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Abstract

We show that the fast escaping set A(f) of a transcendental entire function f has a structure known
as a spider’s web whenever the maximum modulus of f grows below a certain rate. The proof uses a new
local version of the cos mp theorem, based on a comparatively unknown result of Beurling. We also give
examples of entire functions for which the fast escaping set is not a spider’s web which show that this
growth rate is sharp. These are the first examples for which the escaping set has a spider’s web structure but
the fast escaping set does not. Our results give new insight into possible approaches to proving a conjecture
of Baker, and also a conjecture of Eremenko.
© 2013 Published by Elsevier Inc.
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1. Introduction

Let f : C — C be a transcendental entire function and denote by ", n = 0, 1,2, ..., the
nth iterate of f. The Fatou set F(f) is the set of points z € C such that ( /"), <y forms a normal
family in some neighborhood of z. The complement of F(f) is called the Julia set J(f) of f.
An introduction to the properties of these sets can be found in [3].
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In recent years, the escaping set defined by
I(f)={z: f"(z) = ooasn — oo}

has come to play an increasingly significant role in the study of the iteration of transcendental
entire functions with much of the research being motivated by a conjecture of Eremenko [5] that
all the components of the escaping set are unbounded. For partial results on this conjecture see,
for example, [9,15].

The most general result on Eremenko’s conjecture was obtained in [10] where it was proved
that the escaping set always has at least one unbounded component. This result was proved by
considering the fast escaping set A(f) = (J,eny f " (AR(f)), where

AR(f) ={z: 1f" @] = M"(R, f), forn e N}.
Here

M(r) = M(r, ) =E1|a:7;|f(Z)|,

M"(r, f) denotes the nth iterate of M with respectto r, and R > 0 is chosen so that M (r, f) > r
for r > R. The set A(f) has many nice properties including the fact that all its components are
unbounded—these properties are described in detail in [12].

There are many classes of transcendental entire functions for which the fast escaping set has
the structure of a spider’s web—see [12,8,16]. We say that a set E has this structure if E is
connected and there exists a sequence of bounded simply connected domains G,, such that

3G, C E, Gy CGpy1, forneN, and | JG,=C.
neN

As shown in [12], if Ag(f) has this structure then so do both A(f) and I(f), and hence
Eremenko’s conjecture is satisfied. Also, the domains G, can be chosen so that G, C
AR(f) N J(f) and so f has no unbounded Fatou components. This gives a surprising link
between Eremenko’s conjecture and a conjecture of Baker [1] that all the components of the
Fatou set are bounded if f is a transcendental entire function of order less than 1/2. Recall that
the order of a transcendental entire function f is defined to be

. loglog M (r)
p = limsup ———.
F—00 logr

For background and recent results on Baker’s conjecture, see [6,7,11,13]. It was shown in [11]
(see also [12]) that the techniques used to prove all earlier partial results on Baker’s conjecture
can in fact be used to prove the stronger result that Ag(f) is a spider’s web.

In this paper we show the limitation of these techniques, and demonstrate that they cannot
even be used to prove Baker’s conjecture for all functions of order zero. To do this we give a
sharp condition on the growth of the maximum modulus that is sufficient to imply that Ag(f) is
a spider’s web and hence that Baker’s conjecture and Eremenko’s conjecture are both satisfied.
More precisely, we prove the following sufficient condition.

Theorem 1.1. Let f be a transcendental entire function and let R > 0 be such that M (r, ) > r
forr > R. Let

loglog M
R,=M"(R) and &, = max M.
R, <r<R,qi logr



PJ. Rippon, G.M. Stallard / Advances in Mathematics 244 (2013) 337-353 339
If
Y en <o, (1.1)
neN
then Ag(f) is a spider’s web.

Remark. Theorem 1.1 follows surprisingly easily from a new local version of the classical
cos wp theorem; see Theorem 2.1. We obtained a closely related result in [11, Theorem 3] with
the stronger hypothesis that ) ",  /€x < oo and remarked there that the square root could be
removed by introducing a more sophisticated argument. The method of proof given here is quite
different, and more enlightening.

As mentioned earlier, the condition (1.1) in Theorem 1.1 is, in a strong sense, best possible.
In particular, the following result shows that (1.1) cannot be replaced by the weaker condition
that ), .n(en)¢ < 00, for some ¢ > 1.

Theorem 1.2. There exist transcendental entire functions of the form

OO 2pn
f(z)=z3]_[<1+ Z) , (1.2)

n=1 an

where p, € N, for n € N, and the sequence (ay) is positive and strictly increasing such that
A(f) N (=00, 0] = @; in particular, A(f) is not a spider’s web.
Moreover, if (8,) is a positive sequence such that
o=
neN

then we can choose the sequence (a,)nenN and a value R > 0 in such a way that, with

loglog M
Pn = [Clg"/4/4], R, =M"(R) and &,= max loglog M(r)
Ry<r<Rnii logr
there exists a subsequence (ny) such that
1
Eny §8k+27k, fork e N, (1.3)
and
Sk 1
Enptm = fork e N, 1 <m < ngy1 — ng. (1.4)

3m71 ng+m’

To deduce from Theorem 1.2 that the condition (1.1) in Theorem 1.1 cannot be relaxed
to Y, n(en)¢ < oo, for some ¢ > 1, it suffices to take a positive sequence (,) such that
Y onendn =00 but Yo, 85 < oo, and so obtain an entire function f for which A(f) is not a
spider’s web but Y, €5 < 00, by (1.3) and (1.4) and the estimate (a + b)¢ < 2° max{a®, b°}.

Although the proof of Theorem 1.2 is rather complicated, this result has several significant
consequences in addition to showing that the condition in Theorem 1.1 is best possible. First,
Theorem 1.2 implies that there are functions of order zero for which Ag(f) fails to be a spider’s
web and so new techniques are needed in order to solve Baker’s conjecture. One such technique
is introduced in [13] where we show that all real functions of order less than 1/2 with their zeros
on the negative real axis satisfy Baker’s conjecture.



340 PJ. Rippon, G.M. Stallard / Advances in Mathematics 244 (2013) 337-353

Second, in [13] we show that all real functions of order less than 1/2 with their zeros on the
negative real axis also satisfy Eremenko’s conjecture and, moreover, I (f) is a spider’s web. Since
functions of the form (1.2) with limsup,,_, ., &, < 1/2 are of this type, this gives the following
corollary to Theorem 1.2, which answers a question in [12].

Corollary 1.3. There exist transcendental entire functions for which I (f) is a spider’s web but
A(f) is not a spider’s web.

In fact we show in [13] that real functions of order less than 1/2 with their zeros on the
negative real axis have the stronger property that Q(f) contains a spider’s web, where Q(f)
is the quite fast escaping set which is described in more detail in [14] and satisfies A(f) C
O(f) C I(f). Thus Theorem 1.2 provides examples of functions for which Q(f) # A(f);
these two sets are equal for many functions, including all functions in the Eremenko—Lyubich
class B as we show in [14].

The paper is arranged as follows. In Section 2 we prove Theorem 1.1 and then, in Section 3,
we prove Theorem 1.2.

2. Proof of Theorem 1.1

Let f be a transcendental entire function and R > 0 be such that M (r) > r for r > R. Recall
that

AR(f) ={z:1f"(@| = M"(R), forn € N}

and that Ag(f) is a spider’s web if Ar(f) is connected and there exists a sequence of bounded
simply connected domains G, such that

3G, C AR(f), Gn C Gpy1, forneN, and | JG,=C.
neN

In this section we prove Theorem 1.1 which gives a condition that is sufficient to ensure
that Ag(f) is a spider’s web. Many earlier results on Baker’s conjecture as well as sufficient
conditions to ensure that Ag(f) is a spider’s web were obtained by using a version of the
classical cos wp theorem proved by Barry [2, p. 294]. The key ingredient in our proof is the
following result which can be viewed as a local version of Barry’s theorem. The estimate (2.2)
gives more precise information than the corresponding estimate that can be obtained from Barry’s
theorem and the proof follows easily from a comparatively unknown result of Beurling given in
his thesis [4]. This latter result turns out to have other applications; see [14], for example.

Theorem 2.1. Let f be a transcendental entire function. There exists r(f) > 0 such that, if
logM(r) <r® and r'72* >r(f), 2.1
for some a € (0, 1/2), then there exists t € (r'=2%, 1) such that
logm(t) > log M(r'=2%) — 2. (2.2)
Proof. We apply the following result of Beurling [4, p. 96].
Let f be analyticin {z : |z| < ro},let 0 < ry < r» < rg, and put

E={te(r,r): :m <u}, where0 < u < M(ry).
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Then

M 1 1 [ dt M
log (r2) > —exp (—/ —> log (rl). 2.3)
7 2 2Jp t 7

Taking ro = r,r; = r' =2, = M(r'72*)/e?, and r(f) > 0 such that M(r(f)) > €%, we
deduce from (2.1) and (2.3) that, if m(z) < pu fort € (r'=2%, r), then

M 1 1 (7 dt M (=2
r® >logM(r) > log ) > —exp —/ — logL =r.
1% 2 2 Joi-2a t 7

This is a contradiction and so there must exist 1 € (! 2

, ) such that m(¢) > w; that is,
logm(r) > log u = log M (r'=2%) — 2,
as required. [

We also use the following results about spiders’ webs proved in [12].

Lemma 2.2 ([12, Corollary 8.2]). Let f be a transcendental entire function and let R > 0 be
such that M(r) > r forr > R. Then Agr(f) is a spider’s web if there exists a sequence (p;)
such that, for n > 0,

pn > M"(R) 2.4
and

m(pp) = Pnt1- 2.5)

Lemma 2.3 ([12, Lemma 7.1(d)]). Let f be a transcendental entire function, let R > 0 be such
that M(r) > r forr > R, and let R' > R. Then Ag(f) is a spider’s web if and only if Ag/(f)
is a spider’s web.

In addition, we need the following property of the maximum modulus function, which was
proved in this form in [11].

Lemma 2.4 ([11, Lemma 2.2]). Let f be a transcendental entire function. Then there exists
R > O such that, forallr > Randall c > 1,

M@©) > M®r)-.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let R > 0 be such that, for » > R, Lemma 2.4 holds and M (r) > r. For
n eN, let

log log M
R, = M™R) and &, = max 280EM®)
Ry<r<Rnii logr

Suppose that ), . &, < 00. Then we can take N sufficiently large to ensure that

D e < é (2.6)
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and

MR)YE = RYS™D > 2 forn >N, and RV} > Ry > r(f), Q.7)

where r(f) is as defined in Theorem 2.1. Note that (2.7) is possible since log M (r)/logr — oo
and so, for large n, we have log R,+1 > 4log R,.
Now let

N4n (1 _26,,—1/(8m?
rp = M (RNLN( ¢ /(m))>, forn > 0.

We note that, for n > 0, it follows from (2.6) that

N+n 1 N+n N+n 1 1

m=N
and so, by (2.7) and Lemma 2.4,
RNing2 > rn > M"“(R D= M"TNRY) = Ry

We claim that, for n > 0, there exists p, € (Ry+n+1,n) With m(p,) > r,41. Indeed, it
follows from Theorem 2.1, (2.6), (2.7) and Lemma 2.4 that, for n > 0, there exists p, €

1-2
(rp N ) C (RN 4ng1, 1) such that

\

1 1-2s,
m(pn) = —M(ry Fr N

M(rrlZ —2&n4N+1 ) 1—-1/@8n+N+1)2)

>
_ _ 2

> (r,El 2ep4N+1)(1-1/@(n+N+1) )))
_ _ 2

> (r,El 2ep1N+1—1/(B(n+N+1) )))

NAn 2 (1=2ep4n+1—1/Bn+N+1)2))
+1 1_[m: (I1-2¢&,—1/(8m*))
oo ) |

Mn+2< 1'[”*"“(1 28»1—1/(8m2))>

v

N+1

= TI'n+l.
Thus, for n > 0, there exists p, > Ry4, With m(o,) > pu+1 and so, by Lemma 2.2, Ag, ., (f)
is a spider’s web. It now follows from Lemma 2.3 that Ag(f) is a spider’s web as claimed. [

3. Proof of Theorem 1.2

Let
2pn
f(z)—z31_[<1+ ) ;
n=1 an

where the sequence (a;) is positive and strictly increasing. In addition, let (6,) be a positive
sequence such that

Z(Sn = 00,

neN
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and let
pa = lay"* /41, 3.1)
Without loss of generality, we assume that
8, <1/2, forneN. 3.2)

Note that f((—00, 0]) C (—00, 0] and that m(r) = — f(—r) and M(r) = f(r) > r3, forr > 0.
Further, M(r) > r forr > 1.

We first show that the sequence (a;) can be chosen so that A(f) N (—oo, 0] = @.

We choose the values of a, carefully, beginning with a;, then a; and so on. Because of the
way in which we choose the values of a,, it is helpful to introduce the function g defined by

3 0<r<a,

r 9
— 2pn
gr) = 3 l—[ (l—i—L) Crsan (3.3)

a
anp =<r n

Note that g is a strictly increasing function and that it is discontinuous at a,, for n € N. A key
property of g which we use repeatedly is that

m(r)=—f(—r) <g(r)<M(r), forr>0. 3.4)
Since g is increasing, (3.4) implies that

Jf([=r,0]) C [—g(r),0], forr=0. (3.5
We now set ro = 10 and r,,1 = g(r,) = g1 (10), for n € N, and note that

Fntl = r,?, forn > 0. 3.6)
Also, it follows from (3.5) that

" ((=rm, 0]) C (=rmtn, 0], forn,m e N. 3.7

We begin by proving the following result.

Lemma 3.1. If there exists a sequence (Ny) such that,

Y ((=r2. 0D C (=1, 0] (3.8)
and, for k > 2,
IV (=N ot Ny 425 O C (=7 N5 O], (3.9

then A(f) N (—o0, 0] = @.

Proof. We first note that, if the hypotheses of Lemma 3.1 hold, then it follows from (3.7) and
(3.9) that, for k € N,

NN (—ryp, O]) = NN N (=g, 0])
C NNy et Ny 4260 O]

C (_er"F""'FNk 5 O]
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Thus
SN (=g, O1) C (=rNy gy O (3.10)

Now let z € (—o0, 0]. There exists K € N such that, for k > K, we have z € (—rg, 0] and hence,
by (3.7), we have f¥(z) € (—ra, 0]. Thus, by (3.10) and (3.4), for k > K,

| VTN )] < gy, < MYTEN(L0)
and hence

2 {z: |f"* ()| > M"(10) for n € NJ.
Thus A(f) N (—o0, 0] = @ as required. [

We will show that we can choose the values of g, in such a way that the hypotheses of
Lemma 3.1 hold. In order to do this, it is helpful to set certain restrictions on our choice of
values. First, we choose a; and a,+1/ay,, n € N, sufficiently large to ensure that

a1
and

Snr1/16

11> al loga 6.2

We note that (3.11) implies that

p1=1 and p,y1 >2p2, forneN. (3.13)

We also place certain restrictions on our choice of the values of a, in relation to the values of
Ty

if ax € [ry, rut1), thenay, & [ry, rypa) fork,m e N, m # k. (3.14)

We now show that, in order to prove that the hypotheses of Lemma 3.1 hold, it is sufficient to
prove the following result.

Lemma 3.2. Suppose that, for some m € N, we have defined the values of a, for which a,, < ry,
in such a way that they satisfy (3.11), (3.12) and (3.14). Then we can choose N € N and the
values of ay for which ry,, < a, < rmyn—1 in such a way that they satisfy (3.11), (3.12) and
(3.14) and, no matter how the later values of a, are chosen,

N ((=rmt1, 0D C (—Fmgn, 0.

Proving Lemma 3.2 is the key part of the proof that we can choose the sequence (a;) so as to
ensure that A(f) N (—oo, 0] = @. Before proving Lemma 3.2, we show that, if this result holds,
then the hypotheses of Lemma 3.1 also hold. First, by applying Lemma 3.2 when m = 1 we see
that there exists N1,1 € N and a choice of @, for r; < a, < ry,, such that

FNI((=r2,01) C (=7, 41, 0. (3.15)

We then apply Lemma 3.2 with m = Nj; and deduce that there exists Nj » € N and a choice of
ay forry, | < an <y +nN,,—1 such that

FN2((=rny 41, 0D C (=rny 48,0 O, (3.16)
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It follows from (3.15) and (3.16) that

YN (01 € fN12(=rw, 41, 01 C (=7, 48,55 O

Putting N1 = N1,1 + Nj 2, we deduce that we can choose the values of a, for which r; < a, <
ry,—1 in such a way that

M (=12, 0] C (—rp,, OL.

Thus (3.8) holds.

Now suppose that, for some k > 2, we have defined N, for 1 < j < k — 1, and defined a,,
forri < an < ry;4...4N,_,—1. We claim that we can use Lemma 3.2 to define Ny € N and a,
with ry, 44N, —1 < @y < FN;4+...+N,—1 such that (3.9) holds for k. The argument is similar to

that given above. First, we apply Lemma 3.2 with m = Ny + - -+ + Ny—1 + 2k — 1 to construct
Np.1 and a, with

IN{+- AN 1 4+2k—1 < Qn = VN4 Ny 1+ Ny +2k—2
such that
N (=Nt N2k O1) C (PNt Ny +Ng 1 +2k—1, O]
Then, for 2 < j < 2k, we apply Lemma 3.2 repeatedly with
m=Ny+- -+ N1 +Ngg+--+ Ngjo1+2k—j
to construct Ny ; and a, with

FNi+-+Ng_1+Ng,1+-+Ng j1+2k—j < Qn = FNy+-+Ng—1+Ny 1 +-+Ng, j+2k—j—1
such that
N .
T (=P Nyt N+ N 4N +2k— j+15 0])
C (=FNy+ 4N +Ne 1 ++Nij+2k—j» O]
Putting Ny = Ni,1 + - - - + Ni.ok, we deduce that a, can be chosen with
FNi+ 4N —1 < An S PN+ Np—1
such that
N,
F (=N 4ot Ny 4265 0D C (=7 Nyt O]

and hence (3.9) holds for k.
So, it remains to prove Lemma 3.2.

We begin by proving four lemmas. The first describes the extent to which f is small close to
a zero at —ay, where k € N.

Lemma 3.3. Foreachk € N,

If@] <1, forze (—ay, —a, ). (3.17)
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Proof. This holds since, for such a z, it follows from (3.1), (3.11), (3.12) and (3.13) that

1-68¢/16 2Pk k—1 2pm 2pm
< 3 1 — 9 1 a_k 1 a_k
FQ)I = af ( o) IU+e) I (v+g,

m=1 m>k+1
8 /4 1/2
1 ! 342p1 442 1 o
pPrr Pk—1
< _—_— -
=\~ 57w s l_[ It ==
a /
k m>k+1 27
516, ar?
< exp(—a/10)q ! o112+ At
Sp_
akk—ll 8 /16
<a exp(—q, " ) < 1. O

The second lemma shows that there is a large increase in the size of g(r) at r = ai, where
k e N.

Lemma 3.4. Foreachk € N,

1-68;/16
log g(ax) = p/* log ga, */'%).

Proof. For k € N, it follows from (3.11) that

— 2[7m
a
g(l‘w6)<akll(1 k)
m=1 am

3+2 kil Pm
<aq "< azpk’l
and
gla) = 227%,
Thus, by (3.11)—(3.13),

logg(ar) _  2pilog2 Pk 12
=5c/16) = 4p_ilogar  3pe_ilogar 1K
log g(a, ™) Di—11og ai Dik—110og ai

The third lemma shows that log g has a certain convexity property.
Lemma 3.5. Letr > Oand t > 2. Then

log g(r') > rlog g(r).

Proof. Let r > 0 and ¢ > 2. We have

2pm
gy =r¥ l_[ l—i—r—t ’
z @

am <r
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and

2pmt
s =¥ T (1+L> .

am =r am

Thus it is sufficient to show that

r\’ r!
I+—) <{14+—),
am am

when a,, < r. This is true since it follows from (3.11) that, fora,, <randt > 2,

r\ r\ r! r!
m am am Am
The fourth lemma gives an upper bound on the growth of g on intervals where no point is the

modulus of a zero of f.

Lemma 3.6. Letr > 0,0 < s < 1/2 and t > 1 and suppose that there are no values of n € N
for which a, € (r*,r"]. Then

log g(r') < (1 +2s)logg(r).

Proof. It follows from (3.11) that

t\ 2Pm
N _ 3t r 3t 2pmt tGB+Y, <ps 2Dm)
ry=r I+ — <r refmt =r am=r
g(r) || < P ) ||

am <r* m am <r*
and
2pm
gr) > r? H <L> > 3t Xanzrs 2om(1=9)
amfrJ am
Thus

logg(r')/logg(r) <t/(1 —s) <t(1+2s),
sinces < 1/2. O
We are now in a position to prove Lemma 3.2.

Proof of Lemma 3.2. Suppose that m € N and that we have defined the values of a, for which
an < ry. We now define a sequence (sx), 0 < k < N, inductively according to certain rules that
we give below. Each time we define a value si, we also add a zero of f at —s; provided this is
allowed by (3.11), (3.12) and (3.14); no other zeros of f are added. We choose our values s; in
such a way that

Fmak < Sk < Fmyk+1, forO<k <N, (3.18)

SN = I'm+N (3.19)
and

FE((=rms1,00) C (=s¢, 0], for0 <k < N. (3.20)
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The result of Lemma 3.2 follows directly from (3.19) and (3.20). The difficult part of the proof
is to show that there exists an N € N for which (3.19) is satisfied.
We define our sequence (si) as follows:
® setso = ry+1s
e if 53 > r, 4 and there is a zero of f at —sg, then we set

1-8,,/16
Skt = 8(s, ) (3.21)
e if s;p > ry4+k and there is no zero of f at s, then we set
Sk+1 = g(Sk); (3.22)

e if sy < ry; 4k, then we terminate the sequence (si).

It follows from Lemma 3.3 and (3.5) that, with this construction, (3.18)—(3.20) are indeed
satisfied.

It remains to prove that there exists K € N such that the sequence terminates at sx ; that is, if
_ logsk

log romtk’
then there exists K € N such that Ty < 1.

We introduce the following terminology. We let L denote the largest integer for which
ar < ry and define a (finite) subsequence (k,) such that

Tk

ap+n = Sk,, forn=1,2,.... (3.23)

The main idea is to show that, for each n > 2 we have that T 1 is less than Tj,, with &,
defined as above. These decreases counteract the small increases that may occur from T to Ty
for other values of k and, for n large enough, they will combine together to cause 7,41 to drop
below 1.

We first estimate some quantities that will be useful in our calculations. We begin by noting
that it follows from (3.23), (3.18) and Lemma 3.4 that, forn > 1,

log rm+i,+2 = 10g g (Fin+k,+1)

1/2 1*5 n 16
> logg(sk,,) = pL/+n logg(skn v )

Thus, by (3.21)

108 Ptk 42 = P in 108 Sk,11,  forn = 1. (3.24)
Together with (3.6), (3.24) implies that
10g Ptk g = 3q_2p]L/fn log sk, +1, forg>2, n>1. (3.25)

Together with Lemma 3.5, (3.24) implies that

logsi,+g  _ logg?™'(sk,41) _ logsg1 _ 1

10g rimtky g1~ 108897 (rman,+2) ~ 108 Tk, 2 plL/fn

1. (3.26)

forg >2, n

v

Now fix n > 2 and write

log sk, +4

, forg>2.
log Ym+k,+q

ng = Thy+q =
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For 2 < q < kyy1 — kg, there are no zeros of f with modulus in the interval (s, , sk, q) and so
it follows from (3.22), Lemma 3.6 and (3.25) that, for such ¢,

log sg,+g+1 = log g(Sk,+¢)
log sk,
g (142220 ) log g(rms, )
logr, m+ky+q
log sk,
log rm+kﬂ+q

IA

=1Ing (1 +2 ) IOg Ym+ky,+q+1

IA

2
tng [ 1+ ——175 ) 108 rmssy g 1.
"q< 3‘121)%) e

Thus, for 2 < g < ky41 — kn, we have

2
Ing+1 ZIng <1 + W) . (3.27)
L+n

For g = ky 1 — ky, there are no zeros of f with modulus in the interval (s, , sk, q) and so it
follows from (3.21), Lemma 3.6 and (3.25) that

1= 4n+1/16
log sk, +q+1 = log g(sp " +1/1%)

SL4n+1 log sy
<t l— —- 1+2————=—)lo
= Ing ( 16 + log For ot gg(rm+kn+q)
SL+n+1 log s
=t 1-— 1+2———>— |1
" ( 16 + 10 7'im-+k,+q 08 Tmthntatl
3 1 2
< lthyg (1 tn+ ) 1+ —1/2 lOg T'm+ky+q+1-
16 3q_2pL+n

Thus, for g = k1 — ky,, we have

Sr 1 2
Ing+1 = Ing (1 - %) (1 + m) . (3.28)
L+n

Finally, it follows from (3.14) that, if ¢ = k,+1 — k,, + 1, then ¢ — 1 > 2. Also, there are no
zeros of f with modulus in the interval (sg,,, Sk,,,+1) = (Sk,.,» Sk,+q) and so it follows from
Lemma 3.6 and (3.26) that

log sk, +g+1 = 10g g(Sk,+¢)

log sk
t 1 42—S"nkl
e ( * log Ym+k,+q
log sy, +¢-1
log rimtk,+4

IA

> log g(rm-i-kn-i-q)

= tn,q (1 +2 > IOg Ym+ky,+q+1

IA

2
In.q (1 + 1—/2) 10g Fim-ti,+g-+1-
pL+n
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Thus, for g = k41 — k, + 1, we have

2
g+l Zlng <1 + 1—/2) . (3.29)
Prin

It follows from (3.27)—(3.29) and (3.13) that, for M > 2, we have

Thpri142 = M kg1 —kp+2
M kn+17kn+1

=t 1—[ 1—[ In,g+1

n=2 q=2 In.q

M kn+1—kn
2 SL4n+1 2

<nma[[| 1+ 75 (1— o I I+ —

n=2 Prin q=2 397°p

" 3

2 SL+4n+1

§t2,21_[ (1+1—/2> (1—T

n=2 pL+n

It follows from (3.13) that ), +2 < oo and so, since ),y 8r4n+1 = 00, we deduce that,
pL+n
for M sufficiently large, Tk,,, ,+2 < 1, as required. [J

We have now proved Lemma 3.2. As noted earlier, this is sufficient to imply that the
hypotheses of Lemma 3.1 hold and hence that A(f) N (—oo, 0] = ¥ as required.

We complete the proof of Theorem 1.2 by showing that, in addition, conditions (1.3) and (1.4)
are satisfied. That is, we prove the following.

Lemma 3.7. Let

loglog M
e = max glogM@) (3.30)
Ru<r<Rpii logr
There exists a subsequence (ny) such that
1
&np < 6k + Tk fork e N, (3.31)
and
Sk 1
fork e N, 1 <m < ngq1 — ng. (3.32)

< - .
Engtm = 3m—1 ong+m’

Proof. We begin by setting Ry = ro = 10 and defining R,+; = M(R,), for n € N. Clearly
R, > r, by (3.4) and
Ryt1 > R}, forneN. (3.33)
We claim that
ifarp € [Ry, Rut1), thenay, € [Ry, Ryy2) fork,m e N, m # k. (3.34)

In order to deduce this from (3.14), it is sufficient to show that, if r, € [Ry, Ry11), for some
p,n € N, thenrp,2 > R, 1. We prove this in two steps. First, we note thatif r,, € [R,, Rs), for
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some p,n € N, then it follows from (3.6) that 7,11 > r?, > Rs. Second, if ), € [Rﬁ, Ryu+1), for
some p,n € N, then we claim that

rpi1 = g(rp) = g(RY) > M(Ry) = Rus1. (3.35)

This is true since, if k is the smallest integer such that a; > Rﬁ , then
k—1 R3 2pm
g®RH =R ] (1 + —">
m=1 Am
and so, by (3.1) and (3.11),

o0 R 2Pm
M(R,) = f(R)) = R, (1 + —”)

m=1 Gm
R3 R 2Pk 2I7m
<g(6")(1+—”> I1 <1+a—">
Ry % m>k+1 dm
12 12

g(R3) <1+ 1 )“k 1 <1+ ] )’”
< PE— —
6 1/2 _ m—k
RS “k/ okt arln 1/2

g(RY)
< Rgz QT IF1/24 1 /A S(RS)'
Thus (3.35) does indeed hold and, by the reasoning above, this is sufficient to show that (3.34)
holds.
Now, for k € N, we choose ny € N such that ay € [R,,, Ry, +1). Then, by (3.34), this defines
a sequence (ng) with n; # ny for j # k. Now suppose that r € [Ry,, Ry, +1], for some k € N. It
follows from (3.11) and (3.34) that

3 7o\ 2Pk k=l ro\ 2Pm 7\ 2Pm
M@) = fr)<r (HJ) ]_[<1+a—) I (HE)

m=1 m m>k+1
172
r 2Pk 1 am
< <1 + _) p3T2p1t+2pi 1_[ 1+ YT
k m>k+1 am
2
< (1 + L) Ol 11241
ag
and so
S
5 g r o\ %
M) <e r1 {1+ — . (3.36)
ag
Ifr < a/:/z, then it follows from (3.2) and (3.36) that
M(r) < e3r“ik—_11 <3
and hence, since r > Ry > 1000,
loglog M (r) - 8k logr + 2loglogr — 5 +210g10gr - +210g10gR,,k.

logr logr logr — k log Ry,
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It follows from (3.33) that, in this case,

loglog M (r) - log(3"* log 10) 1

<&+ —. (3.37)

S +2
T R og 10 2n

logr

Ifall/2 <r < ag, then
8k

r\ % p o\ (/%% P/
1+—) =(14+— <(1+— <e
ax ayg ag

and, if r > ay, then
a
r k Sk 5
14+ — <r% <,
ag

So, if r > a,’*, it follows from (3.36) and (3.11) that

-1 5 /2 s 5
k © k
M) < er%—1 /™ < 2rt% < o

and hence
loglog M (r) - Sk logr + 2loglogr 5t 2loglogr <5t 2loglog Ry, .
logr logr logr log Ry,
As before, it follows from (3.33) that
loglog M 1
loglogM(r) _ o 1 (3.38)

2m

Together with (3.37), this implies that (3.31) holds.

Now suppose that r € [Ry;, ym, Ryy4m+1), forsome k € N, 1 < m < ngyy — ng. It follows
from (3.11) and (3.33) that

k r 2Pm r 2pm
M(r)=f(r)§r3]_[<l+—> I (1+—)
m=1 m m>k+1

am

logr

172

an
1
342p1++2pk
=7 [1 <1+ 1—1/2mk)
m>k+1 am

- ra,fkel+1/2+1/4+~»
, 5

< 621"“;EA < eer”];c+'

ezrrakﬁmil .
Thus
loglog M(r) 8k logr/3"~1 4+ 2loglogr Sk loglogr
< <
logr logr 3m-1 logr

< Sk + 210g log Rnk+m '

= 31" " log Rupm
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As before, it follows from (3.33) that

loglog M (r) - Sk 1
log r = 3m=l " nmtm

(3.39)

and so (3.32) holds. [
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