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Abstract

We show that the fast escaping set A( f ) of a transcendental entire function f has a structure known
as a spider’s web whenever the maximum modulus of f grows below a certain rate. The proof uses a new
local version of the cos πρ theorem, based on a comparatively unknown result of Beurling. We also give
examples of entire functions for which the fast escaping set is not a spider’s web which show that this
growth rate is sharp. These are the first examples for which the escaping set has a spider’s web structure but
the fast escaping set does not. Our results give new insight into possible approaches to proving a conjecture
of Baker, and also a conjecture of Eremenko.
c⃝ 2013 Published by Elsevier Inc.
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1. Introduction

Let f : C → C be a transcendental entire function and denote by f n, n = 0, 1, 2, . . . , the
nth iterate of f . The Fatou set F( f ) is the set of points z ∈ C such that ( f n)n∈N forms a normal
family in some neighborhood of z. The complement of F( f ) is called the Julia set J ( f ) of f .
An introduction to the properties of these sets can be found in [3].
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In recent years, the escaping set defined by

I ( f ) = {z : f n(z) → ∞ as n → ∞}

has come to play an increasingly significant role in the study of the iteration of transcendental
entire functions with much of the research being motivated by a conjecture of Eremenko [5] that
all the components of the escaping set are unbounded. For partial results on this conjecture see,
for example, [9,15].

The most general result on Eremenko’s conjecture was obtained in [10] where it was proved
that the escaping set always has at least one unbounded component. This result was proved by
considering the fast escaping set A( f ) =


n∈N f −n(AR( f )), where

AR( f ) = {z : | f n(z)| ≥ Mn(R, f ), for n ∈ N}.

Here

M(r) = M(r, f ) = max
|z|=r

| f (z)|,

Mn(r, f ) denotes the nth iterate of M with respect to r , and R > 0 is chosen so that M(r, f ) > r
for r ≥ R. The set A( f ) has many nice properties including the fact that all its components are
unbounded—these properties are described in detail in [12].

There are many classes of transcendental entire functions for which the fast escaping set has
the structure of a spider’s web—see [12,8,16]. We say that a set E has this structure if E is
connected and there exists a sequence of bounded simply connected domains Gn such that

∂Gn ⊂ E, Gn ⊂ Gn+1, for n ∈ N, and

n∈N

Gn = C.

As shown in [12], if AR( f ) has this structure then so do both A( f ) and I ( f ), and hence
Eremenko’s conjecture is satisfied. Also, the domains Gn can be chosen so that ∂Gn ⊂

AR( f ) ∩ J ( f ) and so f has no unbounded Fatou components. This gives a surprising link
between Eremenko’s conjecture and a conjecture of Baker [1] that all the components of the
Fatou set are bounded if f is a transcendental entire function of order less than 1/2. Recall that
the order of a transcendental entire function f is defined to be

ρ = lim sup
r→∞

log log M(r)

log r
.

For background and recent results on Baker’s conjecture, see [6,7,11,13]. It was shown in [11]
(see also [12]) that the techniques used to prove all earlier partial results on Baker’s conjecture
can in fact be used to prove the stronger result that AR( f ) is a spider’s web.

In this paper we show the limitation of these techniques, and demonstrate that they cannot
even be used to prove Baker’s conjecture for all functions of order zero. To do this we give a
sharp condition on the growth of the maximum modulus that is sufficient to imply that AR( f ) is
a spider’s web and hence that Baker’s conjecture and Eremenko’s conjecture are both satisfied.
More precisely, we prove the following sufficient condition.

Theorem 1.1. Let f be a transcendental entire function and let R > 0 be such that M(r, f ) > r
for r ≥ R. Let

Rn = Mn(R) and εn = max
Rn≤r≤Rn+1

log log M(r)

log r
.
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If 
n∈N

εn < ∞, (1.1)

then AR( f ) is a spider’s web.

Remark. Theorem 1.1 follows surprisingly easily from a new local version of the classical
cos πρ theorem; see Theorem 2.1. We obtained a closely related result in [11, Theorem 3] with
the stronger hypothesis that


n∈N

√
εn < ∞ and remarked there that the square root could be

removed by introducing a more sophisticated argument. The method of proof given here is quite
different, and more enlightening.

As mentioned earlier, the condition (1.1) in Theorem 1.1 is, in a strong sense, best possible.
In particular, the following result shows that (1.1) cannot be replaced by the weaker condition
that


n∈N(εn)c < ∞, for some c > 1.

Theorem 1.2. There exist transcendental entire functions of the form

f (z) = z3
∞

n=1


1 +

z

an

2pn

, (1.2)

where pn ∈ N, for n ∈ N, and the sequence (an) is positive and strictly increasing such that
A( f ) ∩ (−∞, 0] = ∅; in particular, A( f ) is not a spider’s web.

Moreover, if (δn) is a positive sequence such that
n∈N

δn = ∞,

then we can choose the sequence (an)n∈N and a value R > 0 in such a way that, with

pn = [aδn/4
n /4], Rn = Mn(R) and εn = max

Rn≤r≤Rn+1

log log M(r)

log r
,

there exists a subsequence (nk) such that

εnk ≤ δk +
1

2nk
, for k ∈ N, (1.3)

and

εnk+m ≤
δk

3m−1 +
1

2nk+m , for k ∈ N, 1 ≤ m < nk+1 − nk . (1.4)

To deduce from Theorem 1.2 that the condition (1.1) in Theorem 1.1 cannot be relaxed
to


n∈N(εn)c < ∞, for some c > 1, it suffices to take a positive sequence (δn) such that
n∈N δn = ∞ but


n∈N δc

n < ∞, and so obtain an entire function f for which A( f ) is not a
spider’s web but


n∈N εc

n < ∞, by (1.3) and (1.4) and the estimate (a + b)c
≤ 2c max{ac, bc

}.
Although the proof of Theorem 1.2 is rather complicated, this result has several significant

consequences in addition to showing that the condition in Theorem 1.1 is best possible. First,
Theorem 1.2 implies that there are functions of order zero for which AR( f ) fails to be a spider’s
web and so new techniques are needed in order to solve Baker’s conjecture. One such technique
is introduced in [13] where we show that all real functions of order less than 1/2 with their zeros
on the negative real axis satisfy Baker’s conjecture.
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Second, in [13] we show that all real functions of order less than 1/2 with their zeros on the
negative real axis also satisfy Eremenko’s conjecture and, moreover, I ( f ) is a spider’s web. Since
functions of the form (1.2) with lim supn→∞ εn < 1/2 are of this type, this gives the following
corollary to Theorem 1.2, which answers a question in [12].

Corollary 1.3. There exist transcendental entire functions for which I ( f ) is a spider’s web but
A( f ) is not a spider’s web.

In fact we show in [13] that real functions of order less than 1/2 with their zeros on the
negative real axis have the stronger property that Q( f ) contains a spider’s web, where Q( f )

is the quite fast escaping set which is described in more detail in [14] and satisfies A( f ) ⊂

Q( f ) ⊂ I ( f ). Thus Theorem 1.2 provides examples of functions for which Q( f ) ≠ A( f );
these two sets are equal for many functions, including all functions in the Eremenko–Lyubich
class B as we show in [14].

The paper is arranged as follows. In Section 2 we prove Theorem 1.1 and then, in Section 3,
we prove Theorem 1.2.

2. Proof of Theorem 1.1

Let f be a transcendental entire function and R > 0 be such that M(r) > r for r ≥ R. Recall
that

AR( f ) = {z : | f n(z)| ≥ Mn(R), for n ∈ N}

and that AR( f ) is a spider’s web if AR( f ) is connected and there exists a sequence of bounded
simply connected domains Gn such that

∂Gn ⊂ AR( f ), Gn ⊂ Gn+1, for n ∈ N, and

n∈N

Gn = C.

In this section we prove Theorem 1.1 which gives a condition that is sufficient to ensure
that AR( f ) is a spider’s web. Many earlier results on Baker’s conjecture as well as sufficient
conditions to ensure that AR( f ) is a spider’s web were obtained by using a version of the
classical cos πρ theorem proved by Barry [2, p. 294]. The key ingredient in our proof is the
following result which can be viewed as a local version of Barry’s theorem. The estimate (2.2)
gives more precise information than the corresponding estimate that can be obtained from Barry’s
theorem and the proof follows easily from a comparatively unknown result of Beurling given in
his thesis [4]. This latter result turns out to have other applications; see [14], for example.

Theorem 2.1. Let f be a transcendental entire function. There exists r( f ) > 0 such that, if

log M(r) ≤ rα and r1−2α
≥ r( f ), (2.1)

for some α ∈ (0, 1/2), then there exists t ∈ (r1−2α, r) such that

log m(t) > log M(r1−2α) − 2. (2.2)

Proof. We apply the following result of Beurling [4, p. 96].
Let f be analytic in {z : |z| < r0}, let 0 ≤ r1 < r2 < r0, and put

E = {t ∈ (r1, r2) : m(t) ≤ µ}, where 0 < µ < M(r1).
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Then

log
M(r2)

µ
>

1
2

exp


1
2


E

dt

t


log

M(r1)

µ
. (2.3)

Taking r2 = r, r1 = r1−2α, µ = M(r1−2α)/e2, and r( f ) > 0 such that M(r( f )) ≥ e2, we
deduce from (2.1) and (2.3) that, if m(t) ≤ µ for t ∈ (r1−2α, r), then

rα
≥ log M(r) ≥ log

M(r)

µ
>

1
2

exp


1
2

 r

r1−2α

dt

t


log

M(r1−2α)

µ
= rα.

This is a contradiction and so there must exist t ∈ (r1−2α, r) such that m(t) > µ; that is,

log m(t) > log µ = log M(r1−2α) − 2,

as required. �

We also use the following results about spiders’ webs proved in [12].

Lemma 2.2 ([12, Corollary 8.2]). Let f be a transcendental entire function and let R > 0 be
such that M(r) > r for r ≥ R. Then AR( f ) is a spider’s web if there exists a sequence (ρn)

such that, for n ≥ 0,

ρn > Mn(R) (2.4)

and

m(ρn) ≥ ρn+1. (2.5)

Lemma 2.3 ([12, Lemma 7.1(d)]). Let f be a transcendental entire function, let R > 0 be such
that M(r) > r for r ≥ R, and let R′ > R. Then AR( f ) is a spider’s web if and only if AR′( f )

is a spider’s web.

In addition, we need the following property of the maximum modulus function, which was
proved in this form in [11].

Lemma 2.4 ([11, Lemma 2.2]). Let f be a transcendental entire function. Then there exists
R > 0 such that, for all r ≥ R and all c > 1,

M(rc) ≥ M(r)c.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let R > 0 be such that, for r ≥ R, Lemma 2.4 holds and M(r) > r . For
n ∈ N, let

Rn = Mn(R) and εn = max
Rn≤r≤Rn+1

log log M(r)

log r
.

Suppose that


n∈N εn < ∞. Then we can take N sufficiently large to ensure that
n≥N

εn <
1
8
, (2.6)
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and

M(Rn)1/(8n2)
= R1/(8n2)

n+1 ≥ e2, for n ≥ N , and R1/4
N+1 ≥ RN ≥ r( f ), (2.7)

where r( f ) is as defined in Theorem 2.1. Note that (2.7) is possible since log M(r)/ log r → ∞

and so, for large n, we have log Rn+1 > 4 log Rn .
Now let

rn = Mn+1


R
N+n

m=N (1−2εm−1/(8m2))

N+1


, for n ≥ 0.

We note that, for n ≥ 0, it follows from (2.6) that

N+n
m=N


1 − 2εm −

1

8m2


> 1 −

N+n
m=N

2εm −

N+n
m=N

1

8m2 ≥
1
2

and so, by (2.7) and Lemma 2.4,

RN+n+2 > rn > Mn+1(R1/2
N+1) ≥ Mn+1(R2

N ) ≥ R2
N+n+1.

We claim that, for n ≥ 0, there exists ρn ∈ (RN+n+1, rn) with m(ρn) > rn+1. Indeed, it
follows from Theorem 2.1, (2.6), (2.7) and Lemma 2.4 that, for n ≥ 0, there exists ρn ∈

(r1−2εn+N+1
n , rn) ⊂ (RN+n+1, rn) such that

m(ρn) ≥
1

e2 M(r1−2εn+N+1
n )

≥ M(r1−2εn+N+1
n )1−1/(8(n+N+1)2)

≥ M(r (1−2εn+N+1)(1−1/(8(n+N+1)2))
n )

≥ M(r (1−2εn+N+1−1/(8(n+N+1)2))
n )

= M


Mn+1


R
N+n

m=N (1−2εm−1/(8m2))

N+1

(1−2εn+N+1−1/(8(n+N+1)2))


≥ Mn+2


R
N+n+1

m=N (1−2εm−1/(8m2))

N+1


= rn+1.

Thus, for n ≥ 0, there exists ρn > RN+n with m(ρn) ≥ ρn+1 and so, by Lemma 2.2, ARN+1( f )

is a spider’s web. It now follows from Lemma 2.3 that AR( f ) is a spider’s web as claimed. �

3. Proof of Theorem 1.2

Let

f (z) = z3
∞

n=1


1 +

z

an

2pn

,

where the sequence (an) is positive and strictly increasing. In addition, let (δn) be a positive
sequence such that

n∈N
δn = ∞,
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and let

pn = [aδn/4
n /4]. (3.1)

Without loss of generality, we assume that

δn < 1/2, for n ∈ N. (3.2)

Note that f ((−∞, 0]) ⊂ (−∞, 0] and that m(r) = − f (−r) and M(r) = f (r) > r3, for r > 0.
Further, M(r) > r for r ≥ 1.

We first show that the sequence (an) can be chosen so that A( f ) ∩ (−∞, 0] = ∅.
We choose the values of an carefully, beginning with a1, then a2 and so on. Because of the

way in which we choose the values of an , it is helpful to introduce the function g defined by

g(r) =


r3, 0 ≤ r < a1,

r3


an≤r


1 +

r

an

2pn

, r ≥ a1.
(3.3)

Note that g is a strictly increasing function and that it is discontinuous at an , for n ∈ N. A key
property of g which we use repeatedly is that

m(r) = − f (−r) < g(r) < M(r), for r ≥ 0. (3.4)

Since g is increasing, (3.4) implies that

f ([−r, 0]) ⊂ [−g(r), 0], for r ≥ 0. (3.5)

We now set r0 = 10 and rn+1 = g(rn) = gn+1(10), for n ∈ N, and note that

rn+1 ≥ r3
n , for n ≥ 0. (3.6)

Also, it follows from (3.5) that

f n((−rm, 0]) ⊂ (−rm+n, 0], for n, m ∈ N. (3.7)

We begin by proving the following result.

Lemma 3.1. If there exists a sequence (Nk) such that,

f N1((−r2, 0]) ⊂ (−rN1 , 0] (3.8)

and, for k ≥ 2,

f Nk ((−rN1+···+Nk−1+2k, 0]) ⊂ (−rN1+···+Nk , 0], (3.9)

then A( f ) ∩ (−∞, 0] = ∅.

Proof. We first note that, if the hypotheses of Lemma 3.1 hold, then it follows from (3.7) and
(3.9) that, for k ∈ N,

f N1+···+Nk ((−r2k, 0]) = f Nk ( f N1+···+Nk−1)((−r2k, 0])

⊂ f Nk ((−rN1+···+Nk−1+2k, 0])

⊂ (−rN1+···+Nk , 0].
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Thus

f N1+···+Nk ((−r2k, 0]) ⊂ (−rN1+···+Nk , 0]. (3.10)

Now let z ∈ (−∞, 0]. There exists K ∈ N such that, for k ≥ K , we have z ∈ (−rk, 0] and hence,
by (3.7), we have f k(z) ∈ (−r2k, 0]. Thus, by (3.10) and (3.4), for k ≥ K ,

| f N1+···+Nk+k(z)| < rN1+···+Nk < M N1+···+Nk (10)

and hence

z ∉ {z : | f n+k(z)| ≥ Mn(10) for n ∈ N}.

Thus A( f ) ∩ (−∞, 0] = ∅ as required. �

We will show that we can choose the values of an in such a way that the hypotheses of
Lemma 3.1 hold. In order to do this, it is helpful to set certain restrictions on our choice of
values. First, we choose a1 and an+1/an, n ∈ N, sufficiently large to ensure that

aδ1/4
1 ≥ 4, an+1 > a2

n, aδn+1/2
n+1 > 16aδn

n (3.11)

and

aδn+1/16
n+1 > aδn

n log an+1. (3.12)

We note that (3.11) implies that

p1 ≥ 1 and pn+1 ≥ 2p2
n, for n ∈ N. (3.13)

We also place certain restrictions on our choice of the values of an in relation to the values of
rn :

if ak ∈ [rn, rn+1), then am ∉ [rn, rn+4) for k, m ∈ N, m ≠ k. (3.14)

We now show that, in order to prove that the hypotheses of Lemma 3.1 hold, it is sufficient to
prove the following result.

Lemma 3.2. Suppose that, for some m ∈ N, we have defined the values of an for which an ≤ rm
in such a way that they satisfy (3.11), (3.12) and (3.14). Then we can choose N ∈ N and the
values of an for which rm < an ≤ rm+N−1 in such a way that they satisfy (3.11), (3.12) and
(3.14) and, no matter how the later values of an are chosen,

f N ((−rm+1, 0]) ⊂ (−rm+N , 0].

Proving Lemma 3.2 is the key part of the proof that we can choose the sequence (an) so as to
ensure that A( f ) ∩ (−∞, 0] = ∅. Before proving Lemma 3.2, we show that, if this result holds,
then the hypotheses of Lemma 3.1 also hold. First, by applying Lemma 3.2 when m = 1 we see
that there exists N1,1 ∈ N and a choice of an for r1 < an ≤ rN1,1 such that

f N1,1((−r2, 0]) ⊂ (−rN1,1+1, 0]. (3.15)

We then apply Lemma 3.2 with m = N1,1 and deduce that there exists N1,2 ∈ N and a choice of
an for rN1,1 < an ≤ rN1,1+N1,2−1 such that

f N1,2((−rN1,1+1, 0]) ⊂ (−rN1,1+N1,2 , 0]. (3.16)
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It follows from (3.15) and (3.16) that

f N1,1+N1,2(−r2, 0] ⊂ f N1,2(−rN1,1+1, 0] ⊂ (−rN1,1+N1,2 , 0].

Putting N1 = N1,1 + N1,2, we deduce that we can choose the values of an for which r1 < an ≤

rN1−1 in such a way that

f N1((−r2, 0]) ⊂ (−rN1 , 0].

Thus (3.8) holds.
Now suppose that, for some k ≥ 2, we have defined N j , for 1 ≤ j ≤ k − 1, and defined an ,

for r1 < an ≤ rN1+···+Nk−1−1. We claim that we can use Lemma 3.2 to define Nk ∈ N and an
with rN1+···+Nk−1−1 < an ≤ rN1+···+Nk−1 such that (3.9) holds for k. The argument is similar to
that given above. First, we apply Lemma 3.2 with m = N1 + · · · + Nk−1 + 2k − 1 to construct
Nk,1 and an with

rN1+···+Nk−1+2k−1 < an ≤ rN1+···+Nk−1+Nk,1+2k−2

such that

f Nk,1((−rN1+···+Nk−1+2k, 0]) ⊂ (−rN1+···+Nk−1+Nk,1+2k−1, 0].

Then, for 2 ≤ j ≤ 2k, we apply Lemma 3.2 repeatedly with

m = N1 + · · · + Nk−1 + Nk,1 + · · · + Nk, j−1 + 2k − j

to construct Nk, j and an with

rN1+···+Nk−1+Nk,1+···+Nk, j−1+2k− j < an ≤ rN1+···+Nk−1+Nk,1+···+Nk, j +2k− j−1

such that

f Nk, j ((−rN1+···+Nk−1+Nk,1+···+Nk, j−1+2k− j+1, 0])

⊂ (−rN1+···+Nk−1+Nk,1+···+Nk, j +2k− j , 0].

Putting Nk = Nk,1 + · · · + Nk,2k , we deduce that an can be chosen with

rN1+···+Nk−1−1 < an ≤ rN1+···+Nk−1

such that

f Nk ((−rN1+···+Nk−1+2k, 0]) ⊂ (−rN1+···+Nk , 0]

and hence (3.9) holds for k.
So, it remains to prove Lemma 3.2.
We begin by proving four lemmas. The first describes the extent to which f is small close to

a zero at −ak , where k ∈ N.

Lemma 3.3. For each k ∈ N,

| f (z)| < 1, for z ∈ (−ak, −a1−δk/16
k ). (3.17)
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Proof. This holds since, for such a z, it follows from (3.1), (3.11), (3.12) and (3.13) that

| f (z)| ≤ a3
k


1 −

a1−δk/16
k

ak

2pk k−1
m=1


1 +

ak

am

2pm 
m≥k+1


1 +

ak

am

2pm

≤


1 −

1

aδk/16
k

a
δk /4
k

a3+2p1+···+2pk−1
k


m≥k+1


1 +

1

a1−1/2m−k

m

a1/2
m

≤ exp(−aδk/16
k )a

a
δk−1/2
k−1

k e1+1/2+1/4+···

≤ a
a

δk−1
k−1

k exp(−aδk/16
k ) < 1. �

The second lemma shows that there is a large increase in the size of g(r) at r = ak , where
k ∈ N.

Lemma 3.4. For each k ∈ N,

log g(ak) ≥ p1/2
k log g(a1−δk/16

k ).

Proof. For k ∈ N, it follows from (3.11) that

g(a1−δk/16
k ) < a3

k

k−1
m=1


1 +

ak

am

2pm

< a
3+2

k−1
m=1

pm

k ≤ a4pk−1
k

and

g(ak) ≥ 22pk .

Thus, by (3.11)–(3.13),

log g(ak)

log g(a1−δk/16
k )

≥
2pk log 2

4pk−1 log ak
>

pk

3pk−1 log ak
> p1/2

k . �

The third lemma shows that log g has a certain convexity property.

Lemma 3.5. Let r > 0 and t ≥ 2. Then

log g(r t ) ≥ t log g(r).

Proof. Let r > 0 and t ≥ 2. We have

g(r t ) ≥ r3t


am≤r


1 +

r t

am

2pm
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and

g(r)t
= r3t


am≤r


1 +

r

am

2pm t

.

Thus it is sufficient to show that
1 +

r

am

t

≤


1 +

r t

am


,

when am ≤ r . This is true since it follows from (3.11) that, for am ≤ r and t ≥ 2,
1 +

r

am

t

≤


r

a1/2
m

t

=
r t

at/2
m

< 1 +
r t

am
. �

The fourth lemma gives an upper bound on the growth of g on intervals where no point is the
modulus of a zero of f .

Lemma 3.6. Let r > 0, 0 < s < 1/2 and t > 1 and suppose that there are no values of n ∈ N
for which an ∈ (r s, r t

]. Then

log g(r t ) ≤ t (1 + 2s) log g(r).

Proof. It follows from (3.11) that

g(r t ) = r3t


am≤r s


1 +

r t

am

2pm

< r3t


am≤r s

r2pm t
= r t (3+


am≤rs 2pm )

and

g(r) > r3


am≤r s


r

am

2pm

> r3+


am≤rs 2pm (1−s).

Thus

log g(r t )/ log g(r) < t/(1 − s) ≤ t (1 + 2s),

since s < 1/2. �

We are now in a position to prove Lemma 3.2.

Proof of Lemma 3.2. Suppose that m ∈ N and that we have defined the values of an for which
an ≤ rm . We now define a sequence (sk), 0 ≤ k ≤ N , inductively according to certain rules that
we give below. Each time we define a value sk , we also add a zero of f at −sk provided this is
allowed by (3.11), (3.12) and (3.14); no other zeros of f are added. We choose our values sk in
such a way that

rm+k ≤ sk ≤ rm+k+1, for 0 ≤ k < N , (3.18)

sN ≤ rm+N (3.19)

and

f k((−rm+1, 0]) ⊂ (−sk, 0], for 0 ≤ k ≤ N . (3.20)



348 P.J. Rippon, G.M. Stallard / Advances in Mathematics 244 (2013) 337–353

The result of Lemma 3.2 follows directly from (3.19) and (3.20). The difficult part of the proof
is to show that there exists an N ∈ N for which (3.19) is satisfied.

We define our sequence (sk) as follows:

• set s0 = rm+1;
• if sk > rm+k and there is a zero of f at −sk , then we set

sk+1 = g(s
1−δnk /16
k ); (3.21)

• if sk > rm+k and there is no zero of f at sk , then we set

sk+1 = g(sk); (3.22)

• if sk ≤ rm+k , then we terminate the sequence (sk).

It follows from Lemma 3.3 and (3.5) that, with this construction, (3.18)–(3.20) are indeed
satisfied.

It remains to prove that there exists K ∈ N such that the sequence terminates at sK ; that is, if

Tk =
log sk

log rm+k
,

then there exists K ∈ N such that TK ≤ 1.
We introduce the following terminology. We let L denote the largest integer for which

aL ≤ rm and define a (finite) subsequence (kn) such that

aL+n = skn , for n = 1, 2, . . . . (3.23)

The main idea is to show that, for each n ≥ 2 we have that Tkn+1 is less than Tkn , with kn
defined as above. These decreases counteract the small increases that may occur from Tk to Tk+1
for other values of k and, for n large enough, they will combine together to cause Tkn+1 to drop
below 1.

We first estimate some quantities that will be useful in our calculations. We begin by noting
that it follows from (3.23), (3.18) and Lemma 3.4 that, for n ≥ 1,

log rm+kn+2 = log g(rm+kn+1)

≥ log g(skn ) ≥ p1/2
L+n log g(s1−δL+n/16

kn
).

Thus, by (3.21)

log rm+kn+2 ≥ p1/2
L+n log skn+1, for n ≥ 1. (3.24)

Together with (3.6), (3.24) implies that

log rm+kn+q ≥ 3q−2 p1/2
L+n log skn+1, for q ≥ 2, n ≥ 1. (3.25)

Together with Lemma 3.5, (3.24) implies that

log skn+q

log rm+kn+q+1
≤

log gq−1(skn+1)

log gq−1(rm+kn+2)
≤

log skn+1

log rm+kn+2
≤

1

p1/2
L+n

,

for q ≥ 2, n ≥ 1. (3.26)

Now fix n ≥ 2 and write

tn,q = Tkn+q =
log skn+q

log rm+kn+q
, for q ≥ 2.
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For 2 ≤ q < kn+1 − kn , there are no zeros of f with modulus in the interval (skn , skn+q ) and so
it follows from (3.22), Lemma 3.6 and (3.25) that, for such q ,

log skn+q+1 = log g(skn+q)

≤ tn,q


1 + 2

log skn

log rm+kn+q


log g(rm+kn+q)

= tn,q


1 + 2

log skn

log rm+kn+q


log rm+kn+q+1

≤ tn,q


1 +

2

3q−2 p1/2
L+n


log rm+kn+q+1.

Thus, for 2 ≤ q < kn+1 − kn , we have

tn,q+1 ≤ tn,q


1 +

2

3q−2 p1/2
L+n


. (3.27)

For q = kn+1 − kn , there are no zeros of f with modulus in the interval (skn , skn+q ) and so it
follows from (3.21), Lemma 3.6 and (3.25) that

log skn+q+1 = log g(s1−δL+n+1/16
kn+q )

≤ tn,q


1 −

δL+n+1

16


1 + 2

log skn

log rm+kn+q


log g(rm+kn+q)

= tn,q


1 −

δL+n+1

16


1 + 2

log skn

log rm+kn+q


log rm+kn+q+1

≤ tn,q


1 −

δL+n+1

16


1 +

2

3q−2 p1/2
L+n


log rm+kn+q+1.

Thus, for q = kn+1 − kn , we have

tn,q+1 ≤ tn,q


1 −

δL+n+1

16


1 +

2

3q−2 p1/2
L+n


. (3.28)

Finally, it follows from (3.14) that, if q = kn+1 − kn + 1, then q − 1 ≥ 2. Also, there are no
zeros of f with modulus in the interval (skn+1 , skn+1+1) = (skn+1 , skn+q) and so it follows from
Lemma 3.6 and (3.26) that

log skn+q+1 = log g(skn+q)

≤ tn,q


1 + 2

log skn+1

log rm+kn+q


log g(rm+kn+q)

= tn,q


1 + 2

log skn+q−1

log rm+kn+q


log rm+kn+q+1

≤ tn,q


1 +

2

p1/2
L+n


log rm+kn+q+1.
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Thus, for q = kn+1 − kn + 1, we have

tn,q+1 ≤ tn,q


1 +

2

p1/2
L+n


. (3.29)

It follows from (3.27)–(3.29) and (3.13) that, for M ≥ 2, we have

TkM+1+2 = tM,kM+1−kM +2

= t2,2

M
n=2

kn+1−kn+1
q=2

tn,q+1

tn,q

≤ t2,2

M
n=2


1 +

2

p1/2
L+n


1 −

δL+n+1

16

 kn+1−kn
q=2


1 +

2

3q−2 p1/2
L+n



≤ t2,2

M
n=2

1 +
2

p1/2
L+n

3 
1 −

δL+n+1

16

 .

It follows from (3.13) that


n∈N
1

p1/2
L+n

< ∞ and so, since


n∈N δL+n+1 = ∞, we deduce that,

for M sufficiently large, TkM+1+2 ≤ 1, as required. �

We have now proved Lemma 3.2. As noted earlier, this is sufficient to imply that the
hypotheses of Lemma 3.1 hold and hence that A( f ) ∩ (−∞, 0] = ∅ as required.

We complete the proof of Theorem 1.2 by showing that, in addition, conditions (1.3) and (1.4)
are satisfied. That is, we prove the following.

Lemma 3.7. Let

εn = max
Rn≤r≤Rn+1

log log M(r)

log r
. (3.30)

There exists a subsequence (nk) such that

εnk ≤ δk +
1

2nk
, for k ∈ N, (3.31)

and

εnk+m ≤
δk

3m−1 +
1

2nk+m , for k ∈ N, 1 ≤ m < nk+1 − nk . (3.32)

Proof. We begin by setting R0 = r0 = 10 and defining Rn+1 = M(Rn), for n ∈ N. Clearly
Rn ≥ rn by (3.4) and

Rn+1 ≥ R3
n, for n ∈ N. (3.33)

We claim that

if ak ∈ [Rn, Rn+1), then am ∉ [Rn, Rn+2) for k, m ∈ N, m ≠ k. (3.34)

In order to deduce this from (3.14), it is sufficient to show that, if rp ∈ [Rn, Rn+1), for some
p, n ∈ N, then rp+2 > Rn+1. We prove this in two steps. First, we note that if rp ∈ [Rn, R3

n), for
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some p, n ∈ N, then it follows from (3.6) that rp+1 ≥ r3
p ≥ R3

n . Second, if rp ∈ [R3
n, Rn+1), for

some p, n ∈ N, then we claim that

rp+1 = g(rp) ≥ g(R3
n) > M(Rn) = Rn+1. (3.35)

This is true since, if k is the smallest integer such that ak > R3
n , then

g(R3
n) = R9

n

k−1
m=1


1 +

R3
n

am

2pm

and so, by (3.1) and (3.11),

M(Rn) = f (Rn) = R3
n

∞
m=1


1 +

Rn

am

2pm

<
g(R3

n)

R6
n


1 +

Rn

ak

2pk 
m≥k+1


1 +

ak

am

2pm

<
g(R3

n)

R6
n


1 +

1

a1/2
k

a1/2
k 

m≥k+1


1 +

1

a1−1/2m−k

m

a1/2
m

≤
g(R3

n)

R6
n

e1+1+1/2+1/4+··· < g(R3
n).

Thus (3.35) does indeed hold and, by the reasoning above, this is sufficient to show that (3.34)
holds.

Now, for k ∈ N, we choose nk ∈ N such that ak ∈ [Rnk , Rnk+1). Then, by (3.34), this defines
a sequence (nk) with n j ≠ nk for j ≠ k. Now suppose that r ∈ [Rnk , Rnk+1], for some k ∈ N. It
follows from (3.11) and (3.34) that

M(r) = f (r) ≤ r3


1 +
r

ak

2pk k−1
m=1


1 +

r

am

2pm 
m≥k+1


1 +

r

am

2pm

≤


1 +

r

ak

2pk

r3+2p1+···+2pk−1


m≥k+1


1 +

1

a1−1/2m−k

m

a1/2
m

<


1 +

r

ak

a
δk
k

ra
δk−1
k−1 e1+1/2+1/4+···

and so

M(r) < e2ra
δk−1
k−1


1 +

r

ak

a
δk
k

. (3.36)

If r < a1/2
k , then it follows from (3.2) and (3.36) that

M(r) < e3ra
δk−1
k−1 < e3rrδk

and hence, since r ≥ R1 ≥ 1000,

log log M(r)

log r
<

δk log r + 2 log log r

log r
= δk + 2

log log r

log r
≤ δk + 2

log log Rnk

log Rnk

.
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It follows from (3.33) that, in this case,

log log M(r)

log r
≤ δk + 2

log(3nk log 10)

3nk log 10
< δk +

1
2nk

. (3.37)

If a1/2
k ≤ r ≤ ak , then
1 +

r

ak

a
δk
k

=


1 +

r

ak

(ak/r)δk rδk

<


1 +

r

ak

(ak/r)rδk

≤ erδk

and, if r > ak , then
1 +

r

ak

a
δk
k

< ra
δk
k < rrδk

.

So, if r ≥ a1/2
k , it follows from (3.36) and (3.11) that

M(r) < e2ra
δk−1
k−1 rrδk

< e2ra
δk /2
k rrδk

< e2r2rδk

and hence

log log M(r)

log r
<

δk log r + 2 log log r

log r
= δk + 2

log log r

log r
≤ δk + 2

log log Rnk

log Rnk

.

As before, it follows from (3.33) that

log log M(r)

log r
≤ δk +

1
2nk

. (3.38)

Together with (3.37), this implies that (3.31) holds.
Now suppose that r ∈ [Rnk+m, Rnk+m+1), for some k ∈ N, 1 ≤ m < nk+1 − nk . It follows

from (3.11) and (3.33) that

M(r) = f (r) ≤ r3
k

m=1


1 +

r

am

2pm 
m≥k+1


1 +

r

am

2pm

≤ r3+2p1+···+2pk


m≥k+1


1 +

1

a1−1/2m−k

m

a1/2
m

≤ ra
δk
k e1+1/2+1/4+···

≤ e2ra
δk
k ≤ e2r

R
δk
nk+1

< e2rrδk /3m−1

.

Thus

log log M(r)

log r
<

δk log r/3m−1
+ 2 log log r

log r
<

δk

3m−1 + 2
log log r

log r

≤
δk

3m−1 + 2
log log Rnk+m

log Rnk+m
.
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As before, it follows from (3.33) that

log log M(r)

log r
≤

δk

3m−1 +
1

2nm+m (3.39)

and so (3.32) holds. �
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