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Convex Trace Functions and 

the Wigner-Yanase-Dyson Conjecture 

ELLIOTT H. LIEB* 

Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France 

Several convex mappings of linear operators on a Hilbert space into the real 
numbers are derived, an example being A ++ -Tr exp(L + In A). Some of 
these have applications to physics, specifically to the Wigner-Yanase-Dyson 
conjecture which is proved here and to the strong subadditivity of quantum 
mechanical entropy which will be proved elsewhere. 

1. INTRODUCTION 

This paper is concerned with certain convex or concave mappings 
of linear operators on a Hilbert space into the reals. [f(A) is convex if 
f(hA + (1 - h)B) < Af(A) + (1 - X)f(B) for 0 < h < 1 andf(A) is 
concave if ---f(A) is convex.] These mappings involve the trace operation 
which plays a central role in quantum statistical mechanics, and it 
is not surprising, therefore, that the mappings discussed here were 
motivated by considerations of physics. In particular, Theorem 1 solves 
affirmatively a conjecture due to Wigner, Yanase, and Dyson [l] about a 
certain definition of information. In Section 3 we use Theorem 1 to 
prove other convexity theorems when the Hilbert space is finite dimen- 
sional. One of those, Theorem 6, we extend to infinite dimensional 
spaces in Section 4. Theorem 6 has a physical application; it is the basis 
for proving that quantum mechanical entropy is strongly subadditive 
(cf. Refs. [2, 3, 43). The proof of that fact will be given in a subsequent 

paper PI. 
From the work of Krauss and Bendat and Sherman ([6] and the 

references quoted therein) it is known that certain convex functions from 
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Iw to R extend to operator-valued convex functions. If f(x) is such a 
function then At-+ Tr K.‘(A) ( w ere h Tr means trace) is certainly 
convex when K > 0 and fixed. Simple examples aref(A) = A-p and 
f(A) = -A* for A > 0 and 0 < p < 1. However, A I+ Trf(A) may 
be convex even when f (A) is not convex as an operator-valued function. 
Examples of this aref(A) = eA for A self-adjoint andf(A) = A-* for 
p > 1 and for A > 0 (cf. Theorems 8 and 9). 

In this paper we shall be concerned with mappings more complicated 
than those just mentioned. One example, Theorem 6, is 

A F+ -Tr exp[L + In A] 

for A > 0 and L self-adjoint. 
Theorem 1 is our main theorem and Theorems 2, 3, 6, and 7 are 

derived from it. Theorems 8 and 9 are a side issue and are independent 
of and simpler than Theorem 1. In Section 5 we remark briefly on the 
logical connection of Theorems 1, 2, 3, 6, and 7, namely that they can all 
be derived simply from each other (at least for finite dimensional 
Hilbert spaces). 

2. THE MAIN THEOREM AND THE WIGNER-YANASE-DYSON PROBLEM 

We begin by proving our main Theorem 1 which constitutes the basis 
for Theorems 2, 3, 6, and 7 of the next section. Theorem 1 is also the 
Wigner-Yanase-Dyson (WYD) conjecture [I] (actually, it is a bit 
stronger) and at the end of this section we shall explain the WYD 
problem. We also discuss another problem concerning the WYD 
definition of information [l] and give a partial solution of it. 

Theorem 1 will be proved directly for infinite dimensional Hilbert 
spaces and our notation is the following: 

(1) H is a separable Hilbert space with inner product (x, y) which 
is linear in y and conjugate linear in x. 

(2) L%(H) is the set of bounded linear operators from H to H; 
WS(H) c sY(H) are the bounded self-adjoint operators; B+(H) CL@(H) are 
the positive operators (A EzB+(H) + (x, Ax) > O,V~);~++(H)CL~Y+(H) 
are the strictly positive operators (A ELI++ =s (x, Ax) > 0,Vx # 0). 

(3) If A Ed@+ d an z E @, we can use the spectral representation 
of A to define AZ E B(H) for Re(z) > 0. AZ E g+(H) for z > 0. 
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(4) The Y* classes: If A E S(H) we form 1 A ( = (A+A)l12 E g+(H). 
A E Y*(H) C 33(H) (q > 1) if (1 A I/* E (Tr / A \*)l/q < 00, where Tr 
means trace. X1(H) is the trace class and &(H) is the Hilbert-Schmidt 
class. A E 9q(H) implies that A is compact and that A E 4;(H). 1) A lip = 

<c;=14 > ’ .* l *, where the hj are the eigenvalues of ) A / in decreasing order, 
including multiplicity. If A E g+(H) but A 4 9i(H), it is convenient to 
define Tr A = co. 

(5) We recall that if A E g’(H) and if K is a linear operator (not 
necessarily bounded) on a dense domain, D(K), in H then AK may have 
a bounded extension to all of H. If so, it is unique and its adjoint is a 
bounded extension of K+A+. 

THEOREM 1. Let K be a linear operator (not necessarily bounded) on H, 
let A, B E a+(H), and let h, 0 < h < 1, be given. Form the convex 
combination C = XA + (1 - h)B. Let p and r be given positive real 
numbers with p + r s s < 1. If M E CP/2KCr/2 has an extension to 
Y2(H) then 

(1) AP12KAr12 and BP12KBr12 have extensions to Y.(H) and 

(2) X Tr A7i2KtApKAri2 + (1 - h) Tr Br/2KtBpKBT/2 

,< Tr Cr12KtCpKCr12, i.e., 

A E 3?+(H) t-t Tr Ar/2KtApKAr/2 is concave. 

Proof. (a) We recall the theorem [6] that the map A E g+(H) w A* 
is concave on g+(H) when 0 < q < 1. Thus, AA* < C* and Ker (A*) = 
Ker(A) 3 Ker(C) = Ker(C*), and similarly for B. As A, B, and C are 
bounded, their kernels are closed subspaces and H = Ker(C) @ Ker(C)J-. 
The foregoing inequalities show that for 0 < q < 1, u(q) 3 A*i2C-*/2 
and a(q)+ = C-*/2A*/2 can be extended to bounded operators on 
Ker(C)l because 11 A*/2C-*/2Y 11 6 h-1/2 11 Yll, in the dense set D, = 
{vectors with support away from zero in the spectral representation of C]. 
Similarly, we define /3(q) = B*i2C-*12. Also, or(q) and a(q)+ can be 
defined to be zero on Ker(C) and, thus, are defined on all of H. Clearly, 
C*i2a(q)+ = A*/2 = cy(q)C*12. Consequently, 

Ap/2KAr/2 = a(p)[Cp12KCT’2] a(r)+ = a(p) Ma(r)+ E 3P(H), 

since ME $2(H). Not only is the first part of the theorem thus proved, 
but we also see that if {!Pi} and {vi} are orthonormal bases for Ker(C) and 
Ker(C)l, respectively, we can compute traces in the basis (Y?i) + {vi) 
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and all terms involving Iv/,} will vanish. Thus, Ker(C) is an irrelevant 
subspace, and we shall, henceforth, assume that H = Ker(C)l, i.e., 
c > 0. 

(b) With the foregoing definitions, part (2) is equivalent to the 
following: AP( p, I) + (1 - A) P( p, I) < Tr M+M for every M E Ja(H), 
where P( p, Y) = Tr a(~) M+@)+a(p) Ma(r)+ and similarly for P(p, Y). 

(c) Let z = x + iy E @ and consider the operator valued function 
a(z) s A~/2C--8/2 = @/2Ax/2C-x/2C--iu/2 = Aiul2,(X) C--iup. Since @I2 

is unitary and I( Aiy12 11 < 1, 01 z is uniformly bounded in S = (z 1 0 < ( ) 
Re(z) < I}. If f = x - iy, a(,%)+ = C-z/2Az/2. For !P E Dc , a(z)Y is an 
entire analytic function of x because C-z/2!P is entire and AsI2 is entire. 
Hence, by the boundedness of a(z) and a standard density argument, 
ar(x)!P is regular on S (continuous on S and analytic in the interior of S) 
for all YE H. Since weak analyticity implies strong analyticity, we also 
have that a(z) is strongly continuous on S and is norm analytic in the 
interior of S. Furthermore, if A, d A strongly and if B E 4r2(H), then 
A,B ---t AB in the Y2(H) norm. (This is trivial if B is finite rank, but the 
finite rank operators are dense in the 4’,(H) norm). Hence, CK(Z~) MoL(Y~)+ 
is f12(H) regular on S x S, which means that 

TA(z, , z2) = Tr a(z2) M+cr(.Q+ ‘~(2~) M@2)+ 

is bounded and regular on S x S. 
(d) We now set z1 = z, a2 = s - z and consider P(z) E 

P(z, s - z) as a regular function on {z I 0 < Re(z) < s}. By (b) we 
need to show thatf(p) = hP(p) + (1 - A) P(p) < Tr &PM. By the 
maximum modulus principle for bounded regular functions on a strip, 
If(p)1 < max{sup, [f(8)/, sup, jf(s + &?)I}. We shall consider only the 
first case, p = i0, in detail because the second case, p = s + 8, is 
parallel. If(8)j < Al P(ie)j + (1 - A) / P(i8)I. Using the facts that 
for A E 3’(N) and B E Y2(H), AB and BA E Y2(H), and for B, C E 92(H), 
Tr BC = Tr CB ,and 1 Tr BC / < *Tr B+B + &Tr C+C, we have that 

2 1 P(ie)l < Tr a(~ - if?) M+a(--iti)+ a(-i0) M~(s - itQi 

+ Tr OL(S + 23) hztor(ie)+ ,(ie) MOL(S + ie)+. 

However, 11 a(-iO)+a(-id)ll < I, so the first term is at most 

Tr a(~ - 8) M+Mx(s - it?)+ = Tr MCL(S - iO)+ a(~ - it9) M+ 

= Tr MC-“@/2 a(s)+ a(s) C’@leM+ 

= Tr m(s)+ a(s) CiB/2M+MC-ie’2. 
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Likewise, the second term is at most Tr o(s)+o~(s) C-ielzM+MCie/2. If we 
add to these the corresponding two terms for / P(8)) we obtain 

h 1 IfA( + (1 - h)l TB(id)l < 4 Tr[har+(s) U(S) 4- (1 - A) B’(s) B(s)]P, 

(2-l) 

where p = CiePM+MC-i@l2 + C-iePM+MCieP E g+(H). As we 

remarked before, MS + (1 - X) B” < C”, whence 

h(s)+ a(s) + (1 - A) /3(s)’ /3(s) = c-yL4s + (1 - A) P] C-S’2 G ?I. 

Substituting this in (2.1) proves the theorem. Q.E.D. 

Remark. If Cp12K has an extension to 3I(H) then so does Ap12K 
and Bp/2K since 11 CP/2K (( > N2\1 Ap12K I(. In this case 

Tr Crf2K+Cf’KCr’2 = Tr CrK+OK = Tr K+D’KC’ 

and similarly for A and B. 

COROLLARY 1.1. With p and I as in Theorem 1, the function from 
g+(H) x S?+(H) x g(H) to the nonnegative reals de$ned by (A, B, K) w 
F(A, B, K) = Tr A7J2KtBpKAri2 

(1) is jointly concave in (A, B) and 

(2) is convex in K. 

Proof, Consider the Hilbert space H’ 3 H @ H and define the 
following operators in a( H’): 

k: 6, Y> - (0, W, 

k+: (x, Y) I-+ (K+Y, 01, 

a: (x, y) * (Ax, W, a E a+(H’). 

Applying Theorem 1 to Tr ar/2k+aPka’/2 proves the first part. The 
second part follows from a Schwartz inequality type of argument since 
F(A, B, K) is nonnegative and quadratic in K. Q.E.D. 

COROLLARY 1.2. With p and r as in Theorem 1, p + r = s < 1, the 
functions from g+(H) x 9+(H) x 9(H) to the nonnegative reals defined 

bY 
(A, B, K) H F,(A, B, K) = {Tr A7/2KtBpKAr/2}* 
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(1) are jointly concave in (A, B) when 0 < q < l/s, 

(2) are jointly convex in (A, B) when q < 0, and 

(3) are convex in K when q > i. 

Proof. The proof is a standard one for homogeneous concave (or 
convex) functions [7]. Let x = (xi , xa) E R+2 = {(xi , xa) ( xi > 0, xa > 0} 
and define f (x) = F,(x,A + x2/l’, x,B + xzB’, K) for an arbitrary but, 
henceforth, fixed choice of A, A’, B, B’ E a+(H). Parts (1) and (2) are 
equivalent to showing that for all such choices, f(x)* is concave (or 
convex). By Corollary 1.1 f ( ) x is nonnegative, concave and homogeneous 
of order s, i.e., f(Xx) = hsf (x) for h > 0. For each 01 > 0, define 
G = (x If(x) 2 cy, x E R+a). It is easily seen from the properties off(x) 
that G, is a convex subset of R+2 and G, = oVGr for a! > 0. Define 
K(x) = sup{p 3 0 1 x E G,,} for x E !R,2. As x E G,(,, , k(x) is verywhere 
defined. In fact, sincef (x) = sup{a > 0 1 x E G,},f (x) = K(x)~. Obviously, 
K(x) is nonnegative and homogeneous of order 1, and, since K(x) = 
sup{p > 0 j x E pG,} when f (x) # 0, it is easy to check that /z(x) is a 
concave function. For a nonnegative concave function, k(x), k(x)p is 
concave when 0 < p < 1 and k(x)p is convex when p < 0. This proves 
parts (1) and (2). For part (3) we define f (x) = F,(A, B, x,K + x,K’), 
with K, K’ E S(H). f( x is nonnegative, convex, and homogeneous of ) 
order 2. We define: G, = {x 1 f(x) < a, x E R+2} which is convex; 
K(x) = inf{p 2 0 ) x E G,*}. Then k(x) is nonnegative, convex, and 
homogeneous of order 1 and f (x) = K(x)~. For any nonnegative convex 
function, K(x), K(x)p is convex when p > 1. Q.E.D. 

The setting for the next corollary is the following: Let Hi and H2 
be two separable Hilbert spaces and HI2 = H’ @ H2 their tensor 
product. If Aia E AY+(H12) and A,, E 4(H12) we can define A, E 9?l+(H1) 
by means of the partial trace, i.e., 

A, = Trl A,, , 

which means that for x, y E H1 

where {ei} is any orthonormal basis in H2. 

COROLLARY 1.3. Let H2 be of dimension d, < co, let K be a 
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linear operator (not necessarily bounded) on H1, and let A,, E 3Y+(H12), 
A,, E 91(H1z) with A, = Trl A,, . Letp > 0, r > 0,p + r = s < 1. 
DejineL= K@Q,onH 12. If A1;/‘KA;12 has an extension to 32(H1) then 
AZ;,‘2LA;g2 has an extension to 92(H12) and 

di-s Trl A;‘2KtA,pKA;12 3 TP A;~LtA~2LA;~2. (2.2) 

Proof. If G is the group of unitary transformations on H2 and if 
dU is the normalized Haar measure on G then it is easy to see [8] that 
B,, = JG U+A12U dU = d;lA, @II,. Let F(A,,) be the right side of 
(2.2). By Theorem 1, A,, I-F(AJ is concave so 

V,,) 2 j” F(U+Ad)dU. 
G 

But F( UtA1,U) is independent of U since (U+A,,U)” = U+AT2U, 
U+LU = L, and Tr12 U+XU = Tr12 X. However, F(B,,) is the left side 
of (2.2). Q.E.D. 

Remarks. (i) Theorem 1 can be regarded as a special case of 
Corollary 1.3 as may be seen by taking H2 = (c2 and 

where Pa and Pb are two orthogonal projections on H2 and A, BE g+(Hl). 
Then A, = &A + *B = C. 

(ii) Similar to Corollary 1 .l, we can extend Corollary 1.3 to 
the following: Let A,, , B,, E 9J+(H12), A,, , B,, E YI(H12), and 
A, = Tri A,, , B, = Tr’ B,, , then 

di-” Trl Ai’2K+B,pKA;‘2 > Tr12 A;:2K+B,p,KA;i2. (2.3) 

(iii) When d, = co, Corollary 1.3 makes no sense except when 
s = 1. In that special case, the corollary is true when d, = 00. The 
proof, which we shall not give here, can be constructed in imitation of 
the proof of Theorem 1 itself. The principal idea is to define a(q) = 
Ayi”[A;*/” @ a,] E 93(H12) and M = Af/2KA:/2 E j2(H1). 

(iv) If we let A,, = II,, in (2.3) and let K be a projection onto an 
arbitrary one-dimensional subspace of H1, we obtain the operator 

inequality (since A, = d,ll,) 

d’-pB 
2 1 

2, >, Tr2 BP 12 

for all B,, E Z3+(H12) and 0 < p < 1. 
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The Wigner- Yanase-Dyson Conjecture 

In quantum mechanics, a density matrix, p, on H satisfies p E a+(H), 
p E yi(H) and Tr p = 1. The entropy of p, as usually defined, is 

S(p) = -Tr p In p. 

Wigner and Yanase [I] extended this to-the concept of the entropy of p 
relative to a self-adjoint “observable,” K, and defined it as S(p, K) s 
iTr[p1/2, K12, where [A, B] = AB - BA. Dyson (cf. Ref. [l]) proposed 
a generalization of this to 

S,(p, K) = sf- Tr[pe, K]bl-p, K] 

for 0 < p < 1. [Actually, Wigner and Yanase defined IP(p, K) = 
-S,(p, K) which they termed skew information.] 

It is well known and easy to prove that S(p) is concave in p, and the 
WYD conjecture is that S,(p, K) is concave in p for each fixed K. They 
were able to prove this only when p = 9. In physical applications K 
may be unbounded, but it is always correct to assume that pPK and 
KpP have unique extensions to 4:(H) for all p > 0. Thus, (cf. the 
remark after Theorem 1) 

S,(p, K) = -Tr pK2 + Tr pl-PKpPK. 

The first term is linear and, hence, concave, and the second term is 
concave by Theorem 1. 

Remark. Theorem 1 is stronger than necessary because it allows K 
to be non-self-adjoin& i.e., Tr[pP, K”]Ip’-p, K] is concave in p when K 
is non-self-adjoint. This generalization can be derived from the self- 
adjoint case when p = 8 by a simple polarization argument, but not 
when p # i. Baumann and Jost [9, lo] proved the concavity for 
general p, but for a special class of p and H. 

Wigner and Yanase properly regarded the concavity of p F+ S,(p, K) 
as a necessary requirement in order that I,(p, K) be a sensible definition 
of information. Another absolute requirement is the subadditivity of 
S,(p, K). Subadditivity of the ordinary entropy, S(p), means (in the 
terminology preceding Corollary 1.3 and with p2 = Tr2 p12) that 

VPIJ G YPl) + S(Pz)- 

This inequality is well known. 
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For S,(p, K), Wigner and Yanase [l] take the following definition: 
Let K, (resp. K,) be a self-adjoint operator on Hr (resp. Hz) and define 
L=K,@ll,+1,@K,onH 12. The subadditivity condition is that 

SP(Pl2, -4 G SP(Pl 9 Kl) + SP(P2 9 K2)- (2.4) 

It is easy to see that (2.4) is true when pi2 = pi @ ps . Wigner and 
Yanase proved (2.4) when piz is a projection onto a one-dimensional 
subspace of H12 and p = Q. In the general case, (2.4) becomes (with 
Y=l-p) 

Trl plpKlp17Kl + Tr2 p2pK2~zTK2 

> - 2 Tr12p,,[K, @ K,] + Tr12p;2Lplz L. (2.5) 

We do not have a proof of this, but when K, or K, is zero, (2.5) is simply 
Corollary 1.3. Because (2.5) is true in these three special cases, there is 
reason to believe it is true generally. 

3. SOME FINITE DIMENSIONAL THEOREMS 

In this section we confine our attention to finite dimensional Hilbert 
spaces over the complex numbers, i.e., H = 43”. Some of the results of 
this section will be generalized to the infinite dimensional case in the next 
section by approximation arguments. If C E 9++(H) then C > E II for 
some E > 0. We remark that for A, B E g++(H) and K E 3(H), 
Tr AK+BK = Tr(B1/2KA1/2)t(B1/2KA1/2) > 0 for K # 0. 

THEOREM 2. The function from S?++(H) x 6?(H) to the nonnegative 
reals defined by 

(A, K) wF(A, K) = Tr krKtA-pK (3.1) 

is jointly convex in (A, K) whenever p >, 0, Y >, 0 and p + Y < 1, i.e., 
for all A, 0 < X < 1, hF(A, K) + (1 - x)F(B, L) > F(C, M) when 
A,BE~+(H);K,LE~(H);C=XA+(I -A)B;M=hK+(l -h)L. 

PYOO~. We can think of 9(H) as a complex Hilbert space, V(H), of 
dimension n2 with the inner product K, K’ E g’(H) F-F (K, K’) = 
Tr K+K’. The linear transformation of V(H) + V(H) defined by 
K H (YK/I, with IY, /3 E g++(H) is H ermitian and positive definite because 
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(K, &/3) > 0 when K # 0. Thus, K ttF(A, K), K t-tF(B, K), and 
K wF(C, K) are positive definite quadratic forms on V(H). Further- 
more, we can define Va(H) = V(H) @ V(H) with inner product 
((K, L), (K’, L’)) = Tr K+K’ + TrL+L’. Clearly 

D SE /@‘(A, K) + (1 - h)F(A,L) and N = F(C, AK + (1 - h)L) 

are both positive quadratic forms on VS(H) and D is definite. With A and 
B fixed, we form the variational quotient N/D and maximize it with 
respect to (K, L) E Vz(H). Using the fact that Tr AB = 0 for all 
A E a(H) implies B = 0, we find the eigenvalue equations 

#PKA-~ = C-p[hK + (1 - h)L] C-’ zz M E 3?(H), 

(3.2) 
yB-pLB-7 = C-p[hK + (1 - x)L] C-r G M, 

and the problem is to show that the eigenvalue y < 1. If y # 0, the 
equation yA-PKAer = M has the unique solution K = y-lApMAr. 
Likewise, L = yWIBpMBr and XK + (1 - h)L = @MC’. Thus, finding 
y # 0 solutions to (3.2) is equivalent to finding an ME 9(H) such that 
M # 0 and XApMAT + (1 - h) BpMBr = yCPMC’. However, if we 
multiply this equation on the left by M+ and take the trace, we see that 
y ,< 1 by Theorem 1. Q.E.D. 

COROLLARY 2.1. Letp~0,r>O,p+rrs~l,andq~R,q#O 
be $xed. Then the functions from g++(H) x a++(H) x a(H) to the 
nonnegative reals defined by 

(A, B, K)+ F&A, B, K) = (Tr A-PKtBeTK)* 

is jointly convex in (A, B, K) when q > (2 - s)-l. 

Proof. The same as for Corollaries 1 .I and 1.2, since F,(A, B, K) is 
homogeneous of order 2 - s > 0. Q.E.D. 

We next turn our attention to a function similar to (3.1) from 
B++(H) x .?@H) to the nonnegative reals defined by 

(A, K) H Q(A, K) = Tr SW &(A + XII)-l K+(A + xQ)-l K. 
0 
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We note that the linear transformation TA from V(H) (defined in the 
proof of Theorem 2) to V(‘(H) given by 

T,: KM 
s 

m dx(A + 4-l K(A + xl)-’ (3.3) 
0 

is Hermitian and positive definite. In a basis in which A is diagonal it is 
easy to compute TA explicitly: 

where the (Ai} are the eigenvalues of A and 

The inverse transformation is 

Til: {Kijl ++ {K,,/f(A, , A,), 

but this is the same as 

T,? K w 
s 

’ dx AxK,41-~ (3.4) 
0 

as we see by calculating the integral. 

THEOREM 3. The function Q(A, K) from L%++(H) x .g(H) to the 
nonnegative reals is jointly convex in (A, K). 

Proof. The proof is exactly the same as for Theorem 2 up to the 
eigenvalue equation (3.2) which now reads 

yT,(K) = T&K + (1 - h)L) = ME 9(H), 

yT,(K) = T&K + (1 - h)L) = M. 

If y # 0 we apply the inversion formuIa (3.4), whence 

(3.5) 

s 
’ dx [hAZMA’-= + (1 -- A) B”MBl-” - $“MC’-“1 = 0. 

0 

By multiplying this on the left by M+ and using Theorem 1, we see that 
y < 1. Q.E.D. 
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COROLLARY 3.1. The functions 

(A, B, K) bQ,(A, B, K) = [Tr j-0@ dx (A + x1)-l K+(B + xl)-’ K]’ 

from 99++(H) x S?++(H) x S?(H) to the nonnegative reals are 

(1) jointly convex in (A, B, K) when q > 1, 

(2) convex in K when q > i, 
(3) jointly convex in (A, B) when q > 0, and 

(4) jointly concave in (A, B) when - 1 < q < 0 and K # 0. 

Proof. The construction given in Corollary 1.1 allows us to replace 
A by (A, B). We note that Q,(A, B, K) is homogeneous of order -1 in 
(A, B), as may be seen by changing the integration variable to Xx, and, 
hence, Q,(A, B, K) is homogeneous of order 1 in (A, B, K). The proof 
of parts (1) and (2) is the same as that given in the second half of 
Corollary 1.2 for nonnegative, homogeneous, convex functions of positive 
order. To prove parts (3) and (4) we have to modify t,he proof given in 
Corollary 1.2. For x E R+2\((0, 0)}, we construct f (x) = Q1(xlA + xzA’, 
x,B + xzB’, K) with A, A’, B, B’ E S?++(H). Assuming that K # 0 
(otherwise there is nothing to prove) we note thatf (x) is strictly positive 
(as remarked before), convex and homogeneous of order -t = -1. We 
shall here give the construction for general t > 0 as we shall need it in 
Corollary 8.1 and Theorem 9. Define the convex sets G, = {x /f(x) < a, 
x E R+“\{(O, 0)}}, whence f(x) = inf{ol > 0 / x E G,}. Define k(x) = 
sup{p > 0 1 x E GUet} = sup{p > 0 1 x E pGr} = f (x)-l/l. As before, k(x) 
is positive, concave, and homogeneous of order 1. The rest follows from 
the remarks in Corollary 1.2. Q.E.D. 

The mapping TA: Sl(H) + S?(H) defined in (3.3) has a special 
significance when restricted to the self-adjoint operators, as(H). Let 
A E g++(H) and K E SP(H). Then 

(d/dx) ln(A + xK) Lo = TA(K). 

[To derive this, use the representation 

(3.6) 

In A = srn dx (1 + x)-r (A - I)(A + x1)-l 
0 

which can be verified in a basis in which A is diagonal; then use 

(3.7) 

- (d/dx)(A + xK)-l Ix=o = klKkl (3.8) 
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for any K E g(H), A E SY++(H),] Using (3.6)-(3.8) we have 

g ln(A + xK) )+,, = -2 Irn dx (A + xl)-1 K(A + xl)-1 K(A + x9)-1 
0 

E --R,(K). 
(3.9) 

We note that R,(K) E &Y++(H) when K # 0. 

PROPOSITION 4. For any real number, y, and A E S?++(W), K E &@(H), 
y2R,(K) + 2yT,(K) + Q 2 0. 

Proof. 

0 < R,(K + A) = -(d2/dx2) ln(A + xK + xA) Ir-o 

= -(d2/dx2){ln(l + x)Q + ln(A + x(1 + x)-l K)} j2=o 

= Q + 2T,(K) + R,(K). 

Now replace K by yK. Q.E.D. 

Proposition 4 is not necessary for what follows, but we mention it 
because it almost, but not quite, implies the following proposition, 
P: R,(K) > T,(K)2. It does imply that (Y, [R,(K) - T,(K)2]!P) > 0 
when Y is any eigenvector of T,(K). P is false, however, as may be seen 
by the two-dimensional example: A = (0” E) with a > b > 0 and 
K = (!j k). Theorem 6 would be trivial to prove if P were true, and, 
in some sense, it may be taken as a substitute for P. 

In order to prove Theorem 6, we need some preliminary remarks 
and Lemma 5. The remarks are that 

Q(A, K) = Tr K+T,(K). (3.10) 

Also, Q(A + xB, K) is differentiable near x = 0 for all B E gs(H) and 

(d/dx)Q(A + xB, K) Lo = --Tr BRA(K) (3.11) 

for K E gs(H). 

LEMMA 5. Let V be a convex cone in a vector space and let F: %7 4 R be 
a convex function which is also right d#erentiable in the sense that 

li$ x-‘{F(A + xB) - F(A)} = G(A, B) 



280 LIEB 

exists for all A, B E 59. Assume, also, that F is homogeneous of order 1, i.e., 
F()tA) = hF(A) for h > 0. Then G(A, B) < F(B). Conversely, ;f F is 
two-sided dzjferentiable in the foregoing sense (with equal left and 
right derivatives), if G(A + xB, B) is measurable on (x ) x 3 0}, if 
G(A, B) <F(B) and if F is homogeneous of order 1, then F is convex. 

Proof. For all x > 0, 

F(A + XB) = F((l + X)[(l + x)-l A + x(1 + 4-l m 

= (1 + X)F((l + x)-IA + X(1 + x)-l q 

< (1 + x){( 1 + x)-l F(A) + x(1 + x)-l F(B)) 

= F(A) + xF(B). 

Subtract F(A) from both sides, divide by x, and take the limit x $0. 
For the second part, let C = hA + (1 - X)B, and note that 

F(C) - AF(A) = F(C) - F(hA) 

= /‘-A dx dF (hA + xB)/dx = I’-” dx G(A + xB, B) 
0 0 

s 

1-A 

d dxF(B) = (1 - X)F(B). Q.E.D. 
0 

We shall return again to this lemma, but for now we note that since 
Q(A, K) is homogeneous of order 1 on the convex cone g++(H) x g*(H) 
then, using (3.10) and (3.1 l), 

-Tr H?,(K) + 2 Tr MT,(K) d Tr MT,(M) (3.12) 

for A, B E g++(H) and K, M E .2?(H). 

THEOREM 6. Let L E SIS(H) be jixed. Then the function from a++(H) 
to the nonnegative reals, defined by 

A N F,(A) = Tr exp(L + In A), 

is concave on 97++(H) for all L. 

Proof. Choose A E S?++(H) and K E 3@(H) and consider the function 
f(x) = Tr exp(L + ln(A + xK)) which is defined and differentiable for 
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the real variable x in some neighborhood of (01. The theorem is equivalent 
to the statement that d2f/dx2 < 0 when x = 0 for all choices of A, L, 
and K. Using the fact (which can be proved by a power series expansion, 
for example) that 

d 
- CF+=’ lzGo = s’ dy eyFGe(l-g)F = ‘j”;;pp(F)(G) dx 0 

= -Tr BR,(K) + Tr j1 dy T,(K) B’T,(K) WAr’ 
0 

= -Tr BRA(K) + Tr T,(K) T;l[T,.@)l, (3.13) 

whereB=exp(L+lnA).Nowuseinequality(3.12) withM= T;l[T,(K)]. 
Q.E.D. 

COROLLARY 6.1. Let k be a positive integer and p, ,..., p, positive real 
numbers with p, + a** -/-p, = s < 1. Let LEgs(H) qEE% be fixed. 
Then the functions from 93’++(H)k to the positive reals de$ned by 

F,(A, ,..., 4) = [Tr exp [L + i pi ln(-&)] 1’ 
i=l 

(1) arejointly concave in (A, ,..., Ak) when 0 < q f s-1 and 

(2) are jointly convex in (A, ,..., Ak) when q < 0. 

Proof. Fl is homogeneous of order s and we have already explained in 
Corollaries 1.2 and 2.1 how to treat the cases q # 1. That Fl is jointly 
concave seems like a stronger result than Theorem 6, but, surprisingly, 
it is not. We have to show that for every choice of A, ,..., A, E &Y++(H) 
and Kl ,..., Kk E gs(H), the k-square second-derivative matrix of 
<(XX;; Xf = F(A, + x,K, ,..., A, + xkKk) is positive semidefinite 

- . . . 
1 = xk = 0. If a2/(&i ax,) f (x1 )..., xk)jz, =...= zk=o s mij = 

gij + aijh, , we compute 

gii = P,Pj Tr TB1[T,+(Ki)l TAj(Kj)t 

hi = -pi Tr BRAI < 0, 

where B = exp[L + & pj In(A Clearly, for any F, G E S?(H), 
TrFT;l(G) = Tr GT,‘(F), and TrF+T;l(F) > 0 so, by a Schwarz 
inequality argument, 1 Tr FtT;1(G)(2 < [Tr F+T;l(F)][Tr G+T;l(G)]. 

607/11/3-z 
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Hence, 1 gij 12 < giigji and gi, < -pihi by Theorem 6. Thus, for any 
YE@, 

i=l+l 

since hi < 0, all i. Q.E.D. 

COROLLARY 6.2. Let p, ,..., p, be as in Corollary 6.1, and let YE H 
with )I Y /) = 1. Then 

(A 1 ,..., 4 * exp [i PO’, In A~YI] 
j=l 

is a concave function on Sl++(H)k. 

Proof. Let P be the projection onto the one-dimensional subspace of 
H spanned by Y. Then take the limit eL -+ P in Corollary 6.1. Q.E.D. 

Remark. If we write 3 = eL in Theorem 6, then, by the Trotter 
product formula, F,(A) = lim,,, Fp’(A) with Fp’(A) = Tr(BII”AII”)*. 
Now, FL”(A) is concave in A since it is linear, FL2’(A) is concave in A 
by Theorem 1 and F,(A) is concave in A by Theorem 6. Hence, we are 
led to the following conjecture. 

Conjecture. For each fixed B E 93+(H) and n E Z+, the positive 
function Tr(B1lnA1in)n is concave in A E S?+(H). 

We remind the reader of the Golden-Thompson inequality (GT) 
[ 11, 121 which is that 

Tr eA+B < Tr eAeB (3.14) 

for A, B E 9@(H). This theorem can be extended to the infinite dimen- 
sional case [13]. The obvious generalization of GT to three operators in 
the form Tr eA+B+e < Tr eAeBeC is false. We shall now show that 
Theorem 6 does provide a correct generalization of GT to three operators 
(and, hence, provides an alternative proof of GT itself). 

THEOREM 7. Let A, B, C E Ss(H). 

Tr eCT,,r,(-A)(eB) > Tr eA+B+e. 
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If A commutes with B then 

Tr eCe*eB > Tr eA+B+C, 

Proof. Define (Y, /3 E g++(H) by 01 = ewA and /3 = eB and define 
L E 2+(H) by L = A + C. Since 01 M -Tr eL+lna is homogeneous of 
order 1 and convex on the cone g++(H), we can use Lemma 5 to deduce 
that for fi E g++(H) 

Tr eA+B+C = Tr L+inB < (d/&c) Tr eL+in(a+sB) jx=0 = Tr eCT&3). 

For the last part, we note that 

T,(p)= jm dx (ebA + xll) eB(e-” + xQ)-l = eAeB if [A, B] = 0. 
0 Q.E.D. 

Remark. An alternative formulation of Theorem 7 is this: Let 
A, C, D E 2@(H). Then 

Tr eCeD > Tr exp .[C + A + In j1 ds e--Ise~e--AI1-r)] 
0 

which follows from the definition Texp(-a)(eB) = eD and the inversion 
formula (3.4). 

Additional Theorems 

The Theorems proved thus far all rely on Theorem 1 in an essential 
way. We shall now prove some theorems which appear to be similar to 
Theorems 2, 3,6, and 7, but which in reality are less complicated because 
they can be proved directly by elementary methods. 

THEOREM 8. Let K E S?(H) and 1 3 p > 0, 1 3 r > 0 be fixed. 
Then the function from a++(H) to the nonnegative reals defined by 

A wF(A) = Tr A-pKtA-rK 

is convex in A. 

Proof. It is sufficient to show that for all L E SYS(H), g(x) s F(A + XL) 
has a positive second derivative at x = 0. Let 

A(x) = A + XL, B, = (d/dx) A(+’ I+,, , C, = (d/d4 AW Lo > 

D, = (d2/dx2) A(x)-p IrzO 
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and E,, = (d2/dx2) Am IszO. Using the fact that A(x) = II, we 
compute that BP = -A-pC,A-p and Dp = 2B,ApB, - A-pE,A-p. 
Hence, 

(d2/dx2) g(x) Izzo = -Tr E,A-“K+A-‘KA-” - ‘I’r E,A-rKA-PK+A-T 

+ TWL + ~Y)(Y% + b)+ + T~(y%J(y%J+ 

+ ‘WW(W+, 

where y = A--r/2KA-*/2 and 6, = A-*12CpA-*12. The theorem will 
be proved if we show that Ep < 0, but this fact follows from the integral 
representation (valid for 1 > p > 0) 

and (3.8). 

AP = r-l sin rrp 
I 

m xp-l dx A(A + x1)-l 
0 

Q.E.D. 

COROLLARY 8.1. Let1 >p>Oandl >r>O,p+rrsandq~[W, 
q # 0 be$xed. Then thefunctionsfrom J%++(H) X a++(H) X g(H) to the 
nonnegative reals, dejked by 

(A, B, K) t+FG(A, B, K) = (Tr A-pKtB-TK)* 

( 1) are convex in K when q > *, 

(2) are jointly convex in (A, B) when q > 0, and 

(3) are jointly concave in (A, B) when - I/s < q- < 0. 

Proof. The same as for Corollary 3.1. We note that the degree of 
homogeneity in K is 2 while in (A, B) it is --s. Q.E.D. 

Remark. The map A I+ A-p is not convex forp > 1, but A c-t Tr A-* 
is convex for p > 0. See Theorem 9. 

THEOREM 9. Let k be a positive integer and p, ,..., p, positive real 
numbers with p, + *** + p, s s. Let L E 33+(H) and q E Iw be fixed. Then 
the functions from a++( H)k to the positive reals de$ned by F,(A, ,. . . , Ak) = 
{Tr exp[L - &pi ln(Aj)])q 

(1) are jointly convex in (A, ,..., Ak) when q > 0 and 

(2) are jointly concave in (A, ,..., Ak) when -l/s < q < 0. 
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Proof. We need only consider the case 4 = 1. The extension to 
the general case is the same as in Corollary 3.1. When K = I we 
defineg(x) = F(A + xK), K E 9P(H), and compute its second derivative 
at x = 0 to be p Tr BRA(K) + p2 Tr T,(K) T;r[TA(K)] where 
B = exp(L - p In A) > 0. R,(K) 3 0 and, as remarked in the proof 
of Corollary 6.1, Tr F+T;l(F) 3 0 for all F E g(H). This last fact is the 
essence of the proof when k > 1. The second derivative matrix is 
positive definite. Q.E.D. 

4. EXTENSION OF THEOREM 6 TO INFINITE DIMENSIONS 

We fix L, which is assumed to be self-adjoint, and eL E 9i(H), which 
implies that L has purely discrete spectrum. For A, B E B’+(H) and 
C E AA + (1 - X)B, 0 < h < 1, we want to show that 

X Tr eL+lnA + (1 - h) Tr eL+lnB < Tr eL+lnC, (4.1) 

which requires, among other things, giving meaning to these quantities. 

Case 1. We first assume that there exist positive numbers E and w 
such that EQ < A < wll, EQ < B < wll so that In A, etc. can be defined 
as bounded, self-adjoint operators by means of the spectral representation 
of A, etc. We define 01 = L + In A. Since In A is bounded, cy is a self- 
adjoint operator on the domain of L. If we label the eigenvalues of L by 
p,(L) > p2(L) > e.0 we have, by the mini-max principle, that 

PA-~) < PAL) + ln I I A II since In A < In 11 A jl Ii. The convergence of 
. . . . . 

x1 exp(pk(L)) implies that pk(L) + -00, which implies that ~JoI) ---t -00, 
which implies that exp(a) is compact, and since t(A) = Tr em < 
(I A I] Tr eL < 00, the trace is finite. Now let P, be the projection onto 
R, , the subspace spanned by the first n eigenvectors of L, and define 

A, = P,AP, + E(Q - P,), 

a,=L+lnA,, 

and likewise for B, and C, . Clearly, 

t(A,) = Tr exp(a,) = Tr P, exp(L + ln(A r R,)) + yn, 

where r, = (In c) Tr(Q - P,) e =. From this we see that not only is 
t(A,) finite, but that the terms involving r, cancel from both sides of (4.1) 
leavingan inequality about traces on the finite dimensional space R,. Thus, 
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by Theorem 6, &(A,) + (1 - h) t(B,) < t( C,). All we have to do is prove 
that t(A,) ---t t(A), etc. Now A, < wQ and 01, <L + Q In o. Since 

pk(‘%) < pklL) + In w~ t(A,) -+ t(A) by the dominated convergence 
theorem if we can show that &(am) + ,+(a) for each k. As L is bounded 
above, we can find a constant, d, such that OL, < (d - 1)Q and 
OL -=c (d - 1)Q. Define 

G, = (an - dQ)-’ - (a - dQ)-l = (an - dQ)-l (a - ~,)(a - dQ)-l 

and note that (cu, - dQ)-l is uniformly bounded, ollz - u + 0 strongly, 
and (a - dQ)-l is compact since er. is compact. Hence, 11 G, 11 + 0. 
In general, 1 pk(A) - pk(B)I < 11 A - B 11 by the mini-max principle. 
Thus, pk(ol,) + pk(a) since &((a - dQ)-l) = [,+(a) - d]-l, and the 
theorem is proved for Case 1. 

Case2. O<A<wQ,O<B<oQ.IfwereplaceAbyA,=A+~Q 
and B by B, = B + EQ, then C is replaced by 

h(A + EQ) + (1 - h)(B + <Q) = C + rQ. 

Also, A, , etc. are decreasing in E. Thus, we can define 

Tr exp(L + In A) = hJk Tr exp(L + In A,) (4.2) 

because the right trace decreases as E decreases. Theorem 6 is true 
with this definition because it is true for every E > 0. The usefulness 
of this definition stems from the following fact (B. Simon, private 
communication): In A is defined as an unbounded self-adjoint operator in 
a natural way by its spectral decomposition. If D(ln A) n D(L) is dense 
in H (where D( *) means domain), and if we define --OL to be the Friedrichs 
extension of -L - In A, then Tr em = limd, exp(L + In A,). 

Finally, another case to which Theorem 6 can be extended (B. Simon, 
private communication) is where A and B are positive, not necessarily 
bounded, self-adjoint operators and In A and In B are form bounded 
perturbations of -L. 

5. ON THE “EQUIVALENCE" OF THEOREMS 1,2, 3, 6, AND 7 

Although Theorem 1 is our main theorem and Theorems 2,3,6, and 7 
appear to be corollaries of it, the fact is that if we could find an 
independent proof of any of Theorems 2, 3,. 6, or 7 the others could be 
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derived from it in a simple way when the Hilbert space is finite dimen- 
sional. Thus, in some sense, all five theorems have equal content. We 
shall indicate very briefly some of the links among these theorems and the 
reader can easily supply the missing details as well as establish additional 
connections. 

We have previously established the implications 1 3 2 and 1 3 3 * 
6 * 7. 

(a) 2 * 1. This is easily seen simply by reading the proof of 
Theorem 2 backwards, i.e., one maximizes the variational quotient N/D 
with respect to K, where N = h Tr ArKtApK + (1 ~ h) Tr B”K+BPK 
and D = Tr CrKtCPK. 

(b) 7 + 6. Theorem 7 was derived from Theorem 6 by using the 
derivative inequality, Lemma 5. However, we can retrace our steps by 
using the second part of Lemma 5. 

(c) 6 + (3.12). If, in (3.12), we fix A, B, K and minimize 
Tr M[T,(M) - 2T,(K)] with respect to M, we find M = T;l(TJK)). 
Hence, (3.12) is equivalent to the fact that the right side of (3.13) is 
negative and this, in term, is equivalent to Theorem 6. 

(d) (3.12) * 3. The same remark as in (b) suffices. 

(e) 3 * 2. Take 3 in the form of Corollary 3.1 with q = 1 
and assume thatp+r-s < 1. For A (resp. B) substitute hA + II 
(resp. yA + Q), where X, y 3 0. Then integrate 

jm dh AD-l jm dy yT-lQl(XA + 21, yA + II, K) 
0 0 

to obtain a positive constant timesF(A, K) of (3.1). Whenp + r = 1 we 
can appeal to continuity. 
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