X, to the category of regular holonomic, C×-monodromic D-modules 
on NX/Y .

Denote by (DX, GL, c)-monreg, resp. (DNX/Y , GL, c)-monreg, the category of regular 
holonomic, (G, c)-monodromic D-modules on X, resp. on NX/Y , that have regular singu-
larities.

We have the following functors

(DX, GL, c)-monreg
ΨX/Y

(DNX/Y , GL, c)-monreg
i∗

∼=
(DNL

, NGL(L), c)-monreg.

(9.4.2)

Here, the functor ΨX/Y is exact and its image is contained in the full subcategory of 
C×-monodromic modules, by Lemma 9.2.2. The second functor, i∗, is a pull-back via the 
closed embedding i in the diagram of Lemma 9.3.3; this functor is an equivalence that 
preserves C×-monodromicity, thanks to Proposition 9.1.1.

Definition 9.4.3. The specialization functor spL, from (DX, GL, c)-monreg to the category 
of C×-monodromic modules in (DNL

, NGL(L), c)-monreg is defined to be spL := i∗◦ΨX/Y .

Proposition 9.4.4. The functor spL restricts to an exact functor Cc → CNL,c.

Proof. Let M be in Cc. Then we know that spL(M ) is (NGL(L), c)-monodromic, has 
regular singularities and is C×-monodromic. However, this is C×-monodromic with re-
spect to the action of C× on l′ × V by dilations and not, as in the definition of CNL,c, 
with respect to the action of C× by dilations on l′. Recall that the image of 1 ∈ l(gl)
under the moment map is − euV . Since spL(M ) is (NGL(L), c)-monodromic, this implies 
that euV acts locally finitely on Γ (NL, spL(M )). Then, the fact that eul′ = eul′×V − euV , 
with eul′×V and euV commuting, locally finite endomorphisms of Γ (NL, spL(M )), im-
plies that eul′ also acts locally finitely. Therefore, we just need to show that the singular 
support SS(spL(M )) of spL(M ) is contained in Z(L)◦ ×Mnil(l′).

One can show, using Lemma 9.2.1 applied to the map p of Lemma 5.3.3 and then 
using Lemma 9.2.3, that

spL = ΨX◦ /Z(L)◦ ◦ Υ ∗. (9.4.5)

L
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We can now use (9.4.5) to calculate SS(spL(M )). Since Υ is non-characteristic for mod-
ules in Cc, the singular support of Υ ∗M equals ρΥ (ω−1

Υ (SSM )). Then, [17, Theorem 7.1]
implies that

SS
(
spL(M )

)
= ϕ∗CΛ

(
ρΥ

(
ω−1
Υ

(
SS(M )

)))
. (9.4.6)

Since the singular support SS(M ) of M is contained in Mnil, formula (9.4.6) together 
with Proposition 5.1.1 and Lemma 9.3.5 imply that the singular support of spL(M ) is 
contained in 0Z(L)◦ ×Mnil(l′), as required. �

The results [17, Corollary 7.5.1] and [17, Corollary 7.5.2] imply:

Corollary 9.4.7. Let M ∈ Cc and set SS0(M ) := ρΥ (ω−1
Υ (SS(M ))).

(i) If SS0(M ) ∩ Λ �= ∅ then spL(M ) �= 0.
(ii) Supp spL(M ) = ϕ−1(Λ ∩ SS0(M )).

Remark 9.4.8. Let Cl′,c be the category of all (NG(L), c)-monodromic D-modules on 
l′×V satisfying conditions (1) and (2) of Definition 9.4.1. For M in Cc, the fact that the 
singular support of spL(M ) is contained in 0Z(L)◦ ×Mnil(l′) means that spL(M ) behaves 
as a local system along the base Z(L)◦ ⊂ NL. Therefore, letting ib : l′ ×V ↪→ NL denote 
the embedding of the fiber at b ∈ Z(L)◦, one can define a functor spL,b : Cc → Cl′,c by 
setting spL,b := i∗b ◦ spL. The fact that spL(M ) is non-characteristic for ib implies that 
spL,b is an exact functor, commuting with Verdier duality.

9.5. An adjoint to spL

Let i : Y ↪→ X be the locally closed embedding. We let DV
X denote the completion of 

DX with respect to the V -filtration. It is a sheaf of algebras on Y and we have a canonical 
map i−1DX → DV

X . Therefore adjunction gives a map of sheaves of algebras

DX → i•i−1DX → i•D
V
X

and hence the space Γ (X, i•M ) is a D := Γ (X, DX)-module for any DV
X -module M . Let 

DV
NX/Y

denote the completion of DNX/Y with respect to its Z-grading. By construction 

of V -filtration we have an identification DV
X = DV

NX/Y
of filtered algebras on Y.

Let N be a module in CNL,c. Recall from (9.4.2) that i∗ defines an equivalence 
between (DNX/Y , GL, c)-monreg and (DNL

, NGL(L), c)-monreg. Let I(−) denote a quasi-
inverse to i∗. The grading on DNX/Y is inner in the sense that there exists an Euler vector 
field eu such that a section D ∈ DNX/Y has degree m if and only if [eu, D] = mD. This 
implies:
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Lemma 9.5.1. Completion (−)V with respect to the grading defines an equivalence between 
coherent, monodromic DNX/Y -modules and coherent DV

NX/Y
-modules.

A quasi-inverse to completion is given by taking the submodule of eu-locally finite 
sections, or equivalently by applying grV with respect to the natural filtration on M V . 
Thus, beginning with a module N in CNL,c, we have a DV

NX/Y
(= DV

X )-module I(N )V .

Definition 9.5.2. Let IndSL
L : CNL,c → D-Mod be the functor that sends N to the space 

of Z-locally finite elements in Γ (X, i•I(N )V ).

We identify DX-Mod with D-Mod. Let Ind Cc(SL) denote the full subcategory of 
DX-Mod consisting of all modules that are an inductive limit of modules in Cc(SL). Based 
on Theorem 1.2.4, it is clear that the image of IndSL

L belongs to Ind Cc(SL) provided we 
can show that each IndSL

L is (GL, c)-monodromic. The proof of Lemmas 9.2.1 and 9.2.2
can be adapted to show that I(N )V is a (GL, c)-monodromic DV

X -module. Hence there is 
a locally finite action of GL on IndSL

L N such that differential of this action differs from 
the action of μ(gl) by c Tr. Thus, IndSL

L N is an inductive limit of (GL, c)-monodromic 
modules.

Proposition 9.5.3. The functor IndSL
L is right adjoint to spL.

Proof. Let M ∈ Cc(SL) and N ∈ CNL,c. We wish to show that

HomDX

(
M , IndSL

L N
)

= HomDNZ

(
spL(M ), N

)
. (9.5.4)

If M ∈ Cc(SL), then any homomorphism Γ (X, M ) → Γ (X, i•I(N )V ) of D-modules is 
going to factor through Γ (X, IndSL

L M ). Thus,

HomDX

(
M , IndSL

L N
)

= HomDX

(
M , i•I(N )V

)
= Homi−1DX

(
i−1N , I(N )V

)
.

Since I(N )V is complete with respect to the V -filtration, any morphism of i−1DX-mod-
ules into I(N )V extends uniquely to a DV

X -module morphism M V → I(N )V i.e.

Homi−1DX

(
i−1M , I(N )V

)
= HomDV

X

(
M V , I(N )V

)
. (9.5.5)

Equality (9.5.5) implies (9.5.4) because I and (−)V are equivalences with quasi-inverses 
i∗ and grV respectively. �
Remark 9.5.6. We expect, but are unable to prove, that the functor IndSL

L commutes 
with Verdier duality.
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9.6. In the rational case, where X = sl(V ) × V , the definition of IndSL
L is essentially 

the same except that one should take (Sym sl(V ))+ locally nilpotent and eusl-locally 
finite vectors in Γ (X, i•I(N ))V , where eusl is the Euler vector field along sl(V ) in X. In 
this case, one begins with mirabolic modules on Nz := z◦l × (l′ × V ).

Proposition 9.6.1. Induction is a functor IndSL
L : CNz,c → Cc(sl(V )) i.e. IndSL

L M is 
finitely generated.

The proof of Proposition 9.6.1 will appear elsewhere.

10. Specialization of DDD-modules vs specialization for Cherednik algebras

The aim of this section is to show that the functor of Hamiltonian reduction is com-
patible with the specialization functor.

10.1. Comparison of V -filtrations

The spherical Cherednik algebra Uκ localizes to a sheaf Uκ = eHκ(T, W )e on T/W . 
Fix a Levi subgroup L ⊂ SL. We will use the notation of Section 8.7 except that we 
write WL for W ′, the parabolic subgroup of W associated to L, resp. tL for t′ and TL

for the subtorus of T with Lie algebra t′. Thus, we have the locally closed subvariety TL

of T .
Given L, there are two ways to define a “V -filtration” on Uκ with respect to TL. 

The first way is to use the V -filtration on the sheaf Hκ(T, W ) coming from the closed 
embedding TL ↪→ T ◦. This V -filtration is W -stable. Therefore it gives, by restriction, a 
natural V -filtration V•Uκ on the spherical subalgebra.

On the other hand, one can use the Y-filtration on DX◦ with respect to the locally 
closed subvariety Y ⊂ X, cf. Section 9.3. We equip DX◦/(DX◦ · gc) with the quotient 
filtration. The latter is GL-stable, hence restricting to GL-invariants, gives a well-defined 
filtration

VkUκ :=
[
�•
(
Vk(DX◦/DX◦ · gc)

)]GL

on (�•DX◦)GL. Therefore, via the radial parts map, we get a second filtration 
on Uκ|T◦/W .

We are going to show that these two filtrations are equal, specifically, we have

Theorem 10.1.1. The radial parts map yields an identification of the V-filtration on 
(�•DX◦)GL/(�DX◦ · gc)G with the V -filtration on Uκ|T◦/W .

The rest of the section is devoted to the proof of the theorem.
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10.2. Let X be a smooth affine variety, Y a smooth, closed subvariety and I the ideal 
in C[X] defining Y . Let θ be a vector field in V0D(X) ⊂ D(X) that is a lift of the Euler 
vector field on NX/Y . For each f ∈ Im, we have θ(f) − mf ∈ Im+1, which implies that 
there is a well-defined adjoint action of θ on D(X)/ImD(X).

Lemma 10.2.1.

(i) The adjoint action of θ on D(X)/ImD(X) is locally finite.
(ii)

⋂
m ImD(X) = 0.

Proof. Let D ∈ D(X). The V -filtration on D(X) is exhaustive, therefore there ex-
ists some k such that D ∈ Vk. Independent of the choice of lift θ, we have [θ, D] −
kD ∈ Vk−1. Hence, by induction on k, there exists a non-zero polynomial P such 
that P (ad(θ))(D) ∈ V−m. In particular, P (ad(θ))(D)(C[X]) ⊂ In which implies that 
P (ad(θ))(D) ∈ ImD(X). Hence the action of ad(θ) is locally finite. We remark for later 
that the roots of P are contained in {k, k − 1, . . .,−m + 1}.

For each non-zero D ∈ D(X), there exists f ∈ C[X] such that D(f) �= 0. 
Since 

⋂
m Im = 0, there is some m 	 0 such that D(f) /∈ Im. This implies that 

D /∈ ImD(X). �
We define an auxiliary filtration V ′

•D(X) on D(X) as follows. For each m ∈ N and 
D ∈ D(X), let Pm be the monic generator of the ideal JD = {Q ∈ C[t] | Q(ad(θ))(D) ∈
ImD(X)}. The set of roots of Pm is denoted Specm(D). We say that D ∈ V ′

�D(X) if 
max{

⋃
m Specm(D)} ≤ �. If D ∈ VkD(X), then the proof of Lemma 10.2.1 shows that 

� ≤ k.

Proposition 10.2.2. The filtration V ′
•D(X) equals the V -filtration V•D(X).

Proof. Let D ∈ Vk\Vk−1. We have already shown that D ∈ V ′
l for some l ≤ k. 

Therefore, we just need to show that l = k. Let DV (X) = lim−∞←k D(X)/VkD(X)
be the completion of D(X) with respect to the V -filtration. As noted in [17, Sec-
tion 6.8], if DV (X)(k) = {D ∈ DV (X) | [θ, D] = kD}, then VkD

V (X) is the closure of 
DV (X)(k) ⊕DV (X)(k − 1) ⊕ . . . with respect to the grading filtration. The image of D
in DV (X) equals Dk + Dk−1 + . . ., where Dk ∈ DV (X)(k) is non-zero. Now

Pm

(
ad(θ)

)
(D) = Pm(k)Dk + Pm(k − 1)Dk−1 + . . . ∈ ImDV (X).

Since we have l = k if and only if there exists some m such that Pm(k) = 0, we 
need to show that, for m 	 0, there is no element E ∈ InDV (X) ∩ VkDV (X) with 
Ek = Dk. There is a faithful action of DV (X) on Ĉ[X]Y , the completion of C[X] with 
respect to I such that D ∈ VkD

V (X) maps ImĈ[X]Y into Im−kĈ[X]Y . The element 
Dk also belongs to VkDV (X). Since it is assumed to be non-zero, there is a function 
f ∈ Ĉ[X]Y such that Dk(f) �= 0. The I-adic filtration on Ĉ[X]Y is separating. Therefore, 



148 G. Bellamy, V. Ginzburg / Advances in Mathematics 269 (2015) 71–161
there exists some m such that Dk(f) /∈ ImĈ[X]Y . Since ImĈ[X]Y is the closure of 
(Ĉ[X]Y )m⊕(Ĉ[X]Y )m+1⊕. . ., and Dk is homogeneous, we may assume that f ∈ (Ĉ[X]Y )l
for some l. For E ∈ ImDV (X) ∩VkDV (X), we clearly have E(f) ∈ ImĈ[X]Y . The degree 
of Dk(f) is k − l > −m. On the other hand, E(f) = Ek(f) + Ek−1(f) + . . . belongs to 
ImĈ[X]Y , and the fact that f homogeneous implies that Ek(f) = 0. Hence Ek �= Dk as 
required. �

We now return to the setting of Section 9.3. Let J be the sheaf of ideals defining the 
smooth, closed subvariety Y in X◦. For each m ≥ 0, define Jm = (�•Jm)GL, a sheaf of 
ideals in OT◦/W . As in Section 8.3, let I be the sheaf of ideals in π•OT◦ defining W ·TW ′

◦
and set Im = (Im)W .

Lemma 10.2.3. For each m ≥ 1, we have Jm = Im as subsheaves of OT◦/W .

Proof. It suffices to check the equality locally on T ◦/W . If x ∈ T ◦/W \ Y/NL then 
Jm = Im = OT/W in a neighborhood of x. Therefore, we may assume that x ∈ Y/NL and 
U an affine open neighborhood of x in T ◦/W . Since the maps � and π are affine, �−1(U)
and π−1(U) are affine open subsets of X◦ and T ◦ respectively. Let J = Γ (�−1(U), J ) and 
I = Γ (π−1(U), I). We assume that T is contained in L so that T ∩ �−1(U) = π−1(U). 
Restriction of functions defines a surjection j : Γ (�−1(U), OX) → Γ (π−1(U), T ). We 
claim that j(J) = I. Since π−1(U), Y and π−1(U) ∩ Y are smooth varieties, this will 
follow from the fact that the intersection π−1(U) ∩Y is clean; see [35, Lemma 5.1]. That 
is, we must show that

TyTL = (TyT ) ∩ (TyY), ∀y ∈ π−1(U) ∩ Y.

Let y ∈ π−1(U) ∩ Y. We have

TyTL = t′, TyT = t, TyY = [zl′ , gl] + zl′ .

Decompose gl = l(gl) ⊕ l(gl)⊥ with respect to the trace form. This is a zl′ -stable decom-
position. Thus,

[zl′ , gl] + zl′ =
[
zl′ , l(gl)⊥

]
⊕ zl′ ⊂ l(gl)⊥ ⊕ zl′ .

Since zl′ = t′, it follows that TyTL = (TyT ) ∩ (TyY). Then j(Im) = Im too.
The restriction of j to C[�−1(U)]GL is an isomorphism onto C[π−1(U)]W . Therefore

j
((

Jm
)GL) = j

(
Jm ∩ C

[
�−1(U)

]GL) = Im ∩ C
[
π−1(U)

]W =
(
Im
)W

as required. �
In Theorem A.2.1 of Appendix A, it is explained that the radial parts map R is an 

isomorphism (D/Dgc)GL → Uκ, defined by R(D)(f) = scD(s−cη∗f)|T reg/W .
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Lemma 10.2.4. Let eu be the Euler vector field on NX/Y corresponding to the C×-action 

along fibers and fix n = n(n+1)
2 .

(i) Let U ⊂ T ◦/W be an affine open set. Then, there exists a GL-invariant vector field 
θ in Γ (�−1(U), V0ΘX) lifting eu.

(ii) The element R(θ) +nc in Γ (U, Uκ) is a local lift of the Euler element euκ ∈ Uκ(WL), 
as defined in Lemma 8.4.4.

Proof. (i) The C×-action on NX/Y clearly commutes with the action of GL. Therefore, 
eu belongs to Γ (NX/Y , ΘNX/Y )GL. The identification grV DX

∼→ DNX/Y restricts to a 
GL-equivariant isomorphism grV ΘX

∼→ ΘNX/Y . Therefore, there exists some section 
eu′ ∈ Γ (NX/Y , gr0V ΘX)GL mapping to eu under this identification. Since the map � is 
affine, �−1(U) is an affine, GL-stable open subset of X. Then, the natural map

Γ
(
�−1(U), V0ΘX/V−1ΘX

)
= Γ

(
�−1(U), V0ΘX

)
/Γ
(
�−1(U), V−1ΘX

)
→ Γ

(
�−1(U), gr0V ΘX

)
is an isomorphism. Our assumptions imply that Γ (�−1(U), V0ΘX) and Γ (�−1(U),
V−1ΘX) are rational GL-modules. Thus, we may choose a GL-invariant lift θ of eu′
in Γ (�−1(U), V0ΘX).

(ii) It suffices to show that R(θ) acts on Im/Im+1 as multiplication by m − nc. 
Recall that R(θ)(f) = [scθ(s−c�∗(f))]|T reg . First we calculate the smallest m such that 
s ∈ Jm\Jm+1. Let JL be the sheaf of ideals defining Z(L)◦×{0} in X◦

L. By Lemma 9.3.3, 
Jm/Jm+1 � (OGL�Jm

L /Jm+1
L )NGL(L). Since s is a GL-semi-invariant, this implies that 

s ∈ Jm \ Jm+1 if and only if sL ∈ Jm
L \ Jm+1

L , where sL is s restricted to X◦
L. Let 

z ∈ Z(L)◦, X ∈ l′ and u ∈ V . Taking v = εu and g = z(1 + εX),

sL(g, v) = εn det
(
u, zu, . . ., zn−1u

)
+ εn+1(· · ·) + · · ·

= εn det
(
u, zXu, . . ., zn−1Xn−1u

)
+ · · · (10.2.5)

since all terms of degree less that n in ε vanish on NL. Hence s ∈ Jn \ Jn+1. By part (i) 
this implies that θ(s) −ns ∈ Jn+1. Since C[X]Gs ⊂ C[X]det−1 is contained in C[Xcyc]det−1 , 
it follows from [5, Corollary 5.3.4] that C[X]Gs = C[X]det−1 and hence C[�−1(U)]det−1

equals C[U ]s. Then, the fact that θ(s) ∈ C[�−1(U)] is still a det−1-semi-invariant implies 
that θ(s) = sf for some invariant function f . Thus, θ(s)s−1−n ∈ Jn+1. To complete the 
proof of (ii), we identify Jm = Im via Lemma 10.2.3. Let f ∈ Im. Since θ is a derivation, 
R(θ)(f) = θ(f) − cθ(s)s−1f . The element (θ(f) − cθ(s)s−1f) equals (m − cn)f modulo 
Im+1, hence R(θ)(f̄) = (m − cn)f̄ for all f̄ ∈ Im/Im+1. �
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10.3. Proof of Theorem 10.1.1

Since Theorem 10.1.1 is a local statement on T ◦/W , we fix once and for all an affine 
open subset U of T ◦/W . Set

U = Γ (U,Uκ), D = Γ
(
�−1(U), DX◦

)
.

By Lemma 10.2.4, we can choose a G-invariant lift θ ∈ DGL of the Euler vector field on 
NX◦/Y . If P (ad(θ))(D) ∈ ImD and D ∈ DGL, then P (ad(θ))(D) ∈ (ImD)GL. Therefore 
by Proposition 10.2.2, the V-filtration on DGL can be defined by considering the action 
of ad(θ) on DGL/(ImD)GL.

The sheaf Uκ is a subsheaf of DT/W . Thus, U is a subalgebra of D(U). The V -filtration
on U can be defined in terms of its action on C[U ] as follows. By definition, VmU equals 
{D ∈ U | D(Ij) ⊂ Ij−m, ∀j ∈ Z}. Since D is W -invariant and Im is defined to be 
(Im)W , D ∈ VmU implies that D(Ij) ⊂ Ij−m. On the other hand, if D ∈ U such that 
D(Im) ⊂ Im−k, ∀m ∈ Z, then since D = Res(eDe), we have

eDe
(
Im
)

= eD(Im) ⊂ Im−k ⊂ Im−k,

which implies that eDe ∈ Vk(eHκ(U, W )e) and hence D ∈ VkU.
Lemma 10.2.4(2) implies that there is a well-defined action of ad(R(θ)) on U/

ImD(U) ∩U. Since U/ImD(U) ∩U embeds in D(U)/ImD(U), the proof of Lemma 10.2.1
shows that this action is locally finite. We mimic the earlier construction and, for D ∈ U
and any m ∈ Z, let Specm(D) be the set of roots of the monic generator of the ideal 
{Q ∈ C[t] | Q(adR(θ))(D) ∈ ImD(U) ∩ U}. Then, we define a filtration V ′

mU on U by

V ′
�U :=

{
D ∈ U

∣∣ Specm(D) ⊂ (−∞, � + nc], ∀m
}

.

Repeating the proof of Proposition 10.2.2 word for word, cf. also the proof of Theo-
rem 1.6.1, one obtains the following result.

Proposition 10.3.1. The filtrations VkU and V ′
kU on U are equal. �

Propositions 10.2.2 and 10.3.1 imply that in order to prove Theorem 10.1.1, it suffices 
to show that R(V ′

mDGL) = V ′
mU. Equivalently, we need to show that the filtrations on 

DGL defined by the adjoint action of θ on DGL/ImDGL and DGL/(ImD)GL are equal. 
For this it suffices to show that the filtrations ImDGL and (ImD)GL of DGL are com-
parable. Let F•D denote the order filtration. Since θ is a vector field and the order 
filtration is exhaustive, we may calculate the V ′-filtration by considering the action of 
ad(θ) on (F�D)GL/(ImF�D)GL. Therefore it will actually suffice to show that the filtra-
tions Im(F�D)GL and (ImF�D)GL of (F�D)GL are comparable.

Thus, for each m, � ≥ 1, we must find m′, m′′ 	 0 such that(
Im′F�D

)GL ⊂ Im(F�D)GL ⊂
(
Im′′F�D

)GL
.
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We always have Im(F�D)GL ⊂ (ImF�D)GL so we just need to show the existence 
of m′. We claim that there is some m0 such that Im(Im0F�D)GL = (Im0+mF�D)GL

for all m i.e. the filtration {(ImF�D)GL} is {Im}-stable. By Artin–Rees theory, this is 
equivalent to showing the (

⊕
m Im)-module 

⊕
m(ImF�D)GL is finitely generated. Since 

F�D is a finitely generated C[�−1(U)]-module, the module (
⊕

m ImF�D) is finitely 
generated over the Rees algebra (

⊕
m Im). Therefore, Hilbert’s Theorem implies that 

(
⊕

m ImF�D) =
⊕

m(ImF�D)GL is finitely generated over (
⊕

m Im)GL =
⊕

m Im, as 
required. Since (Im0F�D)GL ⊂ (F�D)GL we may take m′ = m0 + m. This completes the 
proof of Theorem 10.1.1.

10.4. Recall that NL is the normalizer of WL in W ; we have NL/WL �
NGL(L(GL))/L. Decompose t = tWL ⊕ tL as an NL-module. All the reflections in NL are 
contained in WL and form a single conjugacy class. The group NL acts on TL � Z(L)◦
and TL × t′. Therefore we may form the Cherednik algebra Hκ(TL × t′, NL), as in Sec-
tion 8.2. It is a sheaf on (TL × t′)/NL and its global sections Hκ(TL × t′, NL) contains 
D(TL) ⊗ Hκ(t′, WL) as a subalgebra. Let eN be the trivial idempotent in CNL and set

Uκ(WL) := eNHκ

(
TL × t′, NL

)
eN .

Category O for Uκ(WL) is denoted Oκ(WL). It is defined to be the category of all finitely 
generated Uκ(WL)-modules such that the action of C[t′ ∗]NL

+ is locally nilpotent.

Lemma 10.4.1. The usual radial parts map extends to an isomorphism

RL :
(
D(NL)/D(NL)l(gl)c

)NGL(L) ∼→ Uκ(WL), (10.4.2)

where l(gl) = Lie L(GL) and l(gl)c = (μ − χc)(l(gl)).

Proof. Define the function sl on NL by (z, X, v) �→ det(v, zXv, . . ., zn−1Xn−1v), where 
z ∈ Z(L)◦, X ∈ l′ and v ∈ V . If �L is the quotient map NL → (TL × t′)/WL, then

RL(D)(f) :=
(
sclD

(
s−c
l

�∗
L(f)

))∣∣
(TL×t

reg
L )/WL

, ∀f ∈ C
[
TL × t

reg
L

]WL
.

To show that RL is an isomorphism, let us first consider the image of the larger 
algebra (D(NL)/D(NL)l(gl)c)L. Recall that NL = Z(L)◦× l′ ×V . The group L, which is 
a product of general linear groups, acts trivially on Z(L)◦. Note also that l′ is a direct sum 
of copies of slm for various m. Then, one can check that proof of the rational analogue 
of Theorem A.2.1 given in [21, Theorem 2.8] still applies, giving an isomorphism

(
D(NL)/D(NL)l(gl)c

)L ∼→ D
(
Z(L)◦

)
⊗ eHκ(tL, WL)e.

The action of NGL(L) on the left factors through NGL(L)/L(GL), and the action of NL on 
the right factors through NL/WL. Under the identification NGL(L)/L(GL) = NL/WL, 
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the above isomorphism is NGL(L)/L(GL)-equivariant. Thus, the claim follows by taking 
invariants and noting that TL = Z(L)◦. �

Given M ∈ CNL,c, Lemma 10.4.1 implies that there is a natural action of Uκ(WL) on

HL(M ) := Γ (NL, M )NGL(L).

Moreover, the functor HL maps CNL,c into Oκ(WL).
Since the specialization functor defined in Section 8.6 is compatible with the action 

of W , there is a corresponding specialization functor SpWL
: Oκ → Oκ(WL) for the 

spherical subalgebra.

Proposition 10.4.3. The following diagram commutes

Cc

spL

Oκ

†
H

SpWL

CNL,c

HL Oκ(WL).

Proof. For a fixed E ∈ Oκ, let E = E|T◦/W and M = †H(E)|X◦ . In order to show that 
the diagram commutes, we use the V -filtration on M to define a filtration on E . Then 
the commutativity of the diagram will follow from the fact that this filtration on E is 
the precisely the V -filtration used in the definition of SpWL

.
Define a filtration on E by VkE = (�•(VkM ))GL. This filtration is clearly compatible 

with the V-filtration on (�•DX◦)GL/(�•DX◦ · gc)GL. Therefore Theorem 10.1.1 implies 
that the filtration on E is compatible with the V -filtration on Uκ. Moreover, it is clear 
that this is the unique W TL-filtration whose existence is guaranteed by Proposition 8.6.3
provided that we can show it is a W TL-good filtration. This will be the case if we can 
show that the associated graded of E is a finitely generated Uκ(WL)-module. For this, 
and the commutativity of the diagram, it suffices to show that the associated graded of 
E equals HL(spL(†H(E))).

Since � is an affine map (and hence �• exact) and GL is reductive, VkE /Vk−1E is 
isomorphic to (�•VkM /Vk−1M )GL and hence

Γ
(
TL, grV E

)
= Γ (NX/Y , grV M )GL.

Proposition 9.1.1(ii) implies that Γ (NX/Y , grV M )GL is isomorphic to Γ (NL,

Υ ∗(grV M ))NGL(L). Hence, we have

Γ
(
NL, Υ ∗(grV M )

)NGL(L) = HL

(
Υ ∗ΨX◦/Y(M )

)
= HL

(
Υ ∗ΨX/Y

(†H(E)
))

= HL

(
spL

(†H(E)
))

.
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Thus, we have constructed a functorial isomorphism SpWL
(E) ∼= HL(spL(†H(E))), of 

graded vector spaces. To complete the proof, one must check that the constructed iso-
morphism respects the Uκ(WL)-actions. This follows from the fact that the isomorphisms 
in the diagram

grV(�•DX◦/�•DX◦ · gc)G
grV R

φ

grV Uκ

�

(D(NL)/D(NL)l(gl)c)NGL(L) RL Uκ(WL)

make it commutative. Here φ is Lemma 9.1.2 applied to D(NX/Y), using the fact that 
taking G-invariants commutes with grV . Checking that the diagram commutes reduces 
to the key equation (10.2.5) saying that the image of sL in J n

L /J n+1
L equals sl, which is 

precisely the function used in the definition of RL of Lemma 10.4.1. �
10.5. Let †HL be the functor Oκ(WL) → CNL,c of tensoring on the left by 

D(NL)/D(NL)lc. The various adjunctions imply that we have natural transformations 
†HL ◦ SpWL

→ spL ◦†H, and SpWL
◦Hc → HL ◦ spL. Theorem 1.6.2 states that the 

adjunction SpWL
◦Hc → HL ◦ spL is an isomorphism when c is admissible.

Proof of Theorem 1.6.2. Proposition 10.4.3 says that SpWL
→ HL ◦ spL ◦†H is an 

isomorphism. Therefore

SpWL
◦Hc −→ HL ◦ spL ◦†H ◦Hc

is also an isomorphism. Hence it suffices to show that the adjunction id → †H ◦ Hc

induces an isomorphism HL ◦ spL
∼→ HL ◦ spL ◦(†H ◦Hc). The adjunction id → †H ◦Hc

becomes an isomorphism on the quotient category Cc/ KerHc. Therefore it suffices to 
show that HL ◦ spL : Cc → Oκ(WL) factors through Cc/ KerHc i.e. (HL ◦ spL)(M ) = 0
for all M ∈ KerHc.

The idea is to use formula (9.4.6) to show that if the singular support of M is contained 
in (T ∗X)unst then this implies that the singular support of spL(M ) is contained in 
(T ∗NL)unst. Then, the theorem will follow from Theorem 1.3.3.

Recall that (g, Y, v, w) ∈ (T ∗X)unst if and only if C〈g, Y 〉 ·v �= V . We define (T ∗X◦
L)unst

analogously. As in the proof of Proposition 5.1.1, we can choose a complete flag F• ⊂ V

that is stable under g and Y . This flag can be chosen so that i ∈ Fn−1. Let Y ′ be 
the projection of Y onto ln. Then it was shown in the proof of Proposition 5.1.1 that 
Y ′ ∈ n0 ⊂ b ∩ ln. Hence, Y ′ also preserves the flag F•. Thus, C〈g, Y ′〉 · v ⊂ Fn−1 � V

and hence ρΥ (ω−1
Υ ((T ∗X)unst)) is contained in (T ∗X◦

L)unst.
Next we show that ϕ∗CΛ((T ∗X◦

L)unst) is contained in (T ∗NL)unst. Let I be the ideal 
in A := C[T ∗X◦

L] defining the unstable locus. Then I is generated by the space of 
L-semi-invariants J =

⊕
k>0 AL,detk . Similarly, if I ′ is the ideal in B := C[T ∗NL] that 
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defines the unstable locus in T ∗NL, then I ′ is generated by J ′ =
⊕

k>0 BL,detk . Recall 
that the V -filtration on D(X◦

L) defines a V -filtration on A. Then, I inherits a filtration 
and, by definition, ϕ∗CΛ((T ∗X◦

L)unst) equals the zero set of grV I. Therefore, it suffices 
to show that J ′ ⊂ grV I. Let f ∈ J ′ be a detk-semi-invariant. We may assume that f is 
contained in Bm for some m. Since A is a rational L-module, the short exact sequence

0 → Vm−1A → VmA → Bm → 0

splits as L-modules. Therefore, there exists a detk-semi-invariant h in VmA such that f
is the symbol of h. But then h ∈ J ⊂ I and hence f ∈ grV I as required. �
10.6. An application of Hodge theory

Let W ′ be a parabolic subgroup of W , L ⊂ SL a Levi such that WL = W ′ and let TL

be as in Section 9.3.

Corollary 10.6.1. Assume that c ∈ Q is admissible and let E ∈ Oκ be a simple object. 
Then ResTL

E is semi-simple if and only if the action of the Euler element eu on ResTL
E

is semi-simple.

Proof. Clearly, if eu does not act semi-simply on ResTL
E, then ResTL

E cannot be 
semi-simple. Therefore, we assume that eu acts semi-simply and will show that ResTL

E

is semi-simple. By Theorem 1.6.1, ResTL
E = SpWL

(E). Let L be a Levi subgroup 
of SL, whose Weyl group WL equals W ′. The mirabolic module E!∗ is a simple, 
(GL, c)-monodromic module. Since c is assumed to be rational, E!∗ is equipped with 
a pure Hodge structure. The L(GL)-invariant vector field on NL corresponding to the 
action of C× by dilation along l′ is denoted eul′ . Up to a shift, the radial parts map sends 
eul′ to eu.

Since Hc(E!∗) = E, Theorem 1.6.2 implies that SpWL
(E) � HL(spL(E!∗)). Thus, eu

acts semi-simply on HL(spL(E!∗)). The image of the canonical map †HL◦HL(spL(E!∗)) →
spL(E!∗) is denoted M . Since the adjoint action of eul′ on D(NL) is semi-simple, eul′
acts semi-simply on Γ (NL, M ). Also, HL(M ) = SpWL

(E). Therefore it suffices to show 
that M is semi-simple.

As in the proof of Proposition 9.4.4, the fact that eul′ acts semi-simply on Γ (NL, M )
implies that eul′×V acts semi-simply too. Since E!∗ has a pure weight structure, 
spL(E!∗) has a weight filtration that is given by the action of the monodromy opera-
tor exp(2π

√
−1 eul′×V ). In the case where codimT TL = 1, this is explained in [46, §5]; 

the general case is deduced from this by standard arguments cf. [34, §8]. This implies 
that the submodule M of spL(E!∗) is semi-simple if and only if exp(2π

√
−1 eul′×V ) acts 

semi-simply on Γ (NL, M ). But this is clearly the case, since eul′×V is assumed to act 
semi-simply. �
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Remark 10.6.2. The obvious analogue of Corollary 10.6.1 holds in the rational case too. 
In that case the assumption that c is rational may be dropped since the corollary is 
obvious true for non-rational values.
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Appendix A. Shift functors

The goal of this appendix is to adapt the results of [21] to the setting of trigonometric
Cherednik algebras.

A.1. The trigonometric Cherednik algebra

Let T be a maximal torus inside SL, t its Lie algebra. Let P = Hom(T, C×) be the 
weight lattice and Q ⊂ P the root lattice, so that Ω = P/Q � Z/nZ. We choose a set of 
positive roots R+ in R, the set of all roots. Let ρ be the half sum of all positive roots. 
For λ ∈ P , we write eλ for the corresponding monomial in C[T ]. Choose κ ∈ C. As in 
[45, Definition 2.4], the Dunkl operator associated to y ∈ t is

Tκ
y = ∂y + κ

∑
α∈R+

α(y) 1
1 − e−α

(1 − sα) − κρ(y).

The trigonometric Cherednik algebra of type SL is the associative subalgebra Htrig
κ (SL)

of the algebra D(T reg) � W generated by C[T ], W and all Dunkl operators Tκ
y for 

y ∈ t. The Dunkl operators pairwise commute. Define the divided-difference operator 
Δα = 1

1−e−α (1 −sα) so that Tκ
y = ∂y +κ 

∑
α∈R+

α(y)Δα−κρ(y). We fix a W -invariant, 
symmetric non-degenerate bilinear form (−, −) on t∗ such that (α, α) = 2 for all α ∈ R.

Lemma A.1.1. Let y1, . . ., yn−1 be an orthonormal basis of t. Then

n−1∑
i=1

(
Tκ
yi

)2 = Ωt + 2κ
∑
α>0

e−α

1 − e−α
Δα + κ2

∑
α�=β>0

(α, β)ΔαΔβ

+ κ2(ρ, ρ) + κ
∑
α>0

1 + e−α

1 − e−α
∂α,

where ∂α is defined by ∂α(x) = (x, α)x and Ωt =
∑n−1

i=1 ∂2
y .

i
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Proof. We note that

∂y

(
1

1 − e−α

)
= − α(y)e−α

(1 − e−α)2

and (ρ, α) = 1 for all α > 0. Therefore

n−1∑
i=1

(
Tκ
yi

)2 = Ωt + 2κ
∑
α>0

e−α

1 − e−α
Δα + κ2

∑
α,β>0

(α, β)ΔαΔβ

+ κ2(ρ, ρ) + κ
∑
α>0

1 + e−α

1 − e−α
∂α − 2κ2

∑
α>0

Δα

The operators Δα are idempotent i.e. Δ2
α = Δα and hence the formula of the lemma 

follows from the above. �
The group W acts on Htrig

κ (SL) by conjugation; the subalgebra of W -invariant el-
ements is denoted Htrig

κ (SL)W . The Dunkl operators act on the space C[T ], hence 
any W -invariant operator will act on C[T ]W . We define Res : Htrig

κ (SL)W → Ureg by 
Res(D) = D|C[T ]W , where Ureg := D(T reg)W . Lemma A.1.1 implies that

Res
(

n−1∑
i=1

(
Tκ
yi

)2) = Ωt + κ
∑
α>0

1 + e−α

1 − e−α
∂α + κ2(ρ, ρ) =: L(κ) + κ2(ρ, ρ).

The map Res restricts to an embedding eHtrig
κ (SL)e ↪→ Ureg and we denote its image by 

Uκ. As shown in the proof of [12, Theorem 3.3.3], the algebra Uκ is generated by L(κ)
and C[T ]W . We denote by δ the Weyl denominator∏

α∈R+

(
eα/2 − e−α/2) = eρ

∏
α∈R+

(
1 − e−α

)
,

so that T reg = (δ �= 0). As in the rational case, the existence of shift operators for 
Cherednik algebras implies the existence of a collection of bimodules between the vari-
ous Uκ. These bimodules induce Morita equivalences in many cases. The following is a 
consequence of Opdam’s theory of shift operators, see [45, Theorem 5.11].

Corollary A.1.2. We have an equality

eHtrig
κ+1(SL)e = eδ−1Htrig

κ (SL)δe

in Ureg. Thus, the spaces

κPκ+1 := eHtrig
κ (SL)δe, κ+1Qκ := eδ−1Htrig

κ (SL)e,

are (Uκ, Uκ+1) and (Uκ+1, Uκ)-bimodules respectively.
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Recall from Definition 1.3.2, the subset BAD = {a/b | a, b ∈ Z, 1 ≤ b ≤ n} of C. As 
in [21], we say that κ is good if κ /∈ BAD ∩ (0, 1). Under the equality κ = −c + 1, κ is 
good if and only if c is good in the sense of Section 1.3. Recall that we defined in (7.3), 
based on Corollary A.1.2, the bimodules κPκ+m and κ+mQκ.

Theorem A.1.3. (See [21], Theorem 3.9.) Fix κ ∈ C and an integer m ≥ 1 such that each 
of κ + 1, κ + 2, . . ., κ + m − 1 is good.

(1) κPκ+m is the unique nonzero (Uκ, Uκ+m)-bisubmodule of Ureg that is reflexive as 
either a right Uκ+m-module or a left Uκ-module.

(2) κ+mQκ is the unique nonzero (Uκ+m, Uκ)-bisubmodule of Ureg that is reflexive as 
either a right Uκ-module or a left Uκ+m-module.

(3) Either κ or κ + m is good. In the former case κPκ+m and κ+mQκ are projective 
Uκ-modules, while in the latter case they are projective Uκ+m-modules.

Remark A.1.4. It is important to note when applying the results of [21] to the setup 
considered in this paper that their parameter “c” is related to κ by κ = −c.

Proof of Theorem A.1.3. The proof of the theorem is simply a matter of carefully check-
ing that the arguments employed in [21] are applicable in our situation. We note that: 
the existence of the bimodules κPκ+1 and κ+mQκ is shown in Corollary A.1.2. By [12, 
Corollary 5.2.7], if κ is good then Uκ is Morita equivalent to Htrig

κ (SL) and hence has 
finite global dimension. The only gap is showing that condition (3) of [21, Hypothe-
sis 3.2] holds. The argument using Fourier transforms given in loc. cit. for condition (3) 
is not applicable to the trigonometric Cherednik algebra. Another way to see that con-
dition (3) holds is as follows. Let I be a proper two-sided ideal in Uκ. Associated to 
I is its characteristic variety in (T ∗T )/W . This will be a union of closures of symplec-
tic leaves and hence even dimensional. Therefore either GKdim Uκ/I = GKdim Uκ or 
GKdim Uκ/I ≤ GKdim Uκ − 2. However, Uκ[δ−2] = Ureg is a simple ring, hence the nor-
mal element δ2m belongs to I for some m ≤ 1 and hence GKdim Uκ/I < GKdim Uκ. �
A.2. The radial parts map

The radial parts map identifies Uκ with a certain algebra obtained by quantum 
Hamiltonian reduction. The usual Chevalley isomorphism induces an isomorphism 
η : C[Xreg]GL → C[T reg]W .

Theorem A.2.1. Let κ = −c +1. The following map is an isomorphism of filtered algebras.

R : (D/Dgc)GL −→ Uκ, R(D)(f) = scD
(
s−cη∗f

)∣∣
T reg/W

.

Proof. The proof of the theorem is standard, see e.g. [21, Appendix]. In order to show Uκ

is contained in the image of that R, it suffices to check is that the image of the Casimir 
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element lies in Uκ. This is done in Lemma A.2.2 below. Since s is a det−1-semi-invariant, 
we have (μ − c Tr)(x) · s−c = 0 for all x ∈ gl. This implies that (Dgc)GL is contained 
in the kernel of R. As in [21, Appendix], by an associated graded argument, these facts 
together with the fact that the moment map μ is flat are enough to conclude that R is 
an isomorphism. �

Recall that we have identified sl with left invariant vector fields on SL i.e. for X ∈ sl

and f ∈ C[X] we have

(∂X · f)(g, v) = ∂

∂t
f
(
g(1 + tX), v

)
.

Since eα and e−α are a dual pair with respect to the trace form on sl, the Casimir element 
Ωsl in U(sl) is given by

Ωsl = Ωt +
∑

α∈R+

∂eα∂e−α
+ ∂e−α

∂eα ,

where Ωt =
∑n−1

i=1 ∂2
yi

(recall that the yi form an orthonormal basis of t). For w ∈ C, 
define Radw : D(X)G → Ureg by

Radw(D)(f) = s−w
(
D
(
sw
(
η∗f
)))∣∣

T reg/W
, ∀f ∈ C

[
T reg]W .

Lemma A.2.2. We have

Radw(Ωsl) = Ωt + (w + 1)
∑
α>0

1 + e−α

1 − e−α
∂α + w(w + 2)(ρ, ρ).

Proof. By definition, eα is a character on T , eα(x) = α(x). Let f : X → C be a 
detw-semi-invariant holomorphic function defined on an open neighborhood of T reg ×V . 
One calculates that

exp(teα) · f
(
x exp(re−α), v

)
= f
(
g(1 + re−α)

(
1 + t

(
1 − e−α

)
eα − rte−αhα

)
, v − teαv

)
.

On the other hand, semi-invariance implies that

exp(teα) · f
(
g exp(re−α), v

)
= f
(
g exp(te−α), v

)
.

Therefore, differentiating with respect to t and setting t = 0 gives

0 =
[(

1 − e−α
)
∂eα − re−α∂α + μV (eα)

]
f
(
g(1 + re−α), v

)
.

Rewriting,

∂eαf
(
g(1 + re−α), v

)
= 1

−α

[
re−α∂α − μV (eα)

]
f
(
g(1 + re−α), v

)
. (A.2.3)
1 − e
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Differentiating with respect to r and setting r = 0 gives

∂e−α
∂eαf(g, v) = 1

1 − e−α

[
e−α∂αf(g, v) − ∂e−α

(
μV (eα) · f(g, v)

)]
.

Eq. (A.2.3) with eα replaced by e−α and r = 0 gives

∂e−α

[
μV (eα) · f

]
(g, v) = −1

1 − eα
μV (e−α)

[
μV (eα) · f

]
(g, v).

Thus,

∂e−α
∂eαf(g, v) = e−α

1 − e−α
∂αf(g, v) + 1

(1 − eα)(1 − e−α)μV (e−α)μV (eα) · f(g, v).

As in [21], s|T×V = δ · (v1 · · · vn) and μV (eij) = −vj∂vi . Thus,

μV (e−α)μV (eα) · f(g, v) = w(w + 1)f(g, v).

Note that

e−α − eα

(1 − e−α)(1 − eα) = 1 + e−α

1 − e−α
.

Therefore

Radw(Ωsl)

= δ−wΩtδ
w + w(w + 1)

∑
α>0

(α, α)
(1 − eα)(1 − e−α) +

∑
α>0

e−α − eα

(1 − e−α)(1 − eα)δ−w∂αδw

= δ−wΩtδ
w − w(w + 1)

∑
α>0

(α, α)
(eα/2 − e−α/2)2

+
∑
α>0

1 + e−α

1 − e−α
δ−w∂αδw.

By [23, Theorem 2.1.1],

δu ◦
(
L(u) + u2(ρ, ρ)

)
◦ δ−u = Ωt −

∑
α>0

u(u − 1)(α, α)
(eα/2 − e−α/2)2

Therefore, taking u = 1 implies that

δw+1Radw(Ωsl)δ−w−1 = Ωt − w(w + 1)
∑
α>0

(α, α)
(eα/2 − e−α/2)2

− (ρ, ρ)

= δw+1 ◦
(
L(w + 1) + (w + 1)2(ρ, ρ)

)
◦ δ−(w+1) − (ρ, ρ). �
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Remark A.2.4. Lemma A.2.2 implies the morphism D(SL)GL → (D/Dgc)GL R→ Uκ

agrees with the radial parts map Y �→ δ−κ+1 ◦ RV (Y ) ◦ δκ−1 of [11, §1] when κ is a 
positive integer. Then, [11, Corollary 1.10] implies that R restricts to the Harish–Chandra 
homomorphism Z ∼→ (Sym t)W when κ is a positive integer. Since R(D) can be expressed 
as a polynomial expression in κ for each D ∈ Z, this implies that R always restricts to 
the Harish–Chandra homomorphism on Z.
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