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Let H be a k-graph on n vertices, with minimum codegree 
at least n/k + cn for some fixed c > 0. In this paper we 
construct a polynomial-time algorithm which finds either 
a perfect matching in H or a certificate that none exists. 
This essentially solves a problem of Karpiński, Ruciński and 
Szymańska; Szymańska previously showed that this problem 
is NP-hard for a minimum codegree of n/k−cn. Our algorithm 
relies on a theoretical result of independent interest, in which 
we characterise any such hypergraph with no perfect matching 
using a family of lattice-based constructions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The question of whether a given k-uniform hypergraph (or k-graph) H contains a per-
fect matching (i.e. a partition of the vertex set into edges), while simple to state, is one of 
the key questions of combinatorics. In the graph case k = 2, Tutte’s Theorem [32] gives 
necessary and sufficient conditions for H to contain a perfect matching, and Edmonds’
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Algorithm [9] finds such a matching in polynomial time. However, for k ≥ 3 this problem 
was one of Karp’s celebrated 21 NP-complete problems [14]. Results for perfect matchings
in hypergraphs have many potential practical applications; one example which has gar-
nered interest in recent years is the ‘Santa Claus’ allocation problem (see [3]). Since the 
general problem is intractable provided P �= NP, it is natural to seek conditions on H
which render the problem tractable or even guarantee that a perfect matching exists. 
In recent years a substantial amount of progress has been made in this direction. One 
well-studied class of such conditions are minimum degree conditions. This paper provides 
an algorithm that essentially eliminates the hardness gap between the sparse and dense 
cases for the most-studied of these conditions.

1.1. Minimum degree conditions

Suppose that H has n vertices and that k divides n (we assume this throughout, 
since it is a necessary condition for H to contain a perfect matching). In the graph case, 
a simple argument shows that a minimum degree of n/2 guarantees a perfect matching. 
Indeed, Dirac’s Theorem [8] states that this condition even guarantees that H contains 
a Hamilton cycle. For k ≥ 3, there are several natural definitions of the minimum degree 
of H. Indeed, for any set A ⊆ V (H), the degree d(A) = dH(A) of A is the number of 
edges of H containing A. Then for any 1 ≤ � ≤ k − 1, the minimum �-degree δ�(H) of 
H is the minimum of d(A) over all subsets A ⊆ V (H) of size �. Two cases have received 
particular attention: the minimum 1-degree δ1(H) is also known as the minimum vertex 
degree of H, and the minimum (k − 1)-degree δk−1(H) as the minimum codegree of H.

For sufficiently large n, Rödl, Ruciński and Szemerédi [27] determined the minimum 
codegree which guarantees a perfect matching in H to be exactly n/2 − k + c, where 
c ∈ {1.5, 2, 2.5, 3} is an explicitly given function of n and k. They also showed that the 
condition δk−1(H) ≥ n/k + O(logn) is sufficient to guarantee a matching covering all 
but k vertices of H, i.e. one edge away from a perfect matching; their conjecture that 
δk−1(H) ≥ n/k suffices for this was recently proved by Han [10]. This provides a sharp 
contrast to the graph case, where a minimum degree of δ(G) ≥ n/2 −εn only guarantees 
the existence of a matching covering at least n − 2εn vertices. There is a large literature 
on minimum degree conditions for perfect matchings in hypergraphs, see e.g. [1,2,6,7,12,
15,17–25,27,29–31] and the survey by Rödl and Ruciński [26] for details.

Let PM(k, δ) be the decision problem of determining whether a k-graph H with 
δk−1(H) ≥ δn contains a perfect matching. Given the result of [27], a natural question 
to ask is the following: For which values of δ can PM(k, δ) be decided in polynomial 
time? This holds for PM(k, 1/2) by the main result of [27]. On the other hand, PM(k, 0)
includes no degree restriction on H at all, so is NP-complete by the result of Karp [14]. 
Szymańska [28,29] proved that for δ < 1/k the problem PM(k, 0) admits a polynomial-
time reduction to PM(k, δ) and hence PM(k, δ) is also NP-complete, while Karpiński, 
Ruciński and Szymańska [15] showed that there exists ε > 0 such that PM(k, 1/2 − ε)
is in P. This left a hardness gap for PM(k, δ) when δ ∈ [1/k, 1/2 − ε).
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In this paper we provide an algorithm which eliminates this hardness gap almost 
entirely. Moreover, it not only solves the decision problem, but also provides a perfect 
matching or a certificate that none exists.

Theorem 1.1. Fix k ≥ 3 and γ > 0. Then there is an algorithm with running time 
O(n3k2−7k+1), which given any k-graph H on n vertices with δk−1(H) ≥ (1/k + γ)n, 
finds either a perfect matching or a certificate that no perfect matching exists.

A preliminary version of this algorithm (with a slower running time) appeared as an 
extended abstract [16].

1.2. Lattices and divisibility barriers

Theorem 1.1 relies on a result of Keevash and Mycroft [17] giving fairly general suf-
ficient conditions which ensure a perfect matching in a k-graph. In this context, their 
result essentially states that if H is a k-graph on n vertices, and δk−1(H) ≥ n/k + o(n), 
then H either contains a perfect matching or is close to one of a family of lattice-based 
constructions termed ‘divisibility barriers’. These constructions play a key role in this 
paper, so we now describe them in some detail.

The simplest example of a divisibility barrier is the following construction, given as 
one of the two extremal examples in [27].

Construction 1.2. Let A and B be disjoint sets such that |A| is odd and |A ∪ B| = n, 
and let H be the k-graph on A ∪ B whose edges are all k-sets which intersect A in an 
even number of vertices.

We consider a partition to include an implicit order on its parts. To describe divisibility 
barriers in general, we make the following definition.

Definition 1.3. Let H be a k-graph and let P be a partition of V (H) into d parts. 
Then the index vector iP(S) ∈ Z

d of a subset S ⊆ V (H) with respect to P is the 
vector whose coordinates are the sizes of the intersections of S with each part of P, i.e. 
iP(S)X = |S ∩X| for X ∈ P. Further,

(i) IP(H) denotes the set of index vectors iP(e) of edges e ∈ H, and
(ii) LP(H) denotes the lattice (i.e. additive subgroup) in Zd generated by IP(H).

A divisibility barrier is a k-graph H which admits a partition P of its vertex set V
such that iP(V ) /∈ LP(H); the next proposition shows that such an H contains no perfect 
matching. To see that this generalises Construction 1.2, let P be the partition into parts 
A and B; then LP(H) is the lattice of vectors (x, y) in Z2 for which x is even and k
divides x + y, and |A| being odd implies that iP(V ) /∈ LP(H).
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Proposition 1.4. Let H be a k-graph with vertex set V . If there is a partition P of V with 
iP(V ) /∈ LP(H) then H does not contain a perfect matching.

Proof. Suppose M is a matching in H. Then iP(V (M)) =
∑

e∈M iP(e) ∈ LP(H). But 
iP(V ) /∈ LP(H), so V (M) �= V , i.e. M is not perfect. �

A special case of the main theoretical result of this paper is the following theorem, 
which states that the converse of Proposition 1.4 holds for sufficiently large 3-graphs as 
in Theorem 1.1. Thus we obtain an essentially best-possible strong stability ‘Andrasfai–
Erdős–Sos analogue’ for the result of Rödl, Ruciński and Szemerédi [27] in the case 
k = 3.

Theorem 1.5. For any γ > 0 there exists n0 = n0(γ) such that the following statement 
holds. Let H be a 3-graph on n ≥ n0 vertices, such that 3 divides n and δ2(H) ≥
(1/3 + γ)n, and suppose that H does not contain a perfect matching. Then there is a 
subset A ⊆ V (H) such that |A| is odd but every edge of H intersects A in an even number 
of vertices.

Theorem 1.5 can be used to decide PM(3, 1/3 + γ), as the existence of a subset A as 
in the theorem can be checked using (simpler versions of) the algorithms in Section 2. 
However, the case k = 3 is particularly simple because there is only one maximal divisi-
bility barrier; for k ≥ 4, the next construction shows that the converse of Proposition 1.4
does not hold for general k-graphs as in Theorem 1.1.

Construction 1.6. Let A, B and C be disjoint sets of vertices with |A ∪ B ∪ C| = n, 
|A|, |B|, |C| = n/3 ± 2 and |A| = |B| + 2. Fix some vertex x ∈ A, and let H be the 
k-graph with vertex set A ∪B ∪ C whose edges are

(1) any k-set e with |e ∩A| = |e ∩B| modulo 3, and
(2) any k-set (x, z1, . . . , zk−1) with z1, . . . , zk−1 in C.

Construction 1.6 satisfies δk−1(H) ≥ n/3 − k − 1, so if k ≥ 4 then H meets the 
degree condition of Theorem 1.1. Moreover, for any partition P of V (H) we have 
iP(V (H)) ∈ LP(H). To see this, suppose on the contrary that it is false, and fix 
a counterexample P with as few parts as possible. Then LP(H) cannot contain any 
transferral (see Definition 1.8), as otherwise we could merge the corresponding parts 
of P to obtain a counterexample with fewer parts. It follows that A, B and C must 
each be contained within some part of P. We consider the case P = (A, B, C) and 
omit the easy cases where P has two parts (clearly the partition with one part is 
not a counterexample, as k | n). Write iP(V (H)) = (x, y, z), where x + y + z = n. 
Note that (0, 0, k), (1, 1, k − 2) and (1, 0, k − 1) are all in IP(H). Then (x, y, z) =
y(1, 1, k − 2) + (x − y)(1, 0, k − 1) + (n/k − x)(0, 0, k) ∈ LP(H), so P is not a coun-
terexample.
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However, H does not contain a perfect matching. To see this, let M be a matching 
in H, and note that any edge e ∈ M has |e ∩A| = |e ∩B| modulo 3, except for at most one 
edge of M which has |e ∩A| = |e ∩B| +1 modulo 3. Then iP(V (M))1−iP(V (M))2 ∈ {0, 1}
modulo 3, whereas iP(V (H))1 − iP(V (H))2 = |A| − |B| = 2, so V (M) �= V (H), that is, 
M is not perfect.

1.3. Approximate divisibility barriers

Our starting point will be (a special case of) a result of Keevash and Mycroft [17] on 
approximate divisibility barriers. First we introduce a less restrictive degree assumption, 
which follows from the assumption in Theorem 1.1 when γ > 0 is small. (The reason 
for doing so will become clear at the end of Section 2.) We will use the following setup 
throughout the paper.

Setup 1.7. Suppose that k ≥ 3, that 1/n0 	 ε 	 γ 	 1/k and that n ≥ n0 satisfies 
k | n.

Let H be a k-graph on n vertices such that

(deg) δ1(H) ≥ γnk−1, and
(codeg) at most εnk−1 (k − 1)-sets A ⊆ V (H) have dH(A) < (1/k + γ)n.

A result from [17] (stated here as Theorem 4.6), combined with Lemma 7.3, implies 
that under Setup 1.7, if H does not contain a perfect matching then we can delete 
o(nk) edges from H to obtain a subgraph H ′ for which there exists a partition P of 
V (H ′) such that iP(V (H ′)) /∈ LP(H ′). Thus if H is far from a divisibility barrier then 
it has a perfect matching. On the other hand, if H is itself a divisibility barrier then 
Proposition 1.4 implies that H does not have a perfect matching. However, our algorithm 
cannot search directly for such partitions P, since the number of edges to be deleted, 
while small compared to nk, is still large from a computational perspective.

The main theoretical contribution of this paper is to fill the gap between these cases, 
by giving a condition for the existence of a perfect matching under Setup 1.7 that is 
necessary and sufficient, and also efficiently checkable.

1.4. Definitions

Before giving the statement we require several definitions. Firstly, it will be sufficient 
to consider the following special classes of lattices. To motivate this definition, we remark 
that all of our lattices will be edge-lattices, any incomplete lattice can be simplified to one 
that is transferral-free, and our assumptions on H will imply that if its edge-lattice with 
respect to some partition is transferral-free then it is full. Note also that our definitions 
depend on k, but we consider this to be fixed throughout the paper. We write |P| for 
the number of parts of a partition P.
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Definition 1.8. Suppose L is a lattice in Zd.

(i) We say that i ∈ Z
d is an r-vector if it has non-negative co-ordinates that sum to r. 

We write uj for the ‘unit’ 1-vector that is 1 in co-ordinate j and 0 in all other 
co-ordinates.

(ii) We say that L is an edge-lattice if it is generated by a set of k-vectors.
(iii) We write Ld

max for the lattice generated by all k-vectors.
(iv) We say that L is complete if L = Ld

max, otherwise it is incomplete.
(v) A transferral is a non-zero difference ui − uj of 1-vectors.
(vi) We say that L is transferral-free if it does not contain any transferral.
(vii) We say that a set I of k-vectors is full if for every (k − 1)-vector v there is some 

i ∈ [d] such that v + ui ∈ I.
(viii) We say that L is full if it contains a full set of k-vectors and is transferral-free.

Note that Ld
max can be equivalently defined as the lattice of all vectors in Zd whose 

coordinates sum to a multiple of k. Often the dimensions of Zd will correspond to parts 
of a partition P of a set; in this case we refer to ZP and LP

max instead of Zd and Ld
max.

Now we come to the structures that appear in our characterisation. To motivate this 
definition, we remark that the first step in our strategy for finding a perfect matching 
will be to identify a ‘canonical’ partition and lattice, then delete the vertices covered by 
a small matching so that the index of the remaining set is on the lattice.

Definition 1.9. Let H be a k-graph.

(i) A full pair (P, L) for H consists of a partition P of V (H) into d ≤ k− 1 parts and 
a full edge-lattice L ⊆ Z

d (possibly distinct from LP(H)).
(ii) A (possibly empty) matching M of size at most |P| − 1 is a solution for (P, L)

(in H) if iP(V (H)\V (M)) ∈ L; we say that (P, L) is soluble if it has a solution, 
otherwise insoluble.

(iii) A full pair (P, L) is C-far for H if some set of C vertices intersects every edge e ∈ H

with iP(e) /∈ L.
(iv) A C-certificate for H is an insoluble C-far full pair for H.

We will see later that there is no loss of generality in considering partitions into at 
most k − 1 parts because of our codegree assumption, or in requiring solutions to have 
size at most |P| − 1, as if there is any matching M such that iP(V (H)\V (M)) ∈ L then 
there is one with |M | ≤ |P| − 1. In particular, if H has a perfect matching then any full 
pair is soluble, so there is no C-certificate for H for any C ≥ 0.

1.5. Main structural result

Now we can state our structural characterisation for the perfect matching problem 
under Setup 1.7.



P. Keevash et al. / Advances in Mathematics 269 (2015) 265–334 271
Theorem 1.10. Under Setup 1.7, H has a perfect matching if and only if there is no 
2k(k − 3)-certificate for H.

We remark that most of the work in proving Theorem 1.10 lies in establishing the 
“if” part of the statement; the “only if” part follows easily from the results in Sec-
tion 6. Our algorithm for the decision problem is essentially an exhaustive search for a 
2k(k− 3)-certificate, although we also need to provide an algorithm to efficiently list the 
partitions P that may arise in Definition 1.9. Thus Theorem 1.10 is required to prove 
correctness of the algorithm. We remark that the constant 2k(k− 3) is within a factor 2
of being best-possible (see Conjecture 10.3). Furthermore, the constant 1/k in Setup 1.7
is best-possible, as shown by the ‘space barrier’ construction (see the concluding remarks 
for the definition and further discussion).

1.6. Contents

In the next section we present the algorithmic details of the results in this introduction. 
That is, we assume Theorem 1.10 and deduce Theorem 1.1. The rest of the paper is 
devoted to the proof of Theorem 1.10, beginning with Section 3 in which we briefly sketch 
the ideas of the proof and its key lemmas (Lemmas 7.1 and 7.6). In Section 4 we introduce 
a number of necessary preliminaries, including results from [17], some convex geometry 
and well-known probabilistic tools. Section 5 focuses on an important definition, that of 
‘robust maximality’, and some of its properties; this turns out to be the correct notion 
for the key lemmas. In Section 6 we establish various properties of full lattices, including 
a characterisation in terms of finite abelian groups. After these preparations, we prove 
the key lemmas in Section 7. In Section 8 we deduce Theorem 1.10 from Lemma 7.1 and 
some additional lemmas on subsequence sums in finite abelian groups. Section 9 contains 
some technical proofs which were deferred from earlier sections. Finally, in Section 10
we state the multipartite versions of our results (omitting the similar proofs) and make 
some concluding remarks.

1.7. Notation and terminology

A hypergraph H consists of a vertex set V (H) and a set E(H) of edges e ⊆ V (H). 
We frequently identify a hypergraph H with its edge set, for example, writing e ∈ H

for e ∈ E(H) and |H| for |E(H)|. A k-uniform hypergraph, or k-graph, is a hypergraph 
in which every edge is a k-set, that is, a set of size k. Given a hypergraph H and 
A ⊆ V (H), the neighbourhood of A in H is H(A) = {B ⊆ V (H) \A : A ∪B ∈ H}. Note 
that |H(A)| = dH(A) is the degree of A in H.

The hypergraph H[A] (as distinct from H(A)) is the hypergraph with vertex set A
whose edges are the edges of H which are contained in A. We use H − A and H \ A

interchangeably to denote the hypergraph obtained from H by deleting A and all edges 
which intersect A (this is identical to H[V (H) \ A]). If H is a hypergraph and H ′ ⊆ H
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we say that H ′ is a subgraph of H (we prefer to avoid the terms ‘subhypergraph’ and 
‘sub-k-graph’).

We use bold font for vectors and normal font for their co-ordinates, e.g. v =
(v1, . . . , vd). We write 0 and 1 for the vectors whose co-ordinates are all zero and one 
respectively (the dimension of the vector will be clear from the context). Bd(v, r) denotes 
the ball of radius r around v ∈ Z

d; we sometimes omit the dimension d. We will often 
work with vectors v in Zd, for some d, in which the coordinates are indexed by some 
ordered partition P of a set V with d parts. If X is the jth part of P for some j ∈ [d]
we write vX = vj .

We say that an event E holds with high probability if P(E) = 1 − e−Ω(nc) for some 
c > 0 as n → ∞; note that when n is sufficiently large, by union bounds we can assume 
that any specified polynomial number of such events all occur. We write [r] to denote 
the set of integers from 1 to r, and x 	 y to mean for any y ≥ 0 there exists x0 ≥ 0
such that for any x ≤ x0 the following statement holds. Similar statements with more 
constants are defined similarly. Also, we write a = b ± c to mean b − c ≤ a ≤ b + c. 
Throughout the paper we omit floor and ceiling symbols where they do not affect the 
argument.

2. Algorithms and analysis

We start with the following theorem, which can be used to solve the decision problem 
of determining whether or not H has a perfect matching. Note that the running time 
for k = 3 is O(n3), which we cannot reasonably expect to improve, as a faster algorithm 
would not be able to query all edges of H.

Theorem 2.1. Under Setup 1.7, Procedure DeterminePM determines whether H contains 
a perfect matching in time O(n3k2−8k).

Procedure DeterminePM.
Data: A k-graph H as in Setup 1.7.
Result: Determines whether H has a perfect matching.
if n < n0 then

Examine every set of n/k edges in H, and halt with appropriate output.
foreach set S ⊆ V (H) of size at most 2k(k − 3), integer d ∈ [k − 1], full edge-lattice L ⊆ Z

d and 
partition P of V (H) into d parts so that any edge e ∈ H which does not intersect S has iP(e) ∈ L
do

if there is no matching M ⊆ H of size at most d − 1 such that iP(V (H) \ V (M)) ∈ L then
Output “no perfect matching” and halt.

Output “perfect matching” and halt.

Procedure DeterminePM is essentially an exhaustive search for a 2k(k−3)-certificate. 
It is clear that the ranges of S, d, L and M in the procedure can be listed by brute force 
in polynomial time. However, brute force cannot be used for P, as there are potentially 
exponentially many possibilities to consider, so first we provide an algorithm to construct 
all possibilities for P.
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We imagine each vertex class Vj to be a ‘bin’ to which vertices may be assigned, 
and keep track of a set U of vertices yet to be assigned to a vertex class. So initially 
we take each Vj to be empty and U = V (H). The procedure operates as a search 
tree; at certain points the instruction is to branch over a range of possibilities. This 
means to select one of these possibilities and continue with this choice, then, when the 
algorithm halts, to return to the branch point, select the next possibility, and so forth. 
Each branch may produce an output partition; the output of the procedure consists of all 
output partitions. An informal statement of our procedure is that we generate partitions 
by repeatedly branching over all possible assignments of a vertex to a partition class, 
exploring all consequences of each assignment before branching again. Furthermore, we 
only branch over assignments of vertices which satisfy the following condition. Given a 
set of assigned vertices, we call an unassigned vertex x reliable if there exists a set B of 
k − 2 assigned vertices such that d(x ∪B) ≥ (1/k + γ)n.

Lemma 2.2. Under Setup 1.7, for any d ∈ [k − 1] and full edge-lattice L ⊆ Z
d, there 

are at most d2k−2 partitions P of V (H) such that iP(e) ∈ L for every e ∈ H, and 
Procedure ListPartitions lists them in time O(nk+1).

Procedure ListPartitions.
Data: A k-graph H and a full edge-lattice L ⊆ Z

d.
Result: Outputs all partitions P of V (H) with iP(e) ∈ L for every e ∈ H.
Set U = V (H) and let P = (V1, . . . , Vd) be a partition of V \ U (so initially Vi = ∅).
Choose arbitrarily A ⊆ V (H) of size k − 1 such that d(A) ≥ (1/k + γ)n.
Branch over all possible assignments of vertices in A to V1, . . . , Vd.
while U �= ∅ do

if xy1 . . . yk−1 ∈ H for some vertices x ∈ U and y1, . . . , yk−1 /∈ U then
Fix j ∈ [k] such that iP(y1 . . . yk−1) + uj ∈ L.
Assign x to Vj and remove x from U .

else
Choose x ∈ U which is reliable.
Branch over all possible assignments of x.

if iP(e) ∈ L for every e ∈ H then halt with output P.

Proof. First we note that since L is full, the instruction “Fix j ∈ [k] such that 
iP(y1 . . . yk−1) + uj ∈ L” in Procedure ListPartitions is well-defined, since for any 
(k − 1)-vector v there is precisely one j ∈ [k] such that v + uj ∈ L.

Next we show that if the number of assigned vertices is at least (1/k + γ)n and at 
most (1 − γ)n then there is always a reliable unassigned vertex. To see this, note that 
the number of sets x ∪B, where x is unassigned and B is a set of k−2 assigned vertices, 
is at least γn

(
n/k+γn

k−2
)
> εnk−1 (recall from Setup 1.7 that ε 	 γ). Hence some such 

x ∪B has degree at least (1/k + γ)n, and so x is reliable.
Observe that after branching initially over all possible assignments of A, at least 

(1/k + γ)n vertices will be assigned (all the neighbours of A) before the procedure 
branches again. Further, the procedure will no longer branch once there are fewer than 
γn unassigned vertices remaining. Indeed, in this case for any unassigned vertex x there 
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are fewer than γnk−1 edges containing x and another unassigned vertex. Thus condi-
tion (deg) implies that every unassigned vertex x is contained in some edge xy1 . . . yk−1

of H where y1, . . . , yk−1 are assigned. Hence when branching, we may always choose a 
reliable vertex as stated in the procedure.

The final line of the procedure ensures that any partition P of V (H) which is output 
has that property that iP(e) ∈ L for every e ∈ H. The converse is also true: any partition 
P of V (H) such that iP(e) ∈ L for every e ∈ H will be output by some branch of the 
procedure. To see this, consider the branch of the procedure in which, at each branch 
point, the vertex x under consideration is assigned to the vertex class in which it lies in P. 
By our initial remark, every other vertex of H must also be assigned to the vertex class 
in which it lies in P. We conclude that Procedure ListPartitions indeed runs correctly, 
returning all partitions P of V (H) such that iP(e) ∈ L for every e ∈ H.

It remains to bound the number of such partitions. Consider some x over which the 
procedure branches. Then there can be no edge xy1 . . . yk−1 of H where y1, . . . , yk−1 are 
assigned. Suppose that this is the case, and let B = y1y2 . . . yk−2 be a set of assigned 
vertices such that d({x} ∪B) ≥ (1/k+ γ)n. (Such a B must exist since we chose x to be 
reliable.) None of the (1/k + γ)n vertices v such that xvy1 . . . yk−2 is an edge of H can 
have been assigned, and each will be assigned before the next branch of the procedure. 
We conclude that after any branch in the procedure and before the next branch, at least 
(1/k + γ)n vertices are assigned.

Hence the search tree has depth at most k. Since the degree of the root is at most 
dk−1 and every other vertex has d children, the search tree has at most d2k−2 leaves. At 
most one partition is output at each leaf, so at most d2k−2 partitions P will be output by 
the algorithm, as required. Furthermore, over all branches there will be at most d2k−2n

iterations of the while loop, and the condition of the first if statement takes O(nk)
operations to check, and so the overall running time is O(nk+1). �
Remark 2.3. In fact, the step in which the algorithm finds xy1 . . . yk−1 ∈ H for some 
vertices x ∈ U and y1, . . . , yk−1 /∈ U can be made more efficient by maintaining a queue 
of ‘new’ vertices and only considering k-tuples for which y1 is the vertex at the front of 
the queue. Initially the queue consists of the vertices of A. Whenever a vertex is assigned 
it is added to the back of the queue, and the front vertex y1 is removed from the queue 
(i.e. ceases to be new) once we have considered all k-tuples xy1 . . . yk−1 with x ∈ U and 
y1, . . . , yk−1 /∈ U in which y1 is the only new vertex. With this modification, the running 
time of the algorithm can be reduced to O(nk). Also, for the purpose of Lemma 2.2 we 
could replace the constant 1/k + γ in Setup 1.7 by any positive constant independent of 
n and still deduce that the number of possible partitions is independent of n.

Proof of Theorem 2.1. Let H be a k-graph as in Setup 1.7. We begin by noting that 
Procedure DeterminePM determines whether H has a perfect matching. Indeed, this is 
trivial if n < n0, and if n ≥ n0 it follows from Theorem 1.10, as Procedure DeterminePM
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determines whether there is a 2k(k−3)-certificate (P, L) for H. We estimate the running 
time as follows. There are at most n2k(k−3) choices of sets S, and these can be generated 
in time O(n2k(k−3)). Also, there are only a constant number of choices for d and L, and 
these can be generated in constant time. Indeed, since L is an edge-lattice, it is generated 
by a set of k-vectors, and the number of such generating sets is bounded by a function 
of k.

For each choice of S, d and L, generating the list of choices for P takes time O(nk+1)
by Lemma 2.2 applied to H \ S. Further the number of choices for P is constant, and 
for each one it takes time O(nk(k−2)) to check for the existence of the matching M . 
When k > 3, k(k − 2) > k + 1 and so we conclude that the running time is O(n3k2−8k), 
as required. In the case k = 3, we use an improved algorithm with running time O(n3)
(which exists as noted in Remark 2.3) to generate the list of choices for P, thus obtaining 
the result. �

Now we will motivate the proof of our main result, Theorem 1.1. We start by using 
Procedure DeterminePM to check whether H contains a perfect matching. If H has 
no perfect matching then this is certified by the 2k(k − 3)-certificate (P, L) found by 
Procedure DeterminePM. So suppose that H does contain a perfect matching. How can 
we find it? A naive attempt at a proof is the following well-known idea. We examine each 
edge e of H in turn and use the same procedure to test whether deleting the vertices of e
would still leave a perfect matching in the remainder of H, in which case we say that e
is safe. There must be some safe edge e, which we add to our matching, then repeat this 
process, until the number of vertices falls below n0, at which point we can find a perfect 
matching by a constant-time brute force search.

The problem with this naive attempt is that as we remove edges, the minimum code-
gree may become too low to apply Procedure DeterminePM, and then the process cannot 
continue. To motivate the solution to this problem, suppose that we have oracle access 
to a uniformly random edge from some perfect matching. Such an edge is safe, and if 
we repeatedly remove such random edges, standard large deviation estimates show that 
with high probability the minimum codegree condition is preserved (replacing γ by γ/2, 
say). As an aside, we note that since Linear Programming has a polynomial time algo-
rithm, we can construct a distribution (pe) on the safe edges such that 

∑
e:x∈e pe = k/n

for every vertex x; using this distribution instead of the oracle provides a randomised 
algorithm for finding a perfect matching.

Our actual algorithm is obtained by derandomising the oracle algorithm. Instead 
of a minimum codegree condition, we bound the sum of squares of codegree ‘deficien-
cies’, which is essentially the condition (codeg) of Setup 1.7. We also need to introduce 
the vertex degree condition (deg), otherwise we do not have an effective bound on the 
number of partitions P in Lemma 2.2. Conditions (i) and (ii) in the following lemma 
effectively serve as proxies for (codeg) and (deg) respectively. Note that by H − e we 
mean the k-graph obtained from H by deleting all vertices of e and all edges incident to 
them.
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Lemma 2.4. Suppose that 1/n 	 ε 	 γ 	 1/k, that k ≥ 3 and that H is a k-graph on 
n vertices. For each set A of k − 1 vertices of H let tA = max(0, (1/k + γ)n − dH(A)). 
Suppose that

(i)
∑

A∈
(V (H)

k−1
) t2A < εγ2nk+1/4 + 3knk,

(ii) nk−1/3k! − δ1(H) +
∑

A∈
(V (H)

k−1
) t2A√

εγ2n2 <
√
εnk−1,

(iii) H contains a perfect matching.

Then we can find, in time at most O(n3k2−7k), an edge e ∈ H such that (i), (ii) and 
(iii) also hold for H − e with n − k in place of n.

The proof of Lemma 2.4 involves messy calculations, so we defer the full proof until 
Section 9 and for now just describe the idea. While δ1(H) > nk−1/3k! we only need 
to maintain condition (i); then an averaging argument shows that the required edge 
exists. On the other hand, if there is a vertex of small degree we can remove any edge 
containing it: this so greatly decreases 

∑
A∈

(V (H)
k−1

) t2A as to compensate for any further 
decrease in δ1(H).

Proof of Theorem 1.1. We begin by running Procedure DeterminePM to confirm that H
contains a perfect matching; if it does not, then we obtain a 2k(k− 3)-certificate for H, 
which by Theorem 1.10 is a certificate that no perfect matching exists. If H does contain 
a perfect matching, then we repeatedly apply Lemma 2.4 to delete edges of H (along 
with their vertices). Initially, condition (iii) of Lemma 2.4 holds by assumption, and 
conditions (i) and (ii) hold as the codegree assumption implies tA = 0 for any (k−1)-set 
A and δ1(H) ≥ k−1( n

k−1
)
. Since Lemma 2.4 ensures that its conditions are preserved 

after an edge is deleted, we may repeat until n is too small for further application of 
Lemma 2.4. At this point the number of vertices remaining in H is bounded by a constant 
depending only on ε, γ and k (this follows from the definition of 	), so we can use the 
brute-force algorithm to find a perfect matching in the remainder of H in constant time. 
Together with the deleted edges this forms a perfect matching in H. Since k vertices 
are deleted from H with each application of Lemma 2.4, at most n/k applications are 
required in total. Thus the total running time of the algorithm is O(n3k2−7k+1). �
3. Outlines of the proofs

In this section we briefly sketch the proof of Theorem 1.10. The easier direction is 
that if there is a perfect matching then there is no 2k(k − 3)-certificate. Let H be a 
k-graph as in Setup 1.7 that contains a perfect matching M∗. To show that there is no 
2k(k − 3)-certificate for H, it suffices to show that every 2k(k − 3)-far full pair (P, L)
for H is soluble. To accomplish this, we first show that L is a subgroup of LP

max with 
index at most |P|. Then by a simple application of the pigeonhole principle, we can find 
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a matching M in H of size at most |P| −1 for which iP(M) lies in the same coset of L in 
LP

max as iP(M∗). Since iP(V (H) \V (M∗)) = 0 ∈ L we deduce that iP(V (H) \V (M)) ∈ L, 
and so M solves (P, L).

Let us now turn our attention to the remaining implication of the theorem, i.e. that if 
every 2k(k−3)-far full pair is soluble then there is a perfect matching. We reduce this to 
an easier version of the theorem in which we assume that every full pair is soluble. The 
proof of this reduction relies on properties of subsequence sums in abelian groups, that 
(roughly speaking) allow us to convert any insoluble full pair into a 2k(k − 3)-far full 
pair by merging parts. To prove the easier version, we begin by identifying a canonical 
partition P of V (H): we choose P to be ‘robustly maximal’ with respect to H, which 
roughly speaking means that it is an approximate divisibility barrier with no other 
approximate divisibility barrier ‘hidden’ inside. By reassigning a small number of vertices 
to different parts we can further ensure that every vertex lies in many edges e ∈ H with 
iP(e) ∈ L. We will see that (P, L) is a full pair, so by our assumption it has a solution M . 
Our key lemma will show that under these conditions H \V (M) has a perfect matching, 
which together with M forms a perfect matching in H.

We prove the key lemma by reducing it to a partite version, using a random k-partition 
of H. Thus for much of the paper we work with a k-partite k-graph H whose vertex 
classes each have size n. Our codegree conditions will apply only to (k − 1)-sets which 
contain at most one vertex from any vertex class. We will work with the ‘μ-robust’ 
edge-lattice Lμ

P(H), which is defined similarly to LP(H), except that we require many 
(μ|V (H)|k) edges of a given index vector for it to be included in the generating set (see 
Definition 4.1).

A key idea in the proof of is that of splitting H into a number of k-partite k-graphs, 
each of which satisfies a stronger version of the properties of H. More precisely, if almost 
all partite (k − 1)-sets of vertices of H have degree at least n/� + γn and Lμ

P(H) is 
transferral-free, then we can find a set of k-partite subgraphs whose vertex sets partition 
V (H), such that each satisfies a stronger codegree condition: almost all partite (k−1)-sets 
have degree at least 1/(� − 1) proportion of the size of each vertex class. By induction 
on � we will obtain a perfect matching in each subgraph, which together give a perfect 
matching in H.

3.1. An analogue for tripartite 3-graphs

To illustrate this idea better, we now outline the proof of an analogous result to 
Theorem 1.5 for 3-partite 3-graphs. Indeed, let H be a 3-partite 3-graph with vertex 
classes V1, V2 and V3 each of size n. Suppose that any partite pair in H has codegree at 
least (1/3 +γ)n. We shall prove that either H contains a perfect matching, or V (H) can 
be partitioned into two parts A and B such that every edge of H has an even number 
of vertices in A, but |A| is odd (i.e. there is a divisibility barrier).

We begin by applying Theorem 4.6 to H. This implies that either H contains a perfect 
matching (in which case we are done) or that there is a partition P of V (H) into parts of 
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size at least (1/3 + γ/2)n which refines the 3-partition of V (H) and is such that Lμ
P(H)

is incomplete and transferral-free. Note that this means that P refines each vertex class 
Vi into at most two parts; in fact, it is not hard to see that P must partition each vertex 
class Vi into precisely two parts, W 1

i and W 2
i .

We now decompose H into eight 3-partite subgraphs (Hijk)i,j,k∈[2], where Hijk con-
sists of all edges of H which contain one vertex from each of W i

1, W
j
2 and W k

3 . So 
every edge of H lies in precisely one subgraph Hijk. Since Lμ

P(H) is transferral-free, we 
may assume without loss of generality that almost all of the edges of H lie in one of 
H111, H122, H212 or H221 (the remaining subgraphs have very low density). As described 
earlier, we now observe that almost all partite pairs in each subgraph have codegree at 
least 1/2 + γ/2 proportion of the size of the remaining vertex class in that subgraph. 
Indeed, our assumption on H tells us that any pair of vertices xy with x ∈ W 1

1 and 
y ∈ W 1

2 has at least (1/3 +γ)n neighbours in V3 (i.e. vertices z ∈ V3 such that xyz ∈ H). 
But since H112 has very low density, very few such pairs xy can have many neighbours 
in W 2

3 . So almost all of these pairs must have (1/3 +γ/2)n ≥ (1/2 +γ/2)|W31| neighbours 
in W31. So H111 satisfies a significantly stronger codegree condition than that satisfied 
by H, ignoring the fact that a small number of pairs, which we will call bad pairs, fail 
this codegree condition. A similar argument applies to H122, H212 and H221.

At this point we delete a (small) matching M in H to achieve two aims. Firstly, M
will cover all vertices which lie in many bad pairs. Since there are few bad pairs there 
will only be a small number of such vertices. Secondly, after deleting the vertices covered 
by M there will be an even number of vertices remaining in W 2 := W 2

1 ∪W 2
2 ∪W 2

3 . This 
can be done unless |W 2| is odd and every edge of H intersects W 2 in an even number 
of vertices; in this case we are done, and H contains no perfect matching.

Now we delete the vertices covered by M from H; this only slightly weakens the 
codegree condition on H111, H122, H212 and H221 since M does not contain many 
edges. Then we choose a random partition of the remaining vertices of H into subsets 
S111, S122, S212 and S221 under the constraints that (i) each subset contains equally many 
vertices from each vertex class Vj , and (ii) Sijk ⊆ W i

1 ∪W j
2 ∪W k

3 . Such partitions exist 
since each part W i

j has size greater than n/3 and |W 2| is even (this is a special case of 
Proposition 6.13). Let H ′

111 be the 3-partite subgraph of H induced by S111, and define 
H ′

122, H ′
212, and H ′

221 similarly. The fact that the partition was chosen randomly implies 
that, in each subgraph, almost every partite pair has codegree at least (1/2 + γ/2)n′, 
where n′ is the number of vertices in each part, and no vertex lies in many bad pairs. 
It follows by [1, Theorem 2] (or by Theorem 4.6) that each subgraph contains a perfect 
matching; together with the deleted matching this yields a perfect matching in H.

3.2. The general case

The case k = 3 is particularly simple because there is only one maximal divisibility 
barrier; recall that for k ≥ 4, Construction 1.6 shows that a naive generalisation of 
Theorem 1.5 does not hold. For the general case of Theorem 1.10, we use the ideas 
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outlined in Section 3.1, but there are additional complications. Firstly, there are now 
many possibilities for the partition P returned by applications of Theorem 4.6. Secondly, 
multiple applications of the above technique are required to successively improve the 
codegree condition on the k-graphs into which H is decomposed.

These complications will be handled by our partite key lemma (Lemma 7.6), which 
can be seen as a variation on Theorem 4.6 specialised to k-partite k-graphs with vertex 
classes of size n in which almost all partite (k−1)-sets have codegree at least (1/� +γ)n, 
with two key differences. One is that, instead of the condition of Theorem 4.6 that 
L = Lμ

P(H) must be complete, we now only require that iP(V (H)) ∈ L. The other is 
that, whereas the condition of Theorem 4.6 must hold for any partition P of V (H) into 
sufficiently large parts, we now only require that iP(V (H)) ∈ L for a single ‘canonical’ 
partition P which meets two additional requirements.

Firstly, we require that every vertex must lie in many edges e ∈ H with iP(e) ∈ L. 
This condition can be seen as ensuring that each vertex of H lies in the ‘correct part’ 
of P. For example, consider the extremal example described in Construction 1.2. If we fix 
some small μ > 0 and move a single vertex v from part A to part B (but do not change 
the edge set of H), then the only edges whose index changes are the fewer than nk−1

edges which contain v. So Lμ
P(H) is unchanged, and H doesn’t have a perfect matching 

(since H itself is unchanged), but we now have iP(V (H)) ∈ Lμ
P(H), due to v being in 

the ‘wrong part’ of P. Secondly, we must assume that L is transferral-free. However this 
requirement, while necessary, is not sufficient, as the following example will show.

Construction 3.1. Fix k ≥ 5 and let P = {W1, W2} be a partition of V . Let Q be a 
refinement of P which divides W1 into V11 and V12 and W2 into V21 and V22. Suppose 
that |W1| is even, but that |V11 ∪ V21| is odd. Let H be the k-graph on V whose edges 
are precisely the k-subsets of V which contain an even number of vertices in W1 and an 
even number of vertices in V11 ∪ V21.

In Construction 3.1, Lμ
P(H) is transferral-free, δk−1(H) ≥ (1/k+γ)n and iP(V (H)) ∈

Lμ
P(H). Thus the conditions relating to P do not preclude the existence of a perfect 

matching, but the conditions relating to Q do. Indeed, H cannot contain a perfect 
matching, since it is a subgraph of the k-graph described in Construction 1.2, where 
A = V11 ∪ V21 and B = V12 ∪ V22. To avoid this kind of situation, we insist that there is 
no strict refinement Q of P into not-too-small parts such that Lμ

Q(H) is transferral-free. 
Note that the trivial partition into a single part satisfies this requirement if and only if 
H is not close to a divisibility barrier. In fact, we require the stronger property that for 
some μ′ 
 μ (i.e. even at a much weaker ‘detection threshold’) the lattice Lμ′

Q (H) is not 
transferral-free for any strict refinement Q of P into not-too-small parts. This property 
is ‘robust’ in the sense that when we delete a small number of vertices from H (as we 
will need to do), the property is preserved, albeit with weaker constants. (Section 5 is 
devoted to the study of robust maximality.) If P satisfies both of these conditions, then 
Lemma 7.6 states that H must contain a perfect matching.
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We prove Lemma 7.6 by induction on � by a similar argument to that in Section 3.1
(roughly speaking, there we reduced the � = 3 case to the � = 2 case, for k = 3). That 
is, we apply Theorem 4.6 to yield a perfect matching (in which case we are done), or a 
partition P of V (H) into parts of size at least (1/� + γ)n such that Lμ

P(H) is incomplete 
and transferral-free. For the base case of the induction we observe that the latter outcome 
is impossible for � = 2. Next, for each i ∈ IμP(H), we define Hi to be the ‘canonical’ 
induced subgraph of H on the union of the parts W ∈ P such that iW = 1, and Pi to be 
the restriction of P to V (Hi). By a similar argument to the previous section (formalised 
in Proposition 7.5), we find that each Hi satisfies a codegree condition similar to that 
on H, but with � − 1 in place of �. Our aim is then to find vertex-disjoint subgraphs 
Ĥi ⊆ Hi whose vertex sets partition V (H), each of which satisfies the conditions of 
Lemma 7.6 with the stronger codegree condition (� −1 in place of �). We can then apply 
the inductive hypothesis to find a perfect matching in each Ĥi; together these form a 
perfect matching in H.

To do this, we first take a robustly maximal refinement Qi of Pi for each i, and 
delete a small matching that covers all ‘bad’ vertices. We then need to ensure that our 
partition into subgraphs Hi satisfies iQi

(V (Ĥi)) ∈ Lμ
Qi

(Hi) for each i; accomplishing this 
is the most technical part of the proof. Observe that whether this condition is satisfied 
depends only on the values of |V (Ĥi) ∩ Y | for parts Y ∈ Qi. Thus we need to choose 
the sizes of the intersections V (Ĥi) ∩ Z for parts Z ∈ Q∩, where Q∩ is the ‘meet’ of 
the partitions {Qi | i ∈ I}. We achieve this in three stages. Firstly, in Claim 7.8, we 
choose rough targets for the size of each V (Ĥi); here we use a geometric method which 
relies on Farkas’ Lemma (Theorem 4.7). Secondly, in Claim 7.9, we choose how many 
vertices each Ĥi will take from each part of the ‘join’ Q∪ of the partitions Qi (this step 
deals with the problem illustrated by Construction 3.1). Thirdly, in Claim 7.10, we use 
Baranyai’s Matrix Rounding Theorem to refine this choice to obtain the intersection 
sizes we require. Finally, we choose the vertex set of each Ĥi at random with the given 
number of vertices from each part of Q∩. In Claim 7.11 we demonstrate that with high 
probability this random selection does indeed give subgraphs Ĥi to which we can apply 
the inductive hypothesis, completing the proof.

4. Preliminaries

This section contains theoretical background needed for the rest of the paper, organ-
ised into the following subsections: 4.1 Partitions, index vectors and lattices, 4.2 Hyper-
graph matching theory, 4.3 Convex geometry, 4.4 Baranyai’s Matrix Rounding Theorem, 
4.5 Concentration of probability.

4.1. Partitions, index vectors and lattices

We will frequently speak of a partition Q of a vertex set V . We use this term in 
a slightly non-standard way to mean a family of pairwise-disjoint subsets of V whose 
union is V (so it is possible for a part to be empty, though this will rarely be the 
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case). Furthermore, we implicitly fix an order on the parts of the partition, so we may 
consistently speak of, for example, the ith part of Q. Given V ′ ⊆ V , the restriction of 
Q to V ′, denoted Q[V ′], is the partition of V ′ with parts X ∩ V ′ for X ∈ Q.

Many of our results will apply specifically to partite k-graphs. Let P partition a set V . 
Then we say that a set S ⊆ V is P-partite if S has at most one vertex in any part of P. 
We say that a hypergraph H on V is P-partite if every edge of H is P-partite. In this case 
we refer to the parts of P as the vertex classes of H. Usually, we will consider k-graphs 
H which are k-partite, i.e. P-partite for some partition P of V (H) into k parts.

Given a k-graph H and a partition P of V (H), the lattice LP(H) in Definition 1.3
can be seen as ‘detecting’ where edges of H lie with respect to P. However, the infor-
mation conveyed by LP(H) is by itself insufficient, as shown by the k-graph formed in 
Construction 1.6. Indeed, in that instance LP(H) was complete, but some index vectors 
did not represent enough edges: specifically, H did not contain two disjoint edges with 
different numbers of vertices in A and B modulo 3. Thus in the proof of Theorem 1.10
we will frequently want to know which index vectors are represented by many edges; this 
is achieved by the following definition.

Definition 4.1 (Robust edge-lattices). Let H be a k-graph and P be a partition of V (H)
into d parts. Then for any μ > 0,

(i) IμP(H) denotes the set of all i ∈ Z
d such that at least μ|V (H)|k edges e ∈ H have 

iP(e) = i.
(ii) Lμ

P(H) denotes the lattice in Zd generated by IμP(H).

The constant μ can be viewed as the ‘detection threshold’: it specifies the number 
of edges of a given index which are required for this index to contribute to Lμ

P(H). 
For any μ < μ′ it is clear that Lμ′

P (H) ⊆ Lμ
P(H) ⊆ LP(H). Next we show that robust 

edge-lattices are insensitive to small perturbations.

Definition 4.2. Let P be a partition of a set V of size n and H be a k-graph on V .

(i) We say that a k-graph H ′ on a set V ′ ⊆ V is α-close to H if we have |V ′| ≥ (1 −α)n
and |H�H ′| ≤ αnk.

(ii) We say that a partition P ′ of a set V ′ ⊆ V is α-close to P if for some d we have |P ′| =
|P| = d and 

∑
i∈[d] |Vi�V ′

i | ≤ αn, where P = (V1, . . . , Vd) and P ′ = (V ′
1 , . . . , V

′
d).

Note that Definition 4.2(i) is asymmetric; that is, it does not imply that H is α-close 
to H ′.

Proposition 4.3. Under the setup of Definition 4.2, we have IμP(H) ⊆ Iμ−2α
P′ (H ′), so 

Lμ
P(H) ⊆ Lμ−2α

P′ (H ′). Also, if μ ≤ 1/k then IμP′(H ′) ⊆ Iμ−3α
P (H), so Lμ

P′(H ′) ⊆
Lμ−3α
P (H).
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Proof. Consider i ∈ IμP(H). By definition, at least μnk edges e ∈ H have iP(e) = i. Of 
these edges, at most αnk are not in H ′, and at most αnk of those in H ′ have iP′(e) �= i. 
Therefore i ∈ Iμ−2α

P′ (H ′). Similarly, consider i ∈ IμP′(H ′). At least μ(n −αn)k > (μ −α)nk

edges e ∈ H ′ have iP′(e) = i, at most αnk are not in H, and at most αnk have iP(e) �= i. 
Therefore i ∈ Iμ−3α

P (H). �
Let P and P ′ be partitions of a set V . We say that P ′ refines P if every part of P ′ is 

a subset of a part of P.

Definition 4.4. Let P and P ′ be partitions of a set V such that P refines P ′. Let i be an 
index vector with respect to P. Then the projection (i | P ′) of i on P ′ is defined by

(
i
∣∣ P ′)

W
=

∑
X∈P,X⊆W

iX

for each W ∈ P ′. We also write (I | P ′) = {(i | P ′) : i ∈ I} when I is a set of index 
vectors with respect to P.

As an example under the setup of Definition 4.4, note that if S ⊆ V then (iP(S) | P ′) =
iP′(S).

Our next result concerns the behaviour of edge-lattices with respect to projection. An 
informal statement is that if Q refines P, then the projection of a robust edge-lattice in 
Z
Q is contained in a robust edge-lattice in ZP , and a ‘weak converse’ holds, namely that 

any vector in a robust edge-lattice in ZP is the projection of some vector in a robust 
edge-lattice in ZQ.

Proposition 4.5. Let P and Q be partitions of a set V of n vertices such that Q refines P, 
and let H be a k-graph on V .

(i) If i ∈ Lμ
Q(H) then (i | P) ∈ Lμ

P(H).
(ii) For any i ∈ Lμ

P(H) there exists i′ ∈ L
μ/m
Q (H) such that (i′ | P) = i, where m :=

(k + 1)|Q|−|P|.

Proof. For (i), consider i ∈ IμQ(H). At least μnk edges e ∈ H have iQ(e) = i. Each such 
edge has iP(e) = (i | P), so (i | P) ∈ IμP(H). Since projection is linear the result follows.

For (ii), consider i ∈ IμP(H). At least μnk edges e ∈ H have iP(e) = i. Note that there 
are at most m index vectors i′ with respect to Q which satisfy (i′ | P) = i, since for every 
part X ∈ P which contains r parts Y1, . . . , Yr of Q there are at most (k + 1)r−1 ways 
of partitioning iX into i′Y1

, . . . , i′Yr
. So by the pigeonhole principle there is some i′ with 

(i′ | P) = i for which at least μnk/m edges e ∈ H have iQ(e) = i′, that is, i′ ∈ I
μ/m
Q (H). 

Again the result follows by linearity of projection. �



P. Keevash et al. / Advances in Mathematics 269 (2015) 265–334 283
4.2. Hypergraph matching theory

In this subsection we describe a central theorem from [17] that plays a key role in 
this paper. First we need the following definitions. A k-complex J is a hypergraph such 
that ∅ ∈ J , every edge of J has size at most k, and J is closed downwards, that is, if 
e ∈ J and e′ ⊆ e then e′ ∈ J . We write Jr to denote the r-graph on V (J) formed by 
edges of size r in J . Also, we use the following notion of partite degree in a multipartite 
k-complex from [17]. Let P partition a set V into k parts V1, . . . , Vk, and let J be a 
P-partite k-complex on V . For each 0 ≤ j ≤ k − 1 the partite minimum j-degree δ∗j (J)
is defined to be the largest m such that any j-edge e has at least m extensions to a 
(j + 1)-edge in any part not used by e, i.e.

δ∗j (J) := min
e∈Jj

min
i:e∩Vi=∅

∣∣{v ∈ Vi : e ∪ {v} ∈ J
}∣∣.

The partite degree sequence is then δ∗(J) = (δ∗0(J), . . . , δ∗k−1(J)). Note that we suppress 
the dependence on P in our notation: this will always be clear from the context. Minimum 
degree sequence conditions on a k-complex take the form δ∗(J) ≥ (a0, . . . , ak−1), where 
the inequality is to be interpreted pointwise. Finally, observe that if J is a P-partite 
k-complex on V , and Q is a partition of V which refines P into d parts, then every edge 
e ∈ Jk has (iQ(e) | P) = iP(e) = 1. So we say that a lattice L ⊆ Z

d is complete with 
respect to Q if i ∈ L for every i ∈ Z

d with (i | P) = 1, and incomplete with respect to Q
otherwise. The following is a simplified form of [17, Theorem 2.13].

Theorem 4.6. (See [17].) Suppose that 1/n 	 μ 	 γ, 1/k. Let P ′ partition a set V into 
parts V1, . . . , Vk each of size n. Suppose that J is a P ′-partite k-complex on V with

δ∗(J) ≥
(
n,

(
k − 1
k

+ γ

)
n,

(
k − 2
k

+ γ

)
n, . . . ,

(
1
k

+ γ

)
n

)
.

Then either Jk contains a perfect matching, or Jk is close to a divisibility barrier, in 
that there is some partition P of V (J) into d ≤ k2 parts of size at least δ∗k−1(J) − μn

such that P refines P ′ and Lμ
P(Jk) is incomplete with respect to P ′ and transferral-

free.

4.3. Convex geometry

Given points v1, . . . , vr ∈ R
d, we define their positive cone as

PC
(
{v1, . . . ,vr}

)
:=

{∑
j∈[r]

λjvj : λ1, . . . , λr ≥ 0
}
.

A classical result, commonly known as Farkas’ Lemma, shows that any point v outside of 
the positive cone of these points can be separated from them by a separating hyperplane.
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Theorem 4.7 (Farkas’ Lemma). Suppose v ∈ R
d \ PC(Y ) for some finite set Y ⊆ R

d. 
Then there is some a ∈ R

d such that a · y ≥ 0 for every y ∈ Y and a · v < 0.

We also need the following (slightly rephrased) simple proposition from [17].

Proposition 4.8. (See [17], Proposition 4.8.) Suppose that 1/s 	 1/r, 1/d. Let X ⊆
Z
d ∩ Bd(0, r), and let LX be the sublattice of Zd generated by X. Then for any vector 

x ∈ LX ∩ Bd(0, r) we may choose integers ai with |ai| ≤ s for each i ∈ X such that 
x =

∑
i∈X aii.

4.4. Baranyai’s Matrix Rounding Theorem

The proof of Lemma 7.6 (on which the key lemma, Lemma 7.1, relies) will use 
Baranyai’s Matrix Rounding Theorem [4] (see also [33, Theorem 7.5]).

Theorem 4.9 (Baranyai’s Matrix Rounding Theorem). Let A be a real matrix. Then there 
exists an integer matrix B whose entries, row sums, column sums and the sum of all the 
entries are the entries, row sums, column sums and the sum of all the entries respectively 
of A, each rounded either up or down.

4.5. Concentration of probability

We will need the following inequalities, known as Chernoff bounds, as applied to 
sums of Bernoulli random variables (i.e. random variables which take values in {0, 1}) 
and hypergeometric random variables. The hypergeometric random variable X with 
parameters (N, m, n) is defined as X = |T ∩ S|, where S ⊆ [N ] is a fixed set of size m, 
and T ⊆ [N ] is a uniformly random set of size n. If m = pN then X has mean pn. The 
following is [13, Theorem 2.8].

Lemma 4.10. Let X be a sum of independent Bernoulli random variables and 0 < a < 3/2. 
Then P(|X − EX| ≥ aEX) ≤ 2 exp (−a2

3 EX).

Corollary 4.11. Let X be a sum of independent hypergeometric random variables and 
0 < a < 3/2. Then P(|X − EX| ≥ aEX) ≤ 2 exp (−a2

3 EX).

Proof. We follow Remark 2.11 of [13]. By Lemma 1 of [34], each of the hypergeomet-
ric random variables may be expressed as a sum of independent (but not identically 
distributed) Bernoulli random variables. Hence Lemma 4.10 implies the result. �

We will also need a form of the well-known Azuma–Hoeffding inequality. A se-
quence (X0, . . . , Xn) of random variables is a martingale if E(|Xj |) is finite and 
E(Xj |X0, . . . , Xj−1) = Xj−1 for any j ∈ [n]. The following is (a weaker form of) [13, 
Theorem 2.25].
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Theorem 4.12. Let A0, A1, . . . , An be a martingale such that |Ai − Ai−1| ≤ C for every 
i ∈ [n]. Then P(|An −A0| > tC) ≤ 2 exp(−t2/2n) for any t > 0.

We will apply Theorem 4.12 via the following corollary.

Corollary 4.13. Let c > 0 and H be a k-graph on n vertices with |H| ≥ cnk. Let Q be 
a partition of V (H) and let (nZ)Z∈Q be integers such that c|Z| ≤ nZ ≤ |Z| for each 
Z ∈ Q. Suppose that S ⊆ V (H) is chosen uniformly at random subject to the condition 
that |S ∩ Z| = nZ for each Z ∈ Q. Then with high probability |H[S]| = (1 ± c)E|H[S]|.

Proof. We consider each S ∩ Z to be chosen as the first nZ elements of a random 
permutation πZ of Z. We apply Theorem 4.12 with Ai = E(|H[S]| | Fi), where Fi

is the algebra of events generated by revealing the values of the permutations on the 
first i elements of V (H). Note that A0 = E|H[S]| and An = |H[S]|. Also, |H[S]| is 
‘2nk−1-Lipschitz’, in that its value can change by at most 2nk−1 when any transposition 
is applied to any of the permutations. It is not hard to deduce that |Ai−Ai−1| ≤ 2nk−1

for all i ∈ [n]. Finally, we claim that E|H[S]| ≥ (c/2)k+1nk. Indeed, at least cnk/2 edges 
of H have at most one vertex within any part of size less than cn/2, and for any such 
edge e, we have P(e ⊆ S) ≥ (c/2)k. So by Theorem 4.12, applied with C = 2nk−1 and 
t = (c/2)k+2n, with high probability |H[S]| and E|H[S]| do not differ by more than 
cE|H[S]|. �
5. Robust maximality

Given a k-graph H, there may be many approximate divisibility barriers, i.e. partitions 
P of V (H) such that Lμ

P(H) is incomplete for some constant μ > 0; for example, any 
refinement of such a partition has this property. In this section we will identify a canonical 
such partition, which is ‘robustly maximal’. The definition at which we will arrive has a 
number of advantages. Firstly, any approximate divisibility barrier in H will imply the 
existence of at least one robustly maximal partition P. Secondly, we can give a condition 
which implies the existence of a perfect matching in H and refers to index vectors with 
respect to P alone. Thirdly, as the term ‘robustly’ suggests, the property is insensitive 
to small modifications. All of these properties will be stated precisely and proved later 
in the section.

To build up to the definition, we first discuss one way to avoid taking a partition 
that is too fine. Recall that a lattice L ⊆ Z

d is transferral-free if L does not contain 
any difference of unit vectors ui − uj with i, j ∈ [d] and i �= j. Given any approximate 
divisibility barrier, we can repeatedly merge parts to obtain one with a transferral-free 
robust edge-lattice, which we may consider to be its ‘simplest’ version. Indeed, let H be a 
k-graph and consider a partition P of V (H) such that Lμ

P(H) is incomplete and contains 
uX − uY , for some distinct parts X, Y of P. Let P ′ be the partition formed from P by 
merging the parts X and Y . Then L(k+1)μ

P′ (H) is also incomplete. Indeed, if this is not 



286 P. Keevash et al. / Advances in Mathematics 269 (2015) 265–334
the case, then for any i ∈ LP
max we have (i | P ′) ∈ L

(k+1)μ
P′ (H), so by Proposition 4.5(ii) 

there is i′ ∈ Lμ
P(H) with (i′ | P ′) = (i | P ′). Since uX − uY ∈ Lμ

P(H) we deduce that 
i ∈ Lμ

P(H). However, this implies that Lμ
P(H) is complete, which is a contradiction.

Next we recall from Construction 3.1 that a transferral-free approximate divisibility 
barrier may have another one ‘hidden’ inside it, so we will require a maximality property 
to rule this out. A first attempt might be to say that P should be maximal such that 
Lμ
P(H) is transferral-free, but then we would obtain a rather fragile property that is 

sensitive to small modifications of P, μ and H. Indeed, in the course of our proof we will 
need to remove small matchings from H in order to cover vertices which are exceptional 
in various ways. We also want the property to be preserved with high probability by 
taking an induced subgraph on a randomly chosen set of vertices. These requirements 
lead naturally to the following key definition.

Definition 5.1. Let H be a k-graph. We say that a partition P of V (H) is (c, c′, μ, μ′)-ro-
bustly maximal with respect to H if

(i) Lμ
P(H) is transferral-free and all parts of P have size at least c|V (H)|,

(ii) Lμ′

P′(H) is not transferral-free for any partition P ′ of V (H) with parts of size at least 
c′|V (H)| that strictly refines P.

We will see in the key lemma that robustly maximal partitions are ‘canonical’, in 
that they capture all necessary information on approximate divisibility barriers. The 
next proposition allows us to refine any transferral-free approximate divisibility barrier 
to obtain a robustly maximal partition. (Note that if P is trivial and P ′ = P then H
does not have any approximate divisibility barrier.)

Proposition 5.2. Let k ≥ 2 be an integer and c > 0 be a constant. Let s = �1/c� and fix 
constants 0 < μ1 < · · · < μs+1 and c1, . . . , cs+1 ≥ c. Suppose that H is a k-graph on n
vertices, and P is a partition of V (H) with parts of size at least c1n such that Lμ1

P (H) is 
transferral-free. Then there exists t ∈ [s] and a partition P ′ of V (H) that refines P and 
is (ct, ct+1, μt, μt+1)-robustly maximal with respect to H.

Proof. We start by setting P(1) = P, then we proceed iteratively. At step t, if there is 
a partition P+ which strictly refines P(t) into parts of size at least ct+1n such that the 
lattice Lμt+1

P+ (H) is transferral-free, then we let P(t+1) = P+. Otherwise we terminate 
with output P(t). By definition each P(t) refines P and has parts of size at least ctn. 
Furthermore, if the algorithm terminates at time t, then Lμt

P(t)(H) is transferral-free by 
choice of P(t), but for any P+ which strictly refines P(t) into parts of size at least ct+1n

the lattice Lμt+1
P+ (H) is not transferral-free. That is, P(t) is (ct, ct+1, μt, μt+1)-robustly 

maximal with respect to H. It remains to show that this algorithm must terminate with 
t ≤ 1/c. Indeed, |P(i)| > |P(i−1)| for i ≥ 2, but P(t) can have at most 1/c parts, since 
each part has size at least ctn ≥ cn. �
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Next we show that robust maximality is insensitive to small modifications.

Lemma 5.3. Suppose that 1/n 	 μ, μ′, α 	 c′, c, 1/k. Let P be a partition of a set V of 
size n and H be a k-graph on V . Let V ′ ⊆ V , let P ′ be a partition of V ′ that is α-close 
to P, and let H ′ be a k-graph on V ′ that is α-close to H. If P is (c, c′, μ, μ′)-robustly 
maximal with respect to H then P ′ is (c − α, c′ + 3α, μ + 3α, μ′ − 2α)-robustly maximal 
with respect to H ′.

Proof. Since P has parts of size at least cn, and P ′ is α-close to P, each part of P ′ has 
size at least (c − α)n. Also, Proposition 4.3 implies that Lμ+3α

P′ (H ′) ⊆ Lμ
P(H). Since 

Lμ
P(H) is transferral-free, so is Lμ+3α

P′ (H ′). All that remains is to show that there is no 
partition P+ of V ′ which strictly refines P ′ into parts of size at least (c′ + 3α)|V ′| such 
that the lattice Lμ′−2α

P+ (H ′) is transferral-free.
Suppose for a contradiction that some such P+ exists, with d parts P+

1 , . . . , P+
d . We 

use P+ to form a partition P∗ of V whose parts P∗
1 , . . . , P∗

d correspond to those of P+. 
Note that all but at most αn vertices u ∈ V (H) are members of V (H ′) which lie in the 
same part of P ′ as P. We include each such vertex u in the part P∗

j corresponding to 
the part P+

j of P+ which contains u. Next, we assign each of the at most αn remain-
ing vertices v ∈ V (H) to an arbitrary part of P∗ which is a subset of the part of P
containing v. Observe that P∗ is then a refinement of P. Furthermore, P+ is α-close 
to P∗, so Lμ′

P∗(H) ⊆ Lμ′−2α
P+ (H ′) by Proposition 4.3, and this implies that Lμ′

P∗(H) is 
transferral-free. However, P∗ has parts of size at least (c′ + 3α)|V ′| − αn ≥ c′n, so the 
existence of P∗ contradicts the robust maximality of P with respect to H, completing 
the proof. �

Our next result shows that with robust maximality we can improve the ‘weak converse’ 
of projection from Proposition 4.5 to a (genuine) converse (with weaker parameters).

Proposition 5.4. Suppose that 1/n 	 μ 	 μ′ 	 c′, c, 1/k. Let H be a k-graph on n
vertices, P be a partition of V (H) that is (c, c′, μ, μ′)-robustly maximal with respect to H, 
and Q be a partition of V (H) which refines P into parts of size at least c′n. Suppose 
that i ∈ Lμ′

P (H). Then i′ ∈ Lμ
Q(H) for any index vector i′ with respect to Q such that 

(i′ | P) = i.

Proof. Let p be the number of parts of P. We prove the following statement by induction 
on q: if Q is a refinement of P into q parts of size at least c′n and i′ is an index vector 
with respect to Q such that (i′ | P) = i then i′ ∈ L

μ′/(k+1)q−p

Q (H). The base case 

q = p is trivial, since then we must have Q = P, so i′ = i ∈ Lμ′

Q (H) by assumption. 
Assume therefore that we have proved the statement for any refinement Q′ of P into 
q − 1 parts of size at least c′n, and that Q refines P into q parts of size at least c′n. 
Since P is (c, c′, μ, μ′)-robustly maximal we know that Lμ′

Q (H) is not transferral-free, 
and so there are distinct parts X, X ′ ∈ Q such that uX − uX′ ∈ Lμ′

Q (H). Note that 
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(uX − uX′ | P) ∈ Lμ′

P (H) by Proposition 4.5(i); since Lμ′

P (H) is transferral-free, this 
implies that (uX − uX′ | P) = 0 and hence that X and X ′ are contained in the same 
part of P. Let Q′ be formed from Q by merging X and X ′ into a single part. Then Q′ is 
a refinement of P into q− 1 parts of size at least c′n, so (i′ | Q′) ∈ L

μ′/(k+1)q−1−p

Q′ (H) by 

our inductive hypothesis. By Proposition 4.5(ii) there exists i∗ ∈ L
μ′/(k+1)q−p

Q (H) with 
(i∗ | Q′) = (i′ | Q′). Now i∗ differs from i′ only in the co-ordinates corresponding to X

and X ′; as uX − uX′ ∈ Lμ′

Q (H) ⊆ L
μ′/(k+1)q−p

Q (H) it follows that i′ ∈ L
μ′/(k+1)q−p

Q (H), 
completing the induction. Since Q as in the statement can have at most 1/c′ parts, we 

conclude that i′ ∈ L
μ′/(k+1)1/c

′

Q (H) ⊆ Lμ
Q(H). �

Another important property of robust maximality is that it is preserved by random 
selection.

Lemma 5.5. Suppose that 1/n 	 μ 	 μ′ 	 c′, c 	 η, 1/k. Let H be a k-graph on n
vertices and P be a partition of V (H) that is (c, c′, μ, μ′)-robustly maximal with respect 
to H. Let P ′ be a partition of V (H) that refines P and let (nZ)Z∈P′ be integers such 
that η|Z| ≤ nZ ≤ |Z| for each Z ∈ P ′. Suppose that S ⊆ V (H) is chosen uniformly 
at random subject to the condition that |S ∩ Z| = nZ for each Z ∈ P ′. Then with high 
probability P[S] is (ηc, 3c′/η, μ/c, (μ′)3)-robustly maximal with respect to H[S].

The proof of this lemma requires the weak hypergraph regularity lemma, so we defer 
the details to Section 9.

6. Fullness

This section develops the theory of full lattices. In the first subsection we give a 
characterisation in terms of finite abelian groups. In the second subsection we give an 
equivalent definition of solubility, via an application of the pigeonhole principle that 
will also be useful in later sections. In the last subsection we consider a partite form of 
fullness that will be needed for the partite form of our key lemma.

6.1. The structure of full lattices

In this subsection we characterise full lattices in terms of finite abelian groups. Recall 
that a set I of k-vectors of dimension d is full if for every (k− 1)-vector v there is some 
i ∈ [d] such that v + ui ∈ I. Recall also that a lattice L is full if it contains a full set I
of k-vectors and is transferral-free. We start by showing that L is generated by I, so is 
an edge-lattice.

Lemma 6.1. Suppose k ≥ 3 and L is a full lattice in ZP , where P is a partition of a 
set V . Let I ⊆ L be a full set of k-vectors and let L′ be the lattice generated by I. Then
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(i) for any X1, X ′
1, X2 ∈ P, there exists X ′

2 ∈ P such that uX1 +uX2 −uX′
1
−uX′

2
∈ L′,

(ii) for any i ∈ LP
max and X ∈ P there is X ′ ∈ P such that i − uX + uX′ ∈ L′, and

(iii) L = L′ is an edge-lattice.

Proof. To prove (i), we start by fixing any (k − 3)-vector i′. Since I is full, we can find 
Y ∈ P such that i′ + uX1 + uX2 + uY ∈ I. Similarly, we can find X ′

2 ∈ P such that 
i′ + uX′

1
+ uY + uX′

2
∈ I. Then uX1 + uX2 − uX′

1
− uX′

2
is the difference of these two 

index vectors and hence lies in L′.
For (ii), consider i′ ∈ L′ that minimises 

∑
Z∈P |i′Z − iZ | subject to 

∑
Z∈P i′Z =∑

Z∈P iZ . We claim that 
∑

Z∈P |i′Z − iZ | ≤ 2. Indeed, if not we may choose X1, X ′
1, X2

such that either

(a) X1 �= X2, iX1 − i′X1
> 0, iX2 − i′X2

> 0 and iX′
1
− i′X′

1
< 0, or

(b) X1 = X2, iX1 − i′X1
> 1 and iX′

1
− i′X′

1
< 0.

In either case, we may apply (i) to choose X ′
2 ∈ P such that i∗ = uX1 + uX2 − uX′

1
−

uX′
2
∈ L′. Then i′+i∗ contradicts our choice of i′. Thus the claim holds, so i′ = i −uY +u′

Y

for some Y, Y ′ ∈ P. By (i) again, we can choose X ′ such that i∗∗ = uX + uY − uX′ −
uY ′ ∈ L′. Therefore i + uX − uX′ = i′ + i∗∗ ∈ L′, as claimed.

To see (iii), consider any i ∈ L. By (ii) we have i′ = i −uX + uX′ ∈ L′ for some parts 
X and X ′. Then uX − uX′ = i − i′ ∈ L. Since L is transferral-free we have X = X ′. 
Therefore i = i′ ∈ L′. �

Full lattices have the following maximality property.

Proposition 6.2. Suppose L and L′ are edge-lattices in Zd such that L is full, L′ is 
transferral-free and L ⊆ L′. Then L = L′.

Proof. Let I and I ′ be full generating sets for L and L′. Suppose that L �= L′, so I �= I ′. 
Choose i ∈ I ′ \ I and write i = i′ + ui, where i′ is a (k − 1)-vector and i ∈ [d]. Since I
is full, we have i′ + uj ∈ I for some j ∈ [d]. Note that j �= i, as i /∈ I. But I ⊆ L′, so L′

contains the transferral ui−uj = i −(i′+uj). This contradiction shows that L = L′. �
Next we define a group of cosets that is naturally associated with any lattice.

Definition 6.3. Suppose L is an edge-lattice in ZP , where P is a partition of a set V .

(i) The coset group of (P, L) is G = G(P, L) = LP
max/L.

(ii) For any i ∈ LP
max, the residue of i in G is RG(i) = i + L. For any A ⊆ V of size 

divisible by k, the residue of A in G is RG(A) = RG(iP(A)).

Next we show that |G(P, L)| = |P| when L is full and k ≥ 3. Note that this may not 
hold if k = 2, as shown by the example where |P| = 2 and L is generated by (1, 1).
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Lemma 6.4. Suppose k ≥ 3 and L is a full lattice in ZP , where P is a partition of a 
set V . Then |G(P, L)| = |P|.

Proof. Fix any (k− 1)-vector i′. We claim that every coset L + v of L in LP
max contains 

an index vector i′ +uY for some Y ∈ P. To see this, note that since L is full there exists 
X ∈ P such that i′ + uX ∈ L. Also, by Lemma 6.1(ii) we can choose Y ∈ P such that 
−v − uX + uY ∈ L. But now i′ + uY = (i′ + uX) + (−v − uX + uY ) + v ∈ L + v, as 
claimed. Furthermore, L +v cannot contain i′ +uY and i′ +uY ′ for distinct parts Y , Y ′

of P, as then uY − uY ′ ∈ L, contradicting the fact that L is transferral-free. Therefore 
|G(P, L)| = |P|. �

Now we describe the structure of L in terms of its coset group. If G is an abelian 
group, g ∈ G and r is a non-negative integer then we write rg for the sum of r copies 
of g. We show that any full lattice arises from the following construction.

Construction 6.5. Let G be an abelian group. Let P be a partition of a set V into |G|
parts, identified with G. Fix g0 ∈ G. Let I(G, g0) be the set of k-vectors i ∈ LP

max with

∑
g∈G

igg = g0.

Let L(G, g0) be the lattice generated by I(G, g0).

Lemma 6.6. I(G, g0) and L(G, g0) are full, and L(G, g0) is the set of index vectors 
i ∈ LP

max with

∑
g∈G

igg =
(
k−1

∑
g∈G

ig

)
g0.

Proof. First we show that I(G, g0) is full, i.e. that for every (k − 1)-vector v there is 
h ∈ G such that v + uh ∈ I(G, g0). Indeed, we can take h = g0 −

∑
g∈G vgg. Next 

let L′ be the lattice consisting of all i ∈ LP
max with 

∑
g∈G igg = (k−1 ∑

g∈G ig)g0. Note 
that L(G, g0) is contained in L′. Furthermore, L′ is transferral-free, as for any distinct 
g1, g2 ∈ G we have 

∑
g∈G(ug1 − ug2)gg = g1 − g2 �= 0G = 0g0, so ug1 − ug2 /∈ L′. Thus 

L(G, g0) is transferral-free, and so is full. Finally, L(G, g0) = L′ by Proposition 6.2. �
Theorem 6.7. Let k ≥ 3 and suppose L is a full edge-lattice in ZP , where P is a partition 
of a set V . Then there is an identification of P with G = G(P, L) and some g0 ∈ G such 
that L = L(G, g0) and RG(i) =

∑
g∈G igg − (k−1 ∑

g∈G ig)g0 for any i ∈ LP
max.

Proof. We fix an arbitrary part X0 ∈ P and identify X0 with the identity 0G ∈ G. Next 
we identify each X ∈ P with RG(uX −uX0). Note that for distinct parts X, X ′ of P we 
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have RG(uX − uX0) �= RG(uX′ − uX0), otherwise we would have uX − uX′ ∈ L, con-
tradicting the fact that L is transferral-free. Furthermore, the identification is bijective 
by Lemma 6.4.

Let g0 = −kuX0+L ∈ G. Consider any i ∈ LP
max and write r = k−1 ∑

g∈G ig ∈ Z. Then 
i − rkuX0 =

∑
X∈P iX(uX −uX0) ∈

∑
g∈G igg. Now if 

∑
g∈G igg = rg0 then i ∈ L. This 

shows that L(G, g0) ⊆ L. Furthermore, L(G, g0) is full by Lemma 6.6 and L is transferral-
free, so L = L(G, g0) by Proposition 6.2. Finally, we saw above that RG(i − rkuX0) =∑

g∈G igg. Since RG(−kuX0) = g0, we have RG(i) =
∑

g∈G igg − rg0. �
Remark 6.8. The identification of P with G = G(P, L) in the proof of Theorem 6.7 is 
determined up to translation by G, and the element g0 is determined up to translation 
by kG. To see this, consider two identifications as in Theorem 6.7, say πi : P → G defined 
by πi(X) = RG(uX − uXi) for some Xi ∈ P for i = 0, 1. Then for any X ∈ P we have 
π1(X) −π0(X) = g′, where g′ = RG(uX −uX1) −RG(uX −uX0) = RG(uX0 −uX1) ∈ G

is independent of X. Now set g0 = −kuX0 + L ∈ G and g1 = −kuX1 + L ∈ G; then 
g1 − g0 = kRG(uX0 − uX1) = kg′, as claimed.

6.2. Solubility

Recall that a full pair (P, L) for a k-graph H is soluble if there exists a matching M
in H of size at most |P| −1 such that iP(V (H) \V (M)) ∈ L. Here we show that omitting 
the size condition on M gives an equivalent condition.

Lemma 6.9. Let (P, L) be a full pair for a k-graph H, where k ≥ 3. Then (P, L) is soluble 
if and only if there exists a matching M in H such that iP(V (H) \ V (M)) ∈ L.

The proof uses the following application of the pigeonhole principle.

Proposition 6.10. Let G = (X, +) be an abelian group of order m, and suppose that 
elements xi ∈ X for i ∈ [r] are such that 

∑
i∈[r] xi = x′. Then 

∑
i∈I xi = x′ for some 

I ⊆ [r] with |I| ≤ m − 1.

Proof. It suffices to show that if r > m −1 then 
∑

i∈[r] xi =
∑

i∈I xi for some I ⊆ [r] with 
|I| < r. To see this, note that there are r + 1 > m partial sums 

∑
i∈[j] xi for 0 ≤ j ≤ r, 

so by the pigeonhole principle some two must be equal, that is, there exists j1 < j2 so 
that 

∑
i∈[j1] xi =

∑
i∈[j2] xi. Then

∑
i∈[r]

xi =
∑

i∈[r]\{j1+1,...,j2}
xi +

∑
i∈[j2]

xi −
∑
i∈[j1]

xi =
∑

i∈[r]\{j1+1,...,j2}
xi,

as required. �
Proof of Lemma 6.9. If (P, L) is soluble then such a matching M exists by defini-
tion. Conversely, suppose such a matching M exists. Write G = G(P, L) and note 
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that |G| = |P| by Lemma 6.4. Since iP(V (H) \ V (M)) ∈ L we have 
∑

e∈M RG(e) =
RG(V (H)). By Proposition 6.10 there exists a submatching M ′ of M of size at most 
|G| − 1 = |P| − 1 such that 

∑
e∈M ′ RG(e) = RG(V (H)). Hence RG(V (H) \ V (M ′)) = 0, 

i.e. iP(V (H) \ V (M ′)) ∈ L. �
6.3. Partite fullness

In the partite form of the key lemma we need the following partite form of fullness, 
in which we consider index vectors of sets that are partite with respect to some fixed 
partition.

Definition 6.11. Let P ′ be a partition of a set V into k parts and P be a refinement of P ′.

(i) We say that a set I of k-vectors with respect to P is full with respect to P ′ if 
(i | P ′) = 1 for every i ∈ I, and for every X ∈ P ′ and (k− 1)-vector v with respect 
to P such that (v | P ′) = 1 − uX , there is some Y ∈ P with Y ⊆ X such that 
v + uY ∈ I.

(ii) We write LPP′
max for the lattice of vectors i ∈ Z

P such that (i | P ′) is a multiple of 1.
(iii) We say that a lattice L ⊆ LPP′

max is full with respect to P ′ if it is transferral-free and 
contains a set of k-vectors that is full with respect to P ′.

The next proposition records some properties of partite fullness. We just give the 
proofs of (i) and (ii), as the proofs of (iii)–(v) are very similar to those of Lemmas 6.1
and 6.4.

Proposition 6.12. Let k ≥ 3, let P ′ be a partition of a set V into k parts, P be a refinement 
of P ′, and L ⊆ LPP′

max be a full lattice with respect to P ′. Let I ⊆ L be a set of k-vectors 
that is full with respect to P ′ and let L′ be the lattice generated by I. Then the following 
properties hold for some integer r.

(i) Each part of P ′ is refined into exactly r parts by P.
(ii) For every part X of P, there are exactly rk−2 vectors i ∈ I such that iX = 1. In 

particular, |I| = rk−1.
(iii) For any i ∈ LPP′

max and X ∈ P, there is X ′ ∈ P such that i − uX + uX′ ∈ L′.
(iv) |LPP′

max/L| = r.
(v) L = L′ is an edge-lattice.

Proof of (i) and (ii). Fix X ∈ P ′ and let r be the number of parts into which P refines X. 
For any other X ′ ∈ P ′, we will construct a bijection between the parts of P contained 
in X and those contained in X ′. Let v be a non-negative index vector with respect to P
such that (v | P ′) = 1 −uX−uX′ . For each Y ∈ P which is contained in X, we apply the 
property that I is full to the vector v + uY to obtain a part Y ′ ∈ P which is contained 
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in X ′, such that v+uY +uY ′ ∈ I. Now observe that since L is transferral-free, Y ′ must 
be unique. Thus Y �→ Y ′ is a bijection, so (i) holds. For (ii), we observe that the number 
of such (k− 2)-vectors v is rk−2 and there is a one-to-one correspondence between them 
and vectors i ∈ I such that iY = 1. By considering the r parts of P contained in X we 
obtain |I| = rk−1. �

Finally, we require the following consequence of Farkas’ Lemma.

Proposition 6.13. Let P ′ partition a set V into parts V1, . . . , Vk each of size n, and let P
be a partition refining P ′ into parts of size at least n/k. Suppose I is a set of k-vectors 
with respect to P which is full with respect to P ′. Then iP(V ) ∈ PC(I).

Proof. Suppose for a contradiction that iP(V ) /∈ PC(I). Then by Theorem 4.7 we may 
fix a ∈ R

|P| such that a · i ≥ 0 for every i ∈ I and a · iP(V ) < 0. For each i ∈ [k], 
let X1

i , . . . , X
bi
i be the parts of P which are subsets of Vi, and let a1

i , . . . , a
bi
i be the 

corresponding coordinates of a, with the labels chosen so that a1
i ≤ · · · ≤ abii . Fix 

i ∈ [k] for which abii − a1
i is minimised, so in particular abii − a1

i ≤ 1
k

∑
j∈[k] a

bj
j − a1

j . By 
assumption we may choose i ∈ I such that i = uXs

i
+

∑
j �=i uX1

j
for some s ∈ [bi]. Then

0 > a · iP(V ) ≥
∑
j∈[k]

na1
j + n

k

(
a
bj
j − a1

j

)

≥ n

( ∑
j∈[k]

a1
j +

(
abii − a1

i

))
≥ na · i ≥ 0,

a contradiction. So iP(V ) ∈ PC(I). �
7. The key lemmas

The following key lemma will be used in the proof of Theorem 1.10. It provides a 
simple condition for finding a perfect matching under Setup 1.7 when we have a robustly 
maximal partition: it suffices that the index of the vertex set is in the robust edge-lattice 
and every vertex is in many edges with index in the robust edge-lattice.

Lemma 7.1. Suppose that k ≥ 3 and 1/n 	 ε 	 μ 	 μ′ 	 c, d 	 γ, 1/k. Let H be a 
k-graph on a set V of size kn and P be a partition of V . Suppose that

(i) at most εnk−1 (k − 1)-sets S ⊆ V have dH(S) < (1 + γ)n,
(ii) P is (c, c, μ, μ′)-robustly maximal with respect to H,
(iii) any vertex is in at least dnk−1 edges e ∈ H with iP(e) ∈ Lμ

P(H), and
(iv) iP(V ) ∈ Lμ

P(H).

Then H contains a perfect matching.
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We will prove Lemma 7.1 by taking a random k-partition of H and deducing it from 
the partite key lemma that we prove in this section. However, showing that the conditions 
on H transfer to the k-partite subgraph induced by the random partition is technical 
and non-trivial, and so we defer the proof of Lemma 7.1 to Section 9. In this section, 
after some preparatory results in the first subsection, we prove the partite key lemma 
(Lemma 7.6) in the second subsection.

7.1. Preliminaries

The following result forms the base case of the partite key lemma (Lemma 7.6). This 
is the case where our k-graph H is far from any divisibility barrier. Note that here any 
edge e ∈ H must have iP(e) = 1. So condition (iv) is trivial, and condition (iii) simply 
states that every vertex lies in at least dnk−1 edges. However, we state the lemma in this 
form for ease of comparison to the full version of Lemma 7.6.

Lemma 7.2. Suppose that k ≥ 3 and 1/n 	 ε 	 μ 	 μ′ 	 c, d 	 γ, 1/k. Let P partition 
a set V into vertex classes V1, . . . , Vk of size n and let H be a P-partite k-graph on V . 
Suppose that

(i) at most εnk−1 P-partite (k − 1)-sets S ⊆ V have dH(S) < (1/k + γ)n,
(ii) P is (c, c, μ, μ′)-robustly maximal with respect to H,
(iii) any vertex is in at least dnk−1 edges e ∈ H with iP(e) ∈ Lμ

P(H), and
(iv) iP(V ) ∈ Lμ

P(H).

Then H contains a perfect matching.

The proof requires the following lemma that will enable us to apply Theorem 4.6.

Lemma 7.3. Suppose that 1/n 	 ε 	 α 	 1/k. Let P partition a vertex set V into 
parts V1, . . . , Vk each of size n. Suppose H is a P-partite k-graph on V such that at most 
εnk−1 P-partite (k − 1)-sets S ⊆ V have dH(S) < D. Then there exists a k-complex J
on V such that Jk ⊆ H and δ∗(J) ≥ ((1 −√

ε )n, (1 − α)n, . . . , (1 − α)n, D − αn).

Proof. Let β = α/kk. Call a P-partite (k − 1)-set A ⊆ V bad if dH(A) < D, and good
otherwise. We define bad P-partite sets A of size i recursively for i = k − 2, k − 3, . . . , 0
by saying that A is bad if it there are more than βn vertices x in some part of P such 
that A ∪ {x} is bad. If a P-partite set A is not bad we say it is good. We claim that for 
any 0 ≤ i ≤ k − 1 the number of bad i-sets is at most 

√
ε
(
n
i

)
. To see this, we show by 

induction on i that the number of bad (k− i)-sets is at most ε(k/β)i
(

n
k−i

)
. The base case 

i = 1 holds by assumption on H, since β 	 1/k. The induction step follows since there 
are at least βn/k times as many bad (k− i)-sets as bad (k− i − 1)-sets. Thus the claim 
holds.
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We define the k-complex J as follows. We take J0 = {∅}, which is good by the above 
claim, and define Ji recursively for 1 ≤ i < k as the family of good i-sets A such that 
every (i − 1)-subset of A is an element of Ji−1. Since the number of bad singletons 
(i.e. bad 1-sets) is at most 

√
εn, we then have δ∗0(J) ≥ (1 − √

ε )n. For the remaining 
inequalities on δ∗(J) we now prove by induction that δ∗i (J) ≥ (1 − kiβ)n ≥ (1 −α)n for 
each 0 ≤ i ≤ k− 2. The base case i = 0 is already done. For the induction step, suppose 
that δ∗i (J) ≥ (1 − kiβ)n for some 0 ≤ i ≤ k − 3. Suppose for a contradiction that there 
exists e ∈ Ji+1 such that |Ji+2(e) ∩ Vj | < (1 − ki+1β)n for some j ∈ [k] such that e is 
disjoint from Vj .

Let F be the set of good sets e+ = e ∪ {w} such that w ∈ Vj and e+ /∈ Ji+2. Then 
|F | ≥ (ki+1 − 1)βn, as by choice of e there are at least ki+1βn choices of w such that 
e+ /∈ Ji+2, and at most βn choices make e+ bad, since e ∈ Ji+1 is good. Next note that 
any e+ ∈ F contains some (i + 1)-set e∗ /∈ Ji+1, otherwise we would have added e+

to Ji+2. Let F ′ be the set of such (i + 1)-sets e∗ for all e+ ∈ F (choosing arbitrarily if 
there is more than one choice for some e+). Then |F ′| = |F |, as each e+ is determined 
by its choice of e∗ (we have e+ = e ∪ e∗).

Note that each e∗ ∈ F ′ intersects e in i vertices, so there is some i-set e− ⊆ e which is 
contained in at least |F ′|/(i +1) > kiβn sets of F ′. Then |Ji+1(e−) ∩Vj | < (1 −kiβ)n, as 
F ′ is disjoint from Ji+1. But since e ∈ Ji+1 we have e− ∈ Ji, and so δ∗i (J) < (1 − kiβ)n. 
This contradiction establishes the induction step.

Now we define Jk to be the set of all edges e ∈ H such that e− ∈ Jk−1 for every 
e− ⊆ e of size k − 1. It remains to show that δ∗k−1(J) ≥ D − αn, which we do similarly 
to the induction step. Suppose there exists e ∈ Jk−1 such that |Jk(e)| < D − αn and 
let F be the set of edges e+ ∈ H \ Jk such that e ⊆ e+. Since e is good, we must have 
|F | ≥ αn. Next note that any e+ ∈ F contains some (k− 1)-set e∗ /∈ Jk−1, otherwise we 
would have added e+ to Jk. Again let F ′ be the set of such (k−1)-sets e∗ for all e+ ∈ F . 
Then |F ′| = |F | (as before, each e+ is determined by its choice of e∗).

Note that each e∗ ∈ F ′ intersects e in k − 2 vertices, so there is some (k − 2)-set 
e− ⊆ e which is contained in at least |F ′|/(k−1) > kk−1βn sets of F ′. Then |Jk−1(e−)| <
(1 − kk−1β)n, as F ′ is disjoint from Jk−1. But since e ∈ Jk−1 we have e− ∈ Jk−2, and 
so δ∗k−2(J) < (1 − kk−1β)n. This contradiction completes the proof. �
Proof of Lemma 7.2. Introduce a new constant α with ε 	 α 	 μ. We apply Lemma 7.3
with D = (1/k + γ)n to obtain a P-partite k-complex J on V with Jk ⊆ H and

δ∗(J) ≥
(
(1 −

√
ε )n, (1 − α)n, . . . , (1 − α)n, (1/k + γ − α)n

)
.

Next we choose a matching M in H of size at most k
√
εn which includes all of the at 

most k
√
εn vertices x ∈ V for which {x} is not an edge of J ; we can construct M greedily 

by the vertex degree assumption. We write V ′ = V \V (M), n′ = n −|M |, and J ′ = J [V ′]
and verify that J ′ satisfies the conditions of Theorem 4.6 with n′, 2μ and γ/2 in place 
of n, μ and γ respectively.
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The degree sequence condition holds as

δ∗
(
J ′) ≥ (

n′, (1 − 2α)n′, . . . , (1 − 2α)n′, (1/k + γ − 2α)n′).
(Note that only the first and last co-ordinates are close to being tight.) Furthermore, 
P[V ′] is (c/2, 2c, 2μ, μ′/2)-robustly maximal with respect to J ′

k by Lemma 5.3. Now 
suppose that P ′ is a partition of V ′ into parts of size at least δ∗k−1(J ′) − 2μn′ ≥ n′/k ≥
2c|V ′| which refines P[V ′]. Since J ′

k is P-partite every edge e ∈ J ′
k has iP(e) = 1; in 

particular we have 1 ∈ L
μ′/2
P[V ′](J

′
k). So by Proposition 5.4 we have i ∈ L2μ

P′(J ′
k) for any 

index vector i with respect to P ′ such that (i | P) = 1, i.e. L2μ
P′(J ′

k) is complete with 
respect to P[V ′].

Now J ′
k has a perfect matching by Theorem 4.6. Together with M , we have a perfect 

matching in H. �
Next we recall from the proof outline the form of our inductive approach, which uses 

the following ‘canonical’ induced subgraphs.

Definition 7.4 (Canonical subgraphs). Suppose that H is a k-graph on V , P is a partition 
of V , and μ > 0. For each i ∈ IμP(H), we define Hi to be the induced subgraph of H
on the union of the parts W ∈ P such that iW > 0, and Pi to be the restriction of P
to V (Hi).

Note that Hi contains all the edges of H of index i and is Pi-partite whenever H is 
P-partite. In the following proposition we establish various properties of H and these 
subgraphs Hi. In (i), we show that the robust edge-lattice of H is full, so the properties of 
Proposition 6.12 also hold. In (ii), we show that Hi inherits a similar codegree condition 
to that of H (with slightly weaker constants), which is essential for the induction. Note 
that a minimum codegree condition would not be inherited, so this is one reason why 
for much of this paper we work with a condition on the codegree of most (k − 1)-sets 
(we also need this condition for Lemma 2.4). The next two parts are useful boosting 
properties for the edge detection parameter and the part sizes. We will apply these with 
d = 1/k and c 	 1/k, so (iii) shows that the part sizes of P are in fact much larger than 
our original assumption, and (iv) shows that the robust edge-lattice is unchanged for a 
wide range of μ. Finally, recall from our proof outline that we choose matching edges to 
cover bad vertices; (v) will show that there are few bad vertices.

Proposition 7.5. Suppose that 1/n 	 μ, ε 	 ψ, d, c, 1/k. Let P ′ partition a set V into k
parts V1, . . . , Vk, where cn ≤ |Vi| ≤ n for each i ∈ [k]. Let H be a P ′-partite k-graph on 
V and P be a partition of V which refines P ′. Suppose that

(α1) at most εnk−1 P ′-partite (k − 1)-sets S ⊆ V have dH(S) < dn, and
(α2) P has parts each of size at least cn and Lμ

P(H) is transferral-free.
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Then we have the following properties.

(i) IμP(H) is full with respect to P ′.
(ii) For any i ∈ IμP(H) at most ψnk−1 Pi-partite (k−1)-sets S ⊆ V (Hi) have |Hi(S)| <

(d − ψ)n.
(iii) Each part of P has size at least (d − ψ)n.
(iv) I

dck−1/2kk

P (H) = IμP(H).
(v) For any i ∈ IμP(H) at most ψn vertices of V (Hi) lie in fewer than ck−2dnk−1/2

edges of Hi.

Proof. Let θ satisfy μ, ε 	 θ 	 ψ, d, c, 1/k. For (i), let v be a non-negative index vector 
with respect to P such that (v | P ′) = 1 − uVk

. Then it suffices to show that there is 
some part Xk of P with Xk ⊆ Vk such that H contains at least μ|V |k edges of index 

v + uXk
. To see this, write v =

∑
j∈[k−1] uXj

for parts Xj ⊆ Vj of P and note that 
the number of (k − 1)-sets S = {x1, . . . , xk−1} with xj ∈ Xj for each j ∈ [k − 1] is 
at least 

∏
j∈[k−1] |Xj | ≥ (cn)k−1. Hence at least (ck−1 − ε)nk−1 such (k − 1)-sets have 

dH(S) ≥ dn, and so at least (ck−1 − ε)dnk edges of H contain one vertex from each of 
X1, . . . , Xk−1. Since P refines Vk into at most 1/c parts, some part Xk ⊆ Vk of P must 
be as required.

For (ii), fix i ∈ IμP(H), and for j ∈ [k] let Wj ⊆ Vj be the part of P for which iWj
= 1

(so V (Hi) =
⋃

j∈[k] Wj). Let S be the family of sets S = {x1, . . . , xk−1} with xi ∈ Wi

for each i ∈ [k − 1]. Also define S1 to consist of those S ∈ S with dH(S) ≥ dn but 
dHi

(S) < (d − θ)n, and S2 to consist of those S ∈ S with dH(S) < dn. Then as above 

we have |S| ≥ (cn)k−1, whilst |S2| < εnk−1 by (α1). To bound |S1|, note that each 

S ∈ S1 is contained in at least θn edges e ∈ H with iP(e) equal to some i′ �= i, and 

since i′ − i is a transferral for any such i′ we have i′ /∈ IμP(H). Now there are at most 
c−kμ(kn)k such edges of H, as each part Vj of P ′ is refined into at most 1/c parts of P, 
so there are at most c−k possible values of iP(e) for an edge e of H. We conclude that 
|S1| ≤ c−kμ(kn)k/θn ≤ θnk−1/(k + 1), so T = S1 ∪ S2 has size |T | ≤ θnk−1/k < |S|. 
Since any S ∈ S \ T has dHi

(S) ≥ (d − θ)n, by symmetry this proves a stronger form 

of (ii), with θ in place of ψ.
For (iii), consider any Y ∈ P and fix i ∈ IμP(H) such that iY = 1; this exists by (i) and 

Proposition 6.12(ii). Without loss of generality Y ⊆ Vk. Then with notation as in (ii), 
for any S ∈ S \ T we have |Y | ≥ dHi

(S) ≥ (d − θ)n. The same argument implies that 
|Hi| ≥ |S \ T |(d − θ)n ≥ ck−1d|V (H)|k/2kk, and so we have (iv).

Finally, note that the number of vertices in W1 that belong to at least (cn)k−2/3 sets 
S ∈ T is at most |T | · 3/(cn)k−2 ≤ ψn/k. Since P has parts each of size at least cn, any 

other vertex of W1 lies in at least 2(cn)k−2/3 · (d − θ)n ≥ dck−2nk−1/2 edges of Hi. The 

same argument applies to any part Wj with j ∈ [k], so this proves (v). �
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7.2. The partite key lemma

In the remainder of this section we prove the following partite form of the key lemma.

Lemma 7.6. Let k and � be integers with k ≥ � ≥ 2 and k ≥ 3, and suppose that 
1/n 	 ε 	 μ 	 μ′ 	 c, d 	 γ, 1/k. Let P ′ partition a set V into vertex classes 
V1, . . . , Vk of size n, let H be a P ′-partite k-graph on V and let P be a refinement of P ′. 
Suppose that

(β1) at most εnk−1 P ′-partite (k − 1)-sets S ⊆ V have d(S) < (1/� + γ)n,
(β2) P is (c, c, μ, μ′)-robustly maximal with respect to H,
(β3) any vertex is in at least dnk−1 edges e ∈ H with iP(e) ∈ Lμ

P(H), and
(β4) iP(V ) ∈ Lμ

P(H).

Then H contains a perfect matching.

We remark that the case � = k implies the cases � = 2, . . . , k − 1, and hence we set 
� = k in all later applications of the lemma. The other cases are only required for the 
proof of the lemma itself.

Proof. We fix k and proceed by induction on �. Let s = �1/c�; then we use the following 
hierarchy of constants:

1/n 	 1/D 	 ε 	 μ 	 μ′
0 	 μ′

1 	 · · · 	 μ′
skk 	 μ′

	 c, d 	 η, 1/K 	 γ, 1/k.

In several places during the proof we will delete small matchings from H; for convenient 
notation we let P ′ and P also denote the restrictions of P ′ and P to the undeleted 
vertices.

Step 1: The case P = P ′. In this case we have a perfect matching by Lemma 7.2. In 
particular, this gives the base case � = 2 of the induction, as by Proposition 7.5(iii) each 
part of P has size at least n/� + γn/2 > n/2, so we must have P = P ′.

Step 2: The canonical subgraphs. For the rest of the proof we assume that P �= P ′, that 
3 ≤ � ≤ k and that the lemma holds with � − 1 in place of �. We write

I = IμP(H) and L = Lμ
P(H).

Our strategy will be to split H up randomly into a number of vertex-disjoint k-partite 
subgraphs, each of which satisfies the conditions of the lemma (with weaker constants) 
when � is replaced by � − 1. The inductive hypothesis will then imply the existence of a 
perfect matching in each subhypergraph, and taking the union of these matchings gives 



P. Keevash et al. / Advances in Mathematics 269 (2015) 265–334 299
a perfect matching in H. In this step we lay the groundwork by analysing the canonical 
subgraphs from which the random subgraphs will be chosen; the analogues of properties 
(β1), (β2) and (β3) for these subgraphs will follow from this analysis.

We first observe that H, P ′ and P meet the conditions of Proposition 7.5 with 1/� +γ in 
place of d. Therefore I is full with respect to P ′. We can therefore apply Proposition 6.12
to obtain an integer r such that |I| = rk−1, each part of P ′ is partitioned into exactly 
r parts by P, and for any part X of P there are exactly rk−2 vectors i ∈ I such that 
iX = 1. Also, by Proposition 7.5(iii), every part of P has size at least (1/� +γ/2)n. Since 
P �= P ′ this implies 2 ≤ r < �.

Next we recall Definition 7.4: for each i ∈ I, the canonical subgraph Hi is the induced 
k-graph on the vertex set 

⋃
X∈P:iX=1 X whose edge set consists of all edges of H with 

index i, and Pi is the restriction of P to V (Hi) (so Hi is Pi-partite). The canonical 
subgraphs Hi will act as prototypes for the k-graphs on which we use the inductive hy-
pothesis, which will be induced subgraphs of the canonical subgraphs on randomly chosen 
sets of vertices. Note that by Proposition 7.5(ii), at most μ′

0n
k−1 Pi-partite (k − 1)-sets 

S ⊆ V (Hi) have |Hi(S)| < n/� + 3γn/4: this inheritance of the codegree condition of 
H is fundamental to our inductive approach. It also provides the analogue of condition 
(α1) when we apply Proposition 7.5 again to each Hi, which we will do to ‘boost’ the 
part sizes and edge-detection parameter.

Since Pi may not be robustly maximal with respect to Hi, we now need to identify 
robustly maximal partitions for each canonical subgraph. Let S = sk

k . We claim that 
there exist i ∈ [S], and partitions Qi of V (Hi) for each i ∈ I such that Qi refines Pi and 
is (c, c, μ′

i−1, μ
′
i)-robustly maximal with respect to Hi. To see this, we repeatedly apply 

Proposition 5.2 to each i ∈ I. First, we choose some i ∈ I and apply Proposition 5.2 with 
parameters μ′

λS/s for 0 ≤ λ ≤ s to obtain some b ∈ [s] and a partition Qi of V (Hi) such 
that Qi refines Pi and is (c, c, μ′

(b−1)S/s, μ
′
bS/s)-robustly maximal with respect to Hi. We 

then repeat the following step. After j steps, we will have chosen j of these partitions 
to be (c, c, μ′

(b−1)S/sj , μ
′
bS/sj )-robustly maximal for some b ∈ [sj ]. We then choose some 

i we have not yet considered and apply Proposition 5.2 with parameters μ′
λS/sj+1 for 

(b − 1)s ≤ λ ≤ bs to obtain some b′ ∈ [sj+1] and a partition Qi of V (Hi) such that Qi
refines Pi and is (c, c, μ′

(b′−1)S/sj+1 , μ′
b′S/sj+1)-robustly maximal with respect to Hi. Since 

|I| ≤ kk we can repeat this process for every i, which proves that the claim holds.
For simplicity of notation we now relabel μ′

i−1 as μ0 and μ′
i as μ6, and introduce new 

constants μ1, . . . , μ5 and μ′′ such that

μ 	 μ0 	 μ1 	 · · · 	 μ5 	 μ6 	 μ′′ 	 μ′.

For each i ∈ I, we write

Ii := Iμ0
Qi

(Hi) and Li := Lμ0
Qi

(Hi).

We will apply Proposition 7.5 to Hi with Pi in place of P ′, Qi in place of P, μ0 in place 
of both μ and ε, and 1/� +3γ/4 and γ/12 in place of d and ψ respectively (n, c and k are 
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unchanged). Indeed, condition (α1) of Proposition 7.5 holds by our earlier observation 
that at most μ′

0n
k−1 Pi-partite (k − 1)-sets S ⊆ V (Hi) have |Hi(S)| < n/� + 3γn/4, 

whilst condition (α2) holds since Qi is (c, c, μ0, μ6)-robustly maximal with respect to Hi. 
So by Proposition 7.5(i) and (iii) we deduce that Ii is full with respect to Pi, and every 
part of Qi has size at least n/� + 2γn/3. The latter conclusion implies that Qi is in 
fact (1/� +2γ/3, c, μ0, μ6)-robustly maximal, and also that we can apply Proposition 7.5
again with 1/� in place of c (and all other variables as before); Proposition 7.5(iv) then 
implies that

I
1/2(k�)k
Qi

(Hi) = Ii.

Indeed, we have the boosting property that Iμ0
Qi

(Hi) and Lμ0
Qi

(Hi) are essentially inde-
pendent of the edge-detection parameter, in that they remain unchanged when μ0 is 
replaced by any constant between μ0 and 1/2(k�)k.

Finally, say that a vertex of Hi is bad for i if it lies in fewer than dnk−1 edges e ∈ Hi

with iQi
(e) ∈ Ii. We say that a vertex is bad if it is bad for some i ∈ I. Since |I| = rk−1, 

by Proposition 7.5(v) (with μ1/r
k−1 in place of ψ), the number of bad vertices is at 

most μ1n. Using assumption (β3), i.e. that every vertex is contained in at least dnk−1

edges e ∈ H with iP(e) ∈ L, we may greedily choose a matching M of such edges 
with size at most μ1n which covers all of the bad vertices. We now restrict attention to 
V ′ := V \ V (M).

Step 3: The meet and join. The principal difficulty we must overcome in order to apply 
the inductive hypothesis is to ensure that an analogue of (β4) holds, that is, we require 
subgraphs in which the index vector of the entire vertex set lies in the appropriate robust 
edge-lattice. In this step we introduce two additional partitions of V that will be used 
to achieve this.

We begin by noting that for the subgraph chosen in Hi, the index vector of the vertex 
set with respect to Qi simply lists the number of vertices chosen from each part of Qi. 
Hence if two vertices x and y are contained in the same part of Qi for every Qi such that 
x, y ∈ V (Hi), then they are interchangeable for the current purpose. With this in mind, 
we first let Q∩ be the ‘meet’ of the partitions Qi for i ∈ I: we say that two vertices in 
the same part W of P are in the same part of Q∩ if and only if they lie in the same part 
of Qi for every i ∈ I with iW = 1. This is not our final definition, as we will also require 
that every part of Q∩ has size at least D.

To achieve this, note that P has at most k2 parts, and each part X of P is partitioned 
into at most k parts by each Qi such that iX = 1, so the number of parts of Q∩ is at 
most k2 · k|I| = k2+rk−1

< K. Thus there is some z ∈ [K + 1] such that no part of Q∩

has size between (z− 1)(kK)z−1D and z(kK)zD. Let B be the union of all parts of size 
at most z(kK)zD. Then |B| ≤ K · (z − 1)(kK)z−1D. Similarly to the end of Step 2, we 
greedily choose a matching M ′ in H of size at most |B| that covers every vertex of B so 
that every edge e ∈ M ′ has iP(e) ∈ L. We will now restrict attention to V ′ \ V (M ′).
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Next we introduce the ‘join’ Q∪ of the partitions Qi, which will allow us to avoid the 
problem of ‘hidden’ approximate divisibility barriers (recall Construction 3.1). Let G be 
the graph whose vertices are the parts of Q∩ not contained in B, where Z, Z ′ ∈ Q∩ are 
adjacent in G if they are contained in the same part of some Qi. Then the parts of Q∪

are formed by taking the union of the parts of Q∩ in each component of G.
As an aid to memory, in the remainder of the proof we tend to use the consistent 

notation W , X, Y , Z for general parts of P, Q∪, Qi (for i ∈ I), Q∩ respectively, i.e. 
earlier letters in the alphabet denote (potentially) larger parts.

Step 4: Restricting to good vertices. We now delete all of the at most 2kμ1n vertices 
covered by M ∪M ′. To avoid introducing more complicated notation, all of our notation 
is to be now understood as referring to the undeleted vertices, e.g. V now refers to 
V \ (M ∪M ′). However, all variables (including n) remain unchanged in value. Note that 
any part Z of Q∩ had size at least z(kK)zD before deleting the vertices covered by M ′

(otherwise we would have deleted it). Since |M ′| ≤ |B| ≤ K · (z − 1)(kK)z−1D, we now 
have

|Z| ≥ z(kK)zD − k
∣∣M ′∣∣ ≥ D. (1)

Since we have deleted a number of vertices from H, we now show that the properties 
of H from the statement of the lemma and from step 2 are preserved (albeit with weaker 
constants) after these vertex deletions. Note that (A1)–(A3) in the following claim are 
the respective analogues of (β1)–(β3) for Hi with respect to Pi and Qi.

Claim 7.7. The following hold for every i ∈ I.

(A1) At most μ0n
k−1 Pi-partite (k − 1)-sets S ⊆ V (Hi) have |Hi(S)| < (1/� + γ/2)n.

(A2) Qi is (1/�, 2c, μ2, μ5)-robustly maximal with respect to Hi for each i ∈ I.
(A3) Every vertex of Hi lies in at least 1

2dn
k−1 edges e ∈ Hi with iQi

(e) ∈ Ii.
(A4) iP(V ) ∈ L.
(A5) Every part of P, Q∪ and each Qi has size at least (1/� + γ/2)n.
(A6) Iμ

′

Qi
(Hi) = Iμ1

Qi
(Hi) = Ii.

(A7) P is (1/�, 2c, μ2, μ′′)-robustly maximal with respect to H, and I = Iμ
′

P (H).

For (A1), recall from step 2 that it was true with 3γ/4 in place of γ/2. Lemma 5.3
implies (A2), since Qi was (1/� + 2γ/3, c, μ0, μ6)-robustly maximal with respect to Hi
before any vertices were deleted. The first part of (A7) follows by the same argument. 
For (A3), recall that M covered all vertices which were in fewer than dnk−1 edges of Hi
with i ∈ Ii and at most 2kμ1n ≤ dn/2 vertices were deleted. For (A4), note that it was 
true before any vertices were deleted by (β4), and iP(V (M ∪M ′)) ∈ L since iP(e) ∈ L

for every e ∈ M ∪M ′.
For (A5), recall that each part of any Qi had size at least (1/� + 2γ/3)n before the 

deletions, and at most 2kμ1n ≤ γn/6 vertices were deleted. The bounds for Q∪ and P
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follow, since every part of Q∪ contains a part of Qi for some i ∈ I, and Q∪ refines P. For 
(A6), we observed before any deletions that I1/2(k�)k

Qi
(Hi) = Iμ0

Qi
(Hi) = Ii, and |V (Hi)|

had size at least n both before and after the deletions. So if v ∈ Ii then there were 
at least nk/2(k�)k edges of Hi of index v, at most 2kμ1n

k of which were deleted, so 
v ∈ Iμ

′

Qi
(Hi). On the other hand, if v /∈ Ii then there were at most μ0(kn)k < μ1n

k edges 
of Hi of index v, so v /∈ Iμ1

Qi
(Hi). Since Iμ

′

Qi
(Hi) ⊆ Iμ1

Qi
(Hi), this proves (A6). The same 

argument proves the second part of (A7), completing the proof of the claim.

Step 5: Choosing sizes. In this step we determine how many vertices each of our final 
random subgraphs should choose from each part of Q∩ to ensure that the analogue 
of (β4) holds. We accomplish this in three stages. Firstly, we choose rough targets for 
the number of vertices to be contained in each subgraph. Secondly, we determine how 
many vertices are to be chosen from each part of Q∪. Thirdly, we determine how many 
vertices are to be chosen from each part of Q∩.

Claim 7.8. There exist integers ρi for each i ∈ I which satisfy

(B1)
∑

i∈I ρii = iP(V ),
(B2) ρi ≥ ηn for each i ∈ I.

To prove Claim 7.8, for each X ∈ P we start by reserving N := �2ηn� vertices of X
for each i ∈ I with iX = 1. Recall that for any part X of P there are exactly rk−2 vectors 
i ∈ I such that iX = 1, so exactly rk−2N vertices are reserved from each part of P. Let 
V ′ be the set of unreserved vertices and write V ′

j = V ′ ∩ Vj ; recalling that each Vj now 
has size n − |M ∪M ′| after the deletions, each V ′

j has size n′ := n − |M ∪M ′| − rk−2N . 
Also, by (A5) at least n′/k vertices remain unreserved in each part of P. Since I is full 
with respect to P ′, by Proposition 6.13 we deduce that iP(V ′) ∈ PC(I). That is, we 
may fix reals λi ≥ 0 for each i ∈ I so that 

∑
i∈I λii = iP(V ′).

Let ai = �λi� for each i ∈ I. Then v = iP(V ′) −
∑

i∈I aii is a sum of |I| ≤ rk−1

vectors of length at most k, so v ∈ B(0, krk−1). We also have v ∈ L, since iP(V ′)
was obtained by subtracting some vectors in I from iP(V ), and iP(V ) ∈ L by (A4). 
So by Proposition 4.8 we may choose integers bi with |bi| ≤ K for each i ∈ I so that ∑

i∈I bii = v.
Let ρi = ai + bi + N for each i ∈ I. Then (B2) holds as ai ≥ 0 and |bi| ≤ K for each 

i ∈ I, and (B1) holds as

∑
i∈I

ρii =
∑
i∈I

aii +
∑
i∈I

bii +
∑
i∈I

N i = iP
(
V ′) +

∑
i∈I

N i = iP(V ).

This completes the proof of Claim 7.8.

The vector n∪
i with respect to Q∪ obtained in the next claim determines how many 

vertices the random subgraph for i will take from each part of Q∪. Note that (C1) 
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ensures that the sizes are correct to be a partition of V , (C2) that there is no divisibility 
obstruction to our later choice of Q∩, and (C3) that the sizes are in roughly equal 
proportion from each part of Q∪ which is a subset of a part of Pi, and zero for any other 
part of Q∪.

The proof of the claim proceeds through three stages. In the first stage, we use the 
constants ρi and the part sizes of each Qi to determine provisional values for each n∪

i
which satisfy (C1) and (C3). In the second stage we ‘snap’ each n∪

i onto a nearby lattice 
point so that (C2) is satisfied, preserving (C3) (although (C1) may no longer hold). 
In the final stage we make further adjustments to restore (C1) while preserving (C2) 
and (C3).

Claim 7.9. There exist vectors n∪
i with respect to Q∪ for i ∈ I which satisfy

(C1)
∑

i∈I n∪
i = iQ∪(V ),

(C2) n∪
i ∈ Lμ6

Q∪(Hi) for every i ∈ I, and
(C3) for any i ∈ I, any part W of P and any part X ⊆ W of Q∪ we have

(
n∪
i
)
X

=
{
ρi

|X|
|W | ±K if iW = 1,

0 otherwise.

To prove the claim, for each i ∈ I we choose a vector ni with respect to Qi by taking 
(ni)Y to be either �ρi|Y |/|W |� or �ρi|Y |/|W |� for each W ∈ Pi and Y ∈ Qi with Y ⊆ W . 
We make these choices so that 

∑
Y⊆W (ni)Y = ρi for each W ∈ P with iW = 1; this is 

possible since

∑
Y ∈Qi:Y⊆W

ρi|Y |
|W | = ρi|W |

|W | = ρi.

Now, for any i ∈ I, observe that this requirement implies that ni ∈ LQiPi

max . So by 
Proposition 6.12(iii) (with Qi and Pi in place of P and P ′ respectively) we may choose 
parts Y, Y ′ of Qi so that n1

i := ni − uY + uY ′ ∈ Li = Lμ′

Qi
(Hi), where the final equality 

follows from (A6). Let Q0
i be the partition of V whose parts are those of Qi and those 

of Q∪ that are disjoint from V (Hi). Similarly, let n0
i be the vector with respect to Q0

i
corresponding to n1

i , that is, with additional zero co-ordinates corresponding to the parts 
of Q∪ that are disjoint from V (Hi). Then n0

i ∈ Lμ6
Q0

i

(Hi). Finally, let n′
i := (n0

i | Q∪), so 

n′
i ∈ Lμ6

Q∪(Hi) by Proposition 4.5(i).
For any part W of P and any part X ⊆ W of Q∪, since by (A5) there are at most k

parts Y ⊆ X of Qi we have

(
n′
i
)
X

=
∑ (

ρi
|Y |
|W | ± 1

)
=

{
ρi

|X|
|W | ± 2k if iW = 1, (2)
Y ∈Qi:Y⊆X 0 otherwise.



304 P. Keevash et al. / Advances in Mathematics 269 (2015) 265–334
Now, crucially, we have iQ∪(V ) ∈ Lμ6
Q∪(H). Indeed, P is (1/�, 2c, μ6, μ′′)-robustly 

maximal with respect to H by (A7), Q∪ is a refinement of P with parts of size at least 
n/� ≥ 2c|V (H)| by (A5), and (iQ∪(V ) | P) = iP(V ) ∈ L = Lμ′′

P (H) by (A4) and (A7). 
So Proposition 5.4 implies that iQ∪(V ) ∈ Lμ6

Q∪(H), as desired. Since n′
i ∈ Lμ6

Q∪(Hi) ⊆
Lμ6
Q∪(H) for each i ∈ I, we deduce that

v := iQ∪(V ) −
∑
i∈I

n′
i ∈ Lμ6

Q∪(H).

Furthermore, for any W ∈ P by (B1) we have 
∑

i∈I:iW =1 ρi = |W |, so for any X ∈ Q∪

with X ⊆ W by (2) we have

vX = |X| −
∑

i∈I:iW =1

(
ρi

|X|
|W | ± 2k

)
= 0 ± 2k|I|.

Since |Q∪| ≤ k2 and |I| ≤ rk−1 we have v ∈ B(0, 2k3rk−1), so we may apply Propo-
sition 4.8 to obtain integers ai′ with |ai′ | ≤ k−kK for each i′ ∈ Iμ6

Q∪(H) such that ∑
i′∈I

μ6
Q∪ (H) ai′ i′ = v.

For each i ∈ I, we define n∪
i := n′

i+
∑

ai′ i′, where the sum is taken over all i′ ∈ Iμ6
Q∪(H)

with (i′ | P) = i. Then n∪
i is a linear combination of vectors in Lμ6

Q∪(Hi), so (C2) holds. 
Also, (C1) holds as

iQ∪(V ) −
∑
i∈I

n∪
i = iQ∪(V ) −

∑
i∈I

n′
i − v = 0.

Finally, consider any i ∈ I, any part W of P with iW = 1 and any part X ⊆ W of Q∪. 
Since there are at most (k− 1)k vectors i′ ∈ Iμ6

Q∪(H) with i′X = 1, by definition of n∪
i we 

have

∣∣(n∪
i
)
X
−
(
n′
i
)
X

∣∣ ≤ (k − 1)k max
i′

|ai′ | ≤ (1 − 1/k)kK;

together with (2) we have (C3). This completes the proof of Claim 7.9.

In the final claim of this step we determine the required part sizes for the random 
subgraphs of the next step. For proof, we start by choosing provisional values for n∩

i
to satisfy (D1) and (D3). If (D2) fails then (C2) will imply that it can be remedied by 
transferrals between pairs of parts of Q that lie in the same part of Q∪. By definition of 
Q∪ there is a path in the auxiliary graph G between these parts. By repeated ‘swaps’ 
we can effectively move the required adjustment along the edges of the path, all the 
while preserving (D1) and (D3), until (D2) holds. Throughout the proof, we identify the 
vectors n∩

i and n∪
i with their restrictions to the parts of Q∩ and Q∪ that are contained 

within parts of Pi (they are zero on all other parts).



P. Keevash et al. / Advances in Mathematics 269 (2015) 265–334 305
Claim 7.10. There exist vectors n∩
i with respect to Q∩ for i ∈ I which satisfy

(D1)
∑

i∈I n∩
i = iQ∩(V ),

(D2) (n∩
i | Qi) ∈ Li for every i ∈ I, and

(D3) For any part W of P and any part Z ⊆ W of Q∩ we have

(
n∩
i
)
Z

=
{
ρi

|Z|
|W | ± 2K if iW = 1

0 otherwise.

To prove the claim, we start by choosing provisional values for n∩
i , where for each 

i ∈ I, each part X of Q∪ contained within a part of Pi, and each part Z ⊆ X of Q∩, we 
take (n∩

i )Z to be either �(n∪
i )X |Z|/|X|� or �(n∪

i )X |Z|/|X|�, with choices made so that
∑
i∈I

(
n∩
i
)
Z

= |Z| for each Z ∈ Q∩, and (3)

∑
Z⊆X

(
n∩
i
)
Z

=
(
n∪
i
)
X

for each X ∈ Q∪. (4)

To see that we can make such choices, fix X ∈ Q∪ and let A be the matrix with rows in-
dexed by the index vectors i ∈ I such that X is contained within a part of Pi, and columns 
indexed by the parts Z ⊆ X of Q∩, where the (i, Z) entry of A is (n∪

i )X |Z|/|X|. Then 
the sum of column Z is |Z| by (C1), and the sum of row i is (n∪

i )X . Thus Theorem 4.9
implies that we can choose such values for n∩

i . Note that Eq. (4) can be reformulated as
(
n∩

i
∣∣ Q∪) = n∪

i .

Also, for any part W of P and any part Z ⊆ W of Q∩, it follows from (C3) that (n∩
i )Z

is equal to ρi|Z|/|W | ± (K + 1) if iW = 1 and is zero otherwise.
Eq. (3) implies that the current values for n∩

i satisfy (D1) and (D3); we now modify 
them to satisfy (D2). Consider i1, i2 ∈ I, and suppose that Z and Z ′ are parts of Q∩

which are subsets of distinct parts Y1 and Y ′
1 respectively of Qi1 , but that Z and Z ′ are 

subsets of the same part Y2 of Qi2 . We define an (i1, i2, Z, Z ′)-swap as the operation of 
increasing (n∩

i1)Z and (n∩
i2)Z′ each by one, and decreasing (n∩

i2)Z and (n∩
i1)Z′ by one (all 

other co-ordinates of n∩
i1 and n∩

i2 remain unchanged, as do all other vectors n∩
i ). Clearly ∑

i∈I n∩
i is unchanged by any (i1, i2, Z, Z ′)-swap, as is (n∩

i | Qi) for any i �= i1, i2. 
Further, the operation has no effect on (n∩

i2 | Qi2), since Z and Z ′ are contained in the 
same part of Qi2 . However, (n∩

i1 | Qi1) is affected; specifically, an (i1, i2, Z, Z ′)-swap adds 
uY1 −uY ′

1
to (n∩

i1 | Qi1). By performing several sequences of swaps, we shall ensure that 
(D2) is satisfied for each i ∈ I in turn.

Fix some i ∈ I. Recall from (C2) that n∪
i ∈ Lμ6

Q∪(Hi). Since μ0 	 μ6, Proposi-
tion 4.5(ii) applied with Qi and Q∪ in place of Q and P respectively implies that there ex-
ists n∗

i ∈ Li such that (n∗
i | Q∪) = n∪

i , where we identify Q∪ with its restriction to V (Hi)
and n∪

i with its restriction to parts of Q∪[V (Hi)]. We let di = n∗
i − (n∩

i | Qi) and note 
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that (di | Q∪) = 0, since (n∩
i | Q∪) = n∪

i . Hence we may write di =
∑

v∈Di
v for some 

sequence Di of transferrals, such that Y and Y ′ are parts of Qi which are contained in the 
same part of Q∪ for each transferral uY −uY ′ ∈ Di. Then (n∩

i | Qi) +
∑

v∈Di
v = n∗

i ∈ Li. 
We now reduce Di to a sequence of at most k − 2 transferrals, maintaining the prop-
erty that (n∩

i | Qi) +
∑

v∈Di
v ∈ Li. To see that this is possible, recall that Ii is full 

with respect to Pi, and by (A5) every part of Qi has size at least (1/� + γ/2)n, so 
|LQiPi

max /Li| ≤ k − 1 by Proposition 6.12(i) and (iv). Thus the required reduction of Di

follows from Proposition 6.10.
For each uY −uY ′ ∈ Di, we carry out the following procedure. Choose parts Z and Z ′

of Q∩ with Z ⊆ Y and Z ′ ⊆ Y ′. Since Y and Y ′ are contained in the same part of Q∪, 
by definition of Q∪ there is a path in the auxiliary graph G from Z to Z ′, i.e. we have 
Z = Z0, . . . , Zp = Z ′ and Y1, . . . , Yp for some p ≤ |Q∩| ≤ k2+kk , such that Zj ∈ Q∩ for 
0 ≤ j ≤ p, and for each j ∈ [p] there exists ij ∈ I such that Yj ∈ Qij and Zj−1, Zj ⊆ Yj .

Note that each Zj is contained in the same W ∈ P as Y and Y ′, and that by the 
definition of Di we have iW = 1. Hence for each 0 ≤ j ≤ p there exists a part Y ∗

j ∈ Qi

which contains Zj . Thus Y ∗
0 = Y and Y ∗

p = Y ′.
For each j ∈ [p] in turn we apply swaps as follows. If Y ∗

j−1 = Y ∗
j then there is no 

swap. Otherwise, we perform an (i, ij , Zj−1, Zj)-swap; as noted above, the only effect of 
this is to add uY ∗

j−1
− uY ∗

j
to (n∩

i | Qi). So the net effect of performing these swaps for 
every member of Di is to add uY − uY ′ to (n∩

i | Qi). By choice of Y and Y ′, after these 
modifications we have (n∩

i | Qi) ∈ Li, and crucially, (n∩
i′ | Qi′) is unchanged for any 

i′ �= i and 
∑

i∈I n∩
i is unchanged.

We proceed in this manner for every i ∈ I; then the vectors n∩
i obtained at the end of 

this process must satisfy (D2). Since (D1) held before we made any modifications, and ∑
i∈I n∩

i is preserved by each modification, we conclude that (D1) still holds. Finally 
recall that for any i ∈ I, any part W of Pi and any part Z ⊆ W of Q∩ our provisional 
values satisfied (n∩

i )Z = ρi|Z|/|W | ± (K + 1). Recall that |I| = rk−1; now (D3) follows, 
as we performed at most p ≤ k2+kk swaps for each v ∈

⋃
i∈I Di, so there were at most 

p(k − 2)rk−1 < K swaps in total, and no swap changed any co-ordinate of n∩
i by more 

than one. This completes the proof of Claim 7.10.

Step 6: The random selection. In this final step, we now partition V into disjoint sets Ti

for i ∈ I, where for each Z ∈ Q∩ the number of vertices of Ti taken from Z is (n∩
i )Z . To 

ensure that this is possible, we require that 
∑

i∈I n∩
i = iQ∩(V ) and that each co-ordinate 

of each n∩
i is non-negative. The first of these conditions holds by (D1). For the second, 

observe that for any i ∈ I, any part W of Pi and any part Z ⊆ W of Q∩ we have ρi ≥ ηn

by (B2), |Z| ≥ D by (1) and |W | ≤ n. So (D3) implies that

(
n∩
i
)
Z
≥ ρi|Z|/|W | − 2K ≥ η|Z|/2 ≥ 0. (5)

We choose such a partition uniformly at random. That is, for each part Z of Q∩, we 
choose uniformly at random a partition of Z into sets Zi for i ∈ I so that |Zi| = (n∩

i )Z
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for each i ∈ I. Then for each i ∈ I we let

Ti :=
⋃

Z∈Q∩

Zi, Ĥi = H[Ti], P̂i = Pi[Ti] and Q̂i = Qi[Ti].

Note that Ti ⊆ V (Hi), as by (D3) n∩
i is zero on parts of Q∩ not contained in V (Hi), 

so Ĥi is a P̂i-partite k-graph on the vertex set Ti. Also, since (n∩
i | Qi) ∈ Li by (D2), 

and every i′ ∈ Ii has (i′ | P) = i, we have (n∩
i | P) = tii for some integers ti. For any 

W ∈ Pi with iW = 1 we have

ti =
(
n∩

i
∣∣ P)

W
=

∑
Z

(
n∩
i
)
Z

(D3)=
∑
Z

(
ρi|Z|
|W | ± 2K

)
= ρi ± 2K2, (6)

where both sums are taken over all parts Z of Q∩ with Z ⊆ W , and we recall that Q∩

has at most K parts. So in particular we have ηn/2 ≤ ti ≤ n for any i ∈ I by (B2).
Let ε∗ = μ2, μ∗ = μ3, μ′

∗ = μ4, c∗ = 6c/η, d∗ = d/4, and γ∗ = γ/4.

Claim 7.11. For any i ∈ I the following properties each hold with high probability.

(E1) All but at most ε∗tk−1
i Pi-partite (k−1)-sets S ⊆ Ti have |Ĥi(S)| ≥ (1/(� −1) +γ∗)ti.

(E2) Q̂i is (c∗, c∗, μ∗, μ′
∗)-robustly maximal with respect to Ĥi.

(E3) Lμ∗
Q̂i

(Ĥi) = Li, and any vertex of Ti is in at least d∗tk−1
i edges e ∈ Ĥi with iQ̂i

(e) ∈
Lμ∗
Q̂i

(Ĥi).

We first recall from (A2) that Qi is (1/�, 2c, μ2, μ5)-robustly maximal with respect 
to Hi, and from (5) that (n∩

i )Z ≥ η|Z|/2 for any Z ∈ Q∩ contained in a part of Pi, so 
Lemma 5.5 implies that (E2) holds with high probability. For (E1), recall from (A1) that 
all but at most μ0n

k−1 Pi-partite (k − 1)-sets S ⊆ V (Hi) have |Hi(S)| ≥ (1/� + γ/2)n. 
So it suffices to show that for any such S we have |Hi(S) ∩ Ti| ≥ (1/(� − 1) + γ∗)ti
with high probability. Let W be the part of P such that Hi(S) ⊆ W . Note that |W | ≤
(1 − 1/� − γ/2)n as each part of P ′ is partitioned into r ≥ 2 parts by P, and each part 
of P has size at least (1/� + γ/2)n by (A5). Now

E
[∣∣Hi(S) ∩ Ti

∣∣] =
∑
Z⊆W

E
[∣∣Hi(S) ∩ Zi

∣∣] =
∑
Z⊆W

(n∩
i )Z |Hi(S) ∩ Z|

|Z|

(D3)
≥ ρi|Hi(S)|

|W | − 2K2

(6)
≥ ti(1/� + γ/2)

1 − 1/�− γ/2 − 4K2

≥ (1 + ε)
(

1 + γ∗

)
ti.
�− 1
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Since |Hi(S) ∩ Ti| is a sum of independent hypergeometric random variables, with high 
probability |Hi(S) ∩ Ti| ≥ (1/(� − 1) + γ∗)ti by Corollary 4.11.

For (E3), recall from (A6) that Li = Lμ1
Qi

(Hi) = Lμ′

Qi
(Hi). For any i′ ∈ Lμ∗

Q̂i

(Ĥi) there 

are at least μ∗(kti)k > μ1|V (Hi)|k edges e ∈ Ĥi ⊆ Hi with iQi
(e) = i′, so we have 

Lμ∗
Q̂i

(Ĥi) ⊆ Lμ1
Qi

(Hi). Now suppose that i′ ∈ Lμ′

Qi
(Hi), so there are at least μ′|V (Hi)|k ≥

μ′nk edges e ∈ Hi with iQi
(e) = i′. Recall that Q∩ has at most K parts, so at most 

Kε(kn)k of these edges contain a vertex from a part of Q∩ of size at most εn. Fix one of 
the remaining edges e = {x1, . . . , xk} and for each j ∈ [k] let Zj and Wj be the parts of 
Q∩ and P respectively which contain xj . Since |Zj | ≥ εn for each j ∈ [k], the probability 
that e ∈ Ĥi equals

∏
j∈[k]

(n∩
i )Zj

|Zj |
(D3)=

∏
j∈[k]

(
ρi

|Wj |
± 2K

εn

)
(6)
>

tki
nk

− 3kK
εn

.

Therefore the expected number of edges e ∈ Ĥi with iQi
(e) = i′ is at least (μ′nk −

Kε(kn)k)((ti/n)k − 3kK/εn) > μ′tki /2. By Corollary 4.13, with high probability there 
are at least μ′tki /3 ≥ μ∗|V (Ĥi)|k such edges, so we have i′ ∈ Lμ∗

Q̂i

(Ĥi), proving that 
Lμ∗
Q̂i

(Ĥi) = Li as claimed.
Now consider any vertex x ∈ Ti and let E(x) denote the number of edges e ∈ Ĥi

with iQi
(e) ∈ Li which contain x. To estimate E(x), recall from (A3) that x is in at 

least 1
2dn

k−1 edges e ∈ Hi with iQi
(e) ∈ Li. The same argument as above shows that 

E(E(x)) ≥ 1
3dt

k−1
i and so with high probability E(x) ≥ 1

4dt
k−1
i . This implies (E3), as 

Lμ∗
Q̂i

(Ĥi) = Li, so completes the proof of the claim.

To summarise, for each i ∈ I we have the following:

• Ĥi is a P̂i-partite k-graph on Ti with parts of size ti.
• At most ε∗tk−1

i P̂i-partite (k − 1)-sets S ⊆ Ti have |Ĥi(S)| < (1/(� − 1) + γ∗)ti.
• Q̂i is a partition of Ti which refines P̂i and is (c∗, c∗, μ∗, μ′

∗)-robustly maximal with 
respect to Ĥi.

• Any vertex of Ti is in at least d∗tk−1
i edges e ∈ Ĥi with iQ̂i

(e) ∈ Li = Lμ∗
Q̂i

(Ĥi).
• iQ̂i

(Ti) = (n∩
i | Qi) ∈ Li = Lμ∗

Q̂i

(Ĥi) by (D2).

Since

1/ti 	 ε∗ 	 μ∗ 	 μ′
∗ 	 c∗, d∗ 	 γ∗, 1/k,

we conclude that Ĥi contains a perfect matching Mi by our inductive hypothesis. There-
fore M ∪ M ′ ∪

⋃
i∈I Mi is a perfect matching in (the original) H. This completes the 

proof of Lemma 7.6. �
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8. Proof of the structure theorem

In this section we use Lemma 7.1 to prove Theorem 1.10. We start by proving an easier 
version in the first subsection, which is not algorithmic, but has a cleaner statement, and 
will be used in the proof of the full theorem. In the second subsection we prove a weaker 
version of the algorithmic result, which provides some details omitted from the extended 
abstract of this paper [16]. The third and fourth subsections contain some technical 
preliminaries for the main result: some analysis of how full lattices behave under merging 
of parts, and some results on subsequence sums in abelian groups. The final subsection 
contains the proof of Theorem 1.10.

8.1. An easier version

In this subsection we prove the following easier version of Theorem 1.10.

Theorem 8.1. Under Setup 1.7, H has a perfect matching if and only if every full pair 
(P, L) for H is soluble.

While the statement of this version is more appealing than that of Theorem 1.10, it 
is impractical to use directly for our algorithm, as the number of full pairs for H may be 
exponentially large. The forward implication of Theorem 8.1 is easy to prove: if H has a 
perfect matching M then iP(V (H) \V (M)) = 0 ∈ L, and Lemma 6.9 implies that (P, L)
is soluble. In fact the forward implication of Theorem 1.10 now follows immediately; we 
simply observe from the definition that there is no C-certificate for H for any C ≥ 0. We 
now consider the backward implication of Theorem 8.1. We need the following non-partite 
analogue of Proposition 7.5 (we omit the similar proof).

Proposition 8.2. Suppose that 1/n 	 μ, ε 	 ψ, d, c, 1/k, and let V be a set of size n. Let 
H be a k-graph on V in which at most εnk−1 (k− 1)-sets S ⊆ V have dH(S) < dn, and 
let P be a partition of V with parts of size at least cn such that Lμ

P(H) is transferral-free. 
Then the following properties hold.

(i) IμP(H) is full.
(ii) For any i ∈ IμP(H) at most ψnk−1 (k−1)-sets S ⊆ V with iP(S) = i −uX for some 

X ∈ P have |Hi(S)| < (d − ψ)n.
(iii) Each part of P has size at least (d − ψ)n.
(iv) I

dck−1/2k!
P (H) = IμP(H).

(v) For any i ∈ IμP(H) at most ψn vertices of V (Hi) lie in fewer than ck−2dnk−1/

2(k − 1)! edges of Hi.

Next we show that we can modify a robustly maximal partition to arrange that every 
vertex belongs to many edges with index on the robust edge-lattice. Note that it would 
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not help to use the technique employed in previous sections of removing a small matching 
covering the bad vertices, as we will require the full vertex set to remain intact in order 
to use the fact that every full pair is soluble.

Lemma 8.3. Suppose that k ≥ 3 and 1/n 	 ε, μ 	 μ′ 	 c 	 γ 	 1/k. Let H be a k-graph 
on n vertices such that at most εnk−1 (k − 1)-sets A ⊆ V (H) have dH(A) < (1 + γ)n/k
and every vertex is in at least γnk−1 edges of H. Also let P be a partition of V (H) that is 
(c, c, μ, μ′)-robustly maximal with respect to H. Then there exists a partition P ′ of V (H)
with at most k − 1 parts such that

(i) P ′ is (4c, 2c, 4√μ, μ′/2)-robustly maximal with respect to H,
(ii) L

6√μ
P′ (H) = L

4√μ
P′ (H) = Lμ

P(H), and
(iii) every vertex is in at least γnk−1/3k edges e ∈ H with iP′(e) ∈ L

4√μ
P′ (H).

Proof. First we note by Proposition 8.2(iii) that every part of P has size at least n/k +
γn −cn > n/k. So |P| ≤ k−1, and P is (1/k, c, μ, μ′)-robustly maximal with respect to H. 
Next let B be the set of vertices that belong to fewer than γnk−1/2 edges e ∈ H with 
iP(e) ∈ Lμ

P(H). We claim that |B| < √
μn/2. For otherwise, by the inclusion–exclusion 

principle the number of edges e that intersect B and have iP(e) /∈ Lμ
P(H) is at least 

(√μn/2) · γnk−1/2 −
(√

μn/2
2

)(
n

k−2
)
≥ √

μγnk/5. But this is a contradiction, as there are 
fewer than kkμnk such edges in total, so we must have |B| < √

μn/2.
Now consider any vertex v ∈ B and let X be the part of P containing v. For each 

edge e ∈ H we let gX(e) be the unique part X ′ such that iP(e) − uX + uX′ ∈ Lμ
P(H); 

this is well-defined as IμP(H) is full by Proposition 8.2(i), so we can apply Lemma 6.1(ii). 
By the pigeonhole principle there exists X(v) ∈ P such that gX(e) = X(v) for at 
least γnk−1/2k edges e ∈ H containing v. Let P ′ be the partition obtained from P
by moving v into X(v) for each v ∈ B. Then P ′ is √μ-close to P, so by Lemma 5.3, 
P ′ is (4c, 2c, 4√μ, μ′/2)-robustly maximal with respect to H. Also, by Proposition 4.3
we have Lμ1/3

P (H) ⊆ L
6√μ
P′ (H) ⊆ L

4√μ
P′ (H) ⊆ Lμ

P(H); since Lμ1/3

P (H) = Lμ
P(H) by 

Proposition 8.2(iv) we have Lμ
P(H) = L

4√μ
P′ (H) = L

6√μ
P′ (H). Finally, for any vertex 

v ∈ V (H) the number of edges e ∈ H containing v with iP′(e) ∈ L
4√μ
P′ (H) is at least 

γnk−1/2k −√
μnk−1 ≥ γnk−1/3k. �

Proof of Theorem 8.1. We have already proved the forward implication, so it remains to 
prove the backward implication. Consider H as in Setup 1.7 and suppose that every full 
pair (P, L) is soluble. Introduce a new constant c with ε 	 c 	 γ, fix s = �1/c� and intro-
duce further new constants μ1, . . . , μs+1 such that ε 	 μ1 	 · · · 	 μs+1 	 c. By Propo-
sition 5.2 there exists t ∈ [s] and a partition P of V (H) that is (c, c, μt, μt+1)-robustly 
maximal with respect to H; we write μ = μt and μ′ = μt+1. Applying Lemma 8.3 we ob-
tain a partition P ′ of V (H) with at most k−1 parts which is (4c, 2c, 4√μ, μ′/2)-robustly 

maximal with respect to H, such that L := L
6√μ
P′ (H) = L

4√μ
P′ (H) = Lμ

P(H) and ev-
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ery vertex v ∈ V (H) is in at least γnk−1/3k edges e ∈ H with iP′(e) ∈ L. Note 
that (P ′, L) is a full pair for H by Proposition 8.2(i), so by assumption it has a solu-
tion M . Taking V ′ := V \ V (M) we then have iP′(V ′) ∈ L. Also, by Proposition 4.3 we 
have L = L

6√μ
P′ (H) ⊆ L

5√μ

P′[V ′](H[V ′]) ⊆ L
4√μ
P′ (H) = L, so L = L

5√μ

P′[V ′](H[V ′]), and by 
Lemma 5.3 P ′[V ′] is (3c, 3c, 5√μ, μ′/3)-robustly maximal with respect to H ′. We may 
therefore apply Lemma 7.1 to H \ V (M) with γ/2, 3c, 5√μ, μ′/3, γ/4k and 2kk−1ε in 
place of γ, c, μ, μ′, d and ε respectively to obtain a perfect matching in H[V ′]. Together 
with M this gives a perfect matching in H. �
8.2. A slower algorithm

As a warmup for Theorem 1.10, and to provide the details for the result given in the 
extended abstract of this paper [16], we first prove a weaker result in which 2k(k− 3) is 
replaced by 2kk+3; this is sufficient for our algorithmic result, but the running time is of 
course significantly worse. (Actually, in the extended abstract we assumed instead that 
any full pair (P∗, L∗) for which any matching of edges e ∈ H with iP∗(e) /∈ L∗ has size 
less than 2kk+2 is soluble, but the proof shows that this gives the desired conclusion.)
This weaker result follows from Theorem 8.1 and the following result.

Lemma 8.4. Suppose that k ≥ 3 and H is a k-graph such that every 2kk+3-far full pair 
for H is soluble. Then every full pair for H is soluble.

Proof. Consider any full pair (P, L) for H. Let I be a full set in L, and let S be the set 
of k-vectors i such that H contains at least 2k2 disjoint edges e ∈ H with iP(e) = i. Let 
L′ be the lattice generated by I ∪ S (so L ⊆ L′). Consider the relation ∼ on P defined 
by X ∼ Y if and only if uX − uY ∈ L′; it is clear that ∼ is an equivalence relation. Let 
P∗ be the partition of V formed by taking unions of equivalence classes under ∼ and let 
L∗ = (L′ | P∗).

We claim that (P∗, L∗) is a 2kk+3-far full pair for H. To see this, we first show that 
L∗ is transferral-free. Suppose for a contradiction that uW − uZ ∈ L∗ for some distinct 
parts W, Z ∈ P∗. By definition there exists v ∈ L′ such that (v | P∗) = uW − uZ . 
Consider such v that minimises 

∑
X∈P |vX |. Then we cannot have vX > 0 and vY < 0

for distinct parts X, Y ∈ P that are contained in the same part of P∗. This implies that 
v = uX −uY for some X, Y ∈ P with X ⊆ W and Y ⊆ Z, so X ∼ Y , which contradicts 
the definition of P∗, so L∗ is transferral-free. Next, the projections of vectors in I show 
that L∗ is full. Now, since there are at most kk possible values of iP(e) for an edge e ∈ H, 
by choice of S, any matching of edges e ∈ H such that iP∗(e) /∈ L∗ has size less than 
2kk+2. Therefore (P∗, L∗) is a 2kk+3-far full pair for H, as claimed.

By assumption (P∗, L∗) is soluble, so H has a matching M of size at most k− 2 such 
that iP∗(V (H) \ V (M)) ∈ L∗. We claim that in fact i := iP(V (H) \ V (M)) ∈ L′. To 
see this, we apply Lemma 6.1(ii) to get i − uX + uX′ ∈ L for some parts X, X ′ of P. It 
follows that iP∗(V (H) \ V (M)) − (uX −uX′ | P∗) ∈ L∗, so (uX −uX′ | P∗) ∈ L∗. Since 
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L∗ is transferral-free, (uX −uX′ | P∗) = 0, so X and X ′ are contained in the same part 
of P∗. This implies uX − uX′ ∈ L′, so i ∈ L′, as claimed.

Next let G = L′/L and note that |G| ≤ |G(P, L)| ≤ k−1 by Lemma 6.4. There exists 
r ∈ N such that we can write i = v +

∑
j∈[r] ij for some v ∈ L, where either ij ∈ S or 

−ij ∈ S for j ∈ [r]. Then i + L =
∑

j∈[r](ij + L) ∈ G, where without loss of generality 
ij ∈ S for each j ∈ [r], as for any i′ ∈ −S we can replace i′ + L by |G| − 1 copies of 
−i′ + L. By Proposition 6.10, without loss of generality r ≤ k − 2. Now by definition 
of S, we can greedily extend M to a matching M ′ where for each j ∈ [r] we add an edge 
e with iP(e) = ij . Then iP(V (H) \ V (M ′)) ∈ L, so (P, L) is soluble by Lemma 6.9. �
8.3. Merging

In Lemma 8.16 we will improve Lemma 8.4 by replacing 2kk+3 by 2k(k−3). This will 
require a more careful analysis of the lattices that can be obtained by merging parts.

Definition 8.5. Suppose (P, L) is a full pair for a k-graph H and write G = G(P, L). 
Fix an identification of P with G and an element g0 ∈ G so that L = L(G, g0) (using 
Theorem 6.7). For any subgroup K of G, let PK be the partition obtained from P
by merging any two parts identified with elements in the same coset of K. Let LK =
(L | PK).

For example P0 = P, L0 = L, PG = {V (H)} and LG = kZ.

Lemma 8.6. Under the setup of Definition 8.5, PK is well-defined, (PK , LK) is a full 
pair, and

LK = L(G/K, g0 + K).

Furthermore, for i ∈ LP
max we have (i | PK) ∈ LK if and only if RG(i) ∈ K.

Proof. To see that PK is well-defined, recall from Remark 6.8 that the identification 
π : P → G is determined up to translation by G; we merge X and Y if and only 
if π(X) − π(Y ) ∈ K, and this property is invariant under any translation of π. Note 
that there is an induced identification of PK with G/K. Now we show that LK =
L(G/K, g0 + K); then (PK , LK) is a full pair by Lemma 6.6.

Recall from Lemma 6.6 that L(G, g0) is the set of index vectors i ∈ LP
max with ∑

g∈G igg = (k−1 ∑
g∈G ig)g0. For any such i we have

∑
h∈G/K

(i | PK)hh =
∑

h∈G/K

(∑
g∈h

ig

)
h =

∑
g∈G

ig(g + K) =
(
k−1

∑
g∈G

ig

)
(g0 + K)

=
(
k−1

∑
(i | PK)h

)
(g0 + K).
h∈G/K



P. Keevash et al. / Advances in Mathematics 269 (2015) 265–334 313
Thus (i | PK) ∈ L(G/K, g0 + K). Since RG(i) =
∑

g∈G igg − (k−1 ∑
g∈G ig)g0 for any 

i ∈ LP
max, this calculation also establishes the ‘Furthermore’ statement.

Conversely, consider any j ∈ L(G/K, g0 + K), so that 
∑

h∈G/K jhh =
(k−1 ∑

h∈G/K jh)(g0 + K). For each h ∈ G/K fix a representative ĥ ∈ h and consider 
the index vector i =

∑
h∈G/K jhuĥ with respect to P. Then (i | PK) = j and

∑
g∈G

igg =
∑

h∈G/K

jhĥ ∈
(
k−1

∑
h∈G/K

jh

)
(g0 + K)

=
(
k−1

∑
g∈G

ig

)
(g0 + K).

Let g′ =
∑

g∈G igg − (k−1 ∑
g∈G ig)g0, so g′ ∈ K, and let i′ = i − ug′ + u0G

. Then

∑
g∈G

i′gg = −g′ +
∑
g∈G

igg =
(
k−1

∑
g∈G

ig

)
g0 =

(
k−1

∑
g∈G

i′g

)
g0,

so i′ ∈ L(G, g0), and (i′ | PK) = (i | PK) = j. �
8.4. Subsequence sums in finite abelian groups

Under the setup of Definition 8.5, given a matching M in H, we define SG(M) to be 
the set of residues of submatchings of M ; that is,

SG(M) =
{
RG

(
V
(
M ′)) ∣∣ M ′ ⊆ M

}
.

Note that iP(V (H) \ V (M ′)) ∈ L if and only if RG(V (H)) = RG(V (M ′)), and if 
RG(V (H)) ∈ SG(M) then (P, L) is soluble by Lemma 6.9. Thus we have the follow-
ing result.

Proposition 8.7. Under the setup of Definition 8.5, if there is some matching M such 
that SG(M) = G then (P, L) is soluble.

To analyse SG(M) we require some lemmas on subsequence sums in abelian groups. 
Roughly speaking, we can obtain sufficient lower bounds provided that |SG(M)| increases 
by at least 1 when we add an edge to M . Our first lemma gives structural information 
when this is not the case. First we introduce some notation for sequences.

For the remainder of this subsection we fix any finite abelian group G.

Definition 8.8. Let a be a sequence in G.

(i) We write S(a) for the set of sums of all subsequences of a.
(ii) For any subgroup K of G we write a +K for the sequence of K-cosets of terms in a.
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(iii) For j ≥ 1 we write aj for the jth term of a (when it exists).
(iv) For j ≥ 0 we write aj = (a1, . . . , aj).
(v) We write a ◦ b for the concatenation of two sequences a and b.

Lemma 8.9. Suppose a is a sequence in G, and x ∈ G is such that S(a ◦ (x)) = S(a). 
Then S(a) is a union of cosets of 〈x〉.

Proof. Consider y ∈ S(a). It suffices to show that y + rx ∈ S(a) for every r ∈ N. We 
prove this by induction on r. The base case r = 0 is given. For the induction step, if 
y + rx ∈ S(a) then y + (r + 1)x = (y + rx) + x ∈ S(a ◦ (x)) = S(a). �
Remark 8.10. Lemma 8.16 follows directly from Lemma 8.9 for full pairs (P, L) such 
that |G(P, L)| = p is prime. Indeed, consider a greedy construction of a matching M , 
where at each step we add an edge that increases the size of SG(M), if possible. The 
construction terminates in at most |G| − 1 steps, because either SG(M) = G or no edge 
increases the size of SG(M). If SG(M) = G then (P, L) is soluble by Proposition 8.7. 
On the other hand, if SG(M) �= G we claim that for any edge e disjoint from M we have 
RG(e) = 0G, i.e. iP(e) ∈ L. For otherwise, since p is prime we have 〈RG(e)〉 = G, so 
by Lemma 8.9 SG(M) is a union of cosets of G, i.e. SG(M) = G, which contradicts our 
assumption. Note also that |M | ≤ |G| − 2 ≤ k− 3, so |V (M)| ≤ k(k− 3). Thus (P, L) is 
a k(k − 3)-far full pair, so is soluble by the assumption of Lemma 8.16.

Our next lemma gives a monotonicity property that will allow us to extend matchings, 
while maintaining the coset structure for subsequence sums.

Lemma 8.11. Suppose a is a sequence in G and S(a) is a union of cosets of some sub-
group K. Then S(a ◦ b) is a union of cosets of K for any sequence b in G.

Proof. Consider y ∈ S(a ◦ b), and write y = y1 + y2, such that y1 ∈ S(a) and y2 ∈ S(b). 
Let z ∈ y + K, and write z = y + h for h ∈ K. Then y1 + h ∈ S(a), and hence 
z = (y1 + h) + y2 ∈ S(a ◦ b). �

We deduce a property of sequences with the following minimality property.

Definition 8.12. Suppose a is a sequence in G. We say that a is minimal if S(a′) �= S(a)
for any proper subsequence a′ of a.

Lemma 8.13. Suppose a is a minimal sequence in G and K is a subgroup of G. Then a
has at most |K| − 1 elements in K.

Proof. Let b and c be the subsequences of a consisting of its elements that are in K and 
not in K respectively. It suffices to prove that |S(bj+1)| > |S(bj)| for j ≥ 0, as then b has 
length at most |S(b)| − 1 ≤ |K| − 1. Suppose for a contradiction that |S(bj+1)| = |S(bj)|
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for some j ≥ 0. Let a′ and b′ be obtained from a and b by deleting bj+1. We will show 
that S(a) = S(a′), contradicting minimality of a. Consider any y ∈ S(a). We claim that 
y ∈ S(a′). We can assume y is a subsequence sum using bj+1. Then y = bj+1+y1+y2 with 
y1 ∈ S(b′) and y2 ∈ S(c). Note that S(bj) is a union of cosets of 〈bj+1〉 by Lemma 8.9, 
and the same is true of S(b′) by Lemma 8.11. Thus bj+1 + y1 ∈ S(b′), so y ∈ S(a′), as 
required. �

Now we associate the following key subgroup with a sequence (Lemma 8.15 will show 
that it is well-defined).

Definition 8.14. Suppose a is a sequence in G. The key subgroup K(a) for a is the unique 
subgroup K such that S(a) is a union of cosets of K and K is maximal with this property.

Note that the key subgroup always exists since every subset of G is a union of cosets 
of {0}. The following lemma shows that it is unique, and derives some of its properties.

Lemma 8.15. Suppose a is a sequence in G. Then the key subgroup K(a) is well-defined, 
and

(i) if |G| > 1 and a has at least |G| − 1 nonzero entries then |K(a)| > 1,
(ii) K(a + K(a)) is the trivial subgroup of G/K(a),
(iii) if |G/K(a)| > 1 then a has at most |G/K(a)| − 2 elements not in K(a).

Proof. To show that K(a) is well-defined, it suffices to show that if S(a) is a union of 
cosets of K and of K ′, then S(a) is also a union of cosets of K +K ′. To see this, let y be 
any element of S(a) and consider z ∈ y+K+K ′. Write z = y+h +h′, where h ∈ K and 
h′ ∈ K ′. Now y + h ∈ S(a) as S(a) is a union of cosets of K, so z = (y + h) + h′ ∈ S(a)
as S(a) is a union of cosets of K ′.

To prove (i), we argue similarly to Remark 8.10. Either |S(a)| = |G| (so K(a) = G), or 
there exists j ≥ 0 such that aj+1 �= 0 and S(aj) = S(aj+1). In the latter case Lemma 8.9
implies that S(aj) is a union of cosets of 〈aj+1〉, and by Lemma 8.11 the same holds 
for S(a).

For (ii), suppose for a contradiction that K ′ = K(a +K(a)) is a non-trivial subgroup 
of G/K(a). Then {x +K(a) | x ∈ S(a)} =

⋃
t∈T (t +K ′) for some T ⊆ G/K(a). Let K∗

be the set of g ∈ G such that g is contained in some coset z + K(a) with z ∈ K ′. Then 
K∗ is a subgroup of G that strictly contains K(a). Now fix representatives t̂ ∈ t +K(a)
for t ∈ T and note that S(a) =

⋃
t∈T (t̂ + K∗), which contradicts the definition of K(a).

To show (iii), suppose for a contradiction that a has at least |G/K(a)| − 1 elements 
not in K(a). Applying (i) in G/K(a) we have |K(a +K(a))| > 1, which contradicts (ii), 
so we are done. �
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8.5. The full result

Theorem 1.10 follows from Theorem 8.1 and the following result.

Lemma 8.16. Suppose that k ≥ 3 and H is a k-graph such that every 2k(k − 3)-far full 
pair for H is soluble. Then every full pair for H is soluble.

First we require the following calculation.

Lemma 8.17. Suppose t ≥ 1 and x ∈ Z
t+1 with xi ≥ 2 for i ∈ [t + 1]. Let

f(x) =
∑
j∈[t]

x1 . . . xj +
∑

j∈[t+1]

xj +
∑
j∈[t]

xj+1 . . . xt+1 − 4t− 2.

Then f(x) ≤ 2(x1 . . . xt+1 − 2).

Proof. First we consider the case t = 1. Then f(x) = 2x1 + 2x2 − 6, so the required 
inequality is equivalent to x1 + x2 − 1 ≤ x1x2; this holds as (x1 − 1)(x2 − 1) ≥ 0. 
Now suppose t > 1. Note that the inequality holds if xi = 2 for all i ∈ [t + 1], as then 
f(x) = (2t+1−2) +2(t +1) +(2t+1−2) −4t −2 < 2(2t+1−2). Also note that the inequality 
holds if t = 2 and x = (2, s, 2) for some s > 2, as then f(x) = 5s + 8 − 10 < 2(4s − 2). 
For r ∈ [t + 1] write xr→2 for the vector obtained from x by setting xr equal to 2. We 
will show that

f(x)
f(xr→2) ≤ xr

2 ≤ x1 . . . xt+1 − 2
2x1 . . . xr−1xr+1 . . . xt+1 − 2 ,

except in the case where t = r = 2 and x = (2, s, 2) for some s > 2. This suffices to 
prove the lemma, since we can replace each xr by 2 in turn until we reach one of the 
cases considered above. The second inequality is immediate from xr ≥ 2. For the first, 
we rewrite it as

0 ≤ xrf
(
xr→2)− 2f(x)

= (xr − 2)
( ∑

j∈[r−1]

x1 . . . xj +
∑

j∈[t+1],j �=r

xj +
∑

r≤j≤t

xj+1 . . . xt+1 − 4t− 2
)
.

If t ≥ 3, or if t = 2 and r �= 2, this holds since there are 2t positive terms in the last 
bracket, each of which is at least 2 and at least one of which is at least 4. Alternatively, 
if t = r = 2 and either x1 ≥ 3 or x3 ≥ 3 we note that at least two terms in the bracket 
are at least 3. In any case we have the desired inequality. �
Proof of Lemma 8.16. We proceed by induction on |P|. Let (P, L) be a full pair and 
assume that every full pair (P ′, L′) with |P ′| < |P| is soluble. We will show that (P, L)
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is soluble. Write G = G(P, L). We will construct a sequence G = K0 ⊇ K1 ⊇ K2 ⊇
. . . ⊇ Kt0 ⊇ 0 of distinct subgroups of G, together with a sequence of vertex sets 
∅ = S0 ⊆ S1 ⊆ S2 ⊆ . . . ⊆ St0 , such that the following conditions hold:

(i) |St|/k ≤
∑

j∈[t] |G/Kj | +
∑

j∈[t] |Kj−1/Kj | +
∑

j∈[t] |Kj | − 4t.
(ii) Every edge e ∈ H such that RG(e) /∈ Kt intersects St.
(iii) There exists a solution for (PKt

, LKt
) using only vertices from St.

Recalling that PG is the trivial partition of V (H) into a single part, it is clear that S0 = ∅
satisfies these conditions. Given Kt and St, we construct Kt+1 and St+1 as follows.

For any matching M , let K(M) be the key subgroup of the sequence of residues of 
edges in M (in any order). Consider the set of all matchings M in H − St such that 
SG(M ∪{e}) = SG(M) for every edge e ∈ H−St which does not intersect V (M). This is 
a non-empty set, as it contains all maximal matchings in H − St. We choose such an M
so that SG(M) is maximal, and subject to this M is minimal. Having chosen M , we set 
Kt+1 := K(M). Note that the choice of M implies that SG(M ′) �= SG(M) for any strict 
subset M ′ ⊂ M . Indeed, if SG(M ′) = SG(M) then minimality of M implies that some 
edge e ∈ H−St which does not intersect V (M ′) has SG(M ′∪{e}) �= SG(M ′) = SG(M), 
but then a maximal matching containing M ′∪{e} contradicts the maximality of SG(M). 
Also observe that any edge e with RG(e) /∈ Kt+1 intersects St∪V (M); otherwise SG(M)
is a union of cosets of 〈RG(e)〉 by Lemma 8.9, which contradicts the definition of K(M) =
Kt+1 as being the unique maximal subgroup of G such that SG(M) is a union of cosets 
of K(M). Thus (PKt+1 , LKt+1) is a |St ∪ V (M)|-far full pair for H by Lemma 8.6.

First we consider the case that Kt+1 = Kt. By (iii) there is a solution Msol for 
(PKt

, LKt
) using only vertices from St. Then RG(V (H) \ V (Msol)) ∈ Kt by Lemma 8.6. 

Since K(M) = Kt+1 = Kt there is M ′ ⊆ M with RG(V (M ′)) = RG(V (H) \ V (Msol)). 
Now M ′ ∪ Msol is a matching, as M is disjoint from St, and RG(V (H) \ V (M ′ ∪
Msol)) = 0G, so (P, L) is soluble by Lemma 6.9.

Now we can assume that Kt+1 is a strict subgroup of Kt. We will show that |St ∪
V (M)| ≤ 2k(k − 3), so that we can apply the hypothesis of the lemma. Define x ∈ Z

t+1

by xj = |Kj−1/Kj | for j ∈ [t] and xt+1 = |Kt|. Then xj ≥ 2 for all j ∈ [t + 1] and 
x1 . . . xt+1 = |G| ≤ k− 1 by Lemma 6.4. Note that M has at most |Kt+1| − 1 elements e
with RG(e) ∈ Kt+1 by Lemma 8.13. Also, since RG(e) ∈ Kt for all e ∈ M by (ii), M has 
at most |Kt/Kt+1| − 2 elements e with RG(e) /∈ Kt+1 by Lemma 8.15(iii). Therefore 
|M | ≤ |Kt+1| + |Kt/Kt+1| − 3.

By (i) and Lemma 8.17 we have

∣∣St ∪ V (M)
∣∣/k ≤

∑
j∈[t]

|G/Kj | +
∑

j∈[t+1]

|Kj−1/Kj | +
∑

j∈[t+1]

|Kj | − 4t− 3

= f(x) −
(
|Kt/Kt+1| − 1

)(
|Kt+1| − 1

)
≤ 2

(
|G| − 2

)
≤ 2(k − 3).
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Thus (PKt+1 , LKt+1) is a 2k(k − 3)-far full pair for H, so by assumption has a solution 
Msol , which by definition has size at most |G/Kt+1| − 1.

If |Kt+1| = 1 then Msol is a solution for (P, L). Otherwise, we define St+1 = St ∪
V (M) ∪ V (Msol) and proceed to the next step. The required conditions on St+1 hold as

|St+1|/k ≤ |St|/k + |M | + |Msol | ≤ |St|/k + |G/Kt+1| + |Kt/Kt+1| + |Kt+1| − 4,

every edge with RG(e) /∈ Kt+1 intersects St ∪ V (M), and there is a solution for 
(PKt+1 , LKt+1) using only vertices from St+1 (namely Msol). �
9. Deferred proofs

In this section we present the proofs of Lemmas 2.4, 5.5 and 7.1.

9.1. Proof of Lemma 2.4

Recall that we are given a k-graph H on n vertices that has a perfect matching, and 
for each set A of k − 1 vertices of H we let tA = max(0, (1/k + γ)n − dH(A)). Write 
V = V (H),

χ1 =
∑

A∈
( V
k−1

) t
2
A and χ2 = max

(
0, n

k−1

3k! − δ1(H)
)
.

We are given

(i) χ1 < εγ2nk+1/4 + 3knk, and
(ii) χ2 + χ1√

εγ2n2 <
√
εnk−1.

(We have slightly rephrased (ii) from the hypothesis of the lemma by including the 
maximum in the definition of χ2; to see that it is equivalent, note that if χ2 = 0 then 
by (i) we have χ1√

εγ2n2 <
√
εnk−1.)

Let e be any edge of H. By (i) there are at most 2εnk−1 (k − 1)-sets A ⊆ V \ e such 
that d(A) < (1/k + γ/2)n, and by (ii) we have χ2 <

√
εnk−1, so δ1(H − e) ≥ nk−1/6k!. 

Thus we can apply Theorem 2.1 to H − e for every e ∈ H, with γ/2 and 3ε in place of 
γ and ε, to construct the set E′ of edges e such that H − e contains a perfect matching; 
in total this takes time O(n3k2−7k).

We will show that we can find an edge e ∈ E′ in time O(n2k) such that H− e satisfies 
the analogues of (i) and (ii). More precisely, for any (k − 1)-set A ⊆ V we define teA by

teA =
{

max(0, (1/k + γ)(n− k) − dH−e(A)) if A ⊆ V \ e,
0 otherwise.

We also define
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χe
1 =

∑
A∈

(V \e
k−1

)
(
teA

)2 and χe
2 = max

(
0, (n− k)k−1

3k! − δ1(H − e)
)
.

Then we need to find e ∈ E′ so that

(i)e χe
1 < εγ2(n − k)k+1/4 + 3k(n − k)k, and

(ii)e χe
2 + χe

1√
εγ2(n−k)2 <

√
ε(n − k)k−1.

First we claim that for each A ∈
(

V
k−1

)
,

(
teA

)2 ≤ t2A + 2tA
(∣∣H(A) ∩ e

∣∣− 1 − kγ
)

+ k2. (7)

Note that if tA = 0 then (7) follows from teA ≤ k. On the other hand, if tA > 0, then

(
teA

)2 ≤
(
tA +

∣∣H(A) ∩ e
∣∣− 1 − kγ

)2
= t2A + 2tA

(∣∣H(A) ∩ e
∣∣− 1 − kγ

)
+
(∣∣H(A) ∩ e

∣∣− 1 − kγ
)2

≤ t2A + 2tA
(∣∣H(A) ∩ e

∣∣− 1 − kγ
)

+ k2,

so (7) holds. Now to find the desired edge e, we split into two cases.

Case 1: χ2 > 0. In this case, by definition there must exist a vertex x of degree at 
most nk−1/3k!, and we can find such a vertex in time O(nk). Since H contains a perfect 
matching, there is some e ∈ E′ containing x. We now delete e and show that condi-
tions (i)e and (ii)e hold. First we define A = {A ∈

(
V

k−1
)

: x ∈ A} and note that ∑
A∈A dH(A) = (k − 1)dH(x) ≤ nk−1/3(k − 1)!. Since |A| =

(
n−1
k−2

)
we have

∑
A∈A

tA ≥
(

1
k

+ γ

)
n

(
n− 1
k − 2

)
− nk−1

3(k − 1)! ≥
n

2k

(
n− 1
k − 2

)
.

Now by the Cauchy–Schwartz inequality, we obtain 
∑

A∈A t2A ≥ n2

4k2

(
n−1
k−2

)
. Moreover, 

by (7) and then Cauchy–Schwartz we have

∑
A∈

(V \e
k−1

)
((
teA

)2 − t2A
)
≤

∑
A∈

(V \e
k−1

)
(
2tA(k − 1) + k2)

≤ 2(k − 1)

√(
n

k − 1

)
χ1 + k2

(
n− k

k − 1

)

≤
√
εnk,

where the final inequality holds by (i). Since A ⊆
(

V
)
\
(
V \e), we have
k−1 k−1
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χe
1 ≤ χ1 −

n2

4k2

(
n− 1
k − 2

)
+

√
εnk ≤ χ1 −

nk

7k! , (8)

so χe
1 < εγ2nk+1/4 + 3knk − nk/7k! ≤ εγ2(n − k)k+1/4 + 3k(n − k)k, which proves (i)e.

Note also that χe
2 ≤ χ2 + k

(
n

k−2
)
, so by (8) we have

(
χe

1√
εγ2(n− k)2

+ χe
2

)
−

(
χ1√
εγ2n2 + χ2

)

≤ χ1√
εγ2n2 · 2kn− k2

(n− k)2 − nk

7k!
√
εγ2(n− k)2

+ k

(
n

k − 2

)

≤ k
√
εnk−2 − nk−2

γ
+ k

(
n

k − 2

)
< −nk−2.

Now by (ii) we deduce that

χe
1√

εγ2(n− k)2
+ χe

2 <
√
εnk−1 − nk−2 <

√
ε(n− k)k−1,

which proves (ii)e.

Case 2: χ2 = 0. We claim that we can find in time O(n2k) an edge e ∈ E′ such that

∑
A∈

( V
k−1

)
(
2tA

(∣∣H(A) ∩ e
∣∣− 1 − kγ

)
− |A ∩ e|t2A

)
≤ −k(k + 1)χ1

n
. (9)

To see this, consider a perfect matching M in H (this exists by hypothesis of the lemma, 
although the algorithm does not have access to it). Note that

∑
e∈M

∑
A∈

( V
k−1

) 2tA
(∣∣H(A) ∩ e

∣∣− 1 − kγ
)

=
∑

A∈
( V
k−1

) 2tA
∑
e∈M

(∣∣H(A) ∩ e
∣∣− 1 − kγ

)

=
∑

A∈
( V
k−1

) 2tA
((

1
k

+ γ

)
n− tA − (1 + kγ)n

k

)

=
∑

A∈
( V
k−1

)−2t2A = −2χ1.

(For the second equality, note that terms with tA = 0 contribute zero to each side of the 
equation, whilst terms with tA > 0 are equal by definition of tA and the fact that M has 
size n/k.) Note also that

∑
e∈M

∑
A∈

( V ) |A ∩ e|t2A =
∑

A∈
( V )(k − 1)t2A = (k − 1)χ1.
k−1 k−1
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We deduce that
∑
e∈M

∑
A∈

( V
k−1

)
(
2tA

(∣∣H(A) ∩ e
∣∣− 1 − kγ

)
− |A ∩ e|t2A

)
= −(k + 1)χ1,

so by averaging there is some e ∈ M that satisfies (9). Note further that e ∈ E′, so we 
can find such an edge e in time O(n2k) simply by checking (9) for every edge of E′.

We will show that (i)e and (ii)e hold for this choice of e. Let D(e) be the family of 
(k − 1)-sets A ⊆ V which intersect e. Applying (7), we obtain

χe
1 − χ1 =

∑
A∈

( V
k−1

)
((
teA

)2 − t2A
)

=
∑

A∈
(V \e
k−1

)
((
teA

)2 − t2A
)
−

∑
A∈D(e)

t2A

≤
∑

A∈
(V \e
k−1

) 2tA
(∣∣H(A) ∩ e

∣∣− 1 − kγ
)
−

∑
A∈D(e)

t2A + k2
(

n

k − 1

)
. (10)

We will show that the first and second terms of (10) are close to those of (9). For the 
first, note that |D(e)| =

(
n

k−1
)
−
(
n−k
k−1

)
≤ k2

n

(
n

k−1
)
, so

∑
A∈

(V \e
k−1

) 2tA
(∣∣H(A) ∩ e

∣∣− 1 − kγ
)
−

∑
A∈

( V
k−1

) 2tA
(∣∣H(A) ∩ e

∣∣− 1 − kγ
)

≤
∑

A∈D(e)

n ≤ k2
(

n

k − 1

)
. (11)

For the second, observe that if A ∈
(

V
k−1

)
is chosen uniformly at random then |A ∩ e| is 

hypergeometric with mean k(k − 1)/n, so

∑
A∈D(e)

|A ∩ e| =
∑

A∈
( V
k−1

) |A ∩ e| = k(k − 1)
n

(
n

k − 1

)
.

We also have

∣∣D(e)
∣∣ =

(
n

k − 1

)
−
(
n− k

k − 1

)
≥

(
k(k − 1)

n
− k4

2n2

)(
n

k − 1

)
,

so 
∑

A∈D(e)(|A ∩ e| − 1) ≤ k4

2n2

(
n

k−1
)

and so 
∑

A∈D(e)(|A ∩ e| − 1)t2A ≤ k2( n
k−1

)
. It follows 

that

∑
A∈D(e)

t2A ≥
∑

A∈
( V
k−1

) |A ∩ e|t2A − k2
(

n

k − 1

)
. (12)

Substituting (11) and (12) into (10) and then applying (9), we obtain
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χe
1 ≤ χ1 −

k(k + 1)χ1

n
+ k2

(
n

k − 1

)
+ k2

(
n

k − 1

)
+ k2

(
n

k − 1

)

≤
(

1 − k(k + 1)
n

)(
εγ2nk+1

4 + 3knk

)
+ 3k2

(
n

k − 1

)

≤ εγ2(n− k)k+1/4 + 3k(n− k)k,

using (i) for the second inequality, and nk+1−(n −k)k+1 ≤ k(k+1)nk and nk−(n −k)k ≤
k2nk−1 for the third. This proves (i)e. Further, since χ2 = 0 we have χe

2 ≤ k
(
n−1
k−2

)
, so

χe
1√

εγ2(n− k)2
+ χe

2 <

√
ε(n− k)k−1

2 + k

(
n− 1
k − 2

)
<

√
ε(n− k)k−1,

which proves (ii)e. �
9.2. Weak hypergraph regularity

The proofs of Lemmas 5.5 and 7.1 use the weak hypergraph regularity lemma. We 
state this after the following definitions.

Definition 9.1. Suppose that P partitions a set V into r parts V1, . . . , Vr and G is a 
P-partite k-graph on V . For A ∈

([r]
k

)
we write GA for the induced k-partite subgraph 

of G with parts Vi for i ∈ A.

(i) The density of GA is d(GA) = |GA|∏
i∈A |Vi| .

(ii) For ε > 0 and A ∈
([r]
k

)
, we say that the k-partite subgraph GA is ε-vertex-regular

if for any sets V ′
i ⊆ Vi with |V ′

i | ≥ ε|Vi| for i ∈ A, writing V ′ =
⋃

i∈A V ′
i , we have 

d(GA[V ′]) = d(GA) ± ε.
(iii) We say that a partition P of V (G) is ε-regular if all but at most ε|V |k edges of G

belong to ε-vertex-regular k-partite subgraphs.
(iv) The reduced k-graph Rd

P is the k-graph whose vertices are the parts of P and whose 
edges are all k-sets of parts of P that induce an ε-vertex-regular k-partite subgraph 
of G of density at least d.

Note that we use the same notation d(·) for density as for degree, but there should be 
no confusion. We shall use the following formulation of the weak hypergraph regularity 
lemma to obtain regular partitions.

Theorem 9.2 (Weak hypergraph regularity lemma). Suppose that 1/n 	 1/m0 	 ε, 1/r 	
1/k. Suppose that G is a k-graph on n vertices and that P is a partition of V = V (G)
into at most r parts of size at least εn. Then there is an ε-regular partition Q of V into 
m ≤ m0 parts such that
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(i) each part of Q has size �n/m� or �n/m�, and
(ii) Q is ε-close to a refinement P ′ of P.

Proof. Taking 1/m0 	 ε′ 	 ε, the most commonly-used form of the weak hypergraph 
regularity lemma (see [5]) states that there exist an integer m ≤ m0, an exceptional set 
V0 ⊆ V of size |V0| ≤ ε′n and a partition P ′ of V \ V0 into parts V1, . . . , Vm of equal size 
which is ε′-regular (with respect to H[V \V0]) and has the property that Vj is a subset of 
some part of P for any j ∈ [m]. By distributing the vertices of V0 as equally as possible 
among the parts of P ′ we obtain the desired partition Q. �
9.3. Proof of Lemma 5.5

Before giving the proof of Lemma 5.5, we give a brief sketch of the idea. A rough 
statement of the lemma is that robust maximality is preserved by random selection, i.e. 
if some partition P of V (H) is robustly maximal with respect to H and S is a suitable 
random subset of V (H) then with high probability P[S] is also robustly maximal (with 
slightly weaker parameters) with respect to H[S]. It is not hard to see that H[S] has a 
transferral-free robust edge-lattice with respect to P[S]. The main difficulty is to show 
that with high probability there is no strict refinement P◦ of P[S] (with large parts) that 
has a transferral-free robust edge-lattice. Since there are many possible refinements P◦

to consider, a straightforward union bound on the probability will not suffice. Instead, 
we use the weak hypergraph regularity lemma. We show that any such refinement P◦

gives rise to a partition of the reduced k-graph, which in turn gives rise a refinement 
P∗ of P with a transferral-free robust edge-lattice. However, this contradicts the robust 
maximality of P, so no such refinement P◦ can exist.

Proof of Lemma 5.5. Recall that we are given a k-graph H on n vertices and a partition 
P of V (H) that is (c, c′, μ, μ′)-robustly maximal with respect to H. We are also given a 
partition P ′ of V (H) that refines P and integers (nZ)Z∈P′ such that η|Z| ≤ nZ ≤ |Z|. 
We choose S ⊆ V (H) uniformly at random subject to the condition that |S ∩ Z| = nZ

for each Z ∈ P ′. First we note that |S| ≥ ηn, and for each part X ∈ P that |S ∩X| ≥
η|X| ≥ ηcn. Next we show that Lμ/c

P[S](H[S]) is transferral-free. It suffices to prove that 
I
μ/c
P[S](H[S]) ⊆ IμP(H). To see this, note that if i ∈ I

μ/c
P[S](H[S]) then there are at least 

(μ/c)(ηn)k ≥ μnk edges e ∈ H[S] ⊆ H with iP[S](e) = i, so i ∈ IμP(H).
It remains to show that with high probability there is no refinement P◦ of P[S] with 

parts of size at least (3c′/η)|S|, such that L(μ′)3
P◦ (H[S]) is transferral-free. Suppose that we 

have such a partition P◦; then we will obtain a contradiction using events that hold with 
high probability. Introduce new constants ε, N0, N1 such that 1/n 	 1/N1 	 1/N0 	
ε 	 μ. We apply Theorem 9.2 to H to obtain an ε-regular partition Q of V (H) which 
has nR parts of almost equal size, for some N0 ≤ nR ≤ N1, and which is ε-close to a 
refinement of P. Let n0 = n/nR, so every cluster has size �n0� or �n0�. We henceforth 
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omit the floor and ceiling signs as these do not affect the argument. Let R = R
μ′/3
Q be 

the μ′/3-reduced k-graph on Q.
For any Y ∈ Q, note that |Y ∩ S| is a sum of independent hypergeometric random 

variables, with

E
[
|Y ∩ S|

]
=

∑
Z∈P′

nZ |Y ∩ Z|
|Z| ≥

∑
Z∈P′

η|Y ∩ Z| = ηn0.

Hence by Corollary 4.11 with high probability |Y ∩ S| ≥ ηn0/2 for every Y ∈ Q. Next 
we choose a partition of V (R) that is ‘representative’ of P◦.

Claim 9.3. There exists a partition S of V (R), whose parts (XS)X∈P◦ correspond to 
those of P◦, such that

(i) each part XS ∈ S has size at least 3c′nR/2, and
(ii) |X ∩ Y | ≥ (c′)2n0 whenever Y ∈ XS .

To prove the claim, we choose S randomly as follows. Let P be the set of pairs (X, Y )
such that X ∈ P◦, Y ∈ V (R) = Q and |X ∩ Y | ≥ c′|S ∩ Y |. We independently assign 
each Y ∈ V (R) to a part XS such that (X, Y ) ∈ P with probability proportional to 
|X ∩ Y |, so with probability

|X ∩ Y |∑
X:(X,Y )∈P |X ∩ Y | ≥

|X ∩ Y |
|S ∩ Y | .

Note that whenever Y ∈ XS we have |X ∩ Y | ≥ c′(ηn0/2) ≥ (c′)2n0, so (ii) is satisfied. 
For (i), consider any X ∈ P◦, and note that 

∑
Y ∈V (R) |X∩Y | = |X| ≥ (3c′/η)|S| ≥ 3c′n. 

Then

∑
Y ∈V (R)

|X ∩ Y |
|S ∩ Y | ≥

∑
Y ∈V (R)

|X ∩ Y |
n0

≥ 3c′n
n0

= 3c′nR, and

E
[
|XS |

]
≥

∑
Y :(X,Y )∈P

|X ∩ Y |
|S ∩ Y |

=
∑

Y ∈V (R)

|X ∩ Y |
|S ∩ Y | −

∑
Y :(X,Y )/∈P

|X ∩ Y |
|S ∩ Y |

≥ 3c′nR − c′nR = 2c′nR.

Thus (i) holds with high probability by Lemma 4.10, which proves the claim. (Note that 
here we used the phrase ‘with high probability’ to mean with probability 1 − e−Ω(nc

R)

for some c > 0 as nR → ∞, that is, with nR large instead of our usual definition with n
large.)
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We now define a partition Q∗ of V by

Q∗ =
{ ⋃

Y ∈X

Y
∣∣∣ X ∈ S

}
.

So Q refines Q∗, and by Claim 9.3(i) each part of Q∗ has size at least 3c′nRn0/2 = 3c′n/2. 
Recall that we chose Q to be ε-close to a refinement of P, so we can obtain a refinement 
of P from Q by changing the part of a set B of at most εn vertices of V . Furthermore, 
any cluster Y was assigned to XS for some X ∈ P◦ such that |X ∩ Y | ≥ (c′)2n0 by 
Claim 9.3(ii). Since P◦ is a refinement of P, we deduce that we may obtain a refinement 
of P from Q∗ by possibly changing the part of

(i) the at most εn vertices in B, and
(ii) the at most n0 · (εn/(c′)2n0) < μ′n/5 vertices which lie in clusters Y with |Y ∩B| ≥

(c′)2n0.

We conclude that Q∗ is (μ′/4)-close to a refinement P∗ of P; in particular, P∗ then has 
parts of size at least c′n.

To finish the proof of the lemma, it suffices to prove the following claim. Indeed, 
since L(μ′)3

P◦ (H[S]) is transferral-free, it will imply that the same is true of Lμ′

P∗(H), 
contradicting the robust maximality of P.

Claim 9.4. Iμ
′

P∗(H) ⊆ I
μ′/2
Q∗ (H) ⊆ I

μ′/10
S (R) ⊆ I

(μ′)3
P◦ (H[S]).

The first inequality holds by Proposition 4.3 since Q∗ is (μ′/4)-close to P∗. For the 

second inequality, consider i ∈ I
μ′/2
Q∗ (H). By definition of R, there are at most εnk +

nk
R · (μ′/3)nk

0 ≤ 2μ′nk/5 edges e ∈ H with iP∗(e) = i which do not lie in k-graphs 
corresponding to edges of R. There are at least μ′nk/2 edges e ∈ H with iQ∗(e) = i, so 
at least μ′nk/10 of these lie in k-graphs corresponding to edges of R. Thus there are at 
least μ′nk/10nk

0 = μ′nk
R/10 edges e ∈ R such that iS(e) = i, i.e. i ∈ I

μ′/10
S (R).

For the final inequality consider i ∈ I
μ′/10
S (R). Then there are at least μ′nk

R/10 edges 
e ∈ R with iS(e) = i. Consider such an edge e = {Y1, . . . , Yk}, let (Xj)S be the part 
of S containing Yj for each j ∈ [k], and let F be the k-partite subgraph of H with 
vertex classes (Xj ∩ Yj)j∈[k]. By definition of R, since each part of F has size (c′)2n0
by Claim 9.3(ii), we have |F | ≥ (μ′/3 − ε)((c′)2n0)k ≥ 10(μ′)2(|S|/nR)k. Summing 
over all choices of e, there are at least (μ′)3|S|k edges e′ ∈ H[S] with iP◦(e′) = i, i.e. 
i ∈ I

(μ′)3
P◦ (H[S]). This completes the proof of the claim, and so of the lemma. �

9.4. Proof of Lemma 7.1

Recall that we are given a k-graph H on a set V = V (H) of size kn and a partition P
of V (H) such that (i) at most εnk−1 (k − 1)-sets S ⊆ V have dH(S) < (1 + γ)n, (ii) P



326 P. Keevash et al. / Advances in Mathematics 269 (2015) 265–334
is (c, c, μ, μ′)-robustly maximal with respect to H, (iii) any vertex is in at least dnk−1

edges e with iP(e) ∈ Lμ
P(H), and (iv) iP(V ) ∈ Lμ

P(H).
We choose uniformly at random a partition P ′ = (V1, . . . , Vk) of V into k parts each 

of size n. Let H ′ be the induced P ′-partite subgraph of H and let P̂ be the common 
refinement of P and P ′. We also set c∗ = c/2k, d∗ = d/2kk and γ∗ = γ/2k, and introduce 
a new constant μ∗ with μ 	 μ∗ 	 μ′. Note that μ 	 μ∗ 	 c∗, d∗ 	 γ∗, 1/k. We will 
show that the following conditions hold with high probability.

(F1) At most εnk−1 P ′-partite (k − 1)-sets S ⊆ V have |H ′(S)| < (1/k + γ∗)n,
(F2) P̂ is (c∗, c∗, μ, μ∗)-robustly maximal with respect to H ′,
(F3) any vertex is in at least d∗nk−1 edges e ∈ H ′ with iP̂(e) ∈ Lμ

P̂(H ′), and
(F4) iP̂(V ) ∈ Lμ

P̂(H ′).

We then apply Lemma 7.6 to H ′ with P̂ in place of P and c∗, μ∗, d∗, γ∗ in place of 
c, μ′, d, γ to obtain a perfect matching in H ′, which is also a perfect matching in H.

First we note that (F1) is immediate from (i) and Corollary 4.11, and (F3) follows from 
(iii) and Corollary 4.13, similarly to the proof of (E3) in Claim 7.11. Next, since each part 
of P has size at least c|V | = ckn, by Corollary 4.11 with high probability each part of P̂
has size at least cn/2 = c∗|V | and by Proposition 4.5(i), for every i ∈ Lμ

P̂(H ′) ⊆ Lμ

P̂(H)
we have (i | P) ∈ Lμ

P(H), so Lμ

P̂(H ′) is transferral-free. This gives part of (F2); it also 
allows us to apply Proposition 7.5 and deduce that Lμ

P̂(H ′) is full with respect to P ′.
Now we claim that i ∈ Lμ

P̂(H ′) for every index vector i with respect to P̂ such that 
(i | P ′) is a multiple of 1 and (i | P) ∈ Lμ

P(H). Note that this will imply (F4), as 
(iP̂(V ) | P ′) = n · 1 and (iP̂(V ) | P) = iP(V ) ∈ Lμ

P(H) by (iv). To prove the claim, we 
apply Proposition 6.12(iii) to find parts X and X ′ of P̂ such that i −uX +uX′ ∈ Lμ

P̂(H ′). 
Now (uX − uX′ | P) = (i | P) − (i − uX + uX′ | P) ∈ Lμ

P(H), so X and X ′ must be 
contained in the same part of P, as Lμ

P(H) is transferral-free. Also, since H ′ is P ′-partite, 
X ′ is contained in the same part of P ′ as X, so X ′ = X and i ∈ Lμ

P̂(H ′), as claimed.
To finish the proof of (F2), we need to show that with high probability there is no strict 

refinement P̂∗ of P̂ with parts of size at least c∗|V | such that Lμ∗
P̂∗(H ′) is transferral-free; 

this will occupy the remainder of the proof. Suppose that we have such a partition P̂∗; 
then we will obtain a contradiction using events that hold with high probability. By (F1) 
we can apply Proposition 7.5 to deduce that Lμ∗

P̂∗(H ′) is full and every part of P̂∗ has 
size at least (1/k+γ∗/2)n. Also, by Proposition 6.12(i) there is some integer � such that 
every part of P ′ is refined into � parts by P̂∗; note that � < k.

Now we use an argument which is similar in spirit to that of Lemma 5.5 (but more 
complicated). Let N0, N1 satisfy 1/n 	 1/N1 	 1/N0 	 ε. We apply Theorem 9.2 to 
obtain an ε-regular partition Q of V which is ε-close to a refinement of P and has nR

parts of almost equal size, for some N0 ≤ nR ≤ N1. Let n0 = kn/nR, so every cluster 
has size �n0� or �n0�; we omit the floor and ceiling signs since they do not affect the 
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argument. Also let R = R
μ′/4
Q be the μ′/4-reduced k-graph of H on Q. For any e ∈ R

we write

He =
{
e′ ∈ H : e′ ∩X �= ∅ ∀X ∈ e

}
for the k-partite subgraph of H corresponding to e. We note for future reference the 
following claim, which shows that R inherits a codegree condition from H.

Claim 9.5. At most γ−1εnk−1
R (k − 1)-sets A ⊆ V (R) have |R(A)| < nR/k.

To see this, recall that at most ε|V |k edges of H do not lie in ε-vertex-regular 
k-partite subgraphs of H formed by parts of Q; call these irregular edges. So there 
are at most k2√εnk−1

R (k − 1)-sets A ⊆ V (R) for which more than 
√
εnk−1

0 n irregular 
edges intersect each member of A. Fix any other A for which |R(A)| < nR/k. Then we 
have 

∑
B∈VA

|H(B)| < nk
0nR/k + (μ′/4)nk−1

0 n +
√
εnk−1

0 n, where VA denotes the set of 
(k−1)-sets with one vertex from each cluster of A. Let mA be the number of (k−1)-sets 
B ∈ VA such that |H(B)| < (1 + γ)n. Then 

∑
B∈VA

|H(B)| ≥ (nk−1
0 −mA)(1 + γ)n, and 

so

mA ≥ nk−1
0 − nk

0nR/k + (μ′/4)nk−1
0 n +

√
εnk−1

0 n

(1 + γ)n

= nk−1
0

γ − μ′/4 −√
ε

1 + γ
≥ 1

2γn
k−1
0 .

Since by (i) there are at most εnk−1 (k−1)-sets B ⊆ V with |H(B)| < (1 +γ)n, there can 
be at most εnk−1

R /2γ such sets A. Together with the at most k2√εnk−1
R sets A considered 

earlier we have a total of at most γ−1εnk−1
R (k− 1)-sets A ⊆ V (R) with |R(A)| < nR/k, 

proving the claim.

In the next claim we choose for each cluster of R a representative part of P̂∗ within 
each part of P ′. We encode these choices by k-vectors with respect to P̂∗ which are 
P ′-partite, by which we mean that they correspond to P ′-partite k-sets.

Claim 9.6. There are P ′-partite k-vectors i∗(Y ) ∈ Z
P̂∗ for each Y ∈ V (R) such that

(G1) |Y ∩ Z| ≥ c∗n0 whenever i∗(Y )Z = 1, and
(G2) RZ := |{Y : i∗(Y )Z = 1}| ≥ nR/k for every Z ∈ P̂∗.

The proof of the claim is similar to that of Claim 9.3. For each i ∈ [k] we let Pi be 
the set of pairs (Y, Z) such that Y ∈ V (R) = Q, Z ∈ P̂∗, Z ⊆ Vi and |Y ∩ Z| ≥ c∗n0. 
For each Y ∈ V (R) and i ∈ [k] we let i∗(Y )Z = 1 for a part Z with (Y, Z) ∈ Pi chosen 
with probability proportional to |Y ∩Z|, and let i∗(Y )Z = 0 otherwise, where all random 
choices are made independently. Thus (G1) is satisfied by choice of Pi. For (G2), first note 



328 P. Keevash et al. / Advances in Mathematics 269 (2015) 265–334
that P[i∗(Y )Z = 1] ≥ |Y ∩Z|
|Y ∩Vi| for every Y and Z ⊆ Vi such that |Y ∩Z| ≥ c∗n0. Also, since 

|Y ∩ Vi| is distributed hypergeometrically, with high probability |Y ∩ Vi| = (1 ± ε)n0/k

for every Y ∈ Q and Vi ∈ P ′ by Corollary 4.11. Now for any Vi ∈ P ′ and any Z ∈ P̂∗

with Z ⊆ Vi we have

∑
Y ∈V (R)

|Y ∩ Z|
|Y ∩ Vi|

≥
∑

Y ∈V (R)

|Y ∩ Z|
(1 + ε)n0/k

= |Z|
(1 + ε)n0/k

, and

∑
Y :(Y,Z)/∈Pi

|Y ∩ Z|
|Y ∩ Vi|

≤ nR · c∗n0

(1 − ε)n0/k
< 2kc∗nR.

Since every part Z of P̂∗ has size at least (1/k + γ∗/2)n, we obtain

E[RZ ] ≥
∑

Y :(Y,Z)∈Pi

|Y ∩ Z|
|Y ∩ Vi|

≥ (1 + γ∗/3)nR/k.

Thus (G2) holds with high probability by Lemma 4.10, which completes the proof of the 
claim.

In the next claim we show that certain ‘bad’ occurrences are rare. We will consider a 
cluster to be bad if it is not well-represented by its choice of vector in Claim 9.6. We will 
consider a vertex to be bad if it belongs to a good cluster but not to the part assigned 
to this cluster in Claim 9.6. We will consider an edge of the reduced k-graph to be bad if 
it either contains a bad cluster or contains two clusters whose vectors are ‘incompatible’. 
More precisely, we make the following definitions.

Definition 9.7.

(i) We call a cluster Y ∈ V (R) bad if there exists Z ∈ P̂∗ such that i∗(Y )Z = 0, but 
|Y ∩ Z| ≥ μ

1/4
∗ n0; otherwise we call Y good.

(ii) We call a vertex bad if it is contained in Y ∩ Z for some good cluster Y and some 
Z ∈ P̂∗ such that i∗(Y )Z = 0.

(iii) We call an edge e of R bad if either e contains a bad cluster, or e contains two 
clusters Y1, Y2 such that i∗(Y1) and i∗(Y2) are neither identical nor orthogonal to 
each other.

Claim 9.8. H has at most k3μ
1/4
∗ n bad vertices and R has at most √μ∗n

k
R bad edges.

The first part of the claim is immediate from the definitions, using |P̂∗| ≤ k2 and 
n0nR = kn. For the second, we will show that if e is bad then the number of edges 
e′ ∈ He with iP̂∗(e′) /∈ Lμ∗

P̂∗(H ′) is at least μ1/3
∗ nk

0 . The claim then follows from the fact 
that H ′ has at most �kμ∗(kn)k such edges in total.

First we consider e ∈ R that is bad because it contains a bad cluster Y1. Then there is 
Z ∈ P̂∗ such that i∗(Y1)Z = 0 but |Y1 ∩Z| ≥ μ

1/4
∗ n0. Without loss of generality Z ⊆ V1. 
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Let Y2, . . . , Yk be the remaining clusters of e, and let Zj be the parts of P̂∗ such that 
Zj ⊆ Vj and i∗(Yj)Zj

= 1 for each j ∈ [k]. Now we consider two induced subgraphs 
of He: let F1 have parts (Yj ∩ Zj)j∈[k] and F2 have parts Y1 ∩ Z and (Yj ∩ Zj)2≤j≤k. 
Let i1 and i2 be the index vectors with respect to P̂∗ of edges in F1 and F2 respectively. 
Note that i1 and i2 are P ′-partite k-vectors, so the edges of F1 and F2 are P ′-partite. 
Also observe that i1 − i2 = uZ1 − uZ , and hence at least one of i1 and i2 does not lie 
in Lμ∗

P̂∗(H ′), since Z and Z1 are distinct and Lμ∗
P̂∗(H ′) is transferral-free by our choice 

of P̂. Thus it suffices to show that each of F1 and F2 contains at least μ1/3
∗ nk

0 edges. To 
see this, note that by (G1) and the choice of Z, each of F1 and F2 contains at least c∗n0
vertices from k− 1 vertex classes and at least μ1/4

∗ n0 vertices from the remaining vertex 
class. Furthermore He is ε-regular with density at least μ′/4 by definition of the reduced 
k-graph R. Thus each of F1 and F2 contains at least (μ′/4 − ε)(c∗)k−1μ

1/4
∗ nk

0 > μ
1/3
∗ nk

0
edges, as required.

The other case is that e ∈ R is bad because it contains two clusters Y1, Y2 such 
that i∗(Y1), i∗(Y2) are neither identical nor orthogonal to each other. Then without loss 
of generality there exist Z1, Z ′

1, Z2 ∈ P̂∗ with Z1, Z ′
1 ⊆ V1 and Z2 ⊆ V2, such that 

i∗(Y1)Z1 = i∗(Y2)Z′
1

= i∗(Y1)Z2 = i∗(Y2)Z2 = 1. Let Y3, . . . , Yk be the remaining clusters 
of e and select Zj ∈ P̂∗ such that Zj ⊆ Vj and i∗(Yj)Zj

= 1 for each 3 ≤ j ≤ k. Now 
we consider two induced subgraphs of He: let F1 have parts (Yj ∩ Zj)j∈[k] and F2 have 
parts Y2 ∩Z ′

1, Y1 ∩Z2 and (Yj ∩Zj)3≤j≤k. Similarly to the previous case, each of F1 and 
F2 contains at least μ1/3

∗ nk
0 edges, each of which is P̂-partite, and for one of them the 

index vector is not in Lμ∗
P̂∗(H ′). This completes the proof of the claim.

In the next claim we use the index vectors from Claim 9.6 that are well-represented 
to define a partition of V . More precisely, we let

Ri =
{
Y ∈ V (R)

∣∣ i∗(Y ) = i
}

and T =
{
i ∈ Z

P̂∗ ∣∣ |Ri| ≥ μ
1/5
∗ nR

}
.

Then we define P∗ = {X∗
i }i∈T , where X∗

i =
⋃

Z∈P̂∗,iZ=1 Z for each i ∈ T .

Claim 9.9. P∗ is a partition of V which strictly refines P into parts of size at least c|V |.

To see this, we start by showing that any distinct vectors i1, i2 of T are orthogonal. 
For suppose otherwise, and note that the number of (k−1)-sets of clusters that intersect 
Ri1 and Ri2 is at least k!−1(nR)k−3|Ri1 ||Ri2 | ≥ k!−1μ

2/5
∗ (nR)k−1. By Claim 9.5 all but 

at most γ−1εnk−1
R of these (k − 1)-sets A satisfy |R(A)| ≥ nR/k. But then we obtain at 

least (k!−1μ
2/5
∗ − γ−1ε)nk−1

R (nR/k) > √
μ∗nk

R bad edges, which contradicts Claim 9.8.
Thus for every Z ∈ P̂∗ there is at most one i ∈ T such that iZ = 1, so the parts of P∗

are pairwise disjoint. Furthermore, for each Z ∈ P̂∗ there must be some i ∈ T such that 
iZ = 1. Indeed, if iZ = 0 for every i ∈ T then the number of Y ∈ V (R) with i∗(Y )Z = 1
is at most �kμ1/5

∗ nR, which contradicts (G2). Thus P∗ is a partition of V . Clearly each 
part of P∗ has size at least c|V |, since this is true of P̂∗.



330 P. Keevash et al. / Advances in Mathematics 269 (2015) 265–334
Finally, to see that P∗ refines P, recall that Q was chosen to be ε-close to a refinement 
of P. So there are at most ε|V |/c∗n0 < μ

1/5
∗ nR clusters Y of Q which intersect more 

than one part of P in at least c∗n0 vertices. Now, consider any i ∈ T . By definition of 
T we have |Ri| ≥ μ

1/5
∗ nR, so we may choose Y ∈ Ri for which there is a unique part 

X ∈ P such that |X ∩ Y | ≥ c∗n0. We claim that Z ⊆ X for any Z ∈ P̂∗ with Z ⊆ X∗
i . 

Indeed, since P̂∗ is a refinement of P we have Z ⊆ X ′ for some X ′ ∈ P. But iZ = 1 by 
definition of X∗

i , so |Y ∩ Z| ≥ c∗n0 by (G1). By choice of Y this implies that X = X ′, 
as claimed. This completes the proof of Claim 9.9.

Our final claim will complete the proof of the lemma. Indeed, it implies that i ∈
Lμ∗
P̂∗(H ′) for any index vector i with respect to P̂∗ such that i′ = (i | P∗) ∈ Lμ′

P∗(H) and 

(i | P ′) is a multiple of 1. We can apply this with i′ ∈ Lμ′

P∗(H) equal to a transferral 
uX∗

1 − uX∗
2 , which must exist since P is (c, c, μ, μ′)-robustly maximal with respect to H

and P∗ strictly refines P into parts of size at least c|V |. Letting Z1, Z2 be the intersections 
of X∗

1 and X∗
2 respectively with V1 we deduce that uZ1 − uZ2 ∈ Lμ∗

P̂∗(H), contradicting 
our assumption that Lμ∗

P̂∗(H) was transferral-free. Thus it remains to prove the following 
claim.

Claim 9.10. For any P ′-partite k-vector i with respect to P̂∗ such that (i | P∗) ∈ Iμ
′

P∗(H)
we have i ∈ Iμ∗

P̂∗(H ′).

To see this, let Ji be the set of good edges e ∈ R such that e ⊆
⋃

i′∈T Ri′ for which 
He contains some edge e′ with no bad vertex and iP∗(e′) = (i | P∗). We claim that 
|Ji| ≥ μ′nk

R/2. To see this, note that since (i | P∗) ∈ Iμ
′

P∗(H), there are at least μ′(kn)k
edges e′ ∈ H such that iP∗(e′) = (i | P∗). Of these, at most ε(kn)k + μ′(kn)k/4 are 
not contained in 

⋃
e∈R He, and at most k2μ

1/4
∗ (kn)k contain a bad vertex. Thus there 

are at least 2μ′nk
R/3 edges of R that contain at least one of the remaining edges e′. Of 

these edges of R, at most √μ∗n
k
R are bad, and at most kkμ1/5

∗ nk
R intersect 

⋃
i/∈T Ri. We 

conclude that |Ji| ≥ μ′nk
R/2, as claimed.

Next we claim that for any e ∈ Ji there are at least (μ′)2nk
0 edges e∗ ∈ He with 

iP̂∗(e∗) = i. To see this, fix some e′ ∈ He with no bad vertex, and consider any v ∈ e′. 
Since v is not bad we have i∗(Yv)Zv

= 1 for the Yv ∈ e and Zv ∈ P̂∗ with v ∈ Y ∩ Z, 
and since each cluster Y ∈ e lies in Ri′ for some i′ ∈ T , we have i∗(Yv) ∈ T . Recall that 
the vectors in T are orthogonal, so for each Z ∈ P̂∗ there is a unique iZ ∈ T such that 
iZZ = 1. So we must have i∗(Yv) = iZv , that is, Yv ∈ RiZv . Since iP∗(e′) = (i | P∗), there 
must be exactly (i | P∗)X∗

i′
clusters of e in Ri′ for each i′ ∈ T . Thus we can order the 

clusters of e as (Y1, . . . , Yk) such that i∗(Yj)Zj
= 1 for each j ∈ [k], where Zj ⊆ Vj is 

such that iZj
= 1 for j ∈ [k]. Now the sets Yj ∩ Zj for j ∈ [k] each have size at least 

c∗n0 by (G1), and so by definition of R they induce a subgraph of He with at least 
(μ′/4 − ε)(c∗n0)k > (μ′)2nk

0 edges, as claimed.
Summing over e ∈ Ji, we obtain at least (μ′)2nk

0 · μ′nk
R/2 ≥ μ∗(kn)k edges e∗ ∈ H

with iP̂∗(e∗) = i, and each such edge lies in H ′ since i is P̂-partite. Thus i ∈ Iμ∗
P̂∗(H ′), 

which completes the proof of Claim 9.10, and so of the lemma. �
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10. Concluding remarks

The only case where we did not resolve the complexity status of PM(k, δ) is when 
δ = 1/k; this has been solved while this paper was under review by Han [11]: he showed 
that there is a polynomial time algorithm, using some theory developed in our paper 
and a lattice-based absorbing method.

We will conclude our paper with some remarks on multipartite versions of our results, 
tightness of the parameters, and other degree conditions.

10.1. Multipartite analogues

The following multipartite versions of our main results may be proved similarly to the 
non-partite versions.

Theorem 10.1. Fix k ≥ 3 and γ > 0. Then there is an algorithm with running time 
O(n3k2−7k+1), which given any k-partite k-graph with parts of size n such that every 
partite (k − 1)-set has degree at least (1/k + γ)n, finds either a perfect matching or a 
certificate1 that no perfect matching exists.

Theorem 10.2. Suppose that k ≥ 3 and 1/n 	 ε 	 γ 	 1/k. Let P ′ partition a 
vertex set V into k parts each of size n. Suppose that H is a P ′-partite k-graph H on 
V such that δ1(H) ≥ γnk−1, and at most εnk−1 P ′-partite (k − 1)-sets A ⊆ V (H)
have dH(A) < (1/k + γ)n. Then H has a perfect matching if and only if there is no 
2k(k − 3)-certificate for H.

Let PPM(k, δ) denote the problem of deciding whether there is a perfect matching 
in a given k-partite k-graph with parts of size n such that every partite (k − 1)-set has 
degree at least δn. Theorem 10.1 implies that PPM(k, δ) can be decided in polynomial 
time when δ > 1/k. On the other hand, a similar argument to that of Szymańska [28]
shows that PPM(k, δ) is NP-complete for δ < 1/k.

10.2. Tightness of parameters

We believe that a stronger version of Lemma 8.16 is true, in which 2k(k−3) is replaced 
by k(k−3), as in the case for full pairs (P, L) where |G(P, L)| is prime (see Remark 8.10). 
This would immediately imply the following improved version of Theorem 1.10.

Conjecture 10.3. Under Setup 1.7, H has a perfect matching if and only if there is no 
k(k − 3)-certificate for H.

1 A C-certificate for a k-partite k-graph is defined in an analogous way as for a general k-graph.
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A proof of this conjecture would allow us to improve the running time in Theorem 1.1. 
We also conjecture that a similar strengthening of Theorem 10.2 holds. Conjecture 10.3, 
if true, would be best-possible. To see this, consider the following construction, which is 
similar to Construction 1.6.

Construction 10.4. Let P = (A1, . . . , Ak−1) be a partition of a set of n vertices with 
|Aj | = n/(k − 1) ± 2 and 

∑
j∈[k−1] j|Aj | = k − 2 modulo k − 1. Let B be a subset of A1

of size k(k − 2) − 1. Let H be the k-graph with vertex set 
⋃

j∈[k−1] Aj whose edges are

(1) any k-set e with 
∑

j∈[k−1] j|e ∩Aj | = 0 modulo k − 1, and
(2) any k-set of vertices in B.

Consider the full pair (P, L) for H, where L is the lattice of index vectors i such 
that 

∑
j∈[k−1] ijj = 0 modulo k − 1, and note that (P, L) is a k(k − 3)-far full pair 

for H. Since any matching M contains at most k − 3 edges contained in B, we have ∑
j∈[k−1] j|V (M) ∩ Aj | �= k − 2 for any matching M in H and so H cannot contain a 

perfect matching. On the other hand, (P, L) is not a (k(k − 3) − 1)-far full pair for H
since removing k(k − 3) − 1 vertices from B still leaves k vertices which form a single 
edge e with iP(e) /∈ L. It is not hard to show that indeed no (k(k − 3) − 1)-far full pair 
for H exists.

We also remark that the following construction shows that the constant 1/k in 
Setup 1.7 is best-possible.

Construction 10.5 (Space barrier). Let V be a set of size n and fix S ⊆ V with |S| < n/k. 
Let H be the k-graph whose edges are all k-sets that intersect S.

Note that any matching in Construction 10.5 has at most |S| edges, so is not perfect.

10.3. Other degree conditions

It is natural to ask whether similar results could be obtained for the decision problem 
for perfect matching in k-graphs under the weaker complex degree sequence assumption 
used in [17]. However, our inductive argument in the key lemma depends crucially on 
the inheritance of the codegree condition by subgraphs, and this inheritance need not 
hold for a complex degree sequence condition. Thus an alternative proof strategy would 
be needed for such a result.

It is also natural to consider the decision problem of determining the existence of a 
perfect matching in k-graphs satisfying a minimum �-degree condition for any � ∈ [k−1]. 
However, one should note that the �-degree threshold for the existence of a perfect 
matching is open in general. One can read [12] as suggesting that either a space barrier 
or a divisibility barrier is always extremal for such a problem, and this was formalised as 
Conjecture 3.6 in [26]. Let PM(k, �, δ) denote the problem of deciding whether there is a 
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perfect matching in a given k-graph on n vertices with minimum �-degree at least δ
(

n
k−�

)
. 

Szymańska [29] showed that PM(k, �, δ) is NP-complete when δ is less than the space 
barrier threshold, i.e. δ < 1 − (1 − 1/k)k−�. It is then natural to make the following 
conjecture.

Conjecture 10.6. PM(k, �, δ) is in P for δ > 1 − (1 − 1/k)k−�.

Theorem 1.1 establishes the case � = k − 1 of Conjecture 10.6. Beyond this, the con-
jecture is immediate for those cases where the space barrier threshold is (asymptotically) 
equal to the threshold at which a perfect matching is guaranteed. The conjecture of Hàn, 
Person and Schacht mentioned above would therefore imply all cases of Conjecture 10.6
with (1 − 1/k)k−� ≤ 1/2, and some cases of the latter conjecture are implied by partial 
results for the former. Specifically, Conjecture 10.6 holds in the case k = 3, � = 1 by a 
result of Hàn, Person and Schacht [12], in the case k = 4, � = 1 by a result of Lo and 
Markström [23], and in the cases k = 5, � = 1 and k = 6, � = 2 by results of Alon, Frankl, 
Huang, Rödl, Ruciński and Sudakov [2]. To our knowledge all other cases remain open.
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