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A Geometric Localization Theorem*

PETER W. JONES

Department of Mathematics, University of Chicago, Chicago. llinois 60637

The purpose of this paper is to provide a proof of Theorem 3.11 in the
previous paper of Jerison and Kenig |1]. A connected domain & < k" is
said to be an (g J) domain if for all x,v €<, |x—y| <. there is a
rectifiable arc y © ¢/ joining x to y and satisfying

1
1)< —x -] (1)
&

and

x—z[ly—2|

dist(z, 00 )=d(z) > ¢ for all z on y. (2)

x|
Here /(y) denotes the Euclidean arclength of a rectifiable arc y and |x — y|
denotes the Euclidean distance between x,y € R". A domain £ is said to be
an (e, 0) nontangentially accessible domain (N.T.A.) if & is an (g, é) domain
and for every point ¢ € ¢~ and r € (0.9), there is a point z such that
B(z,r)< B(q, r/e) M €. Here B(x, r) denotes the Euclidean ball centered at
x and of radius r. The following localization theorem is used by Jerison and
Kenig in their paper [1].

THEOREM. Suppose ' is an (&, 0) N.T.A. There is a positive constant A
depending only on the values of € and the dimension n such that whenever
q€ 67 and re€(0,6/A). there is a domain /,, such that 7, is a
(1/4,1/4) N.T.A. and

q.r

“NB(g.r)c,, @ MNB(g.Ar) (3)

q

Jerison and Kenig call &, , a cap. Before proving the theorem we make
two observations. Firstly, the example 2 = {(x, 3, z) € R*: z < (x* + y?)'"*}
shows that not every (&, 8) domain is an N.T.A. Secondly, the theorem is not
hard to prove when n = 2. We say no more than this can be accomplished by
cutting &' into two components by constructing a suitable arc. Thus our only
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problem is to prove the theorem in the case where n > 3. The proof we give,
however, is valid for all dimensions greater than one. Our figures will be
drawn only for the planar case to ease comprehension, though their higher
dimensional analogues are not too much harder to visualize.

Fix ¢ € 0% and r > 0; we may assume r=2~" for some integer m. By a
translation, we may also assume that ¢ is the center of a dyadic cube Q with
sidelength ((Q)=2""*". Let 2, =% M Q°, where E° denotes the interior of
a set E. Then B(q,r)N%Z < Z,, but &, may not even be connected. To
rectify this we will add onto &, a certain portion of &. Before doing this we
pause to collect some information on &,’s local behavior.

Let W= {Q,} be the dyadic Whitney decomposition of &. (See [2]| for a
construction of W.) Then each Q; is a closed dyadic cube and ; Q; =
Furthermore

QNQi=1, Jj#k (4)
1<w <4/n (5)
KQ))
and
Q) ,
4< <4 MO, # D 6
1/ 0, S if 0;NQ#@ (6)

Because all cubes in W are dyadic, each Q; € W satisfies either @, < Q or
Q)N Q°=g. In what follows 4,,4,,..., denote certain constants whose
values depend only upon & and the dimension 7.

LemMA 1. Suppose Q;, Q€ W and Q;N QN Yy #@. If x€ Q) and
YE QF, then there is an arc y joining x to y, with length I(y) <A, |x—y|,
and such that

: I x—z||y—z|
dist (z, &) > — — T ———
0 A4, |x —y]

forall z on y.

Proof. We first observe that the line segment Xy is contained in & . This
follows from properties (5) and (6) of the Whitney decomposition. Since Q°
is convex, Xy € Q°. Let z, be the midpoint of Xy. There is a point z, € Q°
such that |z, —z,| < |x —p|/10™ and B(z,,|x —y|/100n*) < Q. Let y be the
union of the line segments Xz, and z, J. Then y € Q° and /(y) < 2 |x — y|. By
properties (5) and (6),

d(z) > 5 min(d(x), d(»))
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for all z on 7. Since every face of Q is a hyperplane, the construction of y
shows that

1 |x —z||y—z|
200n* |x— |

dist(z, 0°) >

for all z on y. The proof of the lemma is complete.

An application of conditions (1) and (2) shows there is a cube Q, € W,
Q, < Q. with length [(Q) > ¢’r/64n. (If rad(Z) < 2r, the lemma is trivial.)
We fix now and hereafter one such cube Q,. For Q; € W, let z; denote the
center of Q;. To make &, connected, we would like to do something like the
following. For each z; € Q, take an arc y;, connecting z; to z, and satisfying
(1)and (2). Let F;={Q, € W: 0, Ny;# @} Then put &, , = 2,V U, o F;.
Unfortunately, this idea does not quite work. This is because we could have
added to &, two cubes Q;, Q,, which intersect at only one point x, while all
other Whitney cubes containing x were not added to &,. To rectify this we
could chop off certam “bad” pieces of each F formlng new sets F and
then put &, =2, U, o i It is not hard to convince oneself that even
then &, need not be an (7, oo) domain for any value of 7> 0. As a last
attempt we could connect each F; to every F, which comes near to it,
proceeding in the above manner. We could obtain new sets G, and hope that
Z,,=2,9U;, G, satisfies the conclusions of the theorem. It is exactly
this strategy that we adopt in the following paragraphs. The technicalities
involved are a bit arduous, but the ideas behind our construction are rather
simple.

The building blocks for our construction will be certain *good™ pieces of
Whitney cubes, which we call pipe segments and tees. Let us fix our
attention on an (arbitrary) cube Q; € W. Let Q; 1, Q; ;... Q;  be all those
cubes Q, € W such that Q; N Q, is an n — 1 dimensional cube. By (6) there
are at most 4"~ ' - 2n such cubes. Let z; , be the center of ;N Q; ;. and let

L;, be the line segment z;z; ;. 1 <k< M. For each such L, let §;,=
{x€ Q;dist(x,L;,) <107 in mm(l(Qj), {Q))t Each §;, is a pipe segment
connecting z; to a neighborhood on ¢Q; of z; .. it is also clearly an (1. 00
domain for some value of y depending only on the dimension n. Let T =
B(z;, 10~ '1(Q;)). Then the pipe segments S;, are joined together by 7.
the terminology of plumbing, 7; is a tee. An admissible set S < Q; is a
nonvoid collection of pipe segments S; , together with 7. The null set is also
defined to be an admissible set. The following lemma can be easily verified
by the reader.

Lemma 2. Suppose Q;, Q€W and Q;NQ,#@. If S;<Q; and
S, cQ, are admissible sets and S;,NS,# @, then (S; US,()0 is a
(107*", ) domain. If S, Q; is an admlsszble set and S;MNQ, + . then
(S;v Qk)O is a (107", oo) domain.
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An arc y < & connecting z, to z, is said to be a pipeline if it satisfies the
following conditions:

y s the union of a collection of centers L, , of pipe segments S (1)

I |z, —z[|z, — 2]

d(z) 27 for all z on . (8)

|z, — z,]

and

If x, y € y and y(x, y) is the subarc of y having
endpoints x and y. then /(y(x, y)) <A |x — | (9)

The number 4 appearing in (8) and (9) is called the pipeline constant of 7,
and we say that y is an 4 pipeline.

LeEMMA 3. Suppose z,,z,€ Y and |z, — z,| < 6/2. Then there is an A4,
pipeline joining z, to z,.

Proof. We may assume |z, — z,| > 2 min{d (z ) d(z,)), for otherwise the
lemma is trivial. Let y, be an arc joining z, to z, and satisfying (1) and (2),

and let s,€Z satisfy %z, — zz|<2‘°d z,) 'lzl—“|. For s€ Z,
—1 <5< sy, pick a point x; in y,M {x:|x —z,| =2%(z,)}. Then
<§2wuggduggr*wc¢ 1< s < s (10)

Let x_,=2z,. By (10), whenever —2 s < s, — 1, there is an arc I, joining
X, to x,,, satisfying

4
) <—2'd(z) (1)
and
e’
d(z) > ——2 d(z,) forall zon I,. (12)
Let F, =10, t={Q,eW:Q;NT#3}, —2<s5<s,— 1. By (I1) and

(12) each F, _ contains at most ¢ *10*" cubes and

QQ“cB&“%awq»

By (12), {U, Q,.,} N B(z,.(¢?/32) 2°d(z,)) = @. 64/ < s < s, — 1. For each
Q. €EF, . let {LS_,‘,(} be the collection of all centers of pipe segments

5
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P
a

FIGURE |

S« <0, Then by the above properties of the cubes Q_,. there is a
pipeline I'; connecting z, to a center z; of a cube Q, € W such that Q;N
Ixt|x —z,|=2%d(z)} #@ and such that [Q,)> (¢/16n)|z, — z,|.
Furthermore, 7", is an n10*"¢ " pipeline. Form in exactly the same manner
a pipeline I", connecting z, to z; and with pipeline constant nlO“ ~*. Since
1(Q;) > (¢/16n) |z, — z,,
pipeline joining z, to z,.

We now start to connect up <,. For each z;€ &, let p; be a pipeline
Joining z; to z,. We now form the associated pzpe P; by taking P; to be the
smallest set containing p; such that P, Q, is an admissible set for all
0, € W. Let {P;} be the collection of all such pipes: these pipes are called
primary pipes. See Figs. I and 2. If we put &', =~ (U {{J; P;|. then by (9),

v < Blg, 24, 7). (13)

™
B

FIGURE 2
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In Fig. 1 there are four Whitney cubes and two pipelines. In Fig. 2 the
pipelines have been replaced by their associated pipes.

&, is connected, but there is little else we can say about it. We fix this by
adding more pipes onto Z,. For all pairs z;.z, €2, satisfying i<
(Q)/IQ) <4 and |z, —2z,|<8n’4,/(Q;), construct a pipeline p;,
connecting z; to z, and let P;, be the associated pipe. Let {P;,} be the
collection of all such pipes; these pipes are called secondary pipes. By
Lemma 3,

1(Pj,k)<A3fzj_zk| (14)

and
1
d(z) 271?1(Qj) for all z on p; ,, (15)

for all secondary pipelines p; ,. Now put &, , =<, U {U;, P; .} By (13)
and (14), &, , < B(q, A;r), so we need only verify that &, , is an N.-T.A. By
Lemmas 1, 2 and the construction of the pipes we obtain

LEmMA 4. Suppose Q;, Q€W and Q;NQ,NY,,#@. Then if

x€EQ,NZ, andy€ Q,N, ,, there is an arc y < &, , joining x to ), with
length I(y) < A; |x — y|, and such that

. ; I |x—z|{y—z|
dist(z, @< ,) > — 12 1
"7 Ay x—yl

for all z on y.

Lemma 4 says we need only be able to find “good” arcs connecting
centers z;, z, of Whitney cubes Q;, Q,. For if

Qijk’ Qjmg/q.r' kagz'q.r?&@

but Q,NQ, MY, , =, then either Q; or Q, lies outside of &,, and by the
construction of the pipes,

dist(Q; N Zy.,s QN Y., 2> 7 min(l(@)). H(Qy))-

Furthermore, if Q;N<,,# @, then either Q}c </, or Q;N%,, is an
admissible set, and Lemma 2 applies. With these observations in mind, we
now verify the (g, d) condition by examining pairs z;, z, of points in &, .
Notice that every z; € 7, , lies on some pipeline p; or p; ,: hence z; lies in
the center of some pipe P, or P, . Let P = {U; p;}{U; , P; ! be the union of
all primary and secondary pipelines. By the construction of the pipes
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dist(z, &, ,) is proportional to d(z) for all z € P. Thus if z;,z, €&, ,
need only find an arc y < P joining z; to z, with length /(y) < <A |z, — z,| and
such that

|2, — 2] lzs — 2]

d(z) >
Alz;—z,|

for all z on y.

Case 1. z;€ P, z, € P, (two primary pipes). Travel down the pipeline p,
from z; to z, until a point z, € p, is reached which satisfies

'j""k| I(Q)<4|Z Z;l.

If there is no such point z, € p, set z; =z,. Let y, be the subarc of p,
between z; and z,. By Lemma 3

[(V1)<A3|Zj_zkl- (16)

Since /(Q,) > ¢’r/64n, Lemma 3 and (13) yield the estimate

1
d(z))—A—|zj—z| for all z on y,. (17)

3

In exactly the same manner find a point z, on p, and let y, be the subarc of
D, between z, and z,. Then

I(Vz)<A31zj_Zkf (18)

and

1
d(z)>T|zk~z\ for all z on p,. (19)
3

We first treat the subcase where either z, =z, or z, = z,; by symmetry we
may assume that the first of these conditions holds. Let y, be the subarc of p,
between z, and z,. By (16) and Lemma 3, I(y,) <A,(A4; + 1)[z; — z,].

Put y=y,Uy,Uyp;. Then by (16), (18), and the above remark, /(})
A,|z; — z;]. We also have the estimate d(z) > (1/4;)|z, — z| for all z on y,.
Thus by (17) and (19),

1 L= —z
—M for all z on 7.

d(z) >

A, |z; =z,

J

We now treat the subcase where z, # z, and z, # z,. By Lemma 3

|Zj‘zl|’|zk“zl|<
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so there is a secondary pipeline p, , connecting z, to z,. By (14) and (15),

I(P1‘2)<A4|Z_f*2k| (20)

and

d(z) > lz,—z,] for all z on p, ,. (21)

1
A,
Let y=y,Uy,Up,,. Then by (16), (18), and (20). I(y) <4z, —z,
by (17), (19), and (21).

, and

1 |z;—z||z,— 2|

d(z) > for all z on y.

As |Zj'2kl

Case 1. z;€P,, z,€P,, (one primary pipe and one secondary pipe).
Let y, be the subarc of p,, between z, and z,. By (14) and (15), /(y,) <
A,lz;—z;| and d(z) > (1/4,) |z, — z| for all z on y,. Now let y, < P be the
arc joining z; to z, constructed as in casel, and let y =y, U y,. Then the
estimates in case I for y, along with our estimates for y, yield

I |z;—z| |z, —z|

I(y)<Aglz;—z,] and d(z) > for all z on y.

A ‘zjfzk‘

Case 1Il. z,€P . z, € P, . (two secondary pipes). Let y, be the subarc
of p, , between z, and z,. Then by (14) and (15),

\
y) <A, |z, — 2] and d(z)}—A——\zj—z\ for all z on y,.

4

Now let y, < P be the arc joining z, to z, constructed as in case II, and let
y=17,U7,. Then the above estimates for y, along with the estimates from
cases I and II for vy, yield

|z_,-—z||z,\,—z|

1
y)<Aglz,—z, d dz) > —
() <Az -2l andde) >

for all z on y.

Therefore &', , is a (1/A4, co) domain.

We now verify N.T.Aness of &. Fix a point p € 8%, , and a value of
s > 0. First suppose that p € &'¢. Then since & is nontangentially accessible
there is a point z such that B(x,s) < B(p,As)N ¢, as long as s is small

enough. Now suppose that p & &/°; by (3) we may assume s < r. Then either
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p € 80 or pis in the boundary of some primary or secondary pipe. In either
case there is a dyadic cube S containing p such that

10%" 2.10%"
s<ISY——s.
I €

0°'NS’'=y and

Let x be the center of S; by our previous remark it is sufficient to handle the
case where x € /. The argument which produced the “large™ cube Q, <= Q
shows there is Q,€ W, Q;<S. with length /(Q;)> (10*"/n)s. Since
Q,N<,, is an admissible set, there is a point z€ Q; such that
B(z.s) <= & ,. This completes the proof of the theorem.
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