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Abstract

The Teichmüller harmonic map flow, introduced by Rupflin and Topping (2012) [11], evolves both a
map from a closed Riemann surface to an arbitrary compact Riemannian manifold, and a constant curvature
metric on the domain, in order to reduce its harmonic map energy as quickly as possible. In this paper, we
develop the geometric analysis of holomorphic quadratic differentials in order to explain what happens in
the case that the domain metric of the flow degenerates at infinite time. We obtain a branched minimal
immersion from the degenerate domain.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Let M := Mγ be a smooth closed orientable surface of genus γ ≥ 2, N = (N , G) be a
smooth compact Riemannian manifold of any dimension, and η > 0 be some fixed parameter.
We consider the flow

∂u

∂t
= τg(u);

∂g

∂t
=

η2

4
Re(Pg(Φ(u, g))), (1.1)
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introduced in [11] as the natural gradient flow of the harmonic map energy when both a map
u : M → (N , G) and a hyperbolic metric g on its domain M are allowed to evolve. Here, τg(u)

represents the tension field of u (i.e. tr∇du), Pg represents the L2-orthogonal projection from
the space of quadratic differentials on (M, g) onto the space of holomorphic quadratic differen-
tials, and Φ(u, g) represents the Hopf differential — see [11] for further information. The flow
decreases the energy according to

d E

dt
= −


M

|τg(u)|2 +

η

4

2
|Re(Pg(Φ(u, g)))|2. (1.2)

While a solution to (1.1) can be projected down to give a path in Teichmüller space, it is worth
digesting that the flow is not to be considered to be the flow of a map coupled with a flow in
(finite dimensional) Teichmüller space. See [11] for more details of the geometry behind the
equations. We also remark that Teichmüller harmonic map flow generalises both the harmonic
map flow [3], see also [14] and the flow of Ding-Li-Liu [2].

Given any initial data (u0, g0) ∈ H1(M, N ) × M−1, with M−1 the set of smooth hyperbolic
metrics on M , we know [10] that a (weak) solution of (1.1) exists on a maximal interval [0, T ),
smooth except possibly at finitely many times, and that T < ∞ only if the flow of metrics
degenerates in moduli space as t ↗ T , that is if the length ℓ(g(t)) of the shortest closed geodesic
ℓ(g(t)) → 0 as t ↗ T .

In [11] we proved that if such a degeneration does not occur, not even as t → ∞, then the
maps u(t) subconverge (after reparametrisation) to a branched minimal immersion (or a constant
map) with the same action on π1 as the initial map u0.

Here we prove that also in the case that the metric degenerates as t → ∞ (but not before) we
also obtain asymptotic convergence to a minimal object in the following sense.

Theorem 1.1. Suppose that (u, g) is a global (weak) solution of (1.1) as described above for
which ℓ(g(t)) → 0 as t → ∞. Then there exist a sequence of times ti → ∞, a number
1 ≤ k ≤ 3(γ − 1) and a hyperbolic punctured surface (Σ , h, c) with 2k punctures (and possibly
disconnected) such that the following holds.

1. The surfaces (M, g(ti ), c(ti )) converge to the surface (Σ , h, c) by collapsing k simple
closed geodesics σ

j
i in the sense of Proposition A.2; in particular there is a sequence of

diffeomorphisms fi : Σ → M \ ∪
k
j=1 σ

j
i such that

f ∗

i g(ti ) → h and f ∗

i c(ti ) → c smoothly locally,

where c(t) denotes the complex structure of (M, g(t)).
2. The maps f ∗

i u(ti ) := u(ti ) ◦ fi converge to a limit u∞ weakly in H1
loc(Σ ) and weakly in

H2
loc(Σ \ S) as well as strongly in W 1,p

loc (Σ \ S), p ∈ [1, ∞), away from a finite set of points
S ⊂ Σ at which energy concentrates.

3. The limit u∞ : Σ → N extends to a branched minimal immersion (or constant map) on each
component of the compactification of (Σ , c) obtained by filling in each of the 2k punctures.

The issue of finite time degeneration of the metric component of solutions to (1.1) as well as the
existence of global (generalised) solutions of (1.1) for arbitrary initial data will be discussed in
future work.

Key for the proof of this result, which is given in Section 3, is a good understanding of the
structure of the space of holomorphic quadratic differentials on a sequence of degenerating hy-
perbolic surfaces. This subject has been investigated from many points of view; here we develop
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the geometric analysis side of the theory, identifying precisely a subspace Wi of the space of
holomorphic quadratic differentials that persists in this limit, and obtaining quantitative estimates
on those differentials which centre around Lemma 2.4. Conversely, the holomorphic quadratic
differentials orthogonal to Wi concentrate on degenerating collars as i → ∞. This fact will
be made more precise in the upcoming paper [12] where we establish a uniform Poincaré-type
estimate for general quadratic differentials on hyperbolic surfaces of bounded genus.

A starting point to understand the basic theory of degenerating hyperbolic surfaces, and to
digest our notation, is the Appendix.

2. The space of holomorphic quadratic differentials on degenerating surfaces

In this section we would like to consider the space of holomorphic quadratic differentials on a
closed surface M of genus γ ≥ 2, with respect to a degenerating sequence of complex structures
and corresponding hyperbolic metrics gi . For each complex structure, we will be viewing the
space H(M, gi ) of holomorphic quadratic differentials as a complex vector space of dimension
3γ − 3, equipped with various L p norms and the L2 inner product arising from the standard
Hermitian inner product on each fibre computed with respect to gi .

According to the Deligne–Mumford compactness theorem in the form outlined in Propo-
sition A.2, after passing to a subsequence and pulling back by diffeomorphisms the surfaces
(M, gi ) converge to a limit (Σ , h) that is a hyperbolic punctured surface by pinching 1 ≤ k ≤

3γ − 3 collars.
On the limit, we will need to consider the space H(Σ , h) of all holomorphic quadratic

differentials that lie in L1(Σ , h). If we extend such a holomorphic quadratic differential across
all the punctures on the limit then the singularity can at worst be a simple pole (by virtue of it
lying in L1); see Lemma A.11. Thus by Riemann–Roch, the (complex) dimension of H(Σ , h) is
3(γ − 1) − k = dimC(H(M, gi )) − k.

One central task in this paper is to isolate a sequence of subspaces Wi ⊂ H(M, gi ) of
complex dimension 3(γ − 1) − k that converge in some sense to H(Σ , h) without loss of
any L p norm. These subspaces can be loosely characterised as consisting of the holomorphic
quadratic differentials that decay rapidly along each degenerating collar — see in particular
Lemma 2.4. Orthogonal to that subspace is a complementary subspace of holomorphic quadratic
differentials that concentrate entirely on degenerating collars (in terms of the L2 norm) and thus
have vanishing L1 norm in the limit. The analysis of these latter subspaces will be refined in
forthcoming work [12].

We remark that there is a large literature on Teichmüller theory, some of which has bearing
on the question of the structure of holomorphic quadratic differentials on almost-degenerate
hyperbolic surfaces. For example, earlier work of Hubbard, Schleicher and Shishikura [6] also
considers the way these differentials split up under degeneration, although we are unaware of
any work that derives the type of estimates that we need for our applications.

First of all we prove that L2-bounded holomorphic quadratic differentials have a form of L1

compactness.

Lemma 2.1. Suppose M is a closed surface of genus γ ≥ 2. Suppose gi is a sequence of
degenerating hyperbolic metrics on M as described in Proposition A.2 and Θi is a sequence
of holomorphic quadratic differentials (with respect to gi ) satisfying ∥Θi∥L2(M,gi )

= 1. Then
after passing to a subsequence, we have

f ∗

i Θi → Θ∞,
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smoothly locally on Σ , where Θ∞ is a holomorphic quadratic differential on (Σ , h), lying in
H(Σ , h). Moreover, we have

∥Θi∥L1(M,gi )
→ ∥Θ∞∥L1(Σ ,h) (2.1)

as i → ∞, and in particular, if in addition we know that ∥Θi∥L1 ≥ ϵ > 0, then Θ∞ is not
identically zero.

More generally, if L i is a sequence of n-dimensional subspaces of the complex vector spaces
H(M, gi ) of holomorphic quadratic differentials (for some n) with the property that

inf
v∈L i

∥v∥L1(M,gi )

∥v∥L2(M,gi )

≥ ε > 0, (2.2)

then there exists an n-dimensional subspace L∞ of H(Σ , h) such that after passing to a subse-
quence, the subspaces L i converge to L∞ in the sense that there exists a basis Θ j

∞ of L∞, and
for each i there exists an L2-unitary basis Θ j

i of L i such that for each j ∈ {1, . . . , n}, we have

f ∗

i Θ j
i → Θ j

∞ smoothly locally on Σ as i → ∞.

Note that although the L1 norm passes to the limit above, we could lose L2 norm along a collar;
the basis Θ i

∞ obtained in the limit is thus in general not unitary. Later, once we have constructed
the subspaces Wi mentioned briefly earlier, we will see that sequences within Wi will also enjoy
convergence of their L2 norms and indeed of all L p norms, p ∈ [1, ∞], and thus that unitary
families of elements in Wi subconverge again to a unitary family in H(Σ , h).

We remark that as a consequence of the above lemma we could obtain the existence of
subspaces of H(M, gi ) of dimension k on which the ratio of the L1 and L2 norms is decaying to
zero as i → ∞. A more refined version of this statement is shown and needed in [12].

Proof of Lemma 2.1. For the first part of the lemma, the smooth local convergence follows
simply from L2-boundedness and holomorphicity of Θi as we now explain. Given any compact
subset K of Σ we can choose δ > 0 small enough such that for every i ∈ N we have K ⊂ Σ δ

i ,
the δ-thick part of the surfaces (Σ , f ∗

i gi ). On the δ-thick parts of the surfaces the Cm norms of
holomorphic quadratic differentials are controlled uniformly by their L1 norm

∥ f ∗

i Θi∥Cm (K ) ≤ ∥ f ∗

i Θi∥Cm (Σ δ
i ) ≤ Cδ∥Θi∥L1(M,gi )

,

by Lemma A.9 in the Appendix. Using Arzela–Ascoli and taking a diagonal sequence we obtain
smooth local convergence of a subsequence of f ∗

i Θi to a limit Θ∞. Since also the complex
structures of (Σ , f ∗

i gi ) converge smoothly locally (see the Appendix A.1) to the complex
structure c of the limit surface, the limit Θ∞ is a holomorphic quadratic differential on (Σ , h, c).

Based on the uniform bound on the L2 norms we can now show convergence of L1

norms. It is a consequence of the Collar Lemma A.4 – see Lemma A.5 – that the area of the
δ-thin part of (M, gi ) is less than Cδ for a uniform constant C independent of i and δ > 0. By
Cauchy–Schwarz, we may thus estimate over this δ-thin part

∥Θi∥L1(M\Mδ
i ,gi )

≤ C
√

δ∥Θi∥L2(M,gi )
≤ C

√
δ.

Meanwhile, by Lemma A.7 we have convergence of the norms on the δ-thick parts Mδ
i of (M, gi )

∥Θi∥L1(Mδ
i ,gi )

→ ∥Θ∞∥L1(Σ δ,h).
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Thus

lim sup
i→∞

∥Θi∥L1(M) = lim sup
i→∞

(∥Θi∥L1(Mδ
i ) + ∥Θi∥L1(M\Mδ

i ))

≤ ∥Θ∞∥L1(Σ δ) + C
√

δ → ∥Θ∞∥L1(Σ )

as δ ↓ 0, and

lim inf
i→∞

∥Θi∥L1(M) ≥ lim inf
i→∞

∥Θi∥L1(Mδ
i ) = ∥Θ∞∥L1(Σ δ) → ∥Θ∞∥L1(Σ )

as δ ↓ 0, and so we have proved (2.1). Note that a by-product of this is that Θ∞ must lie in L1,
and therefore in H(Σ , h). We have proved the first part of the lemma.

It remains to prove the second part of the lemma. To do this, for each i , pick any unitary
basis Θ j

i of L i ( j = 1, . . . , n). By assumption (2.2), we have ∥Θ j
i ∥L1 ≥ ε for all i . By the first

part of the lemma, after passing to a subsequence in i , we may assume that there exist nonzero
limits Θ j

∞ ∈ H(Σ , h) of the sequences f ∗

i (Θ j
i ). It remains to show that these limits span an

n-dimensional subspace of H(Σ , h). If that were not the case, then we could find a unitary
vector b ∈ Cn such that

n
j=1

b jΘ
j
∞ = 0.

But then we could consider the sequence

Θ̃i :=

n
j=1

b jΘ
j

i

of unitary vectors in L i , which converges smoothly locally to zero by construction. But by the
first part of the lemma, and by the assumed lower bound on the L1 norm from (2.2), this must
converge to a nonzero limit. �

2.1. Analysis of holomorphic quadratic differentials on collar regions

The subspaces Wi ⊂ H(M, gi ) alluded to earlier will be defined in terms of the behaviour of
elements along so-called collar regions, and we now discuss the geometry of collars.

Following Lemma A.4, let C(ℓ) be the hyperbolic collar around a simple closed geodesic of
length ℓ, i.e. a region (−X (ℓ), X (ℓ)) × S1 parametrised by local conformal coordinates (s, θ)

(or a complex coordinate w = s + iθ ) and equipped with the metric

ρ2(ds2
+ dθ2), where ρ =

ℓ

2π cos


ℓs
2π

 .
We can equivalently think of the collar as an annulus DeX \ De−X in the complex plane param-
etrised by z := ew and equipped with an appropriate metric ρ̃2dzdz̄. A holomorphic quadratic
differential Φ on the collar is given in these coordinates by Φ = φ(w)dw2

= φ̃(z)dz2 for
holomorphic functions φ(w) = z2φ̃(z) on the cylinder respectively the annulus.

Decomposing φ̃ as a Laurent series

φ̃(z) =

∞
n=−∞

b̃nzn,
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converging uniformly away from the boundary of the annulus, the function φ representing the
holomorphic quadratic differential in the cylindrical coordinates can thus be written as

φ(s, θ) =

∞
n=−∞

bnenw
=

∞
n=−∞

bnens einθ , (2.3)

with bn := b̃n−2 ∈ C.
We will split this function φ, and hence the quadratic differential Φ on the collar, into

its principal part φ0dw2
:= b0(Φ)dw2

= b̃−2z−2dz2 and the remaining, collar-decay part
Φ − b0(Φ)dw2.

Because each of the terms in the sum (2.3) are L2-orthogonal, even when restricted to circles
{s}× S1, the components b0(Φ)dw2 and Φ−b0(Φ)dw2 are orthogonal on the collar with respect
to the hyperbolic metric, and even on any sub-collar (s1, s2) × S1

⊂ C(ℓ).
We control the collar-decay components with the following lemma, which will be proved at

the end of the section.

Lemma 2.2. Holomorphic quadratic differentials with zero principal part decay rapidly along
the collars in the following uniform sense. There exist numbers δ0 > 0 and C < ∞ such that any
holomorphic quadratic differential Θ on a collar C(ℓ), 0 < ℓ < 2 arsinh(1), with principal part
b0(Θ)dw2

= 0 satisfies

∥Θ∥L∞(δ−thin(C(ℓ))) ≤ C · e−π/δδ−2
∥Θ∥L2(δ0−thick(C(ℓ)))

for all numbers 0 < δ ≤ δ0.

Remark 2.3. Given a holomorphic quadratic differential on a hyperbolic surface (M, g) satisfy-
ing the assumptions of the above lemma on such a collar neighbourhood C ⊂ (M, g), it is useful
to observe that Lemma 2.2 implies an estimate of the form

∥Θ∥L∞(δ−thin(C)) ≤ C · e−π/δδ−2
∥Θ∥L1(M,g),

since the L2 norm over the thick part of the surface is controlled in terms of the L1(M, g) norm
by Lemma A.8.

The proof of this lemma will be given at the end of the section. The quadratic differentials lying
in Wi , which we will now define, will be of the type in Lemma 2.2 on each degenerating collar.

Lemma 2.4 (Introducing Wi ). Given a sequence of hyperbolic surfaces (M, gi ) degenerating to
(Σ , h) by collapsing k collars C j

i
∼= C(ℓ

j
i ) as described in Proposition A.2, we let

Wi := {Θ ∈ H(M, gi ) : b j
0(Θ)dw2

= 0 for every j ∈ {1 . . . k} } (2.4)

be the subspace of holomorphic quadratic differentials that have vanishing principal part on
every degenerating collar C j

i , j ∈ {1 . . . k}. Then we have the following.

(i) The elements of Wi decay rapidly along the collar regions in the sense that for every δ > 0
and every i ∈ N

sup
w∈Wi

∥w∥L∞(M\Mδ
i ,gi )

∥w∥L2(M,gi )

≤ C · δ−2e−π/δ (2.5)

for a uniform constant C < ∞ independent of i and δ, where Mδ
i = δ-thick(M, gi ).
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(ii) There exists I0 ∈ N such that for i ≥ I0, Wi is a 3(γ − 1) − k dimensional subspace of
H(M, gi ).

(iii) Wi converges to H(Σ , h) in the sense that for every i ≥ I0 there exists an L2-unitary basis
{Θ j

i }
3γ−3−k
j=1 of Wi that converges

f ∗

i Θ j
i → Θ j

∞ ∈ H(Σ , h) as i → ∞

smoothly locally to an L2-unitary basis of H(Σ , h). Furthermore, the convergence pre-
serves all L p norms, p ∈ [1, ∞] in the sense that if a general sequence of elements Θi ∈ Wi
converges f ∗

i Θi → Θ∞ locally, then the limit Θ∞ is in H(Σ , h) and for each p ∈ [1, ∞]

we have ∥Θ∞∥L p(Σ ,h) = limi→∞ ∥Θi∥L p(M,gi ) < ∞.

Proof of Lemma 2.4. Part (i) of the lemma is an immediate consequence of the definition of Wi ,
the key Lemma 2.2 about the behaviour of holomorphic quadratic differentials on collar regions
and the fact that for δ > 0 sufficiently small, the δ-thin part of the surface (M, gi ) is contained
in the union of the collar regions C j

i — see Proposition A.6 in the Appendix.
Using Part (i), we deduce that for δ > 0 chosen sufficiently small,

∥w∥L2(Mδ
i ,gi )

≥ (1 − Cδ−2e−π/δ)∥w∥L2(M,gi )
≥

1
2
∥w∥L2(M,gi )

for all w ∈ Wi , i ∈ N

which together with Lemma A.8 implies a uniform lower bound on the L1 norm of elements of
Wi of

inf
w∈Wi

∥w∥L1(M,gi )

∥w∥L2(M,gi )

≥
1
2

inf
w∈Wi

∥w∥L1(M,gi )

∥w∥L2(Mδ
i ,gi )

≥ ε > 0 (2.6)

valid for all i ∈ N. We claim that there exists I0 ∈ N such that dim(Wi ) = 3(γ − 1) − k for all
i ≥ I0. Note that by definition,

dim(Wi ) ≥ dim(H(M, gi )) − k = dim(H(Σ , h)) = 3(γ − 1) − k,

so the only alternative to our claim is if, after passing to a subsequence, we have dim(Wi ) =

m > dim(H(Σ , h)) for each i . By Lemma 2.1, using (2.6), we conclude that the spaces Wi
subconverge to a subspace of H(Σ , h) of the same dimension m > dim(H(Σ , h)) in the sense
described in that lemma, which is impossible. This proves the claim, i.e. Part (ii) of the lemma.

Now that we know the dimension of Wi , for i ≥ I0, we can apply Lemma 2.1 again to obtain,
after taking a subsequence, a sequence of unitary bases Θ j

i and a limit basis Θ j
∞. To prove Part

(iii) of the lemma, even allowing ourselves to take this subsequence, we still have to show that
this limit is unitary, and more generally that all L p norms (p ∈ [1, ∞]) are preserved during local
convergence as described in the lemma, which will follow from the rapid decay of the elements
of Wi on collars.

Let Θi be any sequence of elements of Wi that converges smoothly locally f ∗

i Θi → Θ∞.
Then Θ∞ is again a holomorphic quadratic differential which, as we shall prove now, has finite
L1 norm and is thus an element of H(Σ , h).

We recall that for any δ > 0 the δ-thick part Σ δ
i of (Σ , f ∗

i gi ) converges as described in
Lemma A.7 to the compact set Σ δ and thus that for every p ∈ [1, ∞]

∥Θi∥L p(Mδ
i ,gi )

→ ∥Θ∞∥L p(Σ δ,h),

by the smooth local convergence.
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Let now δ0 > 0 be a fixed number as in Lemma 2.2. Since ∥Θ∞∥L2(Σ δ0 ,h) is bounded, we
have a uniform bound on ∥Θi∥L2(M

δ0
i ,gi )

so that according to Lemma 2.2 the norms over the thin

part of the surfaces (M, gi )

∥Θi∥L p(M\Mδ
i ,gi )

≤ C · ∥Θi∥L∞(M\Mδ
i ,gi )

≤ Cδ−2e−π/δ
→ 0

converge to zero uniformly in i and p ∈ [1, ∞] as δ → 0.
Thus the global L p norms are bounded uniformly and converge

∥Θ∞∥L p(Σ ,h) = sup
δ>0

∥Θ∞∥L p(Σ δ,h) = sup
δ>0

lim
i→∞

∥Θi∥L p(Mδ
i ,gi )

= lim
i→∞

∥Θi∥L p(M,gi )

for every p ∈ [1, ∞].
The preservation particularly of the L2 norm in the above convergence implies that the basis

{Θ j
∞} of H(Σ , h) that is obtained above as a limit of (a subsequence of) unitary bases {Θ j

i } of
Wi , is again unitary.

That would complete the proof of Part (iii) of the lemma, except that we have allowed our-
selves to take a subsequence above. However, it is easy to return to the original (pre-subsequence)
sequence and take an extended sequence of unitary bases {Θ j

i }, and check that after modifying

them by a sequence of unitary transformations, they converge to {Θ j
∞}: If not, then let us take a

subsequence which, however we modify with a sequence of unitary transformations, stays out-
side some neighbourhood of {Θ j

∞}. Following the argument above, we may pass to a further
subsequence to get convergence to some other unitary limit basis {Θ̃ j

∞}, but then by modifying
this whole subsequence by an appropriate fixed unitary transformation, we get convergence to
{Θ j

∞}, which is a contradiction. �

Remark 2.5. In our considerations above, we have derived properties of elements of Wi by using
the fact that their principal parts on each collar vanish. In practice, this can be weakened. For
example, to have preservation of the L2 norm in Part (iii) above, we would only need that

b j
0(Θi ) · (ℓ

j
i )−

3
2 → 0 as i → ∞ for each j ∈ {1 . . . k}. (2.7)

This is because we only need that the principal parts of Θi are vanishing in the sense that the
L2 norms of b j

0(Θi )dw2 converge to zero, and if we adopt the normalisation convention thatdw2
 = 2ρ−2, we have, for 0 < δ < arsinh(1) and ℓ ∈ (0, 2δ),

∥dw2
∥

2
L2(δ-thin(C(ℓ)))

= 2π

 Xδ

−Xδ

|dw2
|
2ρ2ds = 8π

 Xδ

−Xδ

ρ−2ds

=
C

ℓ2

 Xδ

−Xδ

cos2


ℓs

2π


ds

= C0ℓ
−3

+ O(δ−3) (2.8)

for a constant C0 > 0 independent of ℓ and δ, and where

Xδ(ℓ) =
π2

ℓ
−

2π

ℓ
arcsin


sinh(ℓ/2)

sinh(δ)


=

π2

ℓ
−

π

δ
+ O(1) (2.9)

was defined in Lemma A.5 so that the δ-thin part of a collar C(ℓ) is given by (−Xδ(ℓ), Xδ(ℓ))

× S1.
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We finally give the proof of the key Lemma 2.2 on the decay on collars of holomorphic
quadratic differentials with zero principal part.

Proof of Lemma 2.2. Let 0 < δ0 < arsinh(1) be a constant to be fixed later on. Given any
number 0 < ℓ < 2 arsinh(1), we consider the corresponding collar region C(ℓ) around a geodesic
of length ℓ as described in the Collar Lemma A.4. We first remark that since the δ0-thin part of
C(ℓ) is empty in the case that ℓ ≥ 2δ0 =: ℓ0, we may restrict our attention to values 0 < ℓ < ℓ0.
We recall that the subcylinder (−Xδ0(ℓ), Xδ0(ℓ)) × S1 describing the δ0-thin part of the collar
C(ℓ) = (−X (ℓ), X (ℓ)) × S1 is characterised by (2.9) and is thus bounded away uniformly from
the boundary of C(ℓ), say

X (ℓ) − Xδ0(ℓ) ≥ 1 for all 0 < ℓ < ℓ0,

if δ0 is initially chosen small enough. This is the only constraint we impose on δ0.
Let now Θ be a holomorphic quadratic differential on such a collar C(ℓ), 0 < ℓ ≤ ℓ0, without

loss of generality normalised to satisfy ∥Θ∥L2(δ0−thick(C(ℓ))) = 1, and suppose that Θ has zero
principal part, i.e. that it is given by a converging sum of the form

Θ =


n∈Z\{0}

bnens einθ dw2.

Using the fact that all terms in this sum are L2-orthogonal on subcylinders as well as thatdw2
 = 2ρ−2 (with our normalisation) we thus obtain

1 = ∥Θ∥
2
L2(δ0−thick(C(ℓ)))

=


n∈Z\{0}

|bn|
2
∥ensdw2

∥
2
L2(δ0−thick(C(ℓ)))

≥ 8π

n∈N


|bn|

2
 X (ℓ)

X (ℓ)−1
e2nsρ−2(s)ds + |b−n|

2


−X (ℓ)+1

−X (ℓ)

e−2nsρ−2(s)ds


≥ c


n∈Z\{0}

|bn|
2
|n|

−1 e2|n|X (ℓ) (2.10)

for a uniform constant c > 0. Here the last inequality follows from the uniform upper bound
ρ(s) ≤ C for the conformal factor at the ends of collars around geodesics of bounded length.

We conclude in particular that |bn| ≤ C
√

|n|e−|n|X (ℓ) for every n ∈ Z \ {0}, resulting in a
bound of

∥Θ∥L∞(δ-thin(C(ℓ))) ≤ C


n∈Z\{0}

√
ne−|n|X (ℓ) sup

s∈[−Xδ(ℓ),Xδ(ℓ)]

ens
dw2

 (s), (2.11)

valid for arbitrary values of 0 < δ ≤ δ0 and with a uniform constant C < ∞. We now remark
that for each ℓ and each n ∈ Z \ {0} the function

s → ens
dw2

 (s) = 2ensρ−2(s) =
8π2

ℓ2 · cos2


ℓs

2π


ens

is monotone on the whole interval (−X (ℓ), X (ℓ)) so the supremum in (2.11) is achieved at one
end of the δ-thin part of the collar. We obtain the desired bound of

∥Θ∥L∞(δ-thin(C(ℓ))) ≤ C


n∈Z\{0}

√
ne−|n|(X (ℓ)−Xδ(ℓ))ρ−2(Xδ(ℓ)) ≤ Ce−

π
δ δ−2. �



M. Rupflin et al. / Advances in Mathematics 244 (2013) 874–893 883

2.2. Applications of the structure theory for holomorphic quadratic differentials

As a consequence of the results derived in the previous section we will now obtain a continuity
result for the projection of general quadratic differentials onto the subspaces Wi ⊂ H(M, gi ) of
holomorphic quadratic differentials described in Lemma 2.4. In a sense to be made precise, the
projections onto Wi will converge to the projection onto the entire space H(Σ , h) of integrable
holomorphic quadratic differentials on the limit.

Before stating this result let us first recall that the space of holomorphic quadratic differentials
on a compact surface (M, g) is finite dimensional and that all its elements are bounded. Thus the
L2(M, g)-orthogonal projection Pg = P H(M,g)

g onto H(M, g) satisfies an estimate of the form
∥Pg(Ψ)∥L2(M,g) ≤ C∥Ψ∥L1(M,g), where Ψ is any quadratic differential with finite L2 norm, and
can thus be extended continuously to a projection from the space of all quadratic differentials
with finite L1 norm to H(M, g), which we still denote by Pg .

Similarly, by virtue of the L∞ bounds on integrable holomorphic quadratic differentials given
in Lemma A.11, we can extend the L2(Σ , h)-orthogonal projection P H(Σ ,h)

h to the space of all
quadratic differentials on the limit surface that have finite L1 norm.

We furthermore remark that given a sequence Ψi of quadratic differentials on degenerating
surfaces, we can think of the sequence f ∗

i Ψi either as a sequence of quadratic differentials
with respect to the varying metrics f ∗

i gi or as a general sequence of (complex) tensors on the
fixed Riemannian surface (Σ , h), thus allowing us to talk about convergence of these tensors
say in L1

loc(Σ , h). Furthermore, any tensor Ψ∞ obtained as a limit of a sequence of quadratic
differentials f ∗

i Ψi → Ψ∞ in L1
loc(Σ , h) is again a quadratic differential now with respect to

(Σ , h) owing to the smooth local convergence of the complex structures (as in Appendix A.1). If
the norms ∥Ψi∥L1(M,gi )

are bounded and thus also ∥Ψ∞∥L1(Σ ,h) < ∞, the projection of the limit
Ψ∞ to the space H(Σ , h) is well defined, as remarked above, and we can discuss the continuity
of the projections in the following sense.

Theorem 2.6. Let (M, gi ) be a sequence of degenerating hyperbolic surfaces converging to a
hyperbolic punctured surface (Σ , h) by collapsing k collars as described in Proposition A.2 and
let Wi ⊂ H(M, gi ) be the 3(γ −1)−k dimensional subspace defined in Lemma 2.4 that consists
of elements of H(M, gi ) decaying rapidly on the degenerating collars.

(i) Suppose we have a sequence of quadratic differentials Ψi on (M, gi ) satisfying a uniform
bound ∥Ψi∥L1(M,gi )

≤ C which converges

f ∗

i Ψi → Ψ∞ in L1
loc(Σ , h).

Suppose further that we have a sequence of holomorphic quadratic differentials Θi ∈ Wi
such that

f ∗

i Θi → Θ∞

smoothly locally. Then
M

⟨Ψi ,Θi ⟩dµgi →


Σ

⟨Ψ∞,Θ∞⟩dµh . (2.12)

(ii) The L2(M, gi )-orthogonal projection PWi
gi onto Wi converges to the L2(Σ , h)-orthogonal

projection P H(Σ ,h)
h onto the space of integrable holomorphic quadratic differentials

H(Σ , h) on the limit surface in the following sense.
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For any sequence Ψi of quadratic differentials on (M, gi ) with uniformly bounded L1

norms that converges f ∗

i Ψi → Ψ∞ locally in L1(Σ , h) the projections converge

f ∗

i (PWi
gi

(Ψi )) → P H(Σ ,h)
h (Ψ∞) smoothly locally

while preserving any L p norm

lim
i→∞

∥PWi
gi

(Ψi )∥L p(M,gi ) = ∥P H(Σ ,h)
h (Ψ∞)∥L p(Σ ,h), 1 ≤ p ≤ ∞.

The first part of the lemma will be used in the proof of the second part, which in turn is required
in the proof of the main Theorem 1.1.

Proof of Theorem 2.6. Let Ψi and Θi be as in Theorem 2.6(i) and recall that by the remarks
made earlier in this section all objects in the theorem are well defined. Given any δ > 0, we now
use that the δ-thick part Σ δ

i of (Σ , f ∗

i gi ) converges as described in Lemma A.7 to the (compact)
δ-thick part Σ δ of the limit surface. Combined with the smooth local convergence of the metrics
and the local L1(Σ , h) convergence of ⟨Ψi ,Θi ⟩ ◦ fi = ⟨ f ∗

i Ψi , f ∗

i Θi ⟩ → ⟨Ψ∞,Θ∞⟩ we thus
find that

Mδ
i

⟨Ψi ,Θi ⟩dµgi =


Σ δ

i

⟨ f ∗

i Ψi , f ∗

i Θi ⟩dµ f ∗
i gi →


Σ δ

⟨Ψ∞,Θ∞⟩dµh (2.13)

for every δ > 0 — see also Lemma A.7 in the Appendix.
We obtain the first claim of the theorem passing to the limit δ → 0 since the integrals in the

above formula converge uniformly to the corresponding integrals over the full surface as δ → 0
thanks to the estimate


M\Mδ

i

⟨Ψi ,Θi ⟩dµgi

 ≤ ∥Ψi∥L1 · ∥Θi∥L∞(M\Mδ
i ) ≤ C · δ−2e−π/δ

resulting from Lemma 2.4.
For the proof of the second statement we let {Θ j

∞} be any unitary basis of H(Σ , h) and, using
Lemma 2.4, choose for each Wi a unitary basis {Θ j

i } such that f ∗

i Θ j
i → Θ j

∞ smoothly locally
for every j ∈ {1, . . . , 3(γ −1)−k} as i → ∞. Then given any sequence of quadratic differentials
Ψi as in (ii), and abbreviating ⟨⟨Ψ ,Θ⟩⟩(M,g) =


M ⟨Ψ ,Θ⟩dµg , we find

f ∗

i (PWi
gi

(Ψi )) = f ∗

i


3(γ−1)−k

j=1

⟨⟨Ψi ,Θ
j

i ⟩⟩
(M,gi )

· Θ j
i



=

3(γ−1)−k
j=1

⟨⟨Ψi ,Θ
j

i ⟩⟩
(M,gi )

· f ∗

i Θ j
i

→

3(γ−1)−k
j=1

⟨⟨Ψ∞,Θ j
∞⟩⟩(Σ ,h) · Θ j

∞ = P H(Σ ,h)
h (Ψ∞),

smoothly locally, using the first part of the lemma. The final claim in (ii) follows from
Lemma 2.4(iii). �

3. Asymptotic convergence in the general degenerate case

Now we have developed enough theory for quadratic differentials in order to prove our main
theorem.
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Proof of Theorem 1.1. Let (u, g) be a global solution of (1.1) as in Theorem 1.1. Recall that
(u, g) is smooth away from finitely many times and that the energy decays according to

d E

dt
= −


M

|τg(u)|2 +

η

4

2
|Re(Pg(Φ(u, g)))|2 (3.1)

on any interval on which the solution is smooth. We can thus choose a sequence ti → ∞ such
that

∥τg(u)(ti )∥L2(M,g(ti )) → 0 and ∥Pg(Φ(u, g))(ti )∥L2(M,g(ti )) → 0 as i → ∞.

Passing to a further subsequence we obtain that the surfaces (M, g(ti )) degenerate to a hyperbolic
punctured surface as described in Proposition A.2 (modulo diffeomorphisms fi ).

Since we are dealing with a gradient flow for energy, the energies of ui := u(ti ) ◦ fi
computed with respect to the varying metrics Gi := f ∗

i g(ti ) are uniformly bounded, and indeed
E(ui , Gi ) ≤ E(u0, g0). Since the metrics Gi → h converge locally uniformly, we also have a
uniform upper bound for the energies of ui given by

lim sup
i→∞

E(ui , (K , h)) ≤ E(u0, g0),

valid for every compact subset K ⊂⊂ Σ .
Passing to a subsequence we may thus assume that ui converges weakly in H1

loc(Σ , h) to
a limit map u∞ with finite energy, and we claim that u∞ is both harmonic as well as weakly
conformal.

The proof that u∞ is harmonic is very similar to the non-degenerate case [11]. We let ε0 =

ε0(N ) > 0 be such that the basic ε-regularity estimate
Dr

∇2u
2 ≤

C

r2 E(u; D2r ) + C∥τ(u)∥2
L2(D2r )

(3.2)

is valid for all maps into N with energy less than ε0 on the Euclidean disc (cf. Lemma 3.3 of [11])
and consider the finite set of concentration points

S :=


p ∈ Σ : lim sup

i→∞

E(ui , (U, h)) > ε0 for every neighbourhood U of p


.

As in the non-degenerate case, from (3.2) and the convergence of metrics we obtain uniform H2

bounds for ui on compact subsets of Σ \S which allow us to extract a subsequence that converges
weakly in H2

loc(Σ \ S) and strongly in W 1,p
loc (Σ \ S), 1 ≤ p < ∞, to a limit which must of course

agree with u∞ where it is defined. Since we chose the sequence of times ti in such a way that

∥τGi (ui )∥L2(Σ ,Gi )
→ 0

the limit u∞ must be harmonic, initially on Σ \ S but then, by the removable singularity
theorem [13] and the finiteness of the energy, on all of Σ , and indeed on the compactification Σ
obtained from (Σ , c) by filling in each of the 2k punctures. Note in particular, that u∞ is smooth
throughout Σ , as is its extension to Σ .

We conclude in particular that the Hopf-differential Φ(u∞, h) is holomorphic. Furthermore,
its L1 norm is bounded by the total energy of u∞ on (Σ , h) and is thus finite, which means that
Φ(u∞, h) ∈ H(Σ , h). In order to prove that u∞ is (weakly) conformal (i.e. that Φ(u∞, h) ≡ 0)
it is thus enough to show that the projection P H(Σ ,h)

h (Φ(u∞, h)) vanishes.
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But we know that ∥Φ(u(ti ), g(ti ))∥L1(M,g(ti )) is bounded and that also the L1 norm of its
antiholomorphic derivative ∥∂̄Φ(u(ti ), g(ti ))∥L1(M,g(ti )) is bounded.

Locally, we can thus apply the argument of the non-degenerate case: the compactness Lemma
2.3 of [11] combined with the convergence of complex structures (and thus the convergence
of isometric coordinate charts as defined in the proof of Lemma A.9) implies that Φ(ui , Gi )

converges to a limit Ψ∞ which we know is again a quadratic differential on (Σ , h). Indeed, due
to the strong H1 convergence of ui on the complement of S, the limit Ψ∞ must agree with the
Hopf-differential Φ(u∞, h) of the limiting map.

Since the projections PWi
g(ti )

onto the subspaces Wi ⊂ H(M, g(ti )) defined in Lemma 2.4

converge to P H(Σ ,h)
h as described in Theorem 2.6 we conclude that

P H(Σ ,h)
h (Φ(u∞, h)) = lim

i→∞
f ∗

i


PWi

g(ti )
(Φ(u(ti ), g(ti )))


= 0,

where the last equality is due to the projection of Φ(u(ti ), g(ti )) onto the full space H(M, g(ti ))
converging to zero.

Thus u∞ is a weakly conformal harmonic map on Σ and thus [5], on each of its connected
components, either a branched minimal immersion or constant. �
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Appendix. Degenerating hyperbolic surfaces

In this appendix we collect several important definitions and facts from the theory of hy-
perbolic surfaces that have been used throughout the main part of this paper, emphasising the
geometric analysis aspects that we require.

A.1. Deligne–Mumford compactness theorem

The classical Mumford compactness theorem [8,15] tells us that if we have a sequence of
closed hyperbolic Riemann surfaces (M, gi , ci ), and the length ℓ(gi ) of the shortest closed
geodesic is bounded uniformly away from zero, then a subsequence converges to a limiting
hyperbolic surface (M, g∞, c∞) of the same topological type, in the sense that there exists a
family of diffeomorphisms fi : M → M such that

f ∗

i gi → g∞ and f ∗

i ci → c∞ smoothly on M.

Here, the convergence of a sequence of complex structures ci (here f ∗

i ci ) to a limit complex
structure c (here c∞) means that around each point in the underlying space (here M) there exists
a neighbourhood U on which there are complex coordinates zi (with respect to ci ) and z (with
respect to c) such that zi → z in C∞ on U .

We will primarily be interested in the general case that ℓ(gi ) has no uniform positive lower
bound, in which case we will get a more general limit of the following form.

Definition A.1. (Σ , c) is called a Riemann surface of genus γ ∈ N0 and with K ∈ N0 punc-
tures, if Σ = N \ {p1, . . . , pK

}, where (N , c) is a closed Riemann surface of genus γ , {p1, . . . ,

pK
} ⊂ N and c is the complex structure induced from c. (Σ , c) is said to be of general type, if
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2γ + K > 2. By the uniformisation theorem, any Riemann surface (Σ , c) of general type can
be equipped with a complete hyperbolic metric h that is compatible with the complex structure
c. We then call (Σ , h) a hyperbolic punctured surface. Throughout, we adopt the convention that
N and Σ may have more than one (but finitely many) components.

The Deligne–Mumford compactness theorem in the following differential geometric form
explains how degeneration can occur in the genus γ ≥ 2 case when ℓ(gi ) can decay to zero.
Although the area of each surface is fixed (by Gauss–Bonnet) it can stretch out and become
noncompact in the limit.

Proposition A.2 (Deligne–Mumford Compactness [1,7]). Let (M, gi , ci ) be a sequence of
closed hyperbolic Riemann surfaces of genus γ ≥ 2 which degenerate in the sense that there
is no uniform positive lower bound on ℓ(gi ). Then, after selection of a subsequence, (M, gi , ci )

converges (in a sense to be clarified) to a hyperbolic punctured Riemann surface (Σ , h, c), where
Σ arises as follows: there exists E = {σ j , j = 1, . . . , k}, a collection of k pairwise disjoint,
homotopically nontrivial, simple closed curves on M so that if M is the surface obtained from
M by pinching all curves σ j to points q j , the surface Σ is defined to be M \ ∪

k
j=1 q j .

The convergence above is to be understood as follows: for each i there exists a collection
Ei = {σ

j
i , j = 1, . . . , k} of pairwise disjoint simple closed geodesics on (M, gi , ci ) with each

σ
j

i homotopic to σ j , and a continuous map τi : M → M with τi (σ
j

i ) = q j , j ∈ {1, . . . , k} such
that:

(i) For each j ∈ {1, . . . , k}, the lengths ℓ(σ
j

i ) =: ℓ
j
i → 0 as i → ∞.

(ii) For each i, τi : M \ ∪
k
j=1 σ

j
i → Σ is a diffeomorphism and its inverse is denoted by

fi : Σ → M \ ∪
k
j=1 σ

j
i .

(iii) ( fi )
∗gi → h in C∞

loc on Σ .
(iv) ( fi )

∗ci → c in C∞

loc on Σ .

By hyperbolic surface theory, the number of simple closed geodesics of length < 2 arsinh(1)

for a closed hyperbolic surface of genus γ ≥ 2 is bounded by 3γ − 3 (cf. [7]). Therefore, in
Proposition A.2, we have 1 ≤ k ≤ 3γ − 3.

More generally, we have the following.

Proposition A.3 ([7, Lemma 4.1]). Let (Σ , h) be a hyperbolic punctured surface of genus γ and
with K punctures. Then the simple closed geodesics in Σ of lengths smaller than 2 arsinh(1) are
pairwise disjoint. In particular, there are only finitely many of them and their number is bounded
by 3γ − 3 + K .

A.2. Description of the thin parts of the surface: collars and cusps

Let (M, h) be any smooth Riemannian manifold. We denote by inj(p) = inj(M,h)(p) the
injectivity radius of (M, h) at p ∈ M and by Mδ the δ-thick part

Mδ
:= {p ∈ M : inj(p) ≥ δ}, δ > 0.

The δ-thin part of M, sometimes denoted by δ-thin(M), is then the open set M \ Mδ of points
with injectivity radius strictly less than δ.

One fundamental fact of hyperbolic surface theory – see Proposition A.6 – is that for any
0 < δ < arsinh(1), the δ-thin part of a hyperbolic surface is given by a finite union of hyperbolic
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cylinders of finite length around closed geodesics, and of cylinders of infinite length that we call
standard cusps. The regions near simple closed geodesics are described by the Collar Lemma.

Lemma A.4 (Keen–Randol Collar Lemma, [9]). Let (M, g) be a closed hyperbolic surface and
let σ be a simple closed geodesic of length ℓ. Then there is a neighbourhood U around σ , a so
called collar, which is isometric to the cylinder

C(ℓ) = (−X (ℓ), X (ℓ)) × S1

equipped with the hyperbolic metric ρ2(ds2
+ dθ2), where

X (ℓ) =
2π

ℓ


π

2
− arctan


sinh


ℓ

2


, ρ =

ℓ

2π cos


ℓs
2π

 .
The geodesic σ corresponds to the circle {0} × S1

⊂ C(ℓ).

Owing to this explicit description of the metric in these collar regions, we can read off the δ-thin
part.

Lemma A.5 ([7,16]). Let (C(ℓ), ρ2(ds2
+ dθ2)), 0 < ℓ ≤ 2 arsinh(1) be a collar region of a

hyperbolic surface (M, g) as described in the Collar Lemma A.4. Then the injectivity radius of
(M, g) at points in the collar is characterised by

sinh(inj(s, θ)) · cos


ℓs

2π


= sinh


ℓ

2


.

In particular, given any such ℓ and any 0 < δ < arsinh(1) the δ-thin part of the collar is given
by the subcylinder

C(ℓ, δ) := (−Xδ(ℓ), Xδ(ℓ)) × S1
⊆ C(ℓ), (A.1)

where Xδ(ℓ) =
2π
ℓ


π
2 − arcsin


sinh


ℓ
2


sinh δ


for δ ≥ ℓ/2, respectively zero for smaller values of

δ, and its area is bounded by

Area(C(ℓ, δ)) ≤
2ℓ

sinh


ℓ
2

 · sinh δ ≤ C · δ

for a uniform constant C independent of 0 < ℓ ≤ 2 arsinh(1) and 0 < δ < arsinh(1).

Proof. The formula for the injectivity radius and thus for the δ-thin part of the collar follows
from arguments of hyperbolic geometry; see [7]. The area of C(ℓ, δ) is then given by

Area(C(ℓ, δ)) =


C(ℓ,δ)

ρ2dsdθ =
ℓ2

2π

 Xδ

−Xδ

cos−2


ℓs

2π


ds

= 2ℓ tan


ℓXδ

2π


≤ 2

ℓ · sinh(δ)

sinh


ℓ
2

 ≤ C · δ (A.2)

for 0 < δ < arsinh(1) as claimed. �

The Collar Lemma also applies to compact subsets of hyperbolic punctured surfaces (Σ , h) and
thus gives that for 0 < δ < arsinh(1) the δ-thin part of (Σ , h) consists of (a possibly empty set of)
collars as well as the δ-thin parts of the surface contained in neighbourhoods of the punctures.



M. Rupflin et al. / Advances in Mathematics 244 (2013) 874–893 889

Near a puncture, (Σ , h) has the form of a so-called standard cusp, leading to the following
general description of the thin part of a hyperbolic punctured surface.

Proposition A.6 ([7, Proposition IV.4.2]). Let (Σ , h) be a hyperbolic punctured surface with
punctures {p1, . . . , pK

}. Then the arsinh(1)-thin part of (Σ , h) is given as the union of mutually
disjoint sets consisting of

1. the arsinh(1)-thin parts of the collar neighbourhoods around simple closed geodesics σ of
length ℓ = ℓ(σ ) < 2 arsinh(1), and

2. neighbourhoods U (p j ) around each of the punctures, j = 1 . . . K , which are all isometric to
a standard cusp, i.e. to the infinitely long half-cylinder (π, ∞) × S1 equipped with the metric
1
s2 (ds2

+ dθ2) or equivalently to the punctured open disc De−π (0) \ {0} equipped with the

metric 1
|z|2·(log(|z|))2 dz2.

For a degenerating sequence of hyperbolic surfaces, we now conclude the following.

Lemma A.7. Suppose (M, gi ) converges to a hyperbolic punctured surface (Σ , h) as in Propo-
sition A.2. Then the following claims are true for any number 0 < δ < arsinh(1).

1. The δ-thick parts Σ δ
i of the surfaces (Σ , f ∗

i gi ) converge to the compact set Σ δ , the δ-thick
part of the limit surface, both in the sense of Hausdorff distance on (Σ , h) as well as in the
sense that the measure of the symmetric difference Σ δ

i ∆Σ δ converges to zero. (In particular,
all the sets are contained in a uniform compact set.)

2. Given any sequence of functions ϕi : Σ → R with ∥ϕi∥L1(Σ , f ∗
i gi )

bounded and converging

ϕi → ϕ in L1
loc(Σ , h),

the corresponding integrals over the δ-thick parts of the surfaces converge
Σ δ

i

ϕi dµ f ∗
i gi →


Σ δ

ϕdµh .

Proof. Let 0 < δ < arsinh(1) be fixed. We first recall that the limiting surface can be decom-
posed into a compact set K0 as well as the neighbourhoods U (p j ), j ∈ {1 . . . 2k} of the punctures
which are isometric to the cylinders (π, ∞)×S1 equipped with the metric s−2(ds2

+dθ2). Since
the δ-thick part of such a cusp is also compact, the whole δ-thick part Σ δ of the limiting surface
(Σ , h) is compact and thus the metrics f ∗

i gi converge smoothly on Σ δ . In particular, given any
ε > 0 and δ > 0 we find that

sup
z∈Σ δ

inj f ∗
i gi

(z) − injh(z)
 < ε (A.3)

for i sufficiently large, say i ≥ i0(ε, δ), so we conclude that Σ δ
⊂ Σ δ−ε

i .
By the same argument, for K any fixed compact subset of Σ , we conclude that the points in

K \ Σ δ are eventually in the δ + ε thin part of the degenerating surfaces (Σ , f ∗

i gi ). In order to
obtain the inclusion

Σ δ+ε
i ⊂ Σ δ (A.4)

for i sufficiently large, we thus need to prove that there is a uniform compact subset K (δ + ε) of
Σ which contains the δ̃ = δ + ε thick parts of the degenerating surfaces (Σ , f ∗

i gi ) for all i suffi-
ciently large. Using the decomposition of Σ into a compact set K0 and the neighbourhoods of the
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punctures U (p j ) it is enough to establish this claim for points contained in U (p j ), j ∈ {1 . . . 2k}

and we analyse the δ̃-thin parts

U j
i (δ̃) := δ̃-thin(U (p j ), f ∗

i gi ) = {p ∈ U (p j ) : inj f ∗
i gi

(p) < δ̃}, 0 < δ̃ < arsinh(1)

of these cylindrical neighbourhoods of the punctures.
We recall that the maps τi : M → M described in Proposition A.2 are continuous and map

σ
j

i to the point q j in M , which in turn corresponds to a pair of punctures in Σ .

Thus for i sufficiently large, U j
i (δ̃) must be (topologically) a cylinder which contains in par-

ticular all points close to the puncture, i.e. using the description of U (p j ) in Proposition A.6, in
particular all points with large (a priori depending on i) s-coordinate.

But on the other hand, by what we already proved the compact cylinder {p ∈ U (p j ) : injh(p)

∈ [δ̃/4, δ̃/2]} is eventually contained in U j
i (δ̃) so for i sufficiently large the whole set U (p j ) \

Σδ̃/2 is contained in U j
i (δ̃). Equivalently we obtain that δ̃-thick(U (p j )) = U (p j )\ U j

i (δ̃) is con-

tained in Σ δ̃/2, for i large, and thus that the sets Σ δ̃
i are contained in a uniform compact subset

of (Σ , h).
All in all we thus conclude that for any δ > 0, any ε > 0 and for i large enough

Σ δ+ε
i ⊂ Σ δ

⊂ Σ δ−ε
i . (A.5)

The set Σ δ−ε
\ Σ δ+ε, 0 < δ + ε < arsinh(1), is now given by a union of subcylinders [Xδ−ε,

Xδ+ε] × S1 of collar respectively puncture regions that are explicitly described by Lemma A.4
and Proposition A.6 and it is easy to see that the distance between the two boundary curves of
each such cylinder converges to zero as ε → 0. Combined with (A.5) this in particular implies
the convergence of the sets Σ δ

i to Σ δ as described in the first statement of the lemma.
To obtain the second claim of Lemma A.7 we now exploit that local convergence of functions

and metrics implies uniform convergence on the compact set Σ δ/2, δ > 0, which contains Σ δ
i for

i sufficiently large. Combining the convergence of the integrals on the fixed set Σ δ
Σ δ

ϕi dµ f ∗
i gi →


Σ δ

ϕdµh

with the fact that the symmetric difference Σ δ∆Σ δ
i is contained in the compact set Σ δ/2 for i

large and that its measure converges to zero implies that

lim sup
i→∞


Σ δ∆Σ δ

i

|ϕi | dµ f ∗
i gi ≤ lim sup

i→∞


Σ δ∆Σ δ

i

|ϕ| dµh = 0,

so that we obtain the second claim of the lemma. �

A.3. Estimates for holomorphic quadratic differentials on hyperbolic surfaces

We finally collect a few useful properties of holomorphic quadratic differentials. We first
remark that the L p norms over the thick part of the surface are controlled by the L1 norm.

Lemma A.8. For any δ > 0 and any closed surface M there exists a constant C < ∞ depending
only on δ and the genus of M such that for every hyperbolic metric g on M

∥Θ∥L p(Mδ,g) ≤ C · ∥Θ∥L1(M,g), for all 1 ≤ p ≤ ∞, Θ ∈ H(M, g),

where Mδ
:= δ-thick(M, g).
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Furthermore we clarify how holomorphicity leads to derivative estimates in terms of the L1 norm,
in the presence of degeneration.

Lemma A.9. Let (M, gi ) be any sequence of hyperbolic surfaces that converges to a (possibly
punctured) limiting surface (Σ , h) as described in Proposition A.2. Then holomorphic quadratic
differentials are uniformly controlled on the thick part of the surfaces in the following sense: for
any δ > 0 and any m ∈ N0, there exists a uniform (i-independent) constant C < ∞ such that
for all holomorphic quadratic differentials Θi ∈ H(M, gi )

∥ f ∗

i Θi∥Cm (Σ δ
i ) ≤ C · ∥Θi∥L1(M,gi )

, i ∈ N.

The same bound is valid also on the limiting surface

∥Θ∞∥Cm (Σ δ) ≤ C · ∥Θ∞∥L1(Σ ,h)

for all Θ∞ ∈ H(Σ , h).

Here and in the following we compute the Cm norm with respect to a fixed set of coordinate
charts of Σ .

Remark A.10. Thanks to the rapid decay on collars of elements of Wi as well as the convergence
of these spaces to H(Σ , h) as discussed in Theorem 2.6, under the assumptions of the previous
lemma we could also obtain an estimate of the form

∥Θ∥L p(Σ ,h) ≤ C · ∥Θ∥L1(Σ ,h), for all 1 ≤ p ≤ ∞, Θ ∈ H(Σ , h), (A.6)

giving a bound on the global L p norm of elements of H(Σ , h). Here the constant C < ∞

depends on (Σ , h).

We first give a very short proof of Lemma A.8.

Proof of Lemma A.8. Let (M, g) be a hyperbolic surface, Θ ∈ H(M, g) and δ > 0. We first
remark that with the area of (M, g) determined by its genus, it is sufficient to bound the L∞

norm of Θ . Given any point z0 ∈ Mδ we choose a coordinate chart

φ : Bg(z0, δ) → (BgH (0, δ), gH )

which is an isometry from the δ-ball around z0 in (M, g) to the ball of radius δ in the Poincaré
hyperbolic disc. In this coordinate chart Θ is given as θdz2 for a holomorphic function θ : BgH

(0, δ) → C. Standard estimates from complex analysis imply that the L1 norm of the function θ

bounds its L∞ norm on a slightly smaller ball, so that

∥Θ∥L∞(Bg(z0,δ/2),g) ≤ ∥θ∥L∞(BgH (0,δ/2)) · ∥dz2
∥L∞(BgH (0,δ/2),gH )

≤ Cδ∥θ∥L1(BgH (0,δ)) ≤ Cδ∥Θ∥L1(Bg(z0,δ),g)

for a constant Cδ depending only on δ. �

Proof of Lemma A.9. For the given δ > 0, choose a finite cover of Σ δ consisting of balls
Bh(z j , δ/4) ⊂ (Σ , h) with centres z j

∈ Σ δ . Then for i large enough, say i ≥ i0, also the
δ-thick set Σ δ

i of (Σ , f ∗

i gi ) is covered by these balls and we may furthermore assume that
inj f ∗

i gi
(z j ) ≥

δ
2 for each j .

Since the complex structures converge, there is a sequence of atlases which consist of coordi-
nate charts that can be viewed as isometries

φ
j
i : B f ∗

i gi (z
j , δ/2) → (BgH (0, δ/2), gH )
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from the balls B f ∗
i gi (z

j , δ/2) of radius δ/2 in (Σ , f ∗

i gi ) to the fixed ball BgH (0, δ/2) of radius

δ/2 in the Poincaré hyperbolic disc and such that the maps φ
j
i converge smoothly locally to an

isometry φ
j
∞ from Bh(z j , δ/2) ⊂ (Σ , h) to (BgH (0, δ/2), gH ).

Working on the fixed domain BgH (0, δ/2), standard complex analysis gives uniform Cm

bounds of

∥θ
j

i ∥Cm (BgH (0,δ/4)) ≤ Cδ · ∥θ
j

i ∥L1(BgH (0,δ/2)) ≤ Cδ∥Θi∥L1(M,gi )

for the holomorphic functions θ
j

i that represent f ∗

i Θi with respect to the coordinate charts φ
j
i .

Combined with the convergence of the charts φ
j
i , these estimates translate to uniform Cm

bounds on f ∗

i Θi

∥ f ∗

i Θi∥Cm (Σ δ
i ) ≤ C · sup

j
∥θ

j
i ∥Cm (BgH (0,δ/4)) ≤ Cδ∥Θi∥L1(M,gi )

with respect to the (fixed) isometric coordinate charts φ
j
∞ of (Σ , h).

The estimate for holomorphic quadratic differentials on the limiting surface is an immediate
consequence of the Cm estimates for holomorphic functions since we can work directly with
respect to the complex coordinate charts φ

j
∞ of (Σ , h) from above. �

We finally remark that the space H(Σ , h) of holomorphic quadratic differentials with finite L1

norm can be equivalently characterised as follows.

Lemma A.11. Let (Σ , h, c) be a hyperbolic punctured surface. Then for any holomorphic
quadratic differential Φ on (Σ , h) the following statements are equivalent.

(i) Φ ∈ H(Σ , h), that is ∥Φ∥L1(Σ ,h) is finite.
(ii) Φ is bounded (with respect to the hyperbolic metric h).

(iii) At each of the punctures of (Σ , c) the differential Φ has at worst a simple pole.

The last statement implies in particular that an element of H(Σ , h) cannot have an essential
singularity at a puncture, so we could equivalently say that elements of H(Σ , h) are meromorphic
with poles of order no more than 1.

Proof. Let Φ be any holomorphic quadratic differential on (Σ , h). We remark that according
to Lemma A.9 it is enough to consider Φ on neighbourhoods U (p j ) of the punctures as
described in Proposition A.6, that is on punctured discs D̂ equipped with the hyperbolic metric
(|z| · log |z|)−2 |dz|2.

We remark that a holomorphic function on a punctured disc D̂ with finite L1 norm can neither
have a pole of order more than one, nor an essential singularity. One way of seeing that is to
appeal to the subharmonicity of the absolute value of the holomorphic function, applying it on
discs of radius |z| around z.

Thus ∥Φ∥L1(U (p j ),h) = 2


D̂ |φ| dxdy is finite on each of the puncture regions U (p j ) if and
only if (iii) holds and we conclude that (i) and (iii) are equivalent.

Finally, we recall that on such a neighbourhood U (p j ),

|Φ| (z) = |φ|

dz2
 = 2 |φ| |z|2 (log |z|)2,

with our normalisation, and thus that a holomorphic quadratic differential with a simple pole is
bounded (with respect to h) so that (iii) implies (ii) which trivially implies (i). �
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With H(Σ , h) characterised as the space of meromorphic quadratic differentials (with poles of
order no more than 1) its dimension is now described by the Riemann–Roch Theorem.

Lemma A.12 ([4]). Let (Σ , h) be a complete (not necessarily connected) hyperbolic surface
with K ∈ N0 punctures. Then the dimension of the space of integrable holomorphic quadratic
differentials is

dim
C

H(Σ , h) =


i

3(γi − 1) + K ,

where γi is the genus of the i-th connected component of the compactification Σ of Σ obtained
by filling in the punctures.

Remark A.13. For a degenerating sequence of hyperbolic surfaces the (complex) dimension of
the spaces H thus reduces in the limit i → ∞ by exactly the number of collapsing collars.
Indeed, collapsing a closed, non-homotopically trivial curve σ on a connected surface Σ to a
point and removing this point increases the number of punctures by two. If σ is a separating
curve, this furthermore splits the surface Σ into two parts of genus γ1 + γ2 = γ . If σ is not
separating, then the resulting surface will have genus γ̃ = γ − 1. In both cases the dimension
of the space of integrable holomorphic quadratic differentials decreases by exactly one and the
claim follows repeating the argument for all collapsing geodesics and connected components.
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