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1. Introduction

This note contains a combinatorial construction of symmetries arising in several 
distinct but related areas. In symplectic geometry, it is connected to categorical quanti-
zations in the form of microlocal sheaves [8] or partially wrapped or infinitesimal Fukaya 
categories [1,18], in particular of Riemann surfaces in the form of ribbon graphs [7,10,
11,16] as explored in [19]. In algebraic geometry, via mirror symmetry, it is connected to 
derived categories of singularities [6,15], in particular of functions on curves and more 
general Brieskorn singularities via duality and the Thom–Sebastiani theorem [4,9,17]. In 
K-theory, it is connected to Waldhausen’s S-construction [20], specifically with its corep-
resentability and S1-equivariance [5].1 Our primary motivation (in the spirit of [12], and 
to be taken up in general elsewhere [14]) lies in the first direction, with the aim of con-
structing a combinatorial quantization of Lagrangian skeleta, equivalent to microlocal 
sheaves in their many guises. We explain below the one-dimensional case of ribbon graphs 
where the main result of this note gives an immediate solution.

To state the main result of this note (in its simplest two-periodic form), we briefly 
recall Connes’ cyclic category [2,3,13]. Let Λ denote the big cyclic category of finite cycli-
cally ordered nonempty sets. Objects are finite nonempty subsets of the circle S ⊂ S1, 
and morphisms S → S′ are homotopy classes of degree 1 maps ϕ : S1 → S1 such that 
ϕ(S) ⊂ S′. The traditional cyclic category Λ is the full subcategory of Λ on the objects 
[n] = Z/(n + 1)Z ⊂ S1 embedded as (n + 1)st roots of unity, for n = 0, 1, 2, . . . . The 
inclusion Λ ⊂ Λ is an equivalence.

For each finite cyclically ordered nonempty set S, we introduce a triangulated two-
periodic A∞-category CS,st. (It is the twisted complexes in a particularly simple two-
periodic A∞-category CS with objects given by the set S.) It provides a symmetric 
presentation of the two-periodic differential graded derived category of finite-dimensional 
representations of the An−1-quiver with n = |S|. For example, for n = 0, it is the zero 
category, but presented as one object s0 with a degree one map

s0 −→ s0

whose differential is the (two-periodic) identity. For n = 1, it is generated by two objects 
s0, s1 with degree one maps

s0 −→ s1 s1 −→ s0

whose compositions are the respective (two-periodic) identities. For n = 2, it provides a 
symmetric presentation of a universal exact triangle (as explained in [18], and attributed 
to Kontsevich). For general n, it provides a symmetric presentation of n-step filtrations, 

1 I am grateful to J. Lurie for discussions about how this note contributes to an understanding of the 
S1-equivariance of the S-construction as appears in the comprehensive work of Dyckerhoff and Kapranov
(see the discussion of [5, Introduction, p. 9]).
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which allows for an easy verification of the following. (From a concrete perspective, the 
primary content is in the precise combinatorial form of the construction rather than the 
abstract statement itself.)

Theorem 1.1. (See Theorem 5.1 below.) The assignment of the two-periodic A∞-category 
CS,st to a finite cyclically ordered nonempty set S naturally extends to a functor from 
the opposite of the cyclic category to the strict category of two-periodic A∞-categories

Cst : Λop −→ Astr
per

Remark 1.2. We also describe a graded version in Theorem 6.8 where the target is 
the category A∞ of plain (no longer two-periodic) A∞-categories. Instead of the cyclic 
category, the domain becomes a cover of the cyclic category with objects comprising 
pairs of a finite nonempty subset S ⊂ S1 and a point c ∈ Sym2(S1).

Remark 1.3. Thanks to the natural duality equivalence Λ � Λop, the theorem also 
provides an alternatively variant functor.

Because of its basic nature as a universal sequence of composable morphisms, the 
An-quiver appears wherever categories appear. Similarly, its derived category of repre-
sentations appears wherever triangulated categories appear. What is less immediately 
evident in some contexts (though certainly of primary focus in others) is the impor-
tance of the natural functors (as appear in Theorem 1.1) between representations of the 
An-quivers for varying n. Let us informally mention three settings where they play a 
significant role.

1.1. Symplectic geometry

Representations of the An−1-quiver arise in symplectic geometry as the infinitesimal 
(or dual partially wrapped) Fukaya category of the exact symplectic manifold M = C

with support Lagrangian Λn ⊂ C the union of n rays emanating from the origin. The 
functoriality of Theorem 1.1 provides the gluing one needs to extend this description 
to the general case of oriented surfaces as captured by ribbon graphs [7,10,11,16] as 
explored in [19].

To spell this out, by a ribbon graph we will mean a locally finite graph Γ with an 
embedding into the germ of an oriented surface Σ. We can allow Γ to have half-infinite 
edges incident to a single vertex, as well as infinite or circular edges incident to no 
vertices. We can also allow Γ to have vertices of any finite non-zero valency.

There is a natural cosheaf of sets over Γ given by the local components of the com-
plement Σ \ Γ . Moreover, the cosheaf naturally takes values in the cyclic category Λ
thanks to the orientation of Σ. Composing with the functor of Theorem 1.1, we obtain a 
sheaf of A∞-categories (or alternatively, via the natural equivalence Λ � Λop, a cosheaf 
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of A∞-categories) over Γ . Taking its global sections in the form of a homotopy limit (or 
alternatively, homotopy colimit) over Γ , we obtain a combinatorial model for the two-
periodic infinitesimal (or alternatively, partially wrapped) Fukaya category of Σ. (Note 
that one could go further and add a bicanonical trivialization and then apply the graded 
functor of Theorem 6.8.) This is the first instance of general constructions to be further 
developed in [14].

1.2. Algebraic geometry

Under mirror symmetry, the above symplectic realization of representations of the 
An−1-quiver arises in algebraic geometry as Gm-equivariant matrix factorizations for 
the singularity xn = 0. Here the functoriality of Theorem 1.1 is less evident and could 
be profitably organized in terms of integral transforms [4,9,17] living on Brieskorn sin-
gularities. (In informal discussions, J. Lurie has also explained a simple formulation of 
it in a flexible homotopical setting).

1.3. K-theory

Given a suitable stable category, Waldhausen’s S-construction records the structure 
of filtered objects and their relationships under restriction and induction of filtrations. 
By keeping track of the natural symmetries of such operations, it produces a paracyclic 
space, and in particular, from a two-periodic category, a cyclic space [5]. Within the 
A∞-setting, one can interpret a graded version of Theorem 1.1 as the calculation of 
the object corepresenting the S-construction. In fact, the graded version we present in 
Theorem 6.8 records slightly more symmetry than the S-construction: it only depends on 
a point c ∈ Sym2(S1) rather than a single point c ∈ S1 as would appear in a paracyclic 
realization.

2. Two-periodic A∞-categories

Fix a base field k. Introduce the commutative graded k-algebra k[u, u−1] where 
deg u = 2. All of our constructions will be two-periodic in the sense that they will 
be k[u, u−1]-linear.

Remark 2.1. Our constructions make sense with k replaced by the integers or any base 
commutative ring. Moreover, J. Lurie has sketched an ∞-categorical version that takes 
place over the sphere spectrum.

We will follow the conventions on A∞-categories from Seidel’s book [18]. By a two-
periodic A∞-category C, we will mean the following data:

(1) A set of objects Ob C.
(2) For pairs of objects c0, c1 ∈ Ob C, a compatibly graded k[u, u−1]-module homC(c0, c1).
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(3) For every d ≥ 1, and objects c0, . . . , cd ∈ Ob C, a k[u, u−1]-linear composition map

μd : homC(cd−1, cd) ⊗ · · · ⊗ homC(c0, c1) −→ homC(c0, cd)[2 − d]

The composition maps must satisfy the quadratic A∞-equations

d∑
m=0

d−m∑
n=0

(−1)†nμd−m+1
(
ad, . . . , an+m+1, μm(an+m, . . . , an+1), an, . . . , a1

)
= 0

where the sign is determined by †n = |a1| + · · · + |an| − n.

Remark 2.2. We could equivalently assume our morphisms form Z/2Z-graded k-modules. 
Then the composition map μd would be a morphism of degree 2 − d = d modulo 2.

Remark 2.3. All of our A∞-categories will be strictly unital: for each object c ∈ Ob C, 
there is a degree zero element idc ∈ hom0

C(c, c), called the identity morphism, such that

(1) for any a ∈ homC(c0, c1), we have

(−1)|a|μ2(idc1 , a) = a = μ2(a, idc0),

(2) for d 	= 2, the composition map μd vanishes if any entry is an identity morphism.

Definition 2.4. Let S = [s0, s1, . . . , sn] ⊂ S1 be a finite cyclically ordered nonempty set. 
We will understand the indices modulo n + 1 so that si+n+1 also denotes si.

We define the unital k[u, u−1]-linear A∞-category CS as follows.
(1) Objects: Ob CS = S.
(2) Morphisms: the free k[u, u−1]-modules generated by the identity morphisms and 

additional degree one morphisms

vi ∈ homCS
(si, si+1), |vi| = 1, for i = 0, . . . , n.

(3) Compositions: all are zero except for the k[u, u−1]-linear maps given by the identity 
compositions and the additional compositions

μn+1(vi+n, . . . , vi) = u idsi , for i = 0, . . . , n.

To check that CS satisfies the quadratic A∞-equations, it suffices to consider compos-
able sequences of the (non-identity) degree one generating morphisms. By construction, 
each term of the A∞-equations individually vanishes on such sequences, except for se-
quences of the form

si
vi−→ si+1

vi+1−→ · · · vi+n−→ si+n+1
vi−→ si+1, for i = 0, . . . , n.
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For such sequences, two terms will not vanish, but indeed cancel each other

μ2
(
vi, μn+1(vi+n, . . . , vi+1, vi)

)
+ (−1)|vi|−1μ2

(
μn+1(vi, vi+n, . . . , vi+1), vi

)
= μ2(vi, u idsi) + μ2(u idsi+1 , vi) = u

(
vi + (−1)|vi|vi

)
= 0

Remark 2.5. Note that the (non-identity) degree one generating morphisms of CS are in 
natural bijection with the components of the complement S1 \ S.

Example 2.6 (n = 0). When S = [s0], we see that CS consists of one object s0 with 
endomorphism complex

homCS
(s0, s0) = k

[
u, u−1] ids0 ⊕k

[
u, u−1]v0 μ1(v0) = u ids0

Thus homCS
(s0, s0) is acyclic, and hence CS is quasi-equivalent to the zero A∞-cate-

gory.

Example 2.7 (n = 1). When S = [s0, s1], we see that CS consists of two objects s0, s1
with morphism complexes

homCS
(s0, s0) = k

[
u, u−1] ids0 homCS

(s1, s1) = k
[
u, u−1] ids1

homCS
(s0, s1) = k

[
u, u−1]v0 homCS

(s1, s0) = k
[
u, u−1]v1

with the only non-zero or non-identity compositions the k[u, u−1]-linear maps given by

μ2(v1, v0) = u ids0 μ2(v0, v1) = u ids1

Thus CS is non-canonically equivalent to the full A∞-subcategory of graded 
k[u, u−1]-modules given by the free module k[u, u−1] and its odd shift k[u, u−1][1]. To 
give such an equivalence, either object s0 or s1 can be sent to k[u, u−1], and then the 
other will be sent to k[u, u−1][1].

3. Pointed version: injective cyclic functoriality

We continue to follow the conventions on A∞-categories from Seidel’s book [18]. By an 
A∞-functor F : C → D between two-periodic A∞-categories, we will mean the following 
data:

(1) A map of sets F : Ob C → ObD.
(2) For every d ≥ 1, and objects c0, . . . , cd ∈ Ob C, a k[u, u−1]-linear map

Fd : homC(cd−1, cd) ⊗ · · · ⊗ homC(c0, c1) −→ homD(Fc0,Fcd)[1 − d]
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The maps must satisfy the polynomial equations
∑
r

∑
k1,...,kr

μr

(
Fkr

(ad, . . . , ad−kr+1), . . . ,Fk1(ak1 , . . . , a1)
)

=
d∑

m=0

d−m∑
n=0

(−1)†nFd−m+1
(
ad, . . . , an+m+1, μm(an+m, . . . , an+1), an, . . . , a1

)

where the sums of the left hand side run over all r ≥ 1 and partitions k1+· · ·+kr = d, 
and the sign of the right hand side is determined by †n = |a1| + · · · + |an| − n.

The composition of A∞-functors F : C → D, G : D → E is the A∞-functor defined by:

(1) The composite map of sets G ◦ F : Ob C → Ob E .
(2) The composite k[u, u−1]-linear maps

(G ◦ F)d(ad, . . . , a1) =
∑
r

∑
k1,...,kr

Gr

(
Fkr

(ad, . . . , ad−kr+1), . . . ,Fk1(ak1 , . . . , a1)
)

where the sums run over all r ≥ 1 and partitions k1 + · · · + kr = d.

Composition is strictly associative with unit the identity functor idC : C → C given by 
the identity on objects, (idC)1 the identity on morphisms, and (idC)d = 0, for all d ≥ 2.

Remark 3.1. All of our A∞-functors will be strictly unital:

(1) for each object c ∈ Ob C, we have F1(idc) = idF(c),
(2) for d ≥ 2, the map Fd vanishes if any entry is an identity morphism.

Definition 3.2. Let Astr
per denote the strict category with objects k[u, u−1]-linear 

A∞-categories and morphisms k[u, u−1]-linear A∞-functors. (We refer to it as strict 
since we will not consider any natural transformations between functors which are not 
the identity transformation.)

Let Λinj ⊂ Λ denote the non-full subcategory with objects finite cyclically ordered 
nonempty sets and morphisms cyclic maps that are injective as set maps.

Remark 3.3. It is worth noting that the forgetful functor Λ → Fin is not faithful, but its 
restriction Λinj → Fin is in fact faithful.

Definition 3.4. Let S ⊂ S1 be a finite cyclically ordered nonempty set.
We define the unital k[u, u−1]-linear A∞-category CS,0 to be the A∞-category CS with 

a zero object 0 adjoined. In other words, Ob CS,0 = Ob CS�{0}, and the morphism spaces 
in CS,0 with domain or target 0 are all zero.
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Proposition 3.5. The assignment of the A∞-category CS,0 to a finite cyclically ordered 
nonempty set S naturally extends to a functor on the injective cyclic category

Λop
inj −→ Astr

per

Proof. Let f : S → T be a cyclic injection. We will define a unital A∞-functor

f∗ : CT,0 −→ CS,0

For the map of objects f∗ : T �{0} → S �{0}, we set f∗(0) = 0, and for t ∈ T , we set

f∗(t) =
{
s when t = f(s)
0 when t /∈ f(S)

For the maps of morphisms, let us introduce the term f -interval of length k, to refer to 
any interval of elements [t0, . . . , tk] ⊂ T such that t0, tk ∈ f(S) and t1, . . . , tk−1 /∈ f(S), 
for some k ≥ 1. (We allow the possibility that t0 = tk.)

For k ≥ 1, we define the map f∗
k on composable sequences of the (non-identity) degree 

one generating morphisms

t0
v0−→ t1

v1−→ · · · vk−1−→ tk

to be zero, except when [t0, . . . , tk] is an f -interval of length k, in which case we set

f∗
k (vk−1, . . . , v0) = w0

where w0 ∈ homCS
(s0, s1) denotes the degree one generating morphism for s0, s1 ∈ S

the unique elements with f(s0) = t0, f(s1) = tk.
To check that f∗ defines a unital A∞-functor, it suffices to consider composable se-

quences of the (non-identity) degree one generating morphisms. By construction, each 
term of the equations individually vanishes on such sequences, except possibly for com-
plete cycles

t0
v0−→ t1

v1−→ · · · vn−1−→ tn
vn−→ t0

Furthermore, for some term not to vanish, there must be a (necessarily unique) element 
s0 ∈ S with f(s0) = t0. For such sequences, two terms will not vanish, but indeed equal 
each other

μr

(
f∗
kr

(vn, . . . , vn−kr+1), . . . , f∗
k1

(vk1 , . . . , v0)
)

= u ids0 = f∗
1
(
μn+1(vn, . . . , v0)

)

where the partition of the left hand side is the unique partition of the sequence into 
f -intervals.
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Finally, we check that such functors compose as asserted. Let f : S → T , g : T → U

be cyclic injections. On objects, we clearly have (g ◦ f)∗ = f∗ ◦ g∗. On morphisms, it 
suffices to consider composable sequences of the (non-identity) degree one generating 
morphisms. By construction, each term of the equations individually vanishes on such 
sequences, except for (g ◦ f)-intervals

u0
v0−→ u1

v1−→ · · · vk−1−→ uk

For such sequences, two terms will not vanish, but indeed equal each other

(g ◦ f)∗k(vk−1, . . . , v0) = w0 = g∗r
(
fkr

(vk, . . . , vk−kr+1), . . . , fk1(vk1 , . . . , v0)
)

where w0 ∈ homCS
(s0, s1) denotes the degree one generating morphism for s0, s1 ∈ S

the unique elements with f(s0) = t0, f(s1) = tk, and the partition of the right hand side 
is the unique partition of the sequence into g-intervals. �
Remark 3.6. It is worth informally noting that the functors of the proposition are the 
natural quotients by the objects not in the image of the cyclic set map.

4. Twisted complexes: surjective cyclic functoriality

We continue to follow the conventions on A∞-categories from Seidel’s book [18].

Definition 4.1. Let S ⊂ S1 be a finite cyclically ordered nonempty set.
We define the unital k[u, u−1]-linear A∞-category CS,st to be the A∞-category of 

twisted complexes of CS , or equivalently of CS,0.

Let Qn denote the k[u, u−1]-linear triangulated differential graded derived category 
of finite-dimensional left modules over the An-quiver

•
1
−→ •

2
−→ · · · −→ •

n

For i = 1, . . . , n, denote by mi ∈ Qn the free rank one module supported at the ith vertex 
and zero elsewhere. Note that among these objects, there are degree one generating 
morphisms wi : mi → mi+1, for i = 1, . . . , n − 1, and no other linearly independent 
non-identity morphisms.

Proposition 4.2. Let S = [s0, s1, . . . , sn] ⊂ S1 be a finite cyclically ordered nonempty set.
Fix the element s0 ∈ S so that the remaining elements inherit the linear order 

s1, . . . , sn.
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Then there is a quasi-equivalence of A∞-categories

F : Qn
∼−→ CS,st

such that F (mi) = si, for i = 1, . . . , n, and F (wi) = vi, for i = 1, . . . , n − 1.

Proof. Clearly the functor F is well-defined and a quasi-equivalence on the full sub-
category of CS,st generated by s1, . . . , sn. (Note there are no non-identity compositions 
among those objects.) To see it is essentially surjective, observe that s0 is isomorphic to 
the shift by one of the twisted complexes

s′0 = (s1
v1−→ s2

v2−→ · · · vn−1−→ sn)

Namely the degree one morphisms v0 ∈ homCS
(v0, v1) and vn ∈ homCS

(vn, v0) induce 
degree zero isomorphisms v′0 ∈ homCS,st (s0, s′0[−1]) and v′n ∈ homCS,st (s′0[1], s0) which 
are inverse (up to a two-periodic shift). �

Let Λsurj ⊂ Λ denote the non-full subcategory with objects finite cyclically ordered 
nonempty sets and morphisms cyclic maps that are surjective as set maps.

Remark 4.3. It is worth noting that the forgetful functor Λsurj → Fin is not faithful: for 
example, there are two distinct maps of cyclic objects {1, −1} → {1}.

Proposition 4.4. The assignment of the A∞-category CS,st to a finite cyclically ordered 
nonempty set S naturally extends to a functor on the surjective cyclic category

Λop
surj −→ Astr

per

Proof. Let f : S → T be a cyclic surjection. We will define a unital A∞-functor

f∗ : CT,st −→ CS,st

For this, it suffices to define f∗ on the full A∞-subcategory CT ⊂ CT,st.
For t ∈ T , consider the fiber f−1(t) = [s0(t), . . . , sk(t)] ⊂ S as an interval equipped 

with its natural linear ordering. For the map of objects, we set f∗(t) to be the twisted 
complex

(
s0(t)

w0−→ s1(t)
w1−→ · · · wk−1−→ sk(t)

)

where wi ∈ homCS
(si(t), si+1(t)) is the degree one generating morphism. Note each mor-

phism appearing has degree one and thus no shifts are needed. To confirm the twisted 
complex satisfies the generalized Maurer–Cartan equation, note that the fiber is an inter-
val and so by construction, the composition maps on all subcollections of the morphisms 
appearing in the twisted complex vanish.
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For the maps of morphisms, on the (non-identity) degree one generating morphisms 
v0 ∈ homCT

(t0, t1), we define the first component f∗
1 (v0) ∈ homCS

(f∗(t0), f∗(t1)) to be 
the composition of three morphisms: projection to the last term

(
s0(t0)

w0,0−→ s1(t0)
w0,1−→ · · · w0,k−1−→ sk(t0)

)
−→ sk

followed by the degree one generating morphism

sk(t0)
wk−→ s0(t1)

followed by inclusion to the first term

s0(t1) −→
(
s0(t1)

w1,0−→ σ1(t1)
w1,1−→ · · · w1,�−1−→ s�(t1)

)

Here w0,i ∈ homCS
(si(t0), si+1(t0)), w1,j ∈ homCS

(sj(t1), sj+1(t1)) denote the degree 
one generating morphisms.

For k > 1, we set the higher components f∗
k to be identically zero.

To check that f∗ defines a unital A∞-functor, it suffices to consider composable se-
quences of the (non-identity) degree one generating morphisms. By construction, each 
term of the equations individually vanishes on such sequences, except possibly for com-
plete cycles

t0
v0−→ t1

v1−→ · · · vn−1−→ tn
vn−→ t0

For such sequences, two terms will not vanish, but indeed equal each other

μn+1
(
f∗
1 (vn), . . . , f∗

1 (v0)
)

= u ids0(t0) = f∗
1
(
μn+1(vn, . . . , v0)

)

where as above s0(t0) ∈ S denotes the initial endpoint of the fiber f−1(t0) ⊂ S. Note 
that the evaluation of the left hand side follows from the constructions and the definition 
of component maps between twisted complexes

μn+1
(
f∗
1 (vn), . . . , f∗

1 (v0)
)

= μm+1(wm, . . . , w0)

where the right hand side is evaluated on a complete cycle

s0
w0−→ s1

w1−→ · · · wn−1−→ sn
wn−→ s0

where we start at s0 = s0(t0) ∈ S.
Finally, we check that such functors compose as asserted. Let f : S → T , g : T → U

be cyclic surjections. On objects, it is clear we have (g ◦ f)∗ = f∗ ◦ g∗. On morphisms, 
it suffices to consider composable sequences of the (non-identity) degree one generating 
morphisms. By construction, each term of the equations individually vanishes on such 
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sequences, except for single terms v0 ∈ homCU
(u0, u1), where it is clear we have (g◦f)∗1 =

f∗
1 ◦ g∗1 . �

Remark 4.5. It is worth informally noting that the functors of the proposition are fully 
faithful.

5. Full cyclic functoriality

Theorem 5.1. The assignment of the A∞-category CS,st to a finite cyclically ordered 
nonempty set S naturally extends to a functor on the full cyclic category

Cst : Λop −→ Astr
per

Proof. Given a cyclic map f : S → T , consider the object Q = f(S) ⊂ S1. We have a 
canonical cyclic surjection fsurj : S → Q (given by f), and a canonical cyclic injection 
finj : Q → T (given by the identity), along with the evident equality f = finj ◦ fsurj .

Let us define the functor f∗ : CT,st → CS,st to be the composition f∗ = f∗
surj ◦ f∗

inj
of our previously defined functors. By our previous results, to see that this extends 
functorially, it suffices to show that if a cyclic map f : S → U happens to be a composition 
f = gsurj ◦ hinj of an injection hinj : S → T followed by a surjection gsurj : T → U , then 
we have an equality

f∗ = f∗
surj ◦ f∗

inj = h∗
inj ◦ g∗surj : CU,st −→ CS,st

Furthermore, it suffices to assume the sizes of the sets satisfy |S| = |T | − 1 = |U |. It 
is convenient to consider two cases: (1) the composition f is an isomorphism; (2) the 
composition f is not an isomorphism.

Case (1): It suffices to consider S = U = [s0, . . . , sn], T = [s0, . . . , sn, t], with hinj :
S → T the evident injection, and gsurj : T → U the surjection such that gsurj(t) = sn. 
(There is also the alternative case where gsurj(t) = s0, but it follows from a completely 
parallel argument.)

We must check that h∗
inj ◦ g∗surj : CS,st → CS,st is the identity. On objects, this is clear, 

with the following observation: first forming the twisted complex (sn → t) along the 
degree one generating morphism vn,t ∈ homCS

(sn, t), then sending t to the zero object 
results in the object sn again.

On morphisms, it is also clear, with the following observation: by the definition of 
functors on twisted complexes, we have

(
h∗
inj

)
1

(
g∗surj

)
1(vn) =

(
h∗
inj

)
2(vt,0, vn,t) = vn ∈ homCS

(sn, s0)

for the degree one generating morphisms

vn ∈ homCS
(sn, s0) vn,t ∈ homCS

(sn, t) vt,0 ∈ homCS
(t, s0)
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Case (2): We will consider two subcases.
(a) The first subcase is particularly simple. Fix 1 < i0 < n, and consider S =

[s0, . . . , sn], T = [s0, . . . , sn, t], U = [s0, . . . , ̂si0 , . . . , sn, t], with hinj : S → T the evi-
dent injection, and gsurj : T → U the surjection such that gsurj(t) = t, gsurj(sj) = sj , 
for j 	= i0, and gsurj(si0) = si0−1. In this situation, the asserted identity is evident, since 
the injection and surjection do not interact with each other.

(b) Finally, it suffices to consider S = [s0, . . . , sn], T = [s0, . . . , sn, t], U =
[s0, . . . , sn−1, t], with hinj : S → T the evident injection, and gsurj : T → U the surjection 
such that gsurj(sn) = sn−1. (There is also the alternative case where S = [s0, . . . , sn], 
T = [s0, . . . , sn, t], U = [s1, . . . , sn, t], with hinj : S → T the evident injection, and 
gsurj : T → U the surjection such that gsurj(s0) = s1, but it follows from a completely 
parallel argument.)

We must check that f∗
surj ◦ f∗

inj = h∗
inj ◦ g∗surj : CU,st → CS,st where Q = f(S) =

[s0, . . . , sn−1], finj : Q → U is the evident injection, and fsurj : S → Q is the surjection 
such that f(sn) = sn−1.

On objects, this is immediate from the definitions: under both functors, the objects 
s0, . . . , sn−2 are sent to themselves, t is sent to 0, and sn−1 is sent to the twisted complex 
(sn−1 → sn) along the degree one generating morphism vn−1 ∈ homCS

(sn−1, sn).
On morphisms, it is also clear, with the following observation: by the definition of 

functors on twisted complexes, we have

f∗
2 (vt,0, vn−1,t) =

(
h∗
inj

)
2

((
g∗surj

)
1vt,0,

(
g∗surj

)
1vn−1,t

)
= vn ∈ homCS

(
(sn−1 → sn), s0

)

for the degree one generating morphisms

vn−1,t ∈ homCS
(sn−1, t) vt,0 ∈ homCS

(t, s0) �
Remark 5.2. Let T = [t0, t1, . . . , tn] ⊂ S1 be a finite cyclically ordered nonempty set 
regarded as an object of the cyclic category Λ. As usual, we will understand the indices 
modulo n +1 so that ti+n+1 also denotes ti. There is a canonical rotational automorphism 
τ : T → T that sends τ(ti) = ti−1 and hence satisfies τn+1 = idT . One can check that the 
functor Cst takes the morphism τ to the shifted Serre functor S[−1] of the category CT,st. 
(Here we are in a two-periodic setting so only the odd nature of the shift is meaningful, 
but it is more natural to shift by −1 with the graded version in mind.) Note that this 
is compatible with the equivalence CT,st � Qn of Proposition 4.2 and the fact that the 
Serre functor on the category of modules over the An-quiver satisfies Sn+1 = [n −1]. See 
Remark 6.11 for a graded lift of this observation.

6. Graded version

In this section, we indicate how to lift our prior constructions to the traditional 
Z-graded (rather than two-periodic) setting.
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Definition 6.1. Let Astr denote the strict category with objects k-linear A∞-categories 
and morphisms k-linear A∞-functors.

Remark 6.2. There is the evident forgetful functor Per : Astr → Astr
per where we tensor 

up from k to the graded k-algebra k[u, u−1] with deg u = 2.

Next we introduce the natural structure needed to lift our prior constructions. Let 
Sym2(S1) denote the second symmetric product of S1. Recall that it is homeomorphic 
to the Möbius strip, in particular it is homotopy equivalent to a circle.

Definition 6.3. Let Λgr denote the category defined as follows.
Objects are pairs (S, c) of a finite nonempty subset of the circle S ⊂ S1 and a point 

c ∈ Sym2(S1).
Morphisms (S, c) → (S′, c′) are homotopy classes of pairs (ϕ, γ) of a degree 1 map 

ϕ : S1 → S1 such that ϕ(S) ⊂ S′ and a path γ : [0, 1] → Sym2(S1) such that γ(0) = ϕ(c), 
γ(1) = c′.

Composition of morphisms (S, c) → (S′, c′) → (S′′, c′′) is given by the homotopy class 
of the composition

(
ϕ′, γ′) ◦ (ϕ, γ) =

(
ϕ′ ◦ ϕ, γ′#ϕ′(c′)

(
ϕ′ ◦ γ

))

where we write #ϕ′(c′) for the concatenation of paths at ϕ′(c′) ∈ Sym2(S1).

Remark 6.4. Note that every morphism (ϕ, γ) : (S, c) → (S′, c′) can be factored

(ϕ, γ) : (S, c) (ϕ,γconst)−−−−−−→
(
ϕ(S) = S′, ϕ(c)

) (idS1 ,γ)−−−−−−→
(
S′, c′

)

where γconst denotes the constant path.

Remark 6.5. There is the full and essentially surjective forgetful functor For : Λgr → Λ

where we forget the points c ∈ Sym2(S1) and the paths γ : [0, 1] → Sym2(S1).

Next we present a graded version of Definition 2.4.
Let S = [s0, s1, . . . , sn] ⊂ S1 be a finite cyclically ordered nonempty set. As usual, we 

will understand the indices modulo n + 1 so that si+n+1 also denotes si.
Given a point c ∈ Sym2(S1), we can assign a weight αi ∈ {0, 1, 2}, for all i = 0, . . . , n, 

by taking the multiplicity of c in the closed–open interval [si, si+1). Note in particular 
the total weight satisfies 

∑n+1
i=0 αi = 2.

Definition 6.6. Let S = [s0, s1, . . . , sn] ⊂ S1 be a finite cyclically ordered nonempty set.
Let c ∈ Sym2(S1) be a point of the second symmetric power of S1.
We define the unital k-linear A∞-category CS,c,gr as follows.
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(1) Objects: Ob CS,c,gr = S.
(2) Morphisms: the free k-modules generated by the identity morphisms and the 

additional morphisms

vi ∈ homCS
(si, si+1), |vi| = 1 − αi, for i = 0, . . . , n.

(3) Compositions: all are zero except for the k-linear maps given by the identity 
compositions and the additional compositions

μn+1(vi+n, . . . , vi) = idsi , for i = 0, . . . , n.

We define the unital k-linear A∞-category CS,c,st,gr to be the A∞-category of twisted 
complexes of CS,c,gr .

We have the following graded version of Proposition 4.2. Let Qn,gr denote the k-linear 
triangulated differential graded derived category of finite-dimensional left modules over 
the An-quiver

•
1
−→ •

2
−→ · · · −→ •

n

For i = 1, . . . , n, denote by mi ∈ Qn the free rank one module supported at the ith vertex 
and zero elsewhere. Note that among these objects, there are degree one generating 
morphisms wi : mi → mi+1, for i = 1, . . . , n − 1, and no other linearly independent 
non-identity morphisms.

The proof of the following is immediate given that of Proposition 4.2.

Proposition 6.7. Let S = [s0, s1, . . . , sn] ⊂ S1 be a finite cyclically ordered nonempty set.
Let c ∈ Sym2(S1) be a point of the second symmetric power of S1.
Fix the element s0 ∈ S so that the remaining elements inherit the linear order 

s1, . . . , sn.
Then there is a quasi-equivalence of A∞-categories

F : Qn,gr
∼−→ CS,c,st,gr

such that F (mi) = si[ηi], for i = 1, . . . , n, and F (wi) = vi, for i = 1, . . . , n − 1, where 
the shift ηi ∈ {0, 1, 2} is the multiplicity of c in the closed–open interval [s0, si).

Now we have arrived at the graded version of Theorem 5.1. The proof is largely a 
routine check of gradings given our prior constructions.

Theorem 6.8. The assignment of the A∞-category CS,c,st,gr to a pair of a finite cyclically 
ordered nonempty set S ⊂ S1 and a point c ∈ Sym2(S1) naturally extends to a functor 
Cst,gr : Λop

gr → Astr fitting into a commutative diagram
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Λop
gr

For

Cst,gr
Astr

Per

Λop Cst Astr
per

Proof. Recall that every morphism (ϕ, γ) : (S, c) → (S′, c′) can be factored

(ϕ, γ) : (S, c) (ϕ,γconst)−−−−−−→
(
ϕ(S) = S′, ϕ(c)

) (idS1 ,γ)−−−−−−→
(
S′, c′

)

where γconst denotes the constant path.
Let us explain the functoriality of the assignment CS,c,st,gr under morphisms of the 

form

γ = (idS1 , γ) : (S, c) −→
(
S, c′

)

We will then leave the remaining compatibility check to the reader.
Given a path γ : [0, 1] → Sym2(S1), we can assign a weight βi ∈ Z, for all i = 0, . . . , n, 

by the signed count of the number of times γ(t) crosses si ∈ S from the closed–open 
interval [si−1, si) to the open–closed interval [si, si+1).

On objects, we define the induced functor to be given by shifts

γ∗ : CS,c,st,gr → CS,c′,st,gr γ∗si = si[−βi]

On morphisms and compositions, we set it to be the identity.
We leave the compatibility check of our prior constructions to the reader. �

Remark 6.9. The compatibility check can be made particularly easy by the following 
observation: with the construction of γ∗ in hand, we can move any c ∈ Sym2(S1) to 
consist of two distinct points, and also move any c ∈ Sym2(S1) to arrange that a given 
morphism (ϕ, γ) : (S, c) → (S′, c′) has the property that ϕ is injective on c.

Remark 6.10. Let T ⊂ S1 be a finite cyclically ordered nonempty set. Let c ∈ Sym2(S1)
be a point of the second symmetric power of S1. Consider the pair (T, c) as an object of 
the category Λgr . There is a partial sweep automorphism σ = (idS1 , γ) : (T, c) → (T, c)
where γ : [0, 1] → Sym2(S1) fixes one point of c and wraps (with reverse orientation) 
the other around S1 back to itself. One can check that the functor Cst,gr takes the 
morphism σ to the shift functor [−1] on the category CT,c,st,gr . Similarly, the total sweep 
automorphism σ2 that wraps both points of c around S1 back to themselves is taken to 
the squared shift functor [−2].

Remark 6.11. Let T = [t0, t1, . . . , tn] ⊂ S1 be a finite cyclically ordered nonempty set.
As usual, we will understand the indices modulo n + 1 so that ti+n+1 also denotes ti. 
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Let c ∈ Sym2(S1) be a point of the second symmetric power of S1. Consider the pair 
(T, c) as an object of the category Λgr . There is a canonical rotation automorphism 
τ = (ϕ, γ) : (T, c) → (T, c) where ϕ(ti) = ti−1 and γ : [0, 1] → Sym2(S1) takes c
minimally (with reverse orientation) to ϕ(c). It satisfies τn+1 = σ2 where σ2 is the total 
sweep of Remark 6.10. One can check that the functor Cst,gr takes the morphism τ to the 
shifted Serre functor S[−1] of the category CT,c,st,gr . Note that this is compatible with 
the equivalence CT,c,st,gr � Qn,gr of Proposition 6.7 and the fact that the Serre functor 
on the category of modules over the An-quiver satisfies Sn+1 = [n − 1].
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