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1. Introduction

The study of the size of slices, relatively weakly open subsets or convex combinations 
of slices in the unit ball of a Banach space is a relatively recent topic which has received 
intensive attention in the last years. For example, in [14] it is proved that the unit ball 
of every uniform algebra has all its slices with diameter 2 and in [6] it is shown that 
the unit ball of every non-hilbertizable real JB∗-triple has all its relatively weakly open 
subsets with diameter 2. Many other results in this direction have appeared [5,2,13] giv-
ing new geometrical properties in Banach spaces, extremely opposite to the well-known
Radon–Nikodym property. See also [1]. We pass now to present these properties joint to 
its w∗-versions.

Given a Banach space X, X is said to have the slice diameter 2 property (slice-D2P) 
if every slice in the unit ball of X has diameter 2. If every nonempty relatively weakly 
open subset, respectively every convex combinations of slices, of the unit ball of X has 
diameter 2, we say that X has the diameter 2 property (D2P), respectively the strong 
diameter 2 property (strong-D2P). Also we define the weak-star versions of the above 
properties, the w∗-slice-S2P, w∗-D2P and w∗-strong-D2P property, respectively, asking 
for the above conditions for w∗-slices, nonempty relatively w∗-weakly open subsets and 
convex combinations of w∗-slices of BX∗ , respectively.

It is clear that (w∗)-strong-D2P ⇒ (w∗)-D2P ⇒ (w∗)-slice-D2P. In [7], examples of 
Banach spaces X are exhibited satisfying the slice-D2P and failing in an extreme way the 
D2P, in the sense that there are nonempty relatively weakly open subsets in the unit ball 
with arbitrarily small diameter. Then the biduals of these spaces, X∗∗, are examples of 
dual Banach spaces satisfying the w∗-slice-D2P such that its unit ball contains nonempty 
relatively weak-star open subsets with diameter arbitrarily small.

On the other hand there is a Banach space X such that X∗ satisfies the w∗-strong-
D2P, but its unit ball contains convex combinations of slices with diameter arbitrarily 
small. Indeed, take X = C([0, 1]), the classical Banach space of continuous func-
tions on [0, 1] with the sup norm. Now, it is known that X∗ = L1[0, 1] ⊕1 Z, for 
some subspace Z of X∗ with RNP [4]. Then the unit ball of Z contains slices with 
arbitrarily small diameter and so, X∗ also contains slices with arbitrarily small di-
ameter. On the other hand, X has Daugavet property, which implies that X∗ has 
w∗-strong-D2P [8, Lemma 2.3]. Observe that now we have trivially that X∗ has the 
w∗-slice-D2P and its unit ball contains slices with diameter arbitrarily small and also 
X∗ has w∗-D2P and its unit ball contains nonempty relatively weakly open subsets 
with diameter arbitrarily small. Then the general situation is shown in the following 
diagram

Strong-D2P (1)⇒ D2P ⇒ slice-D2P
⇓ ⇓ ⇓

w∗-Strong-D2P (2)⇒ w∗-D2P ⇒ w∗-slice-D2P
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Following the above comments, we observe that all converse implications, unless (1) 
and (2) are false in an extreme way, that is, one can get diameter 2 for one of the 
properties in every above pair and diameter arbitrarily small in the other one.

The aim of this note is to prove that (w∗)-D2P and (w∗)-strong-D2P are also extremely 
different in the above sense, and so the converse implications (1) and (2) in the above 
diagram are again false in an extreme way. Indeed, we show in Theorem 2.5 that there are 
Banach spaces X with D2P such that its unit ball contains convex combinations of slices 
with diameter arbitrarily small. In fact every Banach space X containing isomorphic 
copies of c0 works. Then X∗∗ will be an example of the extreme difference between 
w∗-D2P and w∗-strong-D2P. Note that in [2], it is proved that c0 ⊕2 c0 is a Banach 
space with D2P and failing the strong-D2P, but as we will see in Proposition 2.1 every 
convex combination of slices in the unit ball of c0⊕p c0 has diameter, at least, 1 for every 
p ≥ 1.

We pass now to introduce some notation. For a Banach space X, X∗ denotes the 
topological dual of X, BX and SX stand for the closed unit ball and unit sphere of X, 
respectively, and w, respectively w∗, denotes the weak and weak-star topology in X, 
respectively X∗. [A] stands for the closed linear span of the subset A of X. We consider 
only real Banach spaces. A slice of a set C in X is a set of X given by

S =
{
x ∈ C : x∗(x) > supx∗(C) − α

}
where x∗ ∈ X∗ and 0 < α. A w∗-slice of a set C of X∗ is a slice of C determined by 
elements of X, seen in X∗∗.

Recall that a slice of BX is a nonempty relatively weakly open subset of BX and the 
family

{{
x ∈ BX :

∣∣x∗
i (x− x0)

∣∣ < ε, 1 ≤ i ≤ n
}

: n ∈ N, x∗
1, · · · , x∗

n ∈ X∗}
is a basis of relatively weakly open neighborhoods of x0 ∈ BX . So every relatively 
weakly open subset of BX has nonempty intersection with SX , whenever X has infinite 
dimension.

Finally recall some connections between diameter 2 properties and another well-known
geometrical properties in Banach spaces. Given a Banach space X, X is said to have 
the Daugavet property if the equality ‖I + T‖ = 1 + ‖T‖ holds for every finite rank 
operator T on X, where I denotes the identity operator on X. The norm of X is said to 
be octahedral if for every finite-dimensional subspace F of X and for every ε > 0 there 
is x ∈ SX satisfying

‖y + αx‖ ≥ (1 − ε)
(
‖y‖ + |α|

)
∀(y ∈ F, α ∈ R).
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The norm of X is called extremely rough if

lim sup
‖h‖→0

‖u + h‖ + ‖u− h‖ − 2
‖h‖ = 2

for every u ∈ SX .
The Daugavet property implies the strong-D2P [16], the dual of a Banach space with 

octahedral norm satisfies the w∗-strong-D2P (see [10]) and the dual (or predual, if it 
exists) of a Banach space with D2P has an extremely rough norm [10, Proposition I.1.11].

2. Main results

The following proposition shows that the space c0⊕p c0, which has slice-D2P and fails 
the strong D2P [2], is far to satisfy that its unit ball contains convex combination of 
slices with arbitrarily small diameter.

Proposition 2.1. If p ≥ 1, every convex combination of slices in Bc0⊕pc0 has diameter at 
least 1.

Proof. Put X = c0 ⊕p c0 and consider 
∑n

i=1 λiS(BX , (x∗
i , y

∗
i ), αi) a convex combination 

of slices in BX , where n ∈ N, 0 < αi < 1 for every i, (x∗
i , y

∗
i ) ∈ SX∗ and λi > 0

for every i with 
∑n

i=1 λi = 1. If α = mini αi, then Si ⊂ S(BX , (x∗
i , y

∗
i ), αi), where 

Si = S(BX , (x∗
i , y

∗
i ), α) for every i. Now, given ε > 0 arbitrary, for every 1 ≤ i ≤ n

we choose (xi, yi) ∈ Si such that ‖(xi, yi)‖X > 1 − ε with Ai := supp(xi) finite and 
Bi := supp(yi) finite, where supp(z) = {n ∈ N : z(n) �= 0} for every z ∈ c0. Pick 
k0 ≥ max

⋃n
i=1 Ai ∪

⋃n
i=1 Bi and k > k0 such that xi ± ‖xi‖∞ek, yi ± ‖yi‖∞ek ∈ Si for 

every i. From here we have that

diam
(

n∑
i=1

λiS
(
BX ,

(
x∗
i , y

∗
i

)
, αi

))
≥ diam

(
n∑

i=1
λiSi

)

≥ 2

∥∥∥∥∥
n∑

i=1
λi

(
‖xi‖∞ek, ‖yi‖∞ek

)∥∥∥∥∥.
As ‖xi‖p∞ + ‖yi‖p∞ > 1 − ε one has that for every i either ‖xi‖∞ ≥ (1−ε

2 )1/p or ‖yi‖∞ ≥
(1−ε

2 )1/p. Put I = {i : ‖xi‖∞ ≥ (1−ε
2 )1/p} and t =

∑
i∈I λi (t = 0 if I = ∅). Then 

t ∈ [0, 1] and 1 − t =
∑

i/∈I λi. Now we have that

diam
(

n∑
i=1

λiS
(
BX ,

(
x∗
i , y

∗
i

)
, αi

))
≥ diam

(
n∑

i=1
λiSi

)

≥ 2

∥∥∥∥∥
n∑

λi

(
‖xi‖∞ek, ‖yi‖∞ek

)∥∥∥∥∥

i=1
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≥ 2
((

t(1 − ε)1/p

21/p

)p

+
(

(1 − t)(1 − ε)1/p

21/p

)p)1/p

= 2(1 − ε)1/p

21/p

(
tp + (1 − t)p

)1/p
≥ 2(1 − ε)1/p

21/p

(
1
2p + 1

2p

)1/p

= (1 − ε)1/p.

Since ε is arbitrary we get that diam(
∑n

i=1 λiS(BX , (x∗
i , y

∗
i ), αi)) ≥ 1 and we are 

done. �
Our first goal in order constructing a Banach space with D2P so that its unit ball 

contains convex combinations of slices with diameter arbitrarily small should be find out 
a closed, bounded and absolutely convex subset with diameter 2 so that every nonempty 
relatively weakly open subset has diameter 2 and containing convex combinations of slices 
with diameter arbitrarily small. We pass now to describe a family of closed, bounded and 
convex subsets in c0 with diameter 1 satisfying that every nonempty relatively weakly 
open subset has diameter 1 and containing convex combinations of slices with diameter 
arbitrarily small.

Pick {εn} a nonincreasing null scalars sequence. We construct an increasing sequence 
of closed, bounded and convex subsets {Kn} in c0 and a sequence {gn} in c0 as follows: 
Let K1 = {e1}, g1 = e1 and K2 = co(e1, e1 + e2). Choose l2 > 1 and g2, . . . , gl2 ∈ K2 an
ε2-net in K2. Assume that n ≥ 2 and mn, ln, Kn and {g1, . . . , gln} have been constructed, 
with Kn ⊂ B[e1,...,emn ] and gi ∈ Kn for every 1 ≤ i ≤ ln. Define Kn+1 as

Kn+1 = co
(
Kn ∪ {gi + emn+i : 1 ≤ i ≤ ln}

)
.

Let ln+1 = mn + ln and choose {gln+1, . . . , gln+1} ⊂ Kn+1 so that {g1, . . . , gln+1} is 
an εn+1-net in Kn+1. Finally we define K0 =

⋃
n Kn. Then it follows that K0 is a 

nonempty closed, bounded and convex subset of c0 such that x(n) ≥ 0 for every n ∈ N

and ‖x‖∞ = 1 for every x ∈ K0 and so diam(K0) ≤ 1.
Now, if i is fixed, we have from the construction that {gi + emn+i}n is a sequence 

in K0 weakly convergent to gi and ‖(gi − emn+i) − gi‖ = ‖emn+i‖ = 1 for every n. 
Then diam(K0) = 1. We will use freely below the subset K0 and the above construction. 
Observe that, from the above construction, one has that

K0 = {gi : i ∈ N}w = {gi : i ∈ N}.

Mention that the construction of K0 follows word for word the definition of Poulsen 
simplex in �2 [15], that is, the unique, unless homeomorphism, Choquet simplex with a 
dense subset of extreme points [12]. In fact, it is known [3] that the weak-star closure of 
K0 in �∞ is affinely weak-star homeomorphic to the Poulsen simplex. However K0 is not 
a Choquet simplex, because it is not weakly compact, K0 is a simplex in a more general 
definition than Choquet simplex.
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Let us see that K0 satisfies the requirements we are looking for.

Proposition 2.2. K0 is a closed, bounded and convex subset of c0 with diam(K0) = 1
satisfying that every nonempty relatively weakly open subset of K0 has diameter 1 and 
K0 contains convex combinations of slices with diameter arbitrarily small.

Proof. The fact that K0 is a closed, bounded and convex subset of c0 with diam(K0) = 1
has been proved after the construction of K0. From [3, Theorem 1.2], we deduce that 
K0 has convex combinations of slices with diameter arbitrarily small. Now pick U a 
nonempty relatively weakly open subset of K0. From the construction of K0 we noted 
that K0 = {gi : i ∈ N}w and so there is i ∈ N such that gi ∈ U . Now, again from 
the construction of K0, gi + emn+i ∈ K0 for every n. Thus, gi + emn+i ∈ U for every 
n greater than some n0, since {gi + emn+i}n is weakly convergent to gi. Therefore, 
diam(U) ≥ ‖emn+i‖ = 1. �

Our next goal should be to get from K0 a closed, absolutely convex, bounded subset 
with diameter 2, containing convex combinations of slices with diameter arbitrarily small 
and so that every nonempty relatively weakly open subset has diameter 2. For this, we 
see K0 as a subset of c, the space of scalars convergent sequence with the sup norm and 
define

K = 2co
((

K0 −
1
2

)
∪
(
−K0 + 1

2

))
,

where 1 is the sequence of c with every coordinate equal 1. Now, it is clear that K is a 
closed, absolutely convex and bounded subset of c with diam(K) = 2.

Our next point is constructing a Banach space with D2P and so that its unit ball 
contains convex combinations of slices with diameter arbitrarily small. It is natural to 
think that this Banach space is some renorming of c, which would be in fact a renorming 
of c0. For this we need the following lemmas.

Lemma 2.3. Let X be a Banach space containing an isomorphic copy of c0. Then there is 
an equivalent norm |‖ · ‖| in X satisfying that (X, |‖ · ‖|) contains an isometric copy of c
and for every x ∈ B(X,|‖·‖|) there are sequences {xn}, {yn} ∈ B(X,|‖·‖|) weakly convergent 
to x such that |‖xn − yn‖| = 2 for every n ∈ N. In fact, xn = x + (1 − αn)en and 
yn = x − (1 + αn)en for some scalar sequence {αn} with |αn| ≤ 1 for every n.

Proof. As X contains isomorphic copies of c, we can assume that c is, in fact, an isometric 
subspace of X. Then for every Y separable subspace of X containing c, there is a linear 
and continuous projection PY : Y −→ c with ‖PY ‖ ≤ 8. Indeed, let us consider the onto 
linear isomorphism T : c −→ c0 given by T (x)(1) = 1

2 limn x(n) and T (x)(n) = 1
2 (x(n) −

limn x(n)) for every n > 1. Note that ‖T‖ = 1 and ‖T−1‖ = 4. On the other hand, by 
Sobczyk’s Theorem, there exists a linear projection π : Y → c0 such that ‖π‖ ≤ 2. Now 
PY = T−1 ◦ π satisfies ‖PY ‖ ≤ 8 and is the required projection from Y onto c.
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Let Υ be the family of subspaces Y of X containing c such that c has finite codimension 
in Y . Consider the filter basis Υ given by {Y ∈ Υ : Y0 ⊂ Y }, where Y0 ∈ Υ and call U
the ultrafilter containing the generated filter by the above filter basis.

For every Y ∈ Υ , we define a new norm in X given by

‖x‖Y := max
{∥∥PY (x)

∥∥,∥∥x− PY (x)
∥∥}.

Finally, we define the norm on X given by |‖x‖| := limU ‖x‖Y . Observe that 1
8‖x‖ ≤

|‖x‖| ≤ 3‖x‖ for every x ∈ X and so |‖ · ‖| is an equivalent norm in X such that 
|‖x‖| = ‖x‖∞ for every x ∈ c, where ‖ · ‖∞ is the sup norm in c. Hence (X, |‖ · ‖|)
contains an isometric copy of c.

Pick x0 ∈ B(X,|‖·‖|). In order to prove the remaining statement let {en} and {e∗n} be 
the usual basis of c0 and the biorthogonal functionals sequence, respectively.

Choose λ ∈ R and n ∈ N. For every Y ∈ Υ with x0 ∈ Y we have that

‖x0 + λen‖Y = max
{∥∥PY (x0) + λen

∥∥,∥∥x0 − PY (x0)
∥∥}

= max
{∣∣λ + e∗n

(
PY (x0)

)∣∣,∥∥PY (x0) − e∗n
(
PY (x0)

)
en

∥∥,∥∥x0 − PY (x0)
∥∥}.

Define βn = limU max{‖PY (x0) − e∗n(PY (x0))en‖, ‖x0 − PY (x0)‖} and αn =
limU e∗n(PY (x0)). Then |‖x0 + λen|‖ = max{|λ + αn|, βn}. Note that |αn| ≤ 1 and 
βn ≤ 1 since |‖x0‖| ≤ 1.

Doing xn := x0 + (1 − αn)en and yn := x0 − (1 + αn)en for every n, we get that 
xn, yn ∈ B(X,|‖·‖|). Finally, it is clear that {xn} and {yn} are weakly convergent sequences 
to x0 and |‖xn − yn‖| = 2 for every n ∈ N. �
Lemma 2.4. Let X be a vector space and A, B convex subsets of X such that A−A

2 ⊂ B. 
Then

co(A ∪ −A ∪B) = co(A ∪B) ∪ co(−A ∪B).

Proof. It is enough to prove that

co(A ∪ −A ∪B) ⊂ co(A ∪B) ∪ co(−A ∪B).

For this, take x ∈ co(A ∪ −A ∪ B). As A and B are convex subsets we get that x =
λ1a1+λ2(−a2) +λ3b, where a1, a2 ∈ A, b ∈ B and λ1, λ2, λ3 ∈ [0, 1] with λ1+λ2+λ3 = 1.

Assuming that λ1 ≥ λ2, one has that

x = (λ1 − λ2)a1 + 2λ2
a1 − a2

2 + λ3b.

Then x is a convex combination of elements in A ∪B, since from hypotheses a1−a2
2 ∈ B, 

and so x ∈ co(A ∪B).
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If λ1 ≤ λ2, one has similarly that x ∈ co(−A ∪B).
In any case, x ∈ co(A ∪B) ∪ co(−A ∪B) and we are done. �
It would be natural to think that some renorming of c0 gives us our goal space. The 

following result shows that this is true for every Banach space containing c0.

Theorem 2.5. Let X be a Banach space containing isomorphic copies of c0. Then there 
is an equivalent norm ‖| · |‖ in X such that every nonempty relatively weakly open subset 
of B(X,‖|·|‖) has diameter 2 and B(X,‖|·|‖) contains convex combinations of slices with 
diameter arbitrarily small.

Proof. From Lemma 2.3, we can assume that X contains an isometric copy of c and for 
every x ∈ BX there are sequences {xn}, {yn} ∈ BX weakly convergent to x such that 
‖xn − yn‖ = 2 for every n ∈ N.

Fix 0 < ε < 1 and consider in X the equivalent norm ‖ · ‖ε whose unit ball is 
Bε = co(2(K0 − 1

2 ) ∪ 2(−K0 + 1
2 ) ∪ [(1 − ε)BX + εBc0 ]). Then we have ‖x‖ ≤ ‖x‖ε ≤

1
1−ε‖x‖ for every x ∈ X and ‖x‖ = ‖x‖∞ for every x ∈ c.

Fix γ > 0. From Proposition 2.2, there exist S1, · · · , Sn slices of K0 such that

dim
(

1
n

n∑
i=1

Si

)
<

1
4(1 − ε)γ.

We can assume that Si = {x ∈ K : x∗
i (x) > 1 − δ̃} where x∗

i ∈ c∗ and supx∗
i (K0) = 1 for 

every i = 1, . . . , n and 0 < δ̃ < 1. Denote by 1 the sequence in c with all its coordinates 
equal 1. It is clear that supx∗

i (2(K0 − 1
2 )) = 2(1 − x∗

i (1
2 )), for all i = 1, · · · , n. We 

put ρ, δ > 0 such that 1
2ρ‖x∗

i ‖ + δ < δ̃, 2ρ < ε, ρ‖x∗
i ‖ < 4δ, and (7−2ε)ρ

(1−ε) < γ, for all 
i = 1, . . . , n. We consider the relatively weakly open set of Bε given by

Ui :=
{
x ∈ Bε : x∗

i (x) > 2
(

1 − δ − x∗
i

(
1
2

))
+ 1

2ρ
∥∥x∗

i

∥∥, lim
k

x(k) < −1 + ρ2
}

for every i = 1, . . . , n, where x∗
i and limn denote the Hahn–Banach extensions to X of 

the corresponding functionals on c. It is clear that ‖x∗
i ‖ε = ‖x∗

i ‖ for every i = 1, . . . , n
and ‖limn‖ε = ‖limn‖ = 1.

Since ρ‖x∗
i ‖ < 4δ, we have that 2(1 − x∗

i (1
2 )) > 2(1 − δ − x∗

i (1
2 )) + 1

2ρ‖x∗
i ‖. Now, 

we have that supx∗
i (2(K0 − 1

2 )) = 2(1 − x∗
i (1

2 )), then there exists x ∈ K0 such that 
x∗
i (2(x − 1

2 )) > 2(1 − δ − x∗
i (1

2 )) + 1
2ρ‖x∗

i ‖ and limk 2(x(k) − 1
2 ) = −1 < −1 + ρ2. This 

implies that Ui �= ∅ for every i = 1, . . . , n. In order to estimate the diameter of 1
n

∑n
i=1 Ui, 

it is enough to compute the diameter of

1
n

n∑
Ui ∩ co

(
2
(
K0 −

1
2

)
∪ −2

(
K0 −

1
2

)
∪
[
(1 − ε)BX + εBc0

])
.

i=1
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Since 2(K0 − 1
2 ) and (1 − ε)BX + εBc0 are convex subsets of Bε, given x ∈ Bε, we can 

assume that x = λ12(a − 1
2 ) + λ22(−b + 1

2 ) + λ3[(1 − ε)x0 + εy0], where λi ∈ [0, 1] with ∑3
i=1 λi = 1 and a, b ∈ K0, x0 ∈ BX , and y0 ∈ Bc0 .
Given x, y ∈ 1

n

∑n
i=1 Ui, for i = 1, · · · , n, there exist ai, a′i, bi, b′i ∈ K0, λ(i,j), λ′

(i,j) ∈
[0, 1] with j = 1, 2, 3 and, xi, x′

i ∈ BX , and yi, y′i ∈ Bc0 , such that

2λ(i,1)

(
ai −

1
2

)
+ 2λ(i,2)

(
−bi + 1

2

)
+ λ(i,3)

[
(1 − ε)xi + εyi

]
2λ′

(i,1)

(
ai −

1
2

)
+ 2λ′

(i,2)

(
−bi + 1

2

)
+ λ′

(i,3)
[
(1 − ε)x′

i + εy′i
]

belong to Ui and

x = 1
n

n∑
i=1

2λ(i,1)

(
ai −

1
2

)
+ 2λ(i,2)

(
−bi + 1

2

)
+ λ(i,3)

[
(1 − ε)xi + εyi

]
and

y = 1
n

n∑
i=1

2λ′
(i,1)

(
ai −

1
2

)
+ 2λ′

(i,2)

(
−bi + 1

2

)
+ λ′

(i,3)
[
(1 − ε)x′

i + εy′i
]
.

For i = 1, . . . , n, we have that

2λ(i,1)

(
ai −

1
2

)
+ 2λ(i,2)

(
−bi + 1

2

)
+ λ(i,3)

[
(1 − ε)xi + εyi

]
∈ Ui,

then

lim
k

(
2λ(i,1)

(
ai −

1
2

)
+ 2λ(i,2)

(
−bi + 1

2

)
+ λ(i,3)

[
(1 − ε)xi + εyi

])
< −1 + ρ2.

This implies that

2λ(i,2) + λ(i,3)ε− 1 = −λ(i,1) + λ(i,2) − λ(i,3)(1 − ε) < −1 + ρ2.

Since 2ρ < ε, we deduce that λ(i,2) + λ(i,3) <
1
2ρ. As a consequence we get that

λ(i,1) > 1 − 1
2ρ, (2.1)

and similarly we get that

λ′
(i,1) > 1 − 1

ρ, (2.2)
2



J. Becerra Guerrero et al. / Advances in Mathematics 269 (2015) 56–70 65
for every i = 1, . . . , n. Now, applying (2.1), and (2.2), we have that

‖x− y‖ε ≤
1
n

∥∥∥∥∥
n∑

i=1
2λ(i,1)

(
ai −

1
2

)
− 2λ′

(i,1)

(
a′i −

1
2

)∥∥∥∥∥
ε

+ 1
n

n∑
i=1

∥∥∥∥2λ(i,2)

(
−bi + 1

2

)∥∥∥∥
ε

+ 1
n

n∑
i=1

∥∥∥∥2λ′
(i,2)

(
−b′i + 1

2

)∥∥∥∥
ε

+ 1
n

n∑
i=1

∥∥λ(i,3)
[
(1 − ε)xi + εyi

]∥∥
ε
+ 1

n

n∑
i=1

∥∥λ′
(i,3)

[
(1 − ε)x′

i + εy′i
]∥∥

ε

≤ 1
n

∥∥∥∥∥
n∑

i=1
2λ(i,1)

(
ai −

1
2

)
− 2λ′

(i,1)

(
a′i −

1
2

)∥∥∥∥∥
ε

+ 1
n

n∑
i=1

(λ(i,2) + λ(i,3)) + 1
n

n∑
i=1

(
λ′

(i,2) + λ′
(i,3)

)
≤ 1

n

∥∥∥∥∥
n∑

i=1
2λ(i,1)

(
ai −

1
2

)
− 2λ′

(i,1)

(
a′i −

1
2

)∥∥∥∥∥
ε

+ ρ

≤ 2
n

∥∥∥∥∥
n∑

i=1
λ(i,1)ai − λ′

(i,1)a
′
i

∥∥∥∥∥
ε

+ 1
n

n∑
i=1

∣∣λ(i,1) − λ′
(i,1)

∣∣‖1‖ε + ρ

≤ 2
n

∥∥∥∥∥
n∑

i=1
λ(i,1)ai − λ′

(i,1)a
′
i

∥∥∥∥∥
ε

+ (3 − 2ε)
2(1 − ε)ρ.

Now∥∥∥∥∥
n∑

i=1
λ(i,1)ai − λ′

(i,1)a
′
i

∥∥∥∥∥
ε

≤
∥∥∥∥∥

n∑
i=1

(λ(i,1) − 1)ai

∥∥∥∥∥
ε

+

∥∥∥∥∥
n∑

i=1
ai − a′i

∥∥∥∥∥
ε

+

∥∥∥∥∥
n∑

i=1

(
λ′

(i,1) − 1
)
a′i

∥∥∥∥∥
ε

≤ 1
1 − ε

∥∥∥∥∥
n∑

i=1
ai − a′i

∥∥∥∥∥ +
n∑

i=1

1
1 − ε

|λ(i,1) − 1|‖ai‖ +
n∑

i=1

1
1 − ε

∣∣λ′
(i,1) − 1

∣∣∥∥a′i∥∥
≤ 1

1 − ε

∥∥∥∥∥
n∑

i=1
ai − a′i

∥∥∥∥∥ + 1
1 − ε

nρ.

We deduce that

‖x− y‖ε ≤
2

1 − ε

∥∥∥∥∥ 1
n

n∑
ai − a′i

∥∥∥∥∥ + (7 − 2ε)
2(1 − ε)ρ. (2.3)
i=1
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On the other hand, we have that, for every i = 1, . . . , n,

x∗
i

(
2λ(i,1)

(
ai −

1
2

)
+ 2λ(i,2)

(
−bi + 1

2

)
+ λ(i,3)

[
(1 − ε)xi + εyi

])
> 2

(
1 − δ − x∗

i

(
1
2

))
+ ρ

∥∥x∗
i

∥∥,
then

x∗
i

(
2λ(i,1)

(
ai −

1
2

))
+ 1

2ρ
∥∥x∗

i

∥∥
≥ x∗

i

(
2λ(i,1)

(
ai −

1
2

))
+ λ(i,2)

∥∥x∗
i

∥∥
ε
+ λ(i,3)

∥∥x∗
i

∥∥
ε

≥ x∗
i

(
2λ(i,1)

(
ai −

1
2

)
+ 2λ(i,2)

(
−bi + 1

2

)
+ λ(i,3)

[
(1 − ε)xi + εyi

])
.

We have that

x∗
i

(
2λ(i,1)

(
ai −

1
2

))
> 2

(
1 − δ − x∗

i

(
1
2

))
,

and hence

x∗
i (λ(i,1)ai) > 1 − δ − (1 − λ(i,1))x∗

i

(
1
2

)
≥ 1 − δ − 1

2ρ
∥∥x∗

i

∥∥.
We recall that δ + 1

2ρ‖x∗
i ‖ < δ̃, then x∗

i (λ(i,1)ai) > 1 − δ̃. It follows that x∗
i (ai) > 1 − δ̃. 

Now ai ∈ K0 ∩ Si, and similarly we get that a′i ∈ K0 ∩ Si, for every i = 1, . . . , n, 
and 1

n

∑n
i=1 ai, 

1
n

∑n
i=1 a

′
i ∈ 1

n

∑n
i=1 Si. Since the diameter of 1

n

∑n
i=1 Si is less than 

1
4 (1 − ε)γ, we deduce that 1

n‖ 
∑n

i=1 ai− a′i‖ < 1
4(1 − ε)γ. Finally, we conclude from (2.3)

and the above estimation that

‖x− y‖ε ≤ γ.

Hence the set 1
n

∑n
i=1 Ui has diameter, at most γ, for the norm ‖ · ‖ε. We recall now 

that every relatively weakly open subset of Bε contains a convex combination of slices 
[9, Lemme 5.3]. So we conclude that Bε has convex combinations of slices with diameter 
arbitrarily small.

In order to prove that every nonempty relatively weakly open subset of Bε has diam-
eter 2, we recall that K0 = {gi : i ∈ N}.

Recall that Bε = co(2(K0 − 1
2 ) ∪ 2(−K0 + 1

2 ) ∪ [(1 − ε)BX + εBc0 ]). Call A =
2(K0 − 1

2 ) and B = (1 − ε)BX + εBc0 . Now A and B are convex subsets of X and 
Bε = co(A ∪−A ∪B). Observe that A−A

2 = K0 −K0 and so A−A
2 ⊂ Bc0 ⊂ B, from the 

definition of K0.
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Thus, in order to prove that every nonempty relatively weakly open subset of Bε has 
‖ · ‖ε-diameter 2 it is enough to prove, from Lemma 2.4, that every nonempty relatively 
weakly open subset of co((2K0 − 1) ∪ [(1 − ε)BX + εBc0 ]) has ‖ · ‖ε-diameter 2.

Pick U a weakly open subset of X such that

U ∩ co
(
(2K0 − 1) ∪

[
(1 − ε)BX + εBc0

])
�= ∅,

then there are gi ∈ K0, x0 ∈ BX , y0 ∈ Bc0 and λ ∈ [0, 1] such that λ(2gi − 1) + (1 −
λ)[(1 − ε)x0 + εy0] belong to U .

As U is a norm open set, we can assume that y0 has finite support. From Lemma 2.3, 
there is a scalar sequence {tj} with |tj | ≤ 1 for every j such that, putting xj = x0 +
(1 − tj)ej and yj = x0 − (1 + tj)ej for every j, we have that {xj} and {yj} are weakly 
convergent sequences in BX to x0. We put j0 such that e∗j (y0) = 0 for every j ≥ j0, 
then y0 + ej , y0 − ej ∈ Bc0 for every j ≥ j0. Now, again from the construction of K0, 
gi + emn+i ∈ K0 for every n, and hence, {gi + emn+i}n is weakly convergent to gi.

Therefore we get for n conveniently big that

x := λ
(
2(gi + emn+i) − 1

)
+ (1 − λ)

[
(1 − ε)xmn+i + ε(y0 + emn+i)

]
and

y := λ(2gi − 1) + (1 − λ)
[
(1 − ε)ymn+i + ε(y0 − emn+i)

]
belong to U . Therefore

diam‖·‖ε
(U) ≥ ‖x− y‖ε

=
∥∥2λemn+i + (1 − λ)

[
2(1 − ε)emn+i + 2εemn+i

]∥∥
ε

= 2‖emn+i‖ε ≥ 2‖emn+i‖ = 2‖emn+i‖∞ = 2.

We conclude that diam‖·‖ε
(U) = 2. �

The following consequence shows that there are many spaces satisfying D2P and 
failing strong-D2P.

Corollary 2.6. Every Banach space containing isomorphic copies of c0 can be equivalently 
renormed satisfying D2P and failing strong-D2P.

Finally, we get a stability property for Banach spaces with D2P and failing strong-D2P.

Corollary 2.7. The Banach spaces with D2P and failing strong-D2P are stable for l1-sums.

The proof of the above corollary follows from the following general proposition, which 
gives the stability under �1-sums of the D2P and small convex combinations of slices. In 
fact this stability property holds for 1 ≤ p < ∞.
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Proposition 2.8. Let {Xn} be a sequence of Banach spaces satisfying the D2P and put 
Z := �1 −

⊕
n Xn. Assume that {εn} is a null scalars sequence such that for every n ∈ N

there is a convex combination of slices in Xn with diameter, at most, εn. Then Z satisfies 
the D2P and

inf
{
diam(T ) : T convex combination of slices in BZ

}
= 0.

Proof. In order to prove that

inf
{
diam(T ) : T convex combination of slices in BZ

}
= 0,

fix n ∈ N and let us see that for every slice of BXn
we can define a slice of BZ with similar 

diameter. Consider Z = Xn ⊕1 Yn, being Yn = �1 −
⊕

k 	=n Xk. Let Sn = S(BXn
, x∗

n, α)
be a slice of BXn

and fix 0 < μ < α. We can assume that x∗
n ∈ SX∗

n
. If (xn, yn) ∈

S(BZ , (x∗
n, 0), μ), then x∗

n(xn) > 1 − μ > 1 −α and so ‖xn‖ > 1 − μ. Thus ‖yn‖ < μ. As 
a consequence, ‖(xn, yn) − (xn, 0)‖ < μ. Then we have that

S
(
BZ ,

(
x∗
n, 0

)
, μ

)
⊂ S

(
BXn

, x∗
n, α

)
× μBYn

. (2.4)

Now, if Tn is a convex combination of slices of BXn
, for μ > 0 small enough we get that

inf
{
diam(T ) : T is a convex combination of slices of BZ

}
≤ diam(Tn) + 2μ ≤ εn + 2μ.

We conclude that

inf
{
diam(T ) : T convex combination of slices in BZ

}
= 0,

since limn εn = 0.
We pass now to prove that Z has D2P. As every nonempty relatively weakly open 

subset of BZ contains a nonempty intersection of slices in BZ [9, Lemme 5.3], take 
f1, . . . , fN ∈ SZ , 0 < α1, . . . , αN < 1 and consider a nonempty intersections of slices 
in BZ

S =
{
z ∈ BZ : fi(z) > 1 − αi, 1 ≤ i ≤ N

}
.

Pick z0 ∈ SZ ∩ S, then choose 0 < ε < αi for every i so that fi(z0) > 1 − αi + ε for 
every i.

We denote by Pn the projection of Z onto �1−
⊕n

i=1 Xi, which is a norm one projection 
for every n ∈ N. As fi(z0) > 1 − αi + ε, there is k ∈ N such that P ∗

k (fi)(Pk(z0)) > 1 −
αi + ε, where P ∗

k denotes the transposed projection of Pk.
Consider the intersections of slices in the unit ball of Y = �1 −

⊕k
i=1 Xi given by 

T = {y ∈ BY : P ∗
k (fi)(y) > 1 − αi + ε, 1 ≤ i ≤ N}. Observe that T �= ∅, since 
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PK(z0) ∈ T . In order to prove that diam(S) = 2, fix ρ > 0 and take y1, y2 ∈ BY ∩ T

such that ‖y1 − y2‖ > 2 − ρ. This is possible, because it is known that the finite �1-sum 
of Banach spaces with D2P has too D2P [2]. Now we see y1, y2 as elements in Z,
via the natural isometric embedding of Y into Z, and we have that y1, y2 ∈ S with 
‖y1 − y2‖Z > 2 − ρ, hence diam(S) ≥ 2 − ρ. As ρ was arbitrary, we conclude that 
diam(S) = 2. �

Finally, we would like to pose the following questions:

(1) We don’t know if L1 can be equivalently renormed satisfying D2P so that every 
convex combination of slices of its unit ball has diameter arbitrarily small.

(2) What Banach spaces can be equivalently renormed to satisfy slice-D2P, D2P or 
strong-D2P?

(3) Is there some strongly regular Banach space with D2P?

About the third question, recall that a Banach space X is said to be strongly regular 
(SR) if every closed, convex and bounded subset of X has convex combination of slices 
with diameter arbitrarily small (we refer to [11] for background about this topic). It is 
well known that every Banach space containing isomorphic copies of c0 fails to be SR. 
As SR is an isomorphic property, that is independent on the equivalent norm considered 
in the space, every renorming of c0 fails to be SR. Also it is known that there are SR 
Banach spaces so that every relatively weakly open subset of its unit ball has diameter, 
at least, some δ > 0, but with δ < 2.

About the second question, it seems natural to think that every Banach space failing 
to be strongly regular can be equivalently renormed with the strong-D2P, but we don’t 
know if this is true. In [8] it is proved that every Banach space X, whose dual X∗ fails 
to be strongly regular can be equivalently renormed so that every convex combination 
of w∗-slices in the unit ball of X∗ has diameter 2. Moreover, if X is separable, also it is 
shown there that for every ε > 0, X can be equivalently renormed so that every convex 
combination of slices in the unit ball of X∗ has diameter, at least, 2 − ε.
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