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Abstract

In this paper we develop a measure-theoretic method to treat problems in hypergraph theory. Our
central theorem is a correspondence principle between three objects: an increasing hypergraph sequence, a
measurable set in an ultraproduct space and a measurable set in a finite dimensional Lebesgue space. Using
this correspondence principle we build up the theory of dense hypergraphs from scratch. Along these lines
we give new proofs for the Hypergraph Removal Lemma, the Hypergraph Regularity Lemma, the Counting
Lemma and the Testability of Hereditary Hypergraph Properties. We prove various new results including
a strengthening of the Regularity Lemma and an Inverse Counting Lemma. We also prove the equivalence
of various notions for convergence of hypergraphs and we construct limit objects for such sequences. We
prove that the limit objects are unique up to a certain family of measure preserving transformations. As our
main tool we study the integral and measure theory on the ultraproduct of finite measure spaces which is
interesting on its own right.
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1. Introduction

The so-called Hypergraph Regularity Lemma (Rödl–Skokan [15], Rödl–Schacht [14],
Gowers [5], later generalized by Tao [18]) is one of the most exciting result in modern
combinatorics. It exists in many different forms, strength and generality. The main message in all
of them is that every k-uniform hypergraph can be approximated by a structure which consists of
boundedly many random-looking (quasi-random) parts for any given error ϵ. Another common
feature of these theorems is that they all come with a corresponding counting lemma [13] which
describes how to estimate the frequency of a given small hypergraph from the quasi-random
approximation of a large hypergraph. One of the most important applications of this method
is that it implies the Hypergraph Removal Lemma (first proved by Nagle et al. [13]) and by
an observation of Solymosi [17] it also implies Szemerédi’s celebrated theorem on arithmetic
progressions in dense subsets of the integers even in a multidimensional setting.

In this paper we present an analytic approach to the subject. First, for any given sequence of
hypergraphs we associate the so-called ultralimit hypergraph, which is a measurable hypergraph
in a large (non-separable) probability measure space. The ultralimit method enables us to convert
theorems of finite combinatorics to measure theoretic statements on our ultralimit space. In the
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second step, using separable factors we translate these measure-theoretic theorems to well-known
results on the more familiar Lebesgue spaces.

The paper is built up in a way that these two steps are compressed into a correspondence
principle between the following three objects.

1. An increasing sequence {Hi }
∞

i=1 of k-uniform hypergraphs.
2. The ultraproduct hypergraph H ⊆ Xk , where X is the ultraproduct of the vertex sets.
3. A measurable subset W ⊆ [0, 1]

2k
−1.

Using this single correspondence principle we are able to prove several results in hypergraph
theory. The next list is a summary of some of these results.

1. Removal lemma. We prove the Hypergraph Removal Lemma directly from Lebesgue’s
density theorem applied for the set W ⊆ [0, 1]

2k
−1. In a nutshell, we convert the original

removal lemma into the removal of the non-density points from W which is a 0-measure set.
(Theorem 1.)

2. Regularity lemma. We deduce the Hypergraph Regularity Lemma from a certain finite box
approximation of W in L1. To be more precise, W is approximated by a set which is the
disjoint union of finitely many direct product sets in [0, 1]

2k
−1. (Theorem 2.)

3. Limit object. We prove that W serves as a limit object for hypergraph sequences {Hi }
∞

i=1
which are convergent in the sense that the densities of every fixed hypergraph F converge.
Limits of k-uniform hypergraphs can also be represented by 2k

− 2 variable measurable
functions w : [0, 1]

2k
−2

→ [0, 1] such that the coordinates are indexed by the proper non-
empty subsets of {1, 2, . . . , k} and w is invariant under the induced action of Sk on the
coordinates. This generalizes a theorem by Lovász and Szegedy. (Theorem 7.) Note that a
similar limit object was defined by Kallenberg, in the context of exchangeable arrays [8].

4. Sampling and concentration. Even tough W is a measurable set, it makes sense to talk
about random samples from W which are ordinary hypergraphs. We prove concentration
results for this sampling process. The sampling processes give rise to random hypergraph
models which are interesting on their own right. (Theorems 11 and 12.)

5. Testability of hereditary properties. We give a new proof for the testability of hereditary
hypergraph properties. (This was first proved for graphs by Alon-Shapira and later for
hypergraphs by Rödl–Schacht.) The key idea is based on a modified sampling process from
the limit object W that we call “hyperpartition sampling”. This creates an overlay of samples
from W and the members of the sequence {Hi }

∞

i=1 such that expected Hamming distance of
Hi and the corresponding sample is small. (Theorem 8.)

6. Regularity as compactness. We formulate a strengthening of the Hypergraph Regularity
Lemma which puts the regularity in the framework of compactness. Roughly speaking this
theorem says that every increasing hypergraph sequence has a subsequence which converges
in a very strong (structural) sense. Here we introduce the notion of strong convergence.
(Theorem 4.)

7. Distance notions. We introduce several distance notions between hypergraph limit objects
(and hypergraphs) and we analyze their relationship. (Theorem 10.)

8. Uniqueness. We prove the uniqueness of the limit object up to a family of measure preserv-
ing transformations on [0, 1]

2k
−1. This generalizes a result of Borgs–Chayes–Lovász from

graphs to hypergraphs. (Theorem 9.)
9. Counting Lemma. We prove that the structure of regular partitions determine the subhyper-

graph densities. (Theorem 13 and Corollary 4.2.)
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10. Equivalence of convergence notions. We prove that convergence and strong convergence
are equivalent. For technical reasons we introduce a third convergence notion which is a
slight variation of strong convergence and we call it structural convergence. This is also
equivalent with the other two notions. The third notation enables us to speak about structural
limit objects which turns out to be the same as the original limit object. (Theorem 14.)

11. Inverse counting lemma. Using the equivalence of convergence notions we obtain that if
two hypergraphs have similar sub-hypergraph densities then they have similar regular par-
titions. In other words this means that regular partitions can be tested by sampling small
hypergraphs. (Corollary 4.1.)

Remark. In our proofs we use the Axiom of Choice. However, Gödel in his seminal work The
Consistency of the Axiom of Choice and the Generalized Continuum Hypothesis with the Axioms
of Set Theory proved that (see also [4]): if Γ is an arithmetical statement and Γ is provable in ZF
with the Axiom of Choice then Γ is provable in ZF. In fact, Gödel gave an algorithm to convert
a formal ZFC-proof of an arithmetical statement to a ZF-proof. An arithmetical statement is a
statement in the form of

(Q1x1Q2x2 . . .Qk xk)P(x1, x2, . . . , xk),

where the Qi ’s are existential or universal quantifiers and the relation P(x1, x2, . . . , xk) can be
checked by a Turing machine in finite time. The reader can convince himself that the Hypergraph
Removal Lemma, The Hypergraph Regularity Lemma, the Counting Lemma and the Inverse
Counting Lemma are all arithmetical statements.

2. Preliminaries

2.1. Homomorphisms, convergence and completion of hypergraphs

Let Hk denote the set of isomorphism classes of finite k-uniform hypergraphs. For an
element H ∈ Hk we denote the vertex set by V (H) and the edge set by E(H). In this paper
we view a k-uniform hypergraph H on the vertex set V as a subset of V k without having
repetitions in the coordinates and being invariant under the action of the symmetric group Sk .
Let v1, v2, v3, . . . , v|V | be the elements of V . Then an edge E ∈ E(H) is a subset of k-elements
{vi1 , vi2 , . . . , vik } ⊂ V such that (vi1 , vi2 , . . . , vik ) ∈ H . If L is a family of edges in H , then L̂
denote the set of elements (vi1 , vi2 , . . . , vik ) ∈ H such that {vi1 , vi2 , . . . , vik } ∈ L .

Definition 2.1. A homomorphism between two elements F, H ∈ Hk is a map f : V (F) →

V (H) which maps edges of F into edges of H . We denote by hom(F, H) the number of
homomorphisms from F to H and by hom0(F, H) the number of injective homomorphisms.
An induced homomorphism is a map f : V (G) → V (H) which maps edges to edges and
non-edges to non-edges (see [3]).

Note that in the definition of hom the map V (F) → V (H) does not have to be injective
but the definition implies that it is injective if we restrict it to any edge of F . There is a simple
inclusion–exclusion type formula which computes hom0 from hom. To state this we will need
some more definitions.

Let P = {P1, P2, . . . , Ps} be a partition of V (F) and let f : V (F) → P be the function
which maps each vertex to its partition set. We define a hypergraph F(P) whose vertex set
is P and the edge set is f (E(F)). Note that F(P) is a k-uniform hypergraph if and only if
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every partition set intersect every edge in at most 1 element. We define the height h(P) of P as
|V (F)| − |P|.

Lemma 2.1. If F and H are k-uniform hypergraphs then

hom(F, H) =


P

hom0(F(P), H)

and

hom0(F, H) =


P
(−1)h(P) hom(F(P), H)

where P runs through all partitions of V (F) and hom(F(P), H) and hom0(F(P), H) are
defined to be 0 if F(P) is not k-uniform.

Proof. The first equation is obvious from the definitions. It implies that for any partition P we
have that

hom(F(P), H) =


P ′≤P

hom0(F(P ′), H)

where the sum runs through all partitions P ′ such that P is a refinement of P ′. The inversion
formula for the partition lattice yields the second equation. �

Now we are ready to prove the next lemma.

Lemma 2.2. If H1, H2 ∈ Hk are two hypergraphs such that hom(F, H1) = hom(F, H2) for
every element F ∈ Hk then H1 and H2 are isomorphic.

Proof. Lemma 2.1 implies that hom0(F, H1) = hom0(F, H2) for all hypergraphs F ∈ Hk .
In particular hom0(H1, H2) = hom0(H1, H1) > 0 and hom0(H2, H1) = hom0(H2, H2) > 0
which implies that |V (H1)| = |V (H2)| and |E(H1)| = |E(H2)|. We obtain that every injective
homomorphism from H1 to H2 is an isomorphism. Since such a homomorphism exists the proof
is complete. �

The next two definitions will be crucial.

Definition 2.2. The homomorphism density t (F, H) denotes the probability that a random map
f : V (F) → V (H) is a homomorphism. It can also be defined by the equation

t (F, H) =
hom(F, H)

|V (H)||V (F)|
.

We also define tind(F,G) which is the probability that a random map f : V (F) → V (H) is an
induced homomorphism. Finally t0

ind(F, H) denotes the probability that a random injective map
is an induced homomorphism.

Definition 2.3. A t-fold equitable blowup of a hypergraph H ∈ Hk is a hypergraph H ′ which
is obtained by replacing each vertex of H by t new vertices and each edge of H by a complete
k-partite hypergraph on the corresponding new vertex sets.

It is clear that if H ′ is a t-fold equitable blowup of H then hom(F, H ′) = hom(F, H)t |V (F)|

and consequently t (F, H) = t (F, H ′). The next lemma shows that hypergraphs from Hk
are “essentially” separated by homomorphism densities except that equitable blowups of a
hypergraph cannot be separated.
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Lemma 2.3. Let H1, H2 ∈ Hk be two hypergraphs and assume that t (F, H1) = t (F, H2) for
every F ∈ Hk . Then there exists a H ∈ Hk which is an equitable blowup of both H1 and H2.

Proof. Let H ′

1 be the |V (H2)|-fold equitable blowup of H1 and let H ′

2 be the |V (H1)|-fold
equitable blowup of H2. Then

|V (H ′

1)| = |V (H ′

2)| = |V (H1)||V (H2)|

and t (F, H ′

1) = t (F, H ′

2) for every F ∈ Hk . We obtain that

hom(F, H ′

1) = t (F, H ′

1)|V (H
′

1)|
|V (F)|

= t (F, H ′

2)|V (H2)
′
|
|V (F)|

= hom(F, H ′

2)

for every F ∈ Hk . By Lemma 2.2 the proof is complete. �

The previous lemma motivates the following definition.

Definition 2.4. Two hypergraphs H1, H2 ∈ Hk will be called density equivalent if there
exists H ∈ Hk which is an equitable blowup of both H1, H2 or equivalently, by Lemma 2.3,
t (F, H1) = t (F, H2) for every F ∈ Hk .

Homomorphism densities can be used to define two convergence notions on the set Hk which
are slight variations of each other.

Definition 2.5. A hypergraph sequence {Hi }
∞

i=1 in Hk is called convergent if

lim
i→∞

t (F, Hi )

exists for every F ∈ Hk . We say that {Hi }
∞

i=1 is increasingly convergent if it is convergent and

lim
i→∞

|V (Hi )| = ∞.

Both convergence notions lead to a completion of the set Hk . We denote the first completion
by H̄k and the second one by Ĥk . These two spaces are very closely related to each other. It will
turn out that H̄k is arc-connected whereas Ĥk is the union of Hk with the discrete topology and
H̄k . In the space Ĥk the set H̄k behaves as a “boundary” for the set Hk . An advantage of the set
Ĥk is that it directly contains the familiar set Hk of hypergraphs. A disadvantage of Ĥk is that it
is not connected. On the other hand H̄k is connected and k-uniform hypergraphs are represented
in it up to dense equivalence. In this paper we focus only on H̄k so we give a precise definition
only of this space.

Let δ be the following metric on Hk . For two elements H1, H2 ∈ Hk we define δ(H1, H2) as
the infimum of the numbers ϵ ≥ 0 for which |t (F, H1)−t (F, H2)| ≤ ϵ holds for all F ∈ Hk with
|V (F)| ≤ 1/ϵ. Two hypergraphs have δ-distance zero if and only if they are density equivalent.
We denote the completion of this metric space by H̄k .

The elements of the space H̄k have many interesting representations. We give here one which
is the most straightforward. Let Mk denote the compact space [0, 1]

Hk . Every graph H ∈ Hk
can be represented as a point in Mk by the sequence T (H) = {t (F, H)}F∈Hk . By Lemma 2.3
the point set T (Hk) represents the density equivalence classes of k-uniform hypergraphs. The
closure of T (Hk) in Mk is a representation of H̄k . This representation shows immediately that
H̄k is compact since it is a closed subspace of the compact space Mk . To see that H̄k is arc-
connected requires some more effort, but it will follow easily from one of our results in this
paper. (Theorem 7.)
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An important feature of the space H̄k is that it makes sense to talk about homomorphism
densities of the form t (F, X) if X ∈ H̄k and F ∈ Hk .

We will denote by [n] the set {1, 2, . . . , n}. For a subset B ⊂ [k], r(B) will stand for the
non-empty subsets of B. Similarly, r([n], k) will denote the set of all non-empty subsets of [n]

having size at most k. If K is a hypergraph on [n] and H ⊂ V [k] is a k-uniform hypergraph then
T (K , H) ⊂ V [n] denotes the (K , H)-homomorphism set, where (x1, x2, . . . , xn) ∈ T (K , H) if
1 → x1, 2 → x2, . . . , n → xn defines a homomorphism. Clearly |T (K , H)| = hom(K , H). For
a subset E ⊂ [n], |E | = k let PE : V [n]

→ V E be the natural projection and PsE : V [k]
→ V E

be the natural bijection associated to a bijective map sE : [k] → E . Then it is easy to check that

T (K , H) =


E∈E(K )

P−1
E


PsE (H)


.

Similarly, Tind(K , H) ⊂ V [n] denotes the (K , H)-induced homomorphism set, where
(x1, x2, . . . , xn) ∈ Tind(K , H) if 1 → x1, 2 → x2, . . . , n → xn defines an induced
homomorphism. Then

Tind(K , H) =


E∈E(K )

P−1
E


PsE (H)


∩


E ′∈E(K )c

P−1
E ′


PsE ′ (H

c)

,

where H c denotes the complement of H in the complete hypergraph on the set V . A simple
inclusion–exclusion argument shows that if a hypergraph sequence {Hi }

∞

i=1 is convergent, then
for any k-uniform hypergraph F the sequence {tind(F, Hi )}

∞

i=1 is convergent as well.

2.2. The Removal and the Regularity Lemmas

First we state the Removal Lemma.

Theorem 1 (Hypergraph Removal Lemma). For every k-uniform hypergraph K and constant
ϵ > 0 there exists a number δ = δ(K , ϵ) such that for any k-uniform hypergraph H on

the node set X with t (K , H) < δ there is a subset L of E(H) with L ≤ ϵ


|X |

k


such that

t (K , H \ L̂) = 0. ([5,7,13,18].)

Now let us turn to the regularity lemma. Let X be a finite set, then Kr (X) ⊂ Xr denotes
the complete r -uniform hypergraph on X . An l-hyperpartition H is a family of partitions
Kr (X) = ∪

l
j=1 P j

r , where P j
r is an r -uniform hypergraph, for 1 ≤ r ≤ k. We call H δ-equitable

if for any 1 ≤ r ≤ k and 1 ≤ i < j ≤ l:

∥P i
r | − |P j

r ∥

|Kr (X)|
< δ.

An l-hyperpartition H induces a partition on Kk(X) in the following way.

• Two elements a, b ∈ Kk(X), a = {a1, a2, . . . , ak}, b = {b1, b2, . . . , bk} are equivalent if
there exists a permutation σ ∈ Sk such that for any subset A = {i1, i2, . . . , i|A|} ⊂ [k],

{ai1 , ai2 , . . . , ai|A|
} and {bσ(i1), bσ(i2), . . . , bσ(i|A|)} are both in the same P j

|A|
for some 1 ≤

j ≤ l.

It is easy to see that this defines an equivalence relation and thus it results in a partition ∪
t
j=1 C j

of Kk(X) into H-cells. A cylinder intersection L ⊂ Kr (X) is an r -uniform hypergraph defined
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in the following way. Let B1, B2, . . . , Br be (r − 1)-uniform hypergraphs on X ; then an r -edge
{a1, a2, . . . , ar } is in L if there exists a permutation τ ∈ Sr such that

{aσ(1), aσ(2), . . . , aσ(i−1), aσ(i+1), . . . , aσ(r)} ∈ Bi for any 1 ≤ i ≤ r.

As in the graph case, we call an r -uniform hypergraph G ϵ-regular if |G|

|Kr (X)|
−

|G ∩ L|

|L|

 ≤ ϵ,

for each cylinder intersection L , where |L| ≥ ϵ|Kr (X)|. Now we are ready to state the
Hypergraph Regularity Lemma for k-uniform hypergraphs (see [5,7,14,15,18]).

Theorem 2 (Hypergraph Regularity Lemma). Let fix a constant k > 0. Then for any ϵ > 0
and function F : N → (0, 1) there exist constants c = c(ϵ, F) and N0(ϵ, F) such that if H
is a k-uniform hypergraph on a set X, |X | ≥ N0(ϵ, F), then there exists an F(l)-equitable
l-hyperpartition H for some 1 < l ≤ c such that

• Each Pr
j is F(l)-regular.

• |H△T | ≤ ϵ


|X |

k


where T is the union of some H-cells.

2.3. Combinatorial structures

In this subsection we introduce some further definitions about hyperpartitions. Let H = {P j
r }

be an l-hyperpartition on a set X where 1 ≤ j ≤ l and 1 ≤ r ≤ k. We shall need
the notion of a directed H-cell. Let f : r([k]) → [l] be an arbitrary function. Then the
directed cell with coordinate f is the set of ordered k-tuples (x1, x2, . . . , xk) ∈ X k such that
{xi1 , xi2 , . . . , xir } ∈ P f (S)

r for every set S = {i1, i2, . . . , ir } ∈ r([k]).
The symmetric group Sk is acting on X k by permuting the coordinates and this action induces

an action on the directed H-cells. Note that a H-cell in the non-directed sense is the union of an
orbit of a directed H-cell under the action of Sk .

An abstract (k, l)-cell is a function c : r([k]) → [l]. A (k, l)-cell system C is a subset of all
possible (k, l)-cells. The symmetric group Sk is acting on r([k]) and this induces an action on the
(k, l)-cells. We say that the system C is symmetric if it is invariant under the action of Sk . Such a
symmetric (k, l)-system shall be called a combinatorial structure.

Thus if H is an l-hyperpartition on [n] and C is a combinatorial structure then we can define
a k-uniform hypergraph H(H, C, [n]) in the following way. The hypergraph H(H, C, [n]) is the
union of those H-cells in [n] which belong to the coordinates of the combinatorial structure C.
If F is a k-uniform hypergraph then we may compute the homomorphism density of F in a
combinatorial structure C as follows. Assume that V (F) = [n] and fix a bijection sE : [k] → E
for each edge of F . A function g : r([n], k) → [l] is called a homomorphism of F into C if for
every edge E the restriction g ◦ sE : r [k] → [l] is a (k, l)-cell of C. The homomorphism density
t (F, C) is the probability that a random map f : r([n], k) → [l] is a homomorphism.

2.4. Regularity lemma as compactness

In this section we state a new type of regularity lemma together with a counting lemma which
implies the one stated in the previous section. An interesting feature of this regularity lemma is
that arbitrarily decreasing functions (which are common features in “strong” regularity lemmas)
are replaced by a sequential compactness type statement.
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Theorem 3 (Hypergraph Sequence Regularity Lemma). For every ϵ > 0 and k-uniform
increasing hypergraph sequence {Hi }

∞

i=1 there is a natural number l = l(ϵ, {Hi }
∞

i=1) such that
there is a subsequence {H ′

i }
∞

i=1 of {Hi }
∞

i=1 together with a sequence of l-hyperpartitions {Hi }
∞

i=1
satisfying the following properties.

1. For every i there is Ti which is the union of some Hi -cells such that |H ′

i △Ti | ≤ ϵ


|X i |
k


where T is the union of some Hi -cells and X i is the vertex set of H ′

i .
2. The hyperpartition Hi is δi -equitable and δi -regular where limi→∞ δi = 0.
3. Every Ti has the same combinatorial structure C
4. limi→∞ t (F, Ti ) = t (F, C) for every k-uniform hypergraph F.

Note that the value of l depends on the concrete sequence {Hi }
∞

i=1. To see this one can take
a large random graph G on n vertices and then take the i-fold equitable blowups Gi of G. The
reader can check that in this case (with high probability) l = n for any ϵ < 1/2.

It is quite natural to interpret Theorem 3 in terms of compactness.

Definition 2.6. An increasing hypergraph sequence {Hi }
∞

i=1 is called strongly convergent if for
every ϵ > 0 there is a number l, hypergraphs Ti on the vertex sets X i of Hi and l-hyperpartitions
Hi on X i for every i such that

1. Ti is the union of some Hi -cells
2. |Hi△Ti | ≤ ϵ


|X i |

k


3. The hyperpartition Hi is δi regular and δi equitable where limi→∞ δi = 0.
4. Every Ti has the same combinatorial structure.

Using this definition the sequence regularity lemma gets the following simple form.

Theorem 4 (Regularity as Compactness). Every hypergraph sequence has a strongly convergent
subsequence.

2.5. Euclidean hypergraphs

The goal of this subsection is to generalize the notion of k-uniform hypergraphs and
homomorphism densities to the Euclidean setting in order to define limit objects for convergent
sequences of finite hypergraphs. Seemingly, the appropriate Euclidean analogue of k-uniform
hypergraphs would be just the Sk-invariant measurable subsets of [0, 1]

k . One could easily define
the notion of homomorphisms from finite k-hypergraphs to such Euclidean hypergraphs and
even the associated homomorphism densities. The problem with this simple notion of Euclidean
hypergraphs is that they could serve as limit objects only for very special finite hypergraph
sequences. In order to construct (see Example 1) limit objects to the various random construction
of convergent hypergraph sequences one needs a little bit more complicated notion.

Let k > 0 and consider [0, 1]
2k

−1
= [0, 1]

r([k]), that is the set of points in the form (xA1 ,

xA2 , . . . , xA2k−1
), where A1, A2, . . . , A2k−1 is a list of the non-empty subsets of [k]. Observe

that the symmetry group Sk acts on [0, 1]
r([k]) by

π((xA1 , xA2 , . . . , xA2k−1
)) = (xπ−1(A1)

, xπ−1(A2)
, . . . , xπ−1(A2k−1)

).

We call a measurable S−k-invariant subset H ⊆ [0, 1]
2k

−1 a k-uniform Euclidean hypergraph.
Now let K be a finite k-uniform hypergraph and let Σ (K ) ⊆ r([n], k) be the simplicial complex
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of K consisting of the non-empty subsets of the k-edges of K . Let C1,C2, . . . ,C|Σ (K )| be a list
of the elements of Σ (K ).

Definition 2.7 (Euclidean Hypergraph Homomorphism). A map g : r([n], k) → [0, 1] is called
a Euclidean hypergraph homomorphism from K to H if for any edge E ∈ E(K ):

(g(sE (A1)), g(sE (A2)), . . . , g(sE (A2k−1))) ∈ H,

where sE : [k] → E is a fixed bijection. The induced Euclidean hypergraph homomorphism is
defined accordingly.

Note that the notion of hypergraph homomorphism does not depend on the choice of sE . Thus
the Euclidean hypergraph homomorphism set T (K ,H) ⊂ [0, 1]

r([n],k) is the set of points
(yB1 , yB2 , . . . , yB|r([n],k)|) such that the map g :→ [0, 1], g(Bi ) = yBi is a homomorphism.
One can similarly define the Euclidean hypergraph induced homomorphism set. We
call λ(T (K ,H)) the |Σ (K )|-dimensional Lebesgue-measure of the homomorphism set the
homomorphism density. We say that the hypergraph H is the limit of the k-uniform hypergraphs
{Hn}

∞

n=1 if

lim
n→∞

t (K , Hn) = λ(T (K ,H))

for any finite k-uniform hypergraph K .

Example 1. There are many ways to define random k-uniform hypergraph sequences. The most
natural one is the random sequence {Hn}

∞

n=1, where each edge of the complete hypergraph on
n-vertices is chosen with probability 1

2 to be an edge of Hn . Thus for any k-uniform hypergraph
K , limn→∞ t (K , Hn) = ( 1

2 )
|E(K )| with probability 1. Let us consider the hypergraph

H =


(xA1 , xA2 , . . . , xA2k−1

) ∈ [0, 1]
2k

−1
| 0 ≤ x[k] ≤

1
2


.

An easy calculation shows that λ(T (K ,H)) = ( 1
2 )

|E(K )| that is H is the limit of a random hy-
pergraph sequence {Hn}

∞

n=1 with probability 1.

Example 2. Now we consider a different notion of randomness. Let the random sequence
{H ′

n}
∞

n=1 be constructed in the following way. First choose each (k − 1)-subset of [n] randomly
with probability 1

2 . Then E will be an edge of H ′
n if all its (k − 1)-dimensional hyperedges are

chosen. Clearly, limn→∞ t (K , H ′
n) = ( 1

2 )
|K |k−1 with probability 1, where |K |k−1 is the number

of (k − 1)-hyperedges in Σ (K ). Now we consider the hypergraph

H′
=


(xA1 , xA2 , . . . , xA2k−1

) ∈ [0, 1]
2k

−1
| 0 ≤ x1,2,3,...,k−1 ≤

1
2
,

0 ≤ x1,2,3,...,k−2,k ≤
1
2
, . . . , 0 ≤ x2,3,...,k ≤

1
2


.

Then λ(T (K ,H′)) = ( 1
2 )

|K |k−1 . Thus H′ is the limit of a random hypergraph sequence {H ′
n}

∞

n=1
with probability 1.

Now let K be a finite k-uniform hypergraph. For any E ∈ E(K ) we fix a bijection sE : [k] → E
as above. Let LsE : [0, 1]

r([k])
→ [0, 1]

r([E]),

LsE (xA1 , xA2 , . . . , xA2k−1
) = (xsE (A1), xsE (A2), . . . , xsE (A2k−1)

)
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be the natural measurable isomorphism associated to the map sE . Also, let L E : [0, 1]
r([n],k)

→

[0, 1]
r(E) be the natural projection. Then for a k-uniform Euclidean hypergraph H and a finite

k-uniform hypergraph K on n vertices

T (K ,H) =


E∈E(K )

L−1
E (LsE (H)). (1)

Also,

Tind(K ,H) =


E∈E(K )

L−1
E (LsE (H)) ∩


E ′∈E(K )c

L−1
E ′ (LsE ′ (Hc)). (2)

We formulate (1) in an integral form as well. Let WH : [0, 1]
r([k])

→ {0, 1} be the characteristic
function of the Euclidean hypergraph H. We call such an object a hypergraphon. Then

λ(T (K ,H)) =

 1

0

 1

0
. . .

 1

0

 
E∈E(K )

ΨE


dxC1dxC2 . . . dxCΣ (K ) ,

where ΨE is the characteristic function of L−1
E (LsE (H)). Clearly,

ΨE (xC1 , xC2 , . . . , xCΣ (K )) = WH(xsE (A1), xsE (A2), . . . , xsE (A2k−1)
).

Thus, we have the integral formula

λ(T (K ,H))

=

 1

0

 1

0
. . .

 1

0

 
E∈E(K )

WH(xsE (A1), xsE (A2), . . . , xsE (A2k−1)
)


dxC1 . . . dxCΣ (K ) .

Remark. One can introduce the notion of a projected hypergraphon WH which is the projec-
tion of a hypergraphon to the first 2k

− 2 coordinates, where the last coordinate is associated to
[k] itself. That is

WH(xA1 , xA2 , . . . , xA2k−2
) =

 1

0
WH(xA1 , xA2 , . . . , xA2k−1

)dxA2k−1
.

That is WH is a [0, 1]-valued function which is symmetric under the induced Sk-action of its
coordinates. By the classical Fubini theorem we obtain that if H is the limit of the hypergraphs
{Hi }

∞

i=1 then

limi→∞t (K , Hi )

=

 1

0

 1

0
. . .

 1

0


E∈E(K )

WH(xsE (A1), xsE (A2), . . . , xsE (A2k−2)
)dxC1 dxC2 . . . dxC|K |k−1

,

where the integration is over the variables associated to the simplices of dimension less than k.
Note that in the case k = 2 it is just the graph limit formula of [10].

Note that for a combinatorial structure C one can define a hypergraphon WC ⊆ [0, 1]
2k

−1.
Recall that an l-box Z in [0, 1]

2k
−1 is a product set in the form

i1

l
,

i1 + 1
l


×


i2

l
,

i2 + 1
l


× · · · ×


i2k−1

l
,

i2k−1 + 1

l


.
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The map f : r [k] → [l], defined by f (A j ) = i j is the coordinate function of the box Z . Then
WC is the union of the boxes corresponding to the coordinates of the combinatorial structure C.
It is easy to check that t (F, C) = t (F,WC) for any k-uniform hypergraph F .

2.6. W -random graphs and sampling

Let us consider the following natural sampling process for k-uniform hypergraphs. We pick n
vertices v1, v2, . . . , vn independently and uniformly at random from the vertex set X of H and
then we create a hypergraph G(H, n) with vertex set [n] such that {i1, i2, . . . , ik} is an edge in
G(H, n) if and only if {vi1 , vi2 , . . . , vik } is an edge in H . Thus G(H, n) is a hypergraph valued
random variable. The distribution of G(H, n) can be described in terms of the homomorphism
densities tind(F, H) where |V (F)| ≤ n. The probability that we see a fixed hypergraph F on [n]

in G(H, n) is equal to tind(F, H).
Now we generalize sampling for Euclidean hypergraphs W ⊂ [0, 1]

r([k]). Let us introduce
a random variable X S for every set S ∈ r([n], k) which are independent and have uniform
distribution in [0, 1]. Then {i1, i2, . . . , ik} is an edge in G(W, n) if W (X A1 , X A2 , . . . , X A2k−1

) =

1 where A1, A2, . . . , A2k−1 are the non-empty subsets of {i1, i2, . . . , ik}. This again gives a
hypergraph valued random variable on [n] which is the infinite analogy of the finite setting.

Another important sampling process from W will be called the hyperpartition sampling.
Assume that H = {Pr

j }1≤ j≤l,1≤r≤k is an l-hyperpartition on the set [n]. We consider the function

g : r([n], k) → [l], which is equal to j if and only if S ∈ P |S|

j . Now we define a sampling
process G(W,H, n) in the same way as G(W, n) with the extra restriction that X S has uniform
distribution in the interval [(g(S) − 1)/ l, g(S)/ l). This sampling process has the property that
tind(F,W ) = 0 implies tind(F,G(W,H, n)) = 0 with probability 1.

Finally, we introduce the notion of random coordinate systems. Let Zn be the random variable
which is a random point in [0, 1]

r([n],k) with uniform distribution. In other words Zn is a r([n], k)-
tuple of independent random variables with uniform distribution { fT }T ∈r([n],k). Let [n]

k
0 be the

set of elements in [n]
k without having repetitions in their coordinates. We introduce the random

variables τ n
: [n]

k
0 → [0, 1]

r([k]) such that the component τ n
S (x1, x2, . . . , xk) corresponding to

an element {i1, i2, . . . , it } = S ∈ r([k]) is equal to the value of fxi1 ,xi2 ,...,xit
. We call the random

variables τ n random coordinate systems corresponding to [n]. An important property of (τ n)

is that for a measurable set W ⊆ [0, 1]
r([k]) the distribution of the random hypergraph-valued

function (τ n)−1(W ) is exactly the same as the distribution of G(W, [n]).

2.7. Ultraproducts of finite sets

First we recall the ultraproduct construction of finite probability measure spaces (see [9]).
Let {X i }

∞

i=1 be finite sets. We always suppose that |X1| < |X2| < |X3| < · · · . Let ω be a
nonprincipal ultrafilter and limω : l∞(N) → R be the corresponding ultralimit. Recall that limω

is a bounded linear functional such that for any ϵ > 0 and {an}
∞

n=1 ∈ l∞(N)

{i ∈ N | ai ∈ [lim
ω

an − ϵ, lim
ω

an + ϵ]} ∈ ω.

The ultraproduct of the sets X i is defined as follows.
Let X =


∞

i=1 X i . We say that p = {pi }
∞

i=1,q = {qi }
∞

i=1 ∈ X are equivalent, p ∼q, if

{i ∈ N | pi = qi } ∈ ω.
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Define X := X/ ∼. Now let P(X i ) denote the Boolean-algebra of subsets of X i , with the
normalized measure µi (A) =

|A|

|X i |
. Then let P =


∞

i=1 P(X i ) and P = P/I , where I is the
ideal of elements {Ai }

∞

i=1 such that {i ∈ N | Ai = ∅} ∈ ω. Notice that the elements of P can be
identified with certain subsets of X: if

p = [{pi }
∞

i=1] ∈ X and A = [{Ai }
∞

i=1] ∈ P

then p ∈ A if {i ∈ N | pi ∈ Ai } ∈ ω. Clearly, if A = [{Ai }
∞

i=1], B = [{Bi }
∞

i=1] then

• A
c

= [{Ac
i }

∞

i=1],

• A ∪ B = [{Ai ∪ Bi }
∞

i=1],

• A ∩ B = [{Ai ∩ Bi }
∞

i=1].

That is P is a Boolean algebra on X. Now let µ(A) = limω µi (Ai ). Then µ : P → R is a finitely
additive probability measure. We will call A = [{Ai }

∞

i=1] the ultraproduct of the sets {Ai }
∞

i=1.

Definition 2.8. N ⊆ X is a nullset if for any ϵ > 0 there exists a set Aϵ ∈ P such that N ⊆ Aϵ
and µ(Aϵ) ≤ ϵ. The set of nullsets is denoted by N .

Proposition 2.1. N satisfies the following properties:

• if N ∈ N and M ⊆ N, then M ∈ N .
• If {Nk}

∞

k=1 are elements of N then ∪
∞

k=1 Nk ∈ N as well.

Proof. The first part is obvious, for the second part we need the following lemma.

Lemma 2.4. If {Ak}
∞

k=1 are elements of P and liml→∞ µ(∪l
k=1 Ak) = t then there exists an

element B ∈ P such that µ(B) = t and Ak ⊆ B for all k ∈ N.

Proof. Let Bl = ∪
l
k=1 Ak , µ(Bl) = tl , liml→∞ tl = t . Let

Tl =


i ∈ N | |µi (∪

l
k=1 Ai

k)− tl | ≤
1
2l


,

where Ak = [{Ai
k}

∞

i=1]. Observe that Tl ∈ ω. If i ∈ ∩
m
l=1 Tl but i ∉ Tm+1, then let Ci = ∪

m
k=1 Ai

k .

If i ∈ Tl for all l ∈ N, then clearly µi (∪
∞

k=1 Ai
k) = t and we set Ci := ∪

∞

k=1 Ai
k . Let

B := [{Ci }
∞

i=1]. Then µ(B) = t and for any k ∈ N: Ak ⊆ B. �

Now suppose that for any j ≥ 1, A j ∈ N . Let B
ϵ

j ∈ P such that A j ⊆ B
ϵ

j and µ(B
ϵ

j ) < ϵ 1
2 j .

Then by the previous lemma, there exists B
ϵ

∈ P such that for any j ≥ 1 B
ϵ

j ⊆ B
ϵ

and

µ(B
ϵ
) ≤ ϵ. Since ∪

∞

j=1 A j ⊆ B
ϵ
, our proposition follows. �

Definition 2.9. We call B ⊆ X a measurable set if there exists B ∈ P such that B△B ∈ N .

Proposition 2.2. The measurable sets form a σ -algebra Bω and µ(B) = µ(B) defines a
probability measure on Bω.

Proof. We call two measurable sets B and B ′ equivalent, B ∼= B ′ if B△B ′
∈ N . Clearly, if

A ∼= A′, B ∼= B ′ then Ac ∼= (A′)c, A ∪ B ∼= A′
∪ B ′, A ∩ B ∼= A′

∩ B ′. Also if A, B ∈ P and
A ∼= B, then µ(A) = µ(B). That is the measurable sets form a Boolean algebra with a finitely
additive measure. Hence it is enough to prove that if Ak ∈ P are disjoint sets, then there exists
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Fig. 1. The σ -algebras.

A ∈ P such that ∪
∞

k=1 Ak ∼= A and µ(A) =


∞

k=1 µ(Ak). Note that by Lemma 2.4 there exists
A ∈ P such that µ(A) =


∞

k=1 µ(Ak) and Ak ⊆ A for all k ≥ 1. Then for any j ≥ 1,

A \ ∪
∞

k=1 Ai ⊆ A \ ∪
j
k=1 Ak ∈ P.

Since lim j→∞ µ(A \ ∪
j
k=1 Ak) = 0, A \ ∪

∞

k=1 Ak ∈ N thus ∪
∞

k=1 Ak ∼= A. �

Hence we constructed an atomless probability measure space (X,Bω, µ). Note that this space is
non-separable, that is it is not measurably equivalent to the interval with the Lebesgue measure.

2.8. σ -algebras and the Total Independence Theorem

We fix a natural number k and we denote by [k] the set {1, 2, . . . , k}. Let X i,1, X i,2, . . . , X i,k
be k copies of the finite set X i and for a subset A ⊆ {1, 2, . . . , k} let X i,A denote the direct
product


j∈A X i, j . Let XA denote the ultraproduct of the sets X i,A, with a Boolean algebra P A.

There is a natural map pA : X[k]
→ XA (the projection). Let B A be the σ -algebra of measurable

subsets in XA as defined in the previous sections. Define σ(A) as p−1
A (B A), the σ -algebra of

measurable sets depending only on the A-coordinates together with the probability measure µA.
For a nonempty subset A ⊆ [k] let A∗ denote the set system {B|B ⊆ A, |B| = |A| − 1} and
let σ(A)∗ denote the σ -algebra ⟨σ(B)|B ∈ A∗

⟩. An interesting fact is (as it will turn out in
Section 6) that σ(A)∗ is strictly smaller than σ(A). The following figure shows how the lattice
of the various σ -algebras look like. Recall that if B ⊂ A are σ -algebras on X with a measure µ
and g is an A-measurable function on X , then E(g | B) is the B-measurable function (unique up
to a zero measure perturbation) with the property that

Y
E(g | B) dµ =


Y

g dµ,

for any Y ∈ B (see Appendix). If A ∈ A we say that A is independent from the σ -algebra B if
E(χA | B) is a constant function. One of the main tools in our paper (the proof will be given in
Section 5) is the following theorem. (See Fig. 1).

Theorem 5 (The Total Independence Theorem). Let A1, A2, . . . , Ar be a list of distinct
nonempty subsets of [k], and let S1, S2, . . . , Sr be subsets of X[k] such that Si ∈ σ(Ai ) and
E(Si |σ(Ai )

∗) is a constant function for every 1 ≤ i ≤ r . Then

µ(S1 ∩ S2 ∩ · · · ∩ Sr ) = µ(S1)µ(S2) . . . µ(Sr ).
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3. Correspondence principles and the proofs of the Removal and Regularity Lemmas

3.1. The ultraproduct method and the correspondence principles

The ultraproduct method for hypergraphs relies on various correspondence principles between
the following objects that are infinite variations of the concept of a k-uniform hypergraph.

1. An infinite sequence of hypergraphs H1, H2, . . . in Hk .
2. The ultraproduct hypergraph H.

3. A k-uniform Euclidean hypergraph H ⊆ [0, 1]
2k

−1.

Additionally we will need correspondence principles between homomorphism sets

{T (K , Hi )}
∞

i=1, T (K ,H) and T (K ,H)

for every fixed k-uniform hypergraph K . Let {Hi ⊂ X k
i }

∞

i=1 be a sequence of finite k-uniform
hypergraphs. Then the ultraproduct hypergraph H = [{Hi }

∞

i=1] ⊂ Xk is well-defined.
Clearly, H is Sk-invariant and has no repetitions in its coordinates. One can formally define the
homomorphism set T (K ,H) for any finite k-uniform hypergraph K exactly as in Section 2.1.
Note that we shall refer to any measurable Sk-invariant set P ⊂ Xk without repetitions in its
coordinated k-uniform hypergraph on X.

The following lemma is a trivial consequence of the basic properties of the ultraproduct sets.

Lemma 3.1 (Homomorphism Correspondence I). The homomorphism set T (F,H) is the
ultraproduct of the homomorphism sets T (F, Hi ). The induced homomorphism set Tind(F,H) is
the ultraproduct of the homomorphism sets Tind(F, Hi ).

To state the next theorem we need some notation. For an arbitrary set S let r(S,m) denote
the set of non-empty subsets of S of size at most m and let r(S) denote r(S, |S|). The symmetric
group Sn is acting on [n] and this action induces an action on r([n],m). Furthermore Sn is acting
on [0, 1]

r([n],m) by permuting the coordinates according to the action on r([n],m). Let X,G,G2
be sets such that G2 ⊆ G. Then we will denote the projection X G

→ X G2 by PG2 . If a function
f takes values in X G then for an element a ∈ G we denote the corresponding coordinate function
by fa which is the same as the composition P{a} ◦ f .

Definition 3.1 (Separable Realization). For any k ∈ N a separable realization is a measure
preserving map φ : Xk

→ [0, 1]
r([k]) such that

1. Any permutation π ∈ Sk commutes with φ in the sense that φ(x)π = φ(xπ ).
2. For any D ∈ r([k]) and measurable set A ⊆ [0, 1] the set φ−1

D (A) is in σ(D) and is
independent from σ(D)∗.

Note that the fact that φ commutes with the Sk-action means that φA(xπ ) = φ
Aπ−1 (x) for each

π ∈ Sk . The second condition in the previous definition expresses the fact that the functions φD
of a separable realization depend only on the D-coordinates. Also, by Lemma A.2 of Appendix
and the Total Independence Theorem a separable realization φ gives a parametrization of Xk by
|r([k])| coordinates such a way that φ−1 defines an injective measure algebra homomorphism
from M([0, 1]

r([k]),Bk, λk) to a subalgebra of M(Xk,B[k], µ[k]). The next theorem is the heart
of the hypergraph ultraproduct method. The proof of it will be discussed in Section 6.
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Theorem 6 (Euclidean Correspondence). Let A be a separable sub-σ -algebra of σ[k] on Xk .
Then there is a separable realization φ : Xk

→ [0, 1]
r([k]) such that for every A ∈ A there is a

measurable set B ⊆ [0, 1]
2k

−1 with µ(φ−1(B)△A) = 0.

Corollary 3.1. Let E be an Sk-invariant measurable subset of Xk . Then there is a separable
realization φ and Sk-invariant measurable set W ⊆ [0, 1]

r([k]) such that µ(φ−1(W )△E) = 0.

The following definition and lemma will be needed to state the main correspondence between
homomorphism sets.

Definition 3.2 (Lifting). Let φ : Xk
→ [0, 1]

r([k]) be a separable realization and let n ≥ k be
an arbitrary natural number. Then a measure preserving map ψ : Xn

→ [0, 1]
r([n],k) is called

a degree n lifting of φ if Pr([k]) ◦ ψ is equal to φ ◦ P[k] on Xn and ψ(x)π = ψ(xπ ) for all
permutations π ∈ Sn .

Lemma 3.2 (Lifting Exists). Let φ : Xk
→ [0, 1]

r([k]) be a separable realization and let n ≥ k
be an arbitrary natural number. Then there exists a degree n lifting ψ of φ.

Proof. Let A ∈ r([n], k) be an arbitrary set with t elements and let π ∈ Sn be a permutation
such that Aπ = [t]. We define ψA(x) to be φ[t](P[k](xπ )). Using the fact that φ commutes with
the Sk action we obtain that φA ◦ P[k] = ψA for every A ∈ r([k]). Now if π2 is an arbitrary

permutation from Sn then the A-coordinate of ψ(x)π2 is the Aπ
−1
2 -coordinate of ψ(x) which is

the A-coordinate of ψ(xπ2). This proves that ψ commutes with Sn . It remains to show that ψ is
measure preserving. The coordinate functions ψA are constructed in a way which guarantees that
they are measure preserving. Let IA ⊆ [0, 1] be intervals of length lA for every A ∈ r([n], k)
and let

W =


A∈r([n],k)

IA

be their direct product. Since every measurable set in [0, 1]
r([n],k) can be approximated by the

disjoint union of such cubes it is enough to check that ψ−1 preserves the measure of such a set
W . The preimage ψ−1(W ) is the intersection of the preimages ψ−1

A (IA) which are in σ(A) and
are independent from σ(A)∗. Now the Total Independence Theorem completes the proof. �

Lemma 3.3 (Homomorphism Correspondence II). Let W ⊆ [0, 1]
r([k]) be an Sk-invariant

measurable set and let E be the preimage of W under some separable realization φ. Then for an
arbitrary finite hypergraph K

ψ−1(T (K ,W )) = T (K ,E),

where ψ is a |K | degree lifting of φ. Similarly,

ψ−1(Tind(K ,W )) = Tind(K ,E).

Proof. Assume that the vertex set of K is defined on [n] and that the edges of K are π1([k]),

π2([k]), . . . , πt ([k]) for some permutations π1, π2, . . . , πt in Sn . Let E2 ⊂ Xn be the preimage
of E under the projection P[k] and let W2 ⊂ [0, 1]

r([n]) be the preimage of W under the projection
Pr([k]). By definition we have that

T (K ,E) =

t
i=1

Eπi
2



G. Elek, B. Szegedy / Advances in Mathematics 231 (2012) 1731–1772 1747

and

T (K ,W ) =

t
i=1

Wπi
2 .

Since ψ is a lifting of φ the first lifting property shows that ψ−1(W2) = E2. Furthermore since ψ
commutes with the elements of Sn we get that ψ−1(Wπ

2 ) = Eπ2 for every π ∈ Sn . This completes
the proof. �

3.2. The proof of the Hypergraph Removal lemma

Lemma 3.4 (Infinite Removal Lemma). Let H be the ultraproduct of the k-uniform hypergraphs
H1, H2, . . . and let F be a finite k-uniform hypergraph such that T (F,H) has measure 0. Then
there is a 0-measure Sk-invariant subset I of H such that T (F,H \ I) is empty.

Proof. We use Corollary 3.1 for the set H and we get a separable realization φ and a measurable
set W ⊆ [0, 1]

r([k]) satisfying the statement of the corollary. Let D denote the set density points
in W . Lebesgue’s density theorem says that W \ D has measure 0. Furthermore D will remain
symmetric under the action of the symmetric group on [0, 1]

r([k]). Let D be the preimage of D
under the map φ. Using the first property in Definition 3.1 we obtain that D is Sk- invariant.
Furthermore the measure of H△D is 0.

Now let F be a k-uniform hypergraph on the vertex set [n] and let ψ be a degree n lifting of
φ. Lemma 3.3 shows that T (F,D) is the preimage of T (F, D) under ψ−1. On the other hand
T (F, D) is the intersection of finitely many sets consisting only of density points. This show that
T (F, D) and thus T (F,D) is either empty or has a positive measure. This means that the set
I = H \ D satisfies the required condition. �

Proof of the hypergraph removal lemma. We proceed by contradiction. Let K be a fixed
hypergraph and ϵ > 0 be a fixed number for which the theorem fails. This means that there is a
sequence of hypergraphs Hi on the sets X i such that limi→∞t (K , Hi ) = 0 but in each Hi there
is no set L with the required property. Again let H ⊆ Xk denote the ultraproduct hypergraph.
Then µ(T (K ,H)) = limω t (K , Hi ) = 0 and thus by the previous lemma there is a zero measure
Sk-invariant set I ⊆ Xk such that T (K ,H \ I) = ∅. By the definition of nullsets, for any ϵ1 > 0
there exists an ultralimit set J ⊂ Xk such that I ⊂ J and µ(J) < ϵ1. We can suppose that J is Sk-
invariant as well. Let [{Ji }

∞

i=1] = J; then for ω-almost all i , Ji is Sk- invariant, |Ji | ≤ ϵ1|X i |
k and

T (K , Hi \ L i ) = ∅, where L i is the set of edges {x1, x2, . . . , xk} such that (x1, x2, . . . , xk) ∈ Ji .

Clearly, |L i | ≤ |Ji |; hence if ϵ1 is small enough then |L i | ≤ ϵ


|X i |
k


leading to a contradiction.

3.3. The existence of the hypergraph limit object

Proposition 3.1. Let {Hi }
∞

i=1 be a sequence of k-uniform hypergraphs and let H be their
ultraproduct hypergraph. Assume furthermore that φ : Xk

→ [0, 1]
r([k]) is a separable

realization such that there is an Sk-invariant measurable set H ⊆ [0, 1]
r([k]) with

µ(φ−1(H)△H) = 0. Then for every k-uniform hypergraph K we have that

lim
ω

t (K , Hi ) = t (K ,H).
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Proof. Let K be a k uniform hypergraph on n vertices and let ψ be a degree n lifting of
φ. Lemma 3.1 implies that t (K ,H) = limω T (K , Hi ) furthermore, using that ψ is measure
preserving, Lemma 3.3 implies that t (K ,H) = t (K ,H). �

The following theorem is an immediate corollary of the previous one.

Theorem 7 (Existence of the Limit Object). If {Hi }
∞

i=1 is a convergent sequence of k-
uniform hypergraphs then there exists a Euclidean hypergraph H ⊂ [0, 1]

r([k]) such that
limi→∞t (K , Hi ) = t (K ,H) for every k-uniform hypergraph K .

3.4. The proof of the Hypergraph Regularity Lemma

Suppose that the theorem does not hold for some ϵ > 0 and F : N → (0, 1). That is there
exists a sequence of k-uniform hypergraphs Hi without having F( j)-equitable j-hyperpartitions
for any 1 < j ≤ i satisfying the conditions of our theorem. Let us consider their ultraproduct
H ⊂ Xk . Similarly to the proof of the Removal Lemma we formulate an infinite version of the
Regularity Lemma as well.

Let Kr (X) denote the complete r -uniform hypergraph on X , that is the set of points
(x1, x2, . . . , xr ) ∈ Xr such that xi ≠ x j if i ≠ j . Clearly Kr (X) ⊂ Xr is measurable and
µ[r ](Kr (X)) = 1. An r -uniform hypergraph on X is an Sr -invariant measurable subset of Kr (X).
An l-hyperpartition H is a family of partitions Kr (X) = ∪

l
j=1 Pj

r, where Pj
r is an r -uniform

hypergraph for 1 ≤ r ≤ k. Again, an l-hyperpartition induces a partition of Kk(X) into H-cells
exactly the same way as in the finite case. It is easy to see that each H-cell is measurable.

Proposition 3.2 (Hypergraph Regularity Lemma, Infinite Version). For any ϵ > 0, there exists
a 0-equitable l-hyperpartition (where l depends on H) H such that

• Each Pj
r is independent from σ([r ])∗.

• µ[k](H△T ) ≤ ϵ, where T is a union of some H-cells.

Proof. Let φ be a separable realization for H that is such a φ that there exists an Sk-invariant
subset Q ⊆ [0, 1]

2k
−1 such that µ[k](φ

−1(Q)△H) = 0. Since Q is a Lebesgue-measurable set,
there exists some l > 0 such that V ol2k−1(Q△Z) < ϵ, where Z is a union of l-boxes (see
Section 2.3).

By the usual symmetrization argument we may suppose that the set Z is invariant under the
Sk-action on the l-boxes. For each 1 ≤ r ≤ k we consider the partition Xr

= ∪
l
j=1 Pj

r, where

Pj
r = φ−1

[r ]
(

j−1
l ,

j
l ). We call the resulting l-hyperpartition H. Note that by the Sr -invariance of

the separable realization each Pj
r is an r -uniform hypergraph and also Pj

r is independent from
σ([r ])∗.

Now we show that C is an H-cell if and only if C = φ−1(∪π∈Sk π(D)), where D is an l-

box in [0, 1]
2k

−1. By definition a = (a1, a2, . . . , ak) ∈ Xk and b = (b1, b2, . . . , bk) ∈ Xk

are in the same H-cell if and only if there exists π ∈ Sk such that (ai1 , ai2 , . . . , ai|A|
) and

(biπ(1) , biπ(2) , . . . , biπ(|A|)
) are in the same Pj

r for any A ⊆ [k]. That is φ(a) and φ(bπ ) = (φ(b))π

are in the same l-box.
Since Z is a union of Sk-orbits of l-boxes the set T = φ−1(Z) is the union of H cells. Using

that φ is measure preserving the proof is complete. �
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Now we return to the proof of the Hypergraph Regularity Lemma. First pick an r -hypergraphPj
r on X such that µ[r ](Pj

r△Pj
r) = 0, Pj

r ∈ P[r ] and ∪
l
j=1

Pj
r = Kr (X). Let [{P j

r,i }
∞

i=1] =Pj
r. Then for ω-almost all indices ∪

l
j=1 P j

r,i = Kr (X i ) is an F(l)-equitable l-partition and

|Hi△ ∪
q
m=1 C i

m | < ϵ


|X |

k


for the induced H-cell approximation. Here ∪

q
m=1

Cm is the H-cell

approximation with respect to the l-hyperpartitions ∪
l
j=1

Pj
r = Kr (X) and [{C i

m}
∞

i=1] = Cm.
The only thing remained to be proved is that for ω-almost all indices i the resulting l-

hyperpartitions are F(l)-regular. If it does not hold then there exist 1 ≤ r ≤ k and 1 ≤ j ≤ l
such that for almost all i there exists a cylinder intersection Wi ⊂ Kr (X i ), |Wi | ≥ F(l)|Kr (X i )|,
such that |P j

r,i |

|Kr (X i )|
−

|P j
r,i ∩ Wi |

|Wi |

 > F(l). (3)

Let W = [{Wi }
∞

i=1]. Then W ∈ σ([r ])∗. HencePj
r and W are independent sets. However, by (3)

µ[r ](Pj
r)µ[r ](W) ≠ µ[r ](Pj

r ∩ W),

leading to a contradiction. �

3.5. The proof of the hypergraph sequence regularity lemma

Let us consider the ultralimit H of the hypergraph sequence {Hi }
∞

i=1 as in the proof of the

regularity lemma together with the l-hyperpartition H given by the partition ∪
l
j=1

Pj
r = Kr (X),

where [{P j
r,i }

∞

i=1] =Pj
r. If s ≥ 1, then for ω-almost all indices

• ∪
l
j=1 P j

r,i = Kr (X i ) is an 1
s -equitable 1

s -regular partition

• |Hi△ ∪
q
m=1 C i

m | < ϵ


|X i |
k


.

• Ti has combinatorial structure C, where Ti = ∪
q
m=1 C i

m .

Also, by Lemmas 3.1 and 3.3

lim
ω

t (F, Ti ) = t (F, (∪q
m=1

Cm)) = t (F, C).

Thus for ω-almost all i , |t (F, Ti ) − t (F, C)| < 1
s . Therefore we can pick a subsequence H ′

i
satisfying the four conditions of the hypergraph sequence regularity lemma. �

3.6. Testability of hereditary properties

We omit here the definition of Property Testing but we state a theorem which is equivalent
with the statement that hereditary hypergraph properties are testable.

Theorem 8. Let F be a family of k-uniform hypergraphs. Then for every ϵ > 0 there is a
δ = δ(ϵ,F) > 0 and a natural number n = n(ϵ,F) such that if H satisfies tind(F, H) ≤ δ

for every F ∈ F with V (F) ≤ n then there is a hypergraph H ′ on the vertex set X of H with

|H△H ′
| ≤ ϵ


|X |

k


such that t0

ind(F, H ′) = 0 for every F ∈ F . (see also [16,1,2]).
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Proof. We proceed by contradiction. Assume that there is a sequence {Hi }
∞

i=1 and ϵ > 0 such
that limi→∞ tind(F, Hi ) = 0 for every F ∈ F ; however no member of the sequence can be
modified in the way guaranteed by the theorem. Let us repeat the construction used in the proof of
the Regularity Lemma again. Let H be the ultralimit hypergraph of {Hi }

∞

i=1. We use Corollary 3.1
for the set H in order to obtain a separable realization φ and a measurable set W ⊆ [0, 1]

r([k])

satisfying the statement of the corollary. Then tind(F,W ) = limω tind(F, Hi ) = 0 for every
F ∈ F .

Thus there is an l-step Euclidean hypergraph (a union of l-boxes) W ′ such that V ol(W△W ′)

≤ ϵ/4. Let Q be the preimage of W ′ under φ. Denote by C the combinatorial structure of
W ′. As in the proof of the regularity lemma for each 1 ≤ r ≤ k we consider the partition
Xr

= ∪
l
j=1 Pj

r, where Pj
r = φ−1

[r ]
(

j−1
l ,

j
l ). We call the resulting l-hyperpartition H. The set Q is

the union of some cells in H. Again, we modify the sets Pj
r to obtain the sets [{P j

r,i }
∞

i=1] = Pj
r.

Consider the resulting l-hyperpartitions Hi on X i and for every i denote the union of Hi -cells
with coordinates in C by Qi . That is Qi = G(W ′,Hi , [ni ]), where [ni ] is the vertex set of Hi .
Note that G(W ′,Hi , [ni ]) is a random hypergraph, nevertheless it always takes the same value.
Then of course, µ(Q′

△Q) = 0 where Q′ is the ultralimit of the hypergraphs {Qi }
∞

i=1.
Now we consider the random hypergraph model Gi = G(W,Hi , [ni ]). For an ordered

set S = (i1, i2, . . . , ik) ∈ [ni ]
k let YS denote the random variable which takes 1 if S

is in Gi△Qi and takes 0 elsewhere. One can easily see that the expected value of YS is
l2k

−1Vol((W ′
∩ B)△(W ∩ B)) where B is the box representing the coordinate of the directed cell

containing S. This shows that

E(|Gi△Qi |) =


S

E(YS) =


C

|C |l2k
−1Vol((W ′

∩ B(C))△(W ∩ B(C))),

where C runs through the directed cells of Hi and B(C) is the box in [0, 1]
2k

−1 corresponding
to the coordinate of C .

Observe that limω |C f
i |/(ni )

k
= l2k

−1 where C f
i is the cell in Hi corresponding to the

coordinate f . Indeed, the ultralimit of {C f
i }

∞

i=1 is a cell in the l-hyperpartition of X. That is

lim
ω

E(|Gi△Qi |)

nk
i

= Vol(W ′
∩ W ) ≤ ϵ/4.

On the other hand we know that limω
|Qi △Hi |

nk
i

= |Q△H| ≤ ϵ/4.

Consequently, limω
E(|Gi △Hi |)

nk
i

≤ ϵ/2. Note that by probability 1, tind(F,Gi ) = 0 for any

F ∈ F . That is there exists a hypergraph H ′

i which is a value of the hypergraph valued random
variable Gi such that

• tind(F, H ′

i ) = 0.

• limω
|H ′

i △Hi |

nk
i

< ϵ.

This leads to a contradiction. �

4. Uniqueness results and metrics

4.1. Distances of hypergraphs and hypergraphons

Let U and W be two measurable sets in [0, 1]
r([k]). The distance d1(U,W ) is defined as the

measure of their symmetric difference U△W . Let F be a k uniform hypergraph. It is clear from
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the definitions that

|t (F,U )− t (F,W )| ≤ |E(F)|d1(U,W ).

We can also introduce a distance using subhypergraph-densities.
Let δ = δw(U,W ) denote the smallest number such that

|t (F,U )− t (F,W )| ≤ |E(F)|δ, for any F.

Clearly, δw(U,W ) ≤ d1(U,W ). It is easy to see that δw satisfy the triangle inequality. On the
other hand δw is only a pseudometric since (as we will see) there are different sets U and W
with δw(U,W ) = 0. Our goal is to understand which two functions have distance 0 in the
pseudometric δw.

For every set S ∈ r([k]) we denote by AS the σ -algebra generated by the projection
[0, 1]

r([k])
→ [0, 1]

r(S). Let A∗

S denote the σ -algebra generated by all the algebras AT where T
is a proper subset of S for every S ∈ r([k]). We say that a measurable map φ : [0, 1]

r([k])
→

[0, 1]
r([k]) is structure preserving if

1. φ is measure preserving.
2. φ−1(AS) ⊆ AS .
3. The sets φ−1

S (I ) are independent from A∗

S for every measurable set I ⊆ [0, 1].
4. φ ◦ π = π ◦ φ for every permutation in Sk .

The following lemma shows that structure preserving maps do not change the homomorphism
densities in hypergraphons.

Lemma 4.1. For any structure preserving map φ we have that δw(U, φ−1(U )) = 0.

Proof. We need to prove that for any finite k-uniform hypergraph F

t (F,U ) = t (F, φ−1(U )).

Mimicking the proof of Lemma 3.2 we can easily see that there exists a map φ̂ : [0, 1]
r([n],k)

→

[0, 1]
r([n],k) such that φ̂ commutes with the Sn-action and

φ ◦ L [k] = L [k] ◦ φ̂

where L [k] is the projection to the [k]-coordinates. Therefore, we have the following formula for
the homomorphism sets:

φ̂−1

∩E∈E(F) L−1

E (LsE (U ))


= ∩E∈E(F) L−1
E (LsE (φ

−1(U ))).

Hence the lemma follows. �

Definition 4.1. A structure preserving map ψ : [0, 1]
r([k])

→ [0, 1]
r([k]) is called a structure

preserving equivalence if there is a structure preserving map φ such that both ψ ◦φ and φ ◦ψ are
equivalent to the identity map on [0, 1]

r([k]) (recall that equivalence means that two maps define
the same measure algebra homomorphism).

Now we introduce the pseudodistance δ1 by the formula

δ1(U,W ) = inf
φ,ψ

d1(φ
−1(U ), ψ−1(W )),

where φ and ψ run through all the structure preserving transformations. We will prove the fol-
lowing uniqueness theorem (see [11] for the graph case).
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Theorem 9 (Uniqueness I). δw(U,W ) = 0 if and only if there are two structure preserving
measurable maps φ,ψ : [0, 1]

r([k])
→ [0, 1]

r([k]) such that the measure of φ−1(U )△ψ−1(W )

is zero.

Theorem 10 (Uniqueness II). δw(U,W ) = 0 if and only if δ1(U,W ) = 0.

4.2. Technical lemmas

First we prove a simple real analysis lemma.

Lemma 4.2. Let Y ⊆ [0, 1]
n be a measurable set independent from the σ -algebra An−1

generated by the projection onto the first (n−1)-coordinates. Then there exist measurable subsets
Xk ⊆ [0, 1]

n in the form

Xk = (Ak
1 × Bk

1 ) ∪ (Ak
2 × Bk

2 ) ∪ · · · ∪ (Ak
nk

× Bk
nk
)

such that limk→∞ V ol(Xk△Y ) = 0, where Ak
1 ∪ Ak

2 ∪ · · · ∪ Ak
nk

is a measurable partition of
[0, 1]

n−1 and λ(Bk
1 ) = λ(Bk

2 ) = · · · = λ(Bk
nk
) = V ol(Xk). Obviously, the sets Xk are all

independent from An−1.

Proof. Fix a real number ϵ > 0. Let H be a union of l-boxes in [0, 1]
n such that l > 1

1000ϵ2

and V ol(H△Y ) < ϵ
1000 . By Fubini’s Theorem, for almost all z ∈ [0, 1]

n−1, λ(AY
z ) = V ol(Y ),

where

AY
z = {t ∈ [0, 1], (z, t) ∈ Y }.

For each l-box T in [0, 1]
n−1 let

HT = {s ∈ [0, 1], T × s ∈ H}.

Lemma 4.3. The number of l-boxes in [0, 1]
n−1 for which |λ(HT )− V ol(Y )| > ϵ

10 is less than
ϵ

10 ln−1.

Proof. By Fubini’s Theorem,
T

|λ(HT )− V ol(Y )| ≤ V ol(H△Y ).

Hence the lemma follows. �

Now the set Xϵ is constructed in the following way. Pick an integer m such that |
m
l − V ol(Y )| <

ϵ
10 . If for an l-box T |λ(HT )− V ol(Y )| < ϵ

10 then add or delete less than ϵ
10 l l-boxes of H above

T to obtain exactly m boxes. On the other hand if |λ(HT ) − V ol(Y )| ≥
ϵ

10 , then just pick m
arbitrary boxes above T . Then Xϵ is in the right form and V ol(Xϵ△Y ) → 0 as ϵ → 0. �

The following lemma establishes the functorality of separable realizations and structure preserv-
ing maps.

Lemma 4.4. Let φ : Xk
→ [0, 1]

r([k]) be a separable realization and ρ : [0, 1]
r([k])

→

[0, 1]
r([k]) be a structure preserving map. Then ρ ◦φ is a separable realization as well. Similarly

the composition of two structure preserving maps, or the inverse of a structure preserving
equivalence is a structure preserving map.
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Proof. For the first part it is enough to prove that if M ⊆ [0, 1]
r([k]), M ∈ AS for some S ⊆ [k]

such that M is independent from A∗

S then φ−1(M) is independent from σ(S)∗.
First suppose that M is in block-form that is

M = ∪
n
i=1(Ai ∩ Bi ),

where for any 1 ≤ i ≤ n, Bi ∈ BS and Ai ∈ A∗

S so that ∪
n
i=1 Ai is a measurable partition of

[0, 1]
r([k]). Let I ∈ σ(S)∗. Then

φ−1(M) ∩ I = ∪
n
i=1(φ

−1(Ai ) ∩ I) ∩ φ−1(Bi ).

Hence

µ(φ−1(M) ∩ I) =

n
i=1

µ(φ−1(Ai ) ∩ I)µ(φ−1(Bi )).

Note that µ(φ−1(Bi )) = V ol(M) and
n

i=1 µ(φ
−1(Ai ) ∩ I) = µ(I). Therefore φ−1(M) is

independent from σ(S)∗. By Lemma 4.2, any set in AS which is independent from A∗

S can be
approximated by sets in block-form, thus the proof of the first part of our lemma follows. The
second part can be proved completely similarly. �

The following lemma is a baby-version of the Total Independence Lemma.

Lemma 4.5. For any S ⊆ [k], let X S ∈ AS such that X S is independent from A∗

S . Then
{X S}S⊆[k] is a totally independent system.

Proof. We need to prove that for any set-system {Si }
r
i=1 ⊂ r([k])

V ol(∩r
i=1 X Si ) =

r
i=1

V ol(X Si ). (4)

Let us proceed by induction. Suppose (4) holds for a certain r . Let {Si }
r+1
i=1 ⊂ r([k]) be a set-

system and suppose that Sr+1 is not a subset of S j , for 1 ≤ j ≤ r . It is enough to see that

V ol


X Sr+1 ∩

r
i=1

X Si


=

r+1
i=1

V ol(X Si ). (5)

By Lemma 4.2 we may assume that X Sr+1 is in the block-form ∪
n
i=1(Ai ∩ Bi ), where ∪

n
i=1 Ai is

a partition of [0, 1]
r([k]) such that {Ai }

n
i=1 are in the σ -algebra CS generated by {AS}S⊂[k], S≠Sr+1

and {Bi }
n
i=1 ⊂ BS . Since ∩

r
i=1 X Si ∈ CS , (5) follows. �

We shall need the auxiliary notion of structure preserving measure algebra embeddings. Let
Lr([k]) denote the measure algebra associated to ([0, 1]

r([k]),B, λ). For any S ⊆ [k] let BS be
the subalgebra generated by the S-coordinate, that is for any S ⊂ [k], {BT }T ⊆S are jointly
independent subalgebras generating AS . We say that an injective homomorphism Φ : Lr([k])

→

Lr([k]) is a structure preserving embedding if

1. Φ is measure preserving.
2. Φ(BS) ⊂ AS for any S ⊆ [k].
3. Φ(BS) is independent of A∗

S .
4. Φ ◦ π = π ◦ Φ for every permutation in Sk .
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Lemma 4.6. Let Φ : Lr([k])
→ Lr([k]) be a (measure algebra) structure preserving embedding.

Then Φ can be represented (see Lemma A.1) by a structure preserving map φ : [0, 1]
r([k])

→

[0, 1]
r([k]).

Proof. Let us consider the map Φ[i] : B[i] → A[i]. By the fourth axiom of structure preserving
embeddings the image of Φ[i] consists of S[i]-invariant elements. We claim that we can represent
Φ[i] by maps φ[i] : [0, 1]

r([i])
→ [0, 1] such that φ−1(I ) is S[i] invariant for every measurable

set I ⊆ [0, 1]. First we represent Φ[i] by a measurable map φ′

[i]. Now Lemma 6.8 implies that

S[i] acts freely on [0, 1]
r([i]) withe measurable sets Q1, Q2, . . . , Qi !. Let G = ∪i Qi . If x ∈ G

then we define φ[i](x) as φ′
[i](π(x)) where π ∈ S[i] is the unique permutation with π(x) ∈ Q1.

If x ∈ [0, 1]
r([i])

\ G the φ[i](x) is defined to be 0. For a general set S ∈ r([k]) with |S| = i we
define φS(x) to be φ[i](π(x)) where π ∈ S[k] is an arbitrary permutation with π(S) = [i]. The
S[i]-invariance of φ[i] guarantees that φS; [0, 1]

r(S)
→ [0, 1] is well defined and represents the

map ΦS : BS → AS . It is easy to see that the map ×S∈r([k]) φS ◦ L S is a structure preserving map
which represents Φ. �

Lemma 4.7. Let W ⊆ [0, 1]
r([k]) be an l-step hypergraphon and let φ : [0, 1]

r([k])
→ [0, 1]

r([k])

be a structure preserving map with T = φ−1(W ). Then there is a structure preserving
equivalence (see Definition 4.1) ψ such that W△ψ−1(T ) has measure 0.

Proof. Let P i
t denote the set φ−1

[t] ([(i −1)/ l, i/ l)) ∈ A[t] for t = 1, 2, . . . , k. By the definition of
structure preserving maps the set P i

t is independent from A∗

[t], has measure 1/ l and is symmetric
under S[t]. Using Lemma 6.6, for every t = 1, 2, . . . , k we construct a σ -algebra C[t] ⊆ A[t]
such that

1. C[t] is an independent complement for A∗

[t] in A[t]

2. P i
t ∈ C[t] for 1 ≤ i ≤ l

3. Every set in C[t] is invariant under the symmetric group S[t].

In general, for a set S ∈ r([k]), we introduce CS as π(C[|S|]) where π is an arbitrary permutation
taking A[|S|] to AS . By the invariance of C[|S|] this is well defined.

Now the system of σ -algebras {CS}S∈r([k]) satisfies the following properties.

1. The σ -algebras CS generate [0, 1]
r([k]) where S runs through the elements in r([k]).

2. CS ⊂ AS and CS is independent from A∗

S . That is by Lemma 4.5 the algebras CS are totally
independent.

Now let ρ[t] be a measure algebra isomorphism from [0, 1] to C[t] taking [(i − 1)/ l, i/ l) to P i
t .

Using the S[k] action we also define maps ρS for every S ∈ r([k]) satisfying π ◦ ρS = ρS ◦ π

for every π ∈ S[k]. Since the algebras CS are totally independent, by Lemma A.2, the product of
the maps ρS creates a measure algebra equivalence from [0, 1]

r([k]) to itself which is a structure
preserving equivalence.

Lemma 4.8. For every pair U,W ⊆ [0, 1]
r([k]) of hypergraphons and ϵ > 0 there is a structure

preserving equivalence φ : [0, 1]
r([k])

→ [0, 1]
r([k]) such that d1(U, φ−1(W )) ≤ δ1(U,W )+ ϵ.

Proof. Let T1, T2 be two l-step hypergraphons with d1(T1,W ) ≤ ϵ/8 and d1(T2,U ) ≤ ϵ/8. We
know that there are two structure preserving maps ψ1 and ψ2 such that d1(ψ

−1
2 (U ), ψ−1

1 (W )) ≤

δ1(U,W ) + ϵ/8. By Lemma 4.7 there are structure preserving equivalences ρ1 and ρ2 with
d1(ρ

−1
1 (T1), ψ

−1
1 (T1)) = 0 and d1(ρ

−1
2 (T2), ψ

−1
2 (T2)) = 0. Now

d1(ρ
−1
1 (T1), ρ

−1
2 (T2)) ≤ δ1(U,W )+ ϵ/4.
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By Lemma 4.4, ρ2 ◦ ρ−1
1 is a structure preserving equivalence that takes W into a set whose

distance from U is at most δ1(U,W )+ ϵ.

4.3. A concentration result for W -random graphs

Theorem 11 (Concentration). Let W ⊆ [0, 1]
r([k]) be a hypergraphon. Then

Pr(|t0(F,G(W, [n]))− t (F,W )| ≥ ϵ) ≤ 2 exp


−
ϵ2n

2|V (F)|2


.

The proof of the lemma is identical with the proof of Theorem 2.5 in [10], that was used for
the case k = 2. For the sake of completeness we repeat the proof.

Proof. Let us consider the system of random hypergraph models G1,G2, . . . ,Gn such that the
distribution of Gn is G(W, [n]) and Gi is the sub-hypergraph in Gn induced by [i]. It is clear
that the distribution on Gi is the same as G(W, [i]). Let F be a fixed k-uniform hypergraph on
the vertex set [r ]. For any injective map ψ : [r ] → [n] we denote by Aψ the event that ψ is a
homomorphism from F to Gn . Let

Bm =
(n − r)!

n!


ψ

Pr(Aψ | Gm).

The sequence B0, B1, . . . , Bn is a martingale, where B0 = Pr(Aψ ) = t (F,W ) and Bn =

Pr(Aψ | Gn) is 1 if ψ is a homomorphism and 0 elsewhere. This implies that Bn = t0(F,Gn).
Now we have that

|Bm − Bm−1| ≤
(n − r)!

n!


ψ

Pr(Aψ | Gm)− Pr(Aψ | Gm−1)
.

The terms in the sum for which m is not in the range of ψ are 0 and all the other terms are at
most one. The number of terms of the second type is r (n−r)!

(n−1)! and so |Bm − Bm−1| ≤ r/n. By
applying Azuma’s inequality we get that

Pr(|t0(F,Gn)− t (F,W )| ≥ ϵ) = Pr(|Bn − B0| ≥ ϵ) ≤ 2 exp


−ϵ2

2n(r/n)2


= 2 exp


−
ϵ2n

2r2


. �

Theorem 12 (Convergence). The sequences t0(F,G(W, [n])) and t (F,G(W, [n])) converge to
t (F,W ) with probability one as n goes to infinity.

Proof. The convergence of t0(F,G(W, [n])) follows from Theorem 11 and the Borel–Cantelli
lemma since for every fixed ϵ > 0 the sum of the right hand side in the inequality is finite. �

4.4. Proof of the uniqueness theorems

Let X be the ultraproduct of the sets [n]. Let Zn be the random variable which is a random
point in [0, 1]

r([n],k) with uniform distribution as in Section 2.6 and let {τ n
} : [n]

k
0 → [0, 1]

r([k])

be the associated random coordinate systems. The ultraproduct function τ = [{τ n
}
∞

n=1] on Xk

will also be called random coordinate system.
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Lemma 4.9. The random coordinate system τ : Xk
→ [0, 1]

r([k]) is a separable realization with
probability one.

Proof. Let I ⊆ [0, 1] be a measurable set and S ∈ r([k]). It is clear from the definition that
τ−1

S (I ) is in σ(S). We show that (with probability one) τ−1
S (I ) is independent from σ(S)∗ and

has measure λ(I ).
Let Ia,b be an open interval with rational endpoints a, b. Let Îa,b denote the ultraproduct

[{(τ n
S )

−1(Ia,b)}
∞

n=1]. By Proposition 6.1 (and the remark after the proposition) we have that
almost surely Îa,b has measure b − a and is independent from σ(S)∗. Then we have

Îa+ϵ,b−ϵ ⊆ τ−1
S (Ia,b) ⊆ Îa,b

for every small enough rational number ϵ > 0. Since there are only countable many rational
numbers this holds simultaneously for every rational number with probability 1. This implies
that τ−1

S (Ia,b) has measure b − a and is independent from σ(S)∗ with probability 1. Since τS
is measurable and measure preserving on rational intervals it has to be measure preserving on
Lebesgue sets. By approximating an arbitrary measurable sets by unions of disjoint intervals we
get the independence from σ(S)∗.

Now let B ⊆ [0, 1]
r([k]) be a box of the form


S∈r([k]) IS where IS is an interval with rational

endpoints. The measure of B is equal to


S∈r([k]) λ(IS). The set τ−1(B) is equal to

∩S∈r([k]) τ
−1
S (IS).

Therefore using the total independence theorem we obtain that with probability one τ−1(B) =

λ(B). Again this holds simultaneously for every rational interval system with probability 1. As a
consequence τ is almost surely a measure preserving map.

The symmetry on τ under Sk is clear from its definition. �

Lemma 4.10. Let W be a hypergraphon. Then with probability one the ultraproduct H =

[{G(W, [n])}∞n=1] ⊆ Xk has a separable realization φ : Xk
→ [0, 1]

r([k]) such that H△φ−1(W )

has measure 0.

Proof. We will use that the set H = [{G(W, [n])}∞n=1] can be written as the ultraproduct
[{(τ n)−1(W )}∞n=1]. Our goal is to prove that almost surely H△τ−1(W ) has measure 0. First
by applying Theorem 12 to a single hyperedge F we deduce that H has measure λ(W ) with
probability one.

If W is open then τ−1(W ) is contained in H and, by Lemma 4.9, has measure |W | with
probability 1. This means that with probability 1 the set τ−1(W )△H has measure 0.

For an arbitrary measurable set W ⊆ [0, 1]
r([k]) and ϵ > 0 there are open sets O1 and O2 in

[0, 1]
r([k]) such that O1 \ O2 ⊆ W ⊆ O1 and |O2| ≤ ϵ. We have that

(τ n)−1(O1) \ (τ n)−1(O2) ⊆ (τ n)−1(W ) ⊆ (τ n)−1(O1)

and thus by taking the ultra product

[{(τ n)−1(O1)}
∞

n=1] \ [{(τ n)−1(O2)}
∞

n=1] ⊆ H ⊆ [{(τ n)−1(O1)}
∞

n=1].

Using our observation about open sets and that τ is measure preserving with probability 1 we
obtain that the measure of H△τ−1(W ) is at most ϵ. By Lemma 4.9 the proof is complete. �
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Proof of Theorem 9. Let U and W be two functions with δw(U,W ) = 0. This means that
G(U, [n]) and G(W, [n]) are equal to the same distribution Zn . Let H = [{Zn}

∞

n=1]. By
Lemma 4.10 with probability one there are two separable realizations φ1, φ2 : Xn

→ [0, 1]
r([k])

such that φ−1
1 (U ), φ−1

2 (W ) and H differ only in a zero measure set. Let A denote the separable
sigma algebra generated by φ1 and φ2. By the Euclidean correspondence (Theorem 6) there is a
separable realization φ3 : Xk

→ [0, 1]
r([k]) corresponding to the algebra A. The maps φ1 and

φ2 define unique structure preserving maps ψ1 and ψ2 on the measure algebra Lr([k]) such that
(φ3)

−1ψi (S) is equivalent with φ−1
i (S). This means thatψ1(U ) = ψ2(W ) in the measure algebra

Lr([k]). Therefore by Lemma 4.6 our theorem follows. �

Proof of Theorem 10. By the previous theorem, if δw(U, V ) = 0, then δ1(U, V ) = 0. On
the other hand, if δ1(U, V ) = 0 then by the fact that δw(U, V ) ≤ d1(U, V ) and Lemma 4.1,
δw(U, V ) = 0. �

4.5. The counting lemma

Let C ⊆ [l]r([k]) be a symmetric combinatorial structure. Let V be a finite set. An (l, k)-map
is a function from r(V, k) to [l]. If E ⊆ V has k-elements then the restriction of an (l, k)-map f
to E is an element x in [l]r(E). By specifying an arbitrary bijection g between E and [k] we can
also represent x by an element x ′ in [l]r([k]). The Sk-orbit of x ′ does not depend on g and so we
can talk about the Sk-orbit determined by the restriction of f to E .

Let F be a k-uniform hypergraph on V , let C ⊆ [l]r([k]) be a symmetric combinatorial
structure and let f be an (l, k)-map on V . We say that f is a homomorphism from F to C
if the restriction of f to any edge of F determines an Sk orbit which is in C.

The homomorphism density t (F, C) is the probability that a random (l, k)-map on V is
a homomorphism. Note that here we take the uniform probability distribution on all (l, k)-
maps. For technical reasons we will also need the number t (F, C, P) which is the probability
that an (l, k)-map chosen with distribution P on [l]r(V,k) (the set of all (l, k)-functions) is a
homomorphism.

Let H be an l-hyperpartition on a finite set U . Every injective map g : V → U induces an
(l, k)-map fg on V such that for a set S ∈ r(V, k) the value f (S) is the index i of the partition
set P i

|S|
containing g(S). Let D(V,H) denote the probability distribution of fg if g is chosen

uniformly at random from all the injective maps g : V → U . Using this notation the following
lemma follows immediately from the definitions.

Lemma 4.11. Let C ⊆ [l]r([k]) be a symmetric combinatorial structure and let H be a
hypergraph on the set U which is the union of H-cells with coordinates in C. Then the probability
t0(F, H) that a random injective map g : V → U is a homomorphism from F to H is equal to
t (F, C, D(V,H)).

Theorem 13 (Counting Lemma). Let {Ui }
∞

i=1 be increasing finite sets with l-hyperpartitions
{Hi }

∞

i=1 such that Hi is ϵi -regular and δi -equitable with limi→∞ ϵi = limi→∞ δi = 0. Let
furthermore C ⊆ [l]r([k]) be a symmetric combinatorial structure and Hi be the union of Hi -
cells with coordinates in C. Then for every finite hypergraph F we have that

lim
i→∞

t (F, Hi ) = t (F, C).
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Proof. Let V denote the vertex set of F . Since {Ui }
∞

i=1 is an increasing sequence of sets we have
that

lim
i→∞

t0(F, Hi ) = lim
i→∞

t (F, Hi ).

Now by Lemma 4.11 it suffices to show that limi→∞ D(V,Hi ) is the uniform distribution on
[l]r(V,k). We proceed by contradiction. By choosing an appropriate subsequence of {Ui }

∞

i=1 we
can assume that the limit of D(V,Hi ) exists and it is not uniform. This means that there is a
function f : r(V, k) → [l] such that

lim
i→∞

pi ≠ l−|r(V,k)|, where pi = P( fg = f | g : V → Ui , g is injective)

holds. The set of all injective maps from V to Ui can be represented as the collection of elements
in U V

i with no repetitions in the coordinates. This subset in U V
i has relative density tending to 1

as i goes to infinity. Now let Ti ⊆ U V
i defined by

Ti :=


S∈r(V,k)

π−1
S (P f (S)

|S|
).

For S ⊂ r(V, k), πS : U V
i → U [|S|]

i is defined as LρS ◦ L S , where L S : U V
i → U S

i is the natural

projection and LρS is given by a bijection ρS : S → [|S|]. Here P f (S)
|S|

denotes the corresponding

partition set in Hi . Since P f (S)
|S|

is symmetric in its coordinates the set Ti is independent of the

concrete choice of the bijections ρS . Let X denote the ultraproduct [{Ui }
∞

i=1] and let H f denote

the ultraproduct [{Ti }
∞

i=1] ⊆ XV . Furthermore for every S ∈ r(V, k) let H f
S denote the ultralimit

of the partition sets π−1
S (P f (S)

|S|
) from Hi where i tends to infinity. Then

H f
=


S∈r(V,k)

H f
S .

Also, the measure of H f is equal to limω pi = limi→∞ pi . Now the condition limi→∞ ϵi =

limi→∞ δi = 0 implies that for every S ∈ r(V, k) the set H f
S has measure l−1 and that

H f
S ∈ σ(S)∗. The total independence theorem implies that the measure of H is l−|r(V,k)|

providing a contradiction. �

4.6. Equivalence of convergence notions and the inverse counting lemma

Let W ⊆ [0, 1]
r([k]) be a hypergraphon. We say that a sequence of hypergraphs {Hi }

∞

i=1
is structurally converges to W if for every l-step hypergraphon U with δ1(W,U ) ≤ ϵ and
combinatorial structure C there is a sequence of l-hyperpartitions Hi on the vertex sets of Hi
such that

1. Hi is δi -regular and δi -equitable with limi→∞ δi = 0.
2. The union Ti of Hi -cells with coordinates in C satisfies lim supi→∞ d1(Ti , Hi ) ≤ ϵ.

Definition 4.2. We say that an l-step hypergraphon U with combinatorial structure C is (ϵ, δ)-
close to a hypergraph H if there is an l-hyperpartition H on the vertex set of H such that

1. H is both δ-regular and δ-equitable.
2. The union TU of H-cells with combinatorial structure C satisfies d1(H, TU ) ≤ ϵ.
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Theorem 14. For an increasing sequence {Hi }
∞

i=1 of k-uniform hypergraphs the following
statements are equivalent:

1. {Hi } is strongly convergent
2. {Hi } is weakly convergent
3. {Hi } structurally converges to a hypergraphon W which is also the weak limit of {Hi }.

Proof. Let us start with (2) implies (3). By Theorem 7 we know that there is a hypergraphon W
such that limi→∞t (F, Hi ) = t (F,W ). Assume by contradiction that {Hi } is not structurally
convergent to W . Then for some ϵ > 0 there is a δ > 0, an l-step hypergraphon U of
combinatorial structure C with δ1(U,W ) ≤ ϵ and an infinite subsequence {Ji } of {Hi } such
that none of the elements of {Ji } is (δ, ϵ + δ)-close to T . Let J be the ultraproduct hypergraph
[{Ji }

∞

i=1] ⊆ Xk and let φ : Xk
→ [0, 1]

r([k]) be a separable realization of J. That is for some V ⊂

[0, 1]
r([k]), J△φ−1(V ) has measure zero. By Proposition 3.1, δw(V,W ) = 0. By Theorem 10,

δ1(V,W ) = 0 and consequently δ1(U, V ) ≤ ϵ. By Lemma 4.7 there exists a measure preserving
equivalence ρ with d1(ρ

−1(U ), V ) ≤ ϵ + δ/2. This means that (ρ ◦ φ)−1(U )△J has measure at
most ϵ+ δ/2. By Lemma 4.4 ρ ◦φ is a separable realization; hence (ρ ◦φ)−1(U ) is a cell system
with combinatorial structure C of a 0-regular and 0-equitable hyperpartition on X. This leads to
a contradiction.

The implication (3) ⇒ (1) is trivial.
The implication (1) ⇒ (2) follows from the Counting Lemma (Theorem 13). Let us fix a

k-uniform hypergraph F on the vertex set V and with edge set E . According to the definition of
strong convergence for every ϵ > 0 there is a fixed combinatorial structure C and modifications
H ′

i of Hi with an at most ϵ-density edge set such that every H ′

i is the union of the cells with
coordinates in C of some hyperpartition which is getting more and more regular and balanced
as i tends to infinity. The Counting Lemma implies that limt→∞ t (F, H ′

i ) = t (F, C). On the
other hand |t (F, Hi ) − t (F, H ′

i )| ≤ |E |ϵ. Using this inequality for every ϵ > 0, we obtain the
convergence of t (F, Hi ). �

The following immediate corollary states that if two hypergraphs have similar sub-hypergraph
densities then they have similar regular partitions.

Corollary 4.1 (Inverse Counting Lemma). Fix k > 0. Then for any ϵ > 0 there exist positive
constants δ = δ(ϵ),C = C(ϵ), N = N (ϵ) such that if H1, H2 are two k-uniform hypergraphs,
|V (H1)| ≥ N , |V (H2)| ≥ N and δ1(H1, H2) < δ, then there exists an l-hyperpartition U,
1 < l ≤ C so that both hypergraphs are (ϵ, ϵ)-close to U.

We also have a corollary of the Counting Lemma, using the notion of (ϵ, δ)-closeness.

Corollary 4.2 (Counting Lemma Finitary Version). For any finite k-uniform hypergraph F, l-
step hypergraphon U and ϵ > 0 there is a constant δ = δ(F,U, ϵ) such that if a k-uniform
hypergraph H is (δ, δ)-close to U then

|t (F,U )− t (F, H)| < ϵ.

(see also [13]).

5. The proof of the total independence theorem

Let {X i }
∞

i=1 be finite sets as in Section 2 and fi : X i → [−d, d] be real functions, where
d > 0. Then one can define a function f : X → [−d, d] whose value at p = [{pi }

∞

i=1] is
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the ultralimit of { fi (pi )}
∞

i=1. We say that f is the ultraproduct of the functions { fi }
∞

i=1. We shall
use the notation f = [{ fi }

∞

i=1]. Note that the characteristic function of the ultraproduct of sets
is exactly the ultraproduct of their characteristic functions. From now on we call such bounded
functions ultraproduct functions.

Lemma 5.1. The ultraproduct functions are measurable on X and


X

f dµ = lim
ω


p∈X i

fi (p)

|X i |
.

Proof. Let −d ≤ a ≤ b ≤ d be real numbers. It is enough to prove that f[a,b] = {p ∈ X | a ≤

f(p) ≤ b} is measurable. Let f i
[a,b]

= {p ∈ X i | a ≤ fi (p) ≤ b}. Note that [{ f i
[a,b]

}
∞

i=1] is not
necessarily equal to f[a,b]. Nevertheless if

Pn :=


f i
[a−

1
n ,b+

1
n ]

∞

i=1


,

then Pn ∈ P and f[a,b] = ∩
∞

n=1 Pn . This shows that f[a,b] is a measurable set. Hence the function
f is measurable.

Now we prove the integral formula. Let us consider the function gi on X i which takes the
value j

2k if fi takes a value not smaller than j
2k but less than j+1

2k for −Nk ≤ j ≤ Nk , where

Nk = d2k
+ 1. Clearly |[{gi }

∞

i=1] − f| ≤
1
2k on X. Observe that g = [{gi }

∞

i=1] is a measurable

step-function on X taking the value j
2k on C j = [{ f i

[
j

2k ,
j+1
2k )

}
∞

i=1]. Hence,


X

g dµ =

Nk
−Nk

j

2k µ(C j ) = lim
ω

 Nk
j=−Nk

j

2k

 f i
[

j
2k ,

j+1
2k )


|X i |

 .
Also, |g − f| ≤

1
2k on X uniformly, that is |


X f dµ−


X g dµ| ≤

1
2k . Notice that for any i ≥ 1

Nk
j=−Nk

 f i
[

j
2k ,

j+1
2k )


|X i |

j

2k −


p∈X i

fi (p)

|X i |

 ≤
1
2k .

Therefore for each k ≥ 1,


X
f dµ− lim

ω


p∈X i

fi (p)

|X i |

 ≤
1

2k−1 .

Thus our lemma follows. �

Proposition 5.1. For every measurable function f : X → [−d, d], there exists a sequence
of functions fi : X i → [−d, d] such that the ultraproduct of the sequence { fi }

∞

i=1 is
almost everywhere equal to f. That is any element of L∞(X,Bω, µ) can be represented by an
ultraproduct function.
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Proof. Recall a standard result of measure theory. If f is a bounded measurable function on X,
then there exists a sequence of bounded stepfunctions {hk}

∞

k=1 such that

• f =


∞

k=1 hk

• |hk | ≤
1

2k−1 , if k > 1.
• hk =

nk
n=1 ck

nχAk
n
, where ∪

nk
n=1 Ak

n = X is a measurable partition, ck
n ∈ R if 1 ≤ n ≤ nk .

Now let Bk
n ∈ P such that µ(Ak

n△Bk
n ) = 0. We can suppose that ∪

nk
n=1 Bk

n is a partition of X. Let
h′

k =
nk

n=1 ck
nχBk

n
and f′ =


∞

k=1 h′

k . Then clearly f′ = f almost everywhere. We show that f′ is
an ultraproduct function.

Let Bk
n = [{Bk

n,i }
∞

i=1]. We set Tk ⊂ N as the set of integers i for which ∪
nk
n=1 Bk

n,i is a partition
of X i . Then obviously, Tk ∈ ω. Now we use our diagonalizing trick again. If i ∉ T1 let si ≡ 0. If
i ∈ T1, i ∈ T2, . . . , i ∈ Tk, i ∉ Tk+1 then define si :=

k
j=1(

n j
n=1 c j

nχB j
n,i
). If i ∈ Tk for each

k ≥ 1 then set si :=
i

j=1(
n j

n=1 ci
nχB j

n, j
). Now let p ∈ B1

j1
∩ B2

j2
∩ · · · ∩ Bk

jk
. Then

|(lim
ω

si )(p)− f′(p)| ≤
1

2k−1 .

Since this inequality holds for each k ≥ 1, f′ ≡ [{si }
∞

i=1]. �

Lemma 5.2. Let A, B ⊆ [k] and let f : X[k]
→ R be a σ(B)-measurable ultraproduct function.

Then for all y ∈ XAc
the function fy is σ(A ∩ B)-measurable, where Ac denotes the complement

of A in [k] and fy(x) = f(x, y).

Proof. Let f : X[k]
→ R be a σ(B)-measurable ultraproduct function. Note that there exist

functions fi : X i,[k] → R depending only on the B-coordinates such that f is the ultraproduct
of { fi }

∞

i=1. Indeed, let f be the ultraproduct of the functions gi . For x ∈ X i,B , let fi (x, t) :=
z∈Xi,Bc gi (x,z)

|X i,Bc |
. Then fi depends only on the B-coordinates. Also by the integral formula of

Lemma 5.1, limω fi = f. Let y ∈ XAc
, y = [{yi }

∞

i=1]. Then fy is the ultraproduct of the functions
f yi
i . Clearly f yi

i depends only on the A ∩ B-coordinates, thus the ultraproduct fy is σ(A ∩ B)-
measurable. �

Proposition 5.2 (Fubini’s Theorem). Let A ⊆ [k] and let f : X[k]
→ R be a bounded σ([k])-

measurable function. Then for almost all y ∈ XAc
, fy(x) is a measurable function on XA and the

function y →


XA fy(x)dµA(x) is XAc
-measurable. Moreover:

X[k]

f(p)dµ[k](p) =


XAc


XA

fy(x)dµA(x)


dµAc (y).

Proof. First let f be the ultraproduct of { fi : X i,[k] → R}
∞

i=1. Define the functions fi : X i,Ac →

[−d, d] by

fi (y) = |X i,A|
−1


x∈X i,A

fi (x, y).

By Lemma 5.1

lim
ω

fi (y) =


XA

f(x, y) dµA(x).

Applying Lemma 5.1 again for the functions fi , we obtain that
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lim
ω

|X i,Ac |
−1


y∈X i,Ac

fi (y) =


XAc


XA

f(x, y)dµA(x)


dµAc (y).

Then our proposition follows, since

|X i,Ac |
−1


y∈X i,Ac

fi (y) =


p∈X i

fi (p)

|X i |
.

Now let f be an arbitrary bounded σ([k])-measurable function. Since there exists an ultraproduct
function g that is a zero measure perturbation of f it is enough to prove the following lemma.

Lemma. Let Y ⊂ X[k] be a measurable set of zero measure, then for almost all y ∈ XAc
,

{x ∈ XA
| XA

× y ∈ Y }

has measure zero.

Proof. Since Y is a set of zero measure, there exist sets Zn ∈ P[k] such that

• µ[k](Zn) ≤
1
4n

• Y ⊂ Zn .

Let Ln ⊂ XAc
be the set of points y in XAc

such that

µA({x ∈ XA
| XA

× y ∈ Zn}) ≥
1
2n .

Since Fubini’s Theorem holds for ultraproduct functions it is easy to see that µAc (Ln) ≤
1
2n .

Thus by the Borel–Cantelli Lemma almost all y ∈ XAc
is contained only in finitely many sets

Ln . Clearly, for those y, {x ∈ XA
| XA

× y ∈ Y } has measure zero. �

Proposition 5.3 (Integration Rule). Let gi : X[k]
→ R be bounded σ(Ai )-measurable

functions for i = 1, 2, . . . ,m. Let B denote the σ -algebra generated by σ(A1 ∩ A2), σ (A1 ∩

A3), . . . , σ (A1 ∩ Am). Then
X[k]

g1g2 . . . gm dµ[k] =


X[k]

E(g1|B)g2g3 . . . gm dµ[k].

Proof. First of all note that E(g1 | B) does not depend on the Ac
1-coordinates. By Fubini’s

Theorem,
X[k]

g1g2g3 . . . gm dµ[k] =


XAc

1


XA1

g1(x)g2(x, y) . . . gm(x, y) dµA1(x)


dµAc

1
(y).

Now we obtain by Lemma 5.2 that for all y ∈ XA1
c

the function

x → g2(x, y)g3(x, y) . . . gm(x, y) (x ∈ XA1)

is B-measurable. This means that
XA1

g1(x)g2(x, y) . . . gm(x, y)dµA1(x)

=


XA1

E(g1|B)(x)g2(x, y)g3(x, y) . . . gm(x, y)dµA1(x)

for all y in XAc
1
. This completes the proof. �
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Now we finish the proof of the Total Independence Theorem. We can assume that |Ai | ≥ |A j |

whenever j > i . Let χi be the characteristic function of Si . We have that

µ(S1 ∩ S2 ∩ · · · ∩ Sr ) =


X[k]

χ1χ2 . . . χr dµ[k].

The Integration Rule shows that
X[k]

χiχi+1 . . . χr dµ[k] =


X[k]

E(χi |σ(Ai )
∗)χi+1 . . . χr dµ[k]

= µ(Si )


X[k]

χi+1χi+2 . . . χr dµ[k].

A simple induction finishes the proof. �

6. The proof of the Euclidean correspondence principle

6.1. Random partitions

The goal of this subsection is to prove the following proposition.

Proposition 6.1. Let A ⊂ [k] be a subset, then for any n ≥ 1 there exists a partition
XA

= S1 ∪ S2 ∪ · · · ∪ Sn , such that E(Si | σ(A)∗) =
1
n .

Proof. The idea of the proof is that we consider random partitions of XA and show that by
probability one these partitions will satisfy the property of our proposition. Let Ω =


∞

i=1
{1, 2, . . . , n}

X i,A be the set of {1, 2, . . . , n}-valued functions on ∪
∞

i=1 X i,A. Each element f of Ω
defines a partition of X A in the following way. Let

Si, j
f = {p ∈ X i,A | f (p) = j}, 1 ≤ j ≤ n, i ≥ 1.

[{Si, j
f }

∞

i=1] = S j
f .

Then XA
= S1

f ∪ S2
f ∪ · · · ∪ Sn

f is our partition induced by f .
Note that on Ω one has the usual Bernoulli probability measure P ,

P(Tp1,p2,...,pr (i1, i2, . . . , ir )) =
1
nr ,

where

Tp1,p2,...,pr (i1, i2, . . . , ir ) = { f ∈ Ω | f (ps) = is 1 ≤ s ≤ r}.

A cylindric intersection set T in X i,A is a set T = ∩C,C(A TC , where TC ⊂ X i,C . First of all
note that the number of different cylindric intersection sets in X i,A is not greater than

C,C(A

2|X i,C |
≤ 2(|X i |

|A|−1)2k
.

Let 0 ≤ ϵ ≤
1

10n be a real number and T be a cylindric intersection set of elements of size at least
ϵ|X i,A|. By the Chernoff-inequality the probability that an f ∈ Ω takes the value 1 more than
( 1

n + ϵ)|T |-times or less than ( 1
n − ϵ)|T |-times on the set T is less than 2 exp(−cϵ |T |), where

the positive constant cϵ depends only on ϵ. Therefore the probability that there exists a cylindric
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intersection set T ⊂ X i,A of size at least ϵ|X i,A| for which f ∈ Ω takes the value 1 more than
( 1

n + ϵ)|T |-times or less than ( 1
n − ϵ)|T |-times on the set T is less than

2(|X i |
|A|−1)2k

2 exp(−cϵϵ|X i |
|A|).

Since |X1| < |X2| < · · · by the Borel–Cantelli lemma we have the following lemma.

Lemma 6.1. For almost all f ∈ Ω the following holds. If ϵ > 0, then there exist only finitely
many i such that there exists at least one cylindric intersection set T ⊂ X i,A for which f ∈ Ω
takes the value 1 more than ( 1

n + ϵ)|T |-times or less than ( 1
n − ϵ)|T |-times on the set T .

Now let us consider a cylindric intersection set Z ⊆ XA, Z = ∩C,C(A ZC , ZC ⊂ XC . By the
previous lemma, for almost all f ∈ Ω ,

µ(S1
f ∩ Z) =

1
n
µ(Z).

Therefore for almost all f ∈ Ω :

µ(S1
f ∩ Z ′) =

1
n
(µ(Z ′)),

where Z ′ is a finite disjoint union of cylindric intersection sets in XA. Consequently, for almost
all f ∈ Ω ,

µ(S1
f ∩ Y ) =

1
n
(µ(Y )),

where Y ∈ σ(A)∗. This shows immediately that E(S1
f | σ(A)∗) =

1
n for almost all f ∈ Ω .

Similarly, E(Si
f | σ(A)∗) =

1
n for almost all f ∈ Ω , thus our proposition follows. �

Remark. Later on we need a simple modification of our proposition. Let {qi }
n
i=1 be non-negative

real numbers, such that
n

i=1 qi = 1. Repeat the construction of the measure on Ω as in
Proposition 6.1 with the exception that for any p ∈ X i,A the probability that f (p) = i is qi
instead of 1

n . Then with probability one E(Si
f | σ(A)∗) = qi .

6.2. Independent complement in separable σ -algebras

Let A be a separable σ -algebra on a set X , and let µ be a probability measure on A. Two
sub σ -algebras B and C are called independent if µ(B ∩ C) = µ(B)µ(C) for every B ∈ B and
C ∈ C. We say that C is an independent complement of B in A if it is independent from B and
⟨B, C⟩ is dense in A.

Definition 6.1. Let A ≥ B be two σ -algebras on a set X and let µ be a probability measure on
A. A B-random k-partition in A is a partition A1, A2, . . . , Ak of X into A-measurable sets such
that E(Ai |B) = 1/k for every i = 1, 2, . . . , k.

Theorem 15 (Independent Complement). Let A ≥ B be two separable σ -algebras on a set X
and let µ be a probability measure on A. Assume that for every natural number k there exists a
B-random k-partition {A1,k, A2,k, . . . , Ak,k} in A. Then there is an independent complement C
of B in A. (Note that this is basically the Maharam-lemma; see [12]).
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Proof. Let S1, S2, . . . be a countable generating system of A and let Pk denote the finite Boolean
algebra generated by S1, S2, . . . , Sk and {Ai, j |i ≤ j ≤ k}. Let P ∗

k denote the atoms of Pk . It is
clear that for every atom R ∈ P ∗

k we have that E(R|B) ≤ 1/k because R is contained in one
of the sets A1,k, A2,k, . . . , Ak,k . During the proof we fix one B-measurable version of E(R|B)
for every R. The algebra Pk is a subalgebra of Pk+1 for every k. Thus we can define total
orderings on the sets P ∗

k such a way that if R1, R2 ∈ P ∗

k with R1 < R2 and R3, R4 ∈ P ∗

k+1 with
R3 ⊆ R1, R4 ⊆ R2 then R3 < R4. We can assume that


R∈P ∗

k
E(R,B)(x) = 1 for any element

x ∈ X . It follows that for k ∈ N, x ∈ X and λ ∈ [0, 1) there is a unique element R(x, λ, k) ∈ P ∗

k
satisfying

R<R(x,λ,k)

E(R|B)(x) ≤ λ

and 
R≤R(x,λ,k)

E(R|B)(x) > λ.

For an element R ∈ P ∗

k let T (R, λ, k) denote the set of those points x ∈ X for which
R(x, λ, k) = R. It is easy to see that T (R, λ, k) is B-measurable. Let us define the A-measurable
set S(λ, k) by

S(λ, k) =


R∈P ∗

k

(T (R, λ, k) ∩ (∪R2<R R2))

and S′(λ, k) by

S′(λ, k) =


R∈P ∗

k

(T (R, λ, k) ∩ (∪R2≤R R2)).

Note that

S(λ, k) =


x ∈ X

 
R2≤Rk (x)

E(R | B)(x) ≤ λ


,

where Rk(x) is the element of P ∗

k that contains x .

Proposition 6.2. (i) λ−
1
k ≤ E(S(λ, k) | B)(x) ≤ λ for any x ∈ X.

(ii) If k < t , then S(λ, k) ⊆ S(λ, t) ⊆ S′(λ, k).
(iii) E(S′(λ, k) \ S(λ, k) | B)(x) ≤

1
k for any x ∈ X.

Proof. First observe that

λ−
1
k

≤


R<R(x,λ,k)

E(R | B)(x) ≤ λ,

for any x ∈ X . Also, we have

S(λ, k) =


R,R1∈P ∗

k ,R<R1

(R ∩ T (R1, λ, k)),

S′(λ, k) =


R,R1∈P ∗

k ,R≤R1

(R ∩ T (R1, λ, k)).
(6)



1766 G. Elek, B. Szegedy / Advances in Mathematics 231 (2012) 1731–1772

That is by the basic property of the conditional expectation:

E(S(λ, k) | B) =


R,R1∈P ∗

k ,R<R1

E(R | B)χT (R1,λ,k).

That is

E(S(λ, k) | B)(x) =


R<R(x,λ,k)

E(R | B)(x) (7)

and similarly

E(S′(λ, k) | B)(x) =


R≤R(x,λ,k)

E(R | B)(x). (8)

Hence (i) and (iii) follow immediately, using the fact that E(R′
| B) ≤

1
k for any R′

∈ P ∗

k .
Observe that for any R ∈ P ∗

k , T (R, λ, k) = ∪R′⊆R,R′∈P ∗
t

T (R′, λ, t). Hence
R,R1∈P ∗

k ,R<R1

(R ∩ T (R1, λ, k)) ⊆


R′,R′

1∈P ∗
t ,R′<R′

1

(R′
∩ T (R′

1, λ, t))

⊆


R,R1∈P ∗

k ,R≤R1

(R ∩ T (R1, λ, k)).

Thus (6) implies (ii). �

Lemma 6.2. Let S(λ) = ∪
∞

k=1 S(λ, k). Then if λ2 < λ1, then S(λ2) ⊆ S(λ1).

Proof. Note that x ∈ S(λ2, k) if and only if x ∈ R2 for some R2 < R(x, λ2, k). Obviously,
R(x, λ2, k) < R(x, λ1, k), thus x ∈ S(λ1, k). Hence S(λ2) ⊆ S(λ1) �

Lemma 6.3. E(S(λ) | B) = λ.

Proof. Since χS(λ,k)
L2(X,µ)

→ χS(λ), we have E(S(λ, k) | B) L2(X,µ)
→ E(S(λ) | B). That is by (i)

of Proposition 6.2 E(S(λ) | B) = λ. �

The last two lemmas together imply that the sets S(λ) generate a σ -algebra C which is indepen-
dent from B.

Now we have to show that B and C generate A. Let S ∈ Pk for some k ∈ N. We say that S is
an interval if there exists an element R ∈ P ∗

k such that S = ∪R1≤R R1. It is enough to show that
any interval S ∈ Pk can be generated by B and C.

Suppose that {Tt }
∞

t=1 are sets in ⟨B, C⟩ such that Tt ⊂ S and ∥E(S | B) − E(Tt | B)∥ tends
uniformly to 0 as t → ∞. Then µ(S \ Tt ) → 0 as t → ∞, that is B and C generate S. Indeed,

µ(S \ Tt ) =


X
(χS − χTt ) =


X
(E(S | B)− E(Tt | B)).

So let t ≥ k be an arbitrary natural number. It is clear that S is an interval in Pt . For a natural
number 0 ≤ d ≤ t − 1 let Fd denote the B-measurable set on which E(S|B) is in the interval
( d

t ,
d+1

t ]. Now we approximate S by

Tt =

t−1
d=0


Fd ∩ S


d

t


∈ ⟨B, C⟩.
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Lemma 6.4. Tt ⊆ S.

Proof. It is enough to prove that Fd ∩ S( d
t , k) ⊂ S for any 0 ≤ d ≤ t − 1, t < k. Observe that

Fd =


x ∈ X |

d

t
<


R1≤R

E(R1 | B)(x) ≤
d + 1

t


and

S


d

t
, k


=


x ∈ X |


R2≤Rk (x)

E(R2 | B)(x) ≤
d

t


.

Thus if x ∈ Fd ∩ S( d
t , k) then x ∈ S. �

Lemma 6.5. For any x ∈ X,

|E(S | B)(x)− E(Tt | B)(x)| ≤
3
t
.

Proof. First note that by Proposition 6.2 (iii)E S


d

t


| B

(x)− E


S


d

t
, t


| B

(x)

 ≤
1
t
. (9)

Note that

E(Tt | B)(x) =

t−1
d=0

χFd (x)E


S


d

t


| B

(x).

Suppose that x ∈ Fd . Then by (7) and (9),E(Tt | B)(x)−


R′<R(x, d

t ,t)

E(R′
| B)(x)

 ≤
1
t
.

On the other hand E(S | B)(x) =


R′≤R E(R′
| B)(x) and d

t ≤


R′≤R E(R′
| B)(x) < d+1

t .

That is

|E(S | B)(x)− E(Tt | B)(x)| ≤
3
t
. �

The Theorem now follows from Lemma 6.5 immediately. �

Definition 6.2. Let (X,A, µ) be a probability space, and assume that a finite group G is acting
on X such that A is G-invariant as a set system. We say that the action of G is free if there is
a subset S of X with µ(S) = 1/|G| such that Sg1 ∩ Sg2 = ∅ whenever g1 and g2 are distinct
elements of G.

We will need the following consequence of Theorem 15.

Lemma 6.6. Let A ≥ B be two separable σ -algebras on the set X and let µ be a probability
measure on A. Assume that a finite group G is acting on X such that A,B and µ are G invariant.
Assume furthermore that the action of G on (X,B, µ) is free and for any k > 1 there exists a
B-random k partition of X in A. Then there is an independent complement C in A for B such
that C is elementwise G-invariant.
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Proof. Let S ∈ B be a set showing that G acts freely on B. Let A|S and B|S denote the restriction
of A and B to the set S. It is clear that if {A1, A2, . . . , Ak} is a B-random k-partition in A then
{S ∩ A1, S ∩ A2, . . . , S ∩ Ak} is a B|S-random k partition in A|S . Hence by Theorem 15 there
exists an independent complement C1 of B|S in A|S . The set

C =


g∈G

H g
|H ∈ C1


is a σ -algebra because the action of G is free. Note that the elements of C are G-invariant. Since
E(∪g∈G H g

|B) =


g∈G E(H | B|S)
g we obtain that the elements of C are independent from B.

It is clear that ⟨C,B⟩ is dense in A. �

6.3. Separable realization

In this subsection we show how to pass from nonseparable σ -algebras to separable ones.
First note that the symmetric group Sk acts on the space Xk by permuting the coordinates:

(x1, x2, . . . , xk)
π

= (xπ−1(1), xπ−1(2), . . . , xπ−1(k)).

The group also acts on the subsets of [k] and σ(A)π = σ(Aπ ), where Aπ denotes the image of
the subset A under π ∈ Sk . We will denote by SA the symmetric group acting on the subset A.

Definition 6.3. A separable system on Xk, r ≤ k is a system of atomless separable σ -algebras
{l(A) | A ∈ r([k])} and functions {FA : Xk

→ [0, 1] | A ∈ r([k])} with the following
properties.

1. l(A) is a subset of σ(A) and is independent from σ(A)∗ for every ∅ ≠ A ⊆ [k].
2. l(A)π = l(Aπ ) for every permutation π ∈ Sk .
3. Sπ = S for every S ∈ l(A) and π ∈ SA.
4. FA is an l(A)-measurable function which defines a measurable equivalence between the

measure algebras of (Xk, l(A), µk) and [0, 1]. (See Appendix.)
5. FA(x) = FAπ (xπ ) for every element x ∈ Xk , π ∈ Sk and A ⊆ [k].

The main proposition in this section is the following one.

Proposition 6.3. For every separable σ -algebra A in σ([k]) there exists a separable system such
that for every set M ∈ A there is a set Q ∈ ⟨l(A) | A ∈ r([k])⟩ with µ[k](M△Q) = 0.

This proposition immediately implies Theorem 6 since the map F : Xk
→ [0, 1]

r([k])

whose coordinate functions are {FA | A ∈ r([k])} constructed in Proposition 6.3 is a separable
realization.

We will need the following three lemmas.

Lemma 6.7. Let B ⊆ A be two σ -algebras on a set Y , and let µ be a probability measure on
A. Then for any separable sub-σ -algebra Ā of A there exists a separable sub σ -algebra B̄ of B
such that E(A|B) = E(A|B̄) for every A ∈ Ā.

Proof. We use the fact that Ā is a separable metric space with the distance d(A, B) = µ(A△B).
Let W = {D1, D2, . . .} be a countable dense subset of Ā with the previous distance. Let
C i

p,q = E(Di | B)−1(p, q), where p < q are rational numbers. Clearly, E(Di | B) is a Bi -

measurable function, where Bi = ⟨C i
p,q | p < q ∈ Q⟩. Obviously, E(Di | B) = E(Di | B)



G. Elek, B. Szegedy / Advances in Mathematics 231 (2012) 1731–1772 1769

for any i ≥ 1, where B = ⟨Bi | i = 1, 2, . . .⟩. Now observe that E(Di | B) L2
→ E(D,B) and

E(Di | B) L2
→ E(D,B) if Di → D. Hence for any D ∈ A, E(D | B) = E(D | B). �

Lemma 6.8. Let A ⊆ [k] be a subset and assume that there are atomless separable σ -algebras
d({i}) ⊂ σ({i}), i ∈ A such that d({i})π = d({iπ }) for every i ∈ A and π ∈ SA. Then SA acts
freely on ⟨d({i})|i ∈ A⟩.

Proof. The permutation invariance implies that there exists a σ -algebra A on X such that
P−1

{i} (A) = d({i}) for every i ∈ A. Let F : X → [0, 1] be a A-measurable measure preserving

map. Now we can define the map G : XA
→ [0, 1]

A by

G(xi1 , xi2 , . . . , xi|A|
) := (F(xi1), F(xi2), . . . , F(xi|A|

)).

Let us introduce S′
:= {(y1, y2, . . . , yr )|y1 < y2 < . . . < yr } ⊂ [0, 1]

A and S := G−1(S′).
Clearly µA(S) = 1/|A|! and Sπ ∩ Sρ = ∅ for every two different elements π ≠ ρ in SA. �

Lemma 6.9. Let k be a natural number and assume that for every A ⊆ [k] there is a separable
σ -algebra c(A) in σ(A). Then for every A ⊆ [k] there is a separable σ -algebra d(A) in σ(A)
with c(A) ⊆ d(A) such that

1. E(R|⟨d(B)|B ∈ A∗
⟩) = E(R|σ(A)∗) whenever R ∈ d(A).

2. d(A)π = d(Aπ ) for every element π ∈ Sk .
3. d(B) ⊆ d(A) whenever B ⊆ A

Proof. First we construct algebras d ′(A) recursively. Let d ′([k]) be ⟨c([k])π |π ∈ Sk⟩. Assume
that we have already constructed the algebras d ′(A) for |A| ≥ t . Let A ⊆ [k] be such that
|A| = t . By Lemma 6.7 we can see that there exists a separable subalgebra d ′(A) of σ(A)∗ such
that E(R|σ(A)∗) = E(R| d ′(A)) for every R ∈ d ′(A). Since σ(A)∗ is generated by the algebras
{σ(B)|B ∈ A∗

} we have that every element of σ(A)∗ is a countable expression of some sets in
these algebras. This implies that any separable sub σ -algebra of σ(A)∗ is generated by separable
sub σ -algebras of the algebras σ(B) where B ∈ A∗. In particular we can choose separable
σ -algebras d ′(A, B) ⊃ c(B) in σ(B) for every B ∈ A∗ such that ⟨d ′(A, B)|B ∈ A∗

⟩ ⊇ d ′(A).
For a set B ⊆ [k] with |B| = t − 1 we define d ′(B) as the σ -algebra generated by all the
algebras in the form of d ′(C, D)π , where π ∈ Sk , Dπ

= B, |C | = |D| + 1 and D ⊆ C .
Since d ′(C, D)π ⊆ σ(D)π = σ(B) we have that d ′(B) ⊆ σ(B). Furthermore we have that
d ′(B)π = d ′(Bπ ) for every π ∈ Sk .

Now let d(A) := ⟨d ′(B) | B ⊆ A⟩. The second requirement in the lemma is trivial by
definition. We prove the first one. The elements of d(A) can be approximated by finite unions of
intersections of the form


B⊆A TB where TB ∈ d ′(B) and so it is enough to prove the statement

if R is such an intersection. Let Q =


B⊂A,B≠A TB . Now

E(R|⟨d(B)|B ∈ A∗
⟩) = E(R|⟨d ′(B)|B ⊂ A, B ≠ A⟩).

By the basic property of the conditional expectation (see Appendix) :

E(R|⟨d ′(B)|B ⊂ A, B ≠ A⟩) = E(TA|⟨d ′(B)|B ⊂ A, B ≠ A⟩)χQ = E(TA|σ(A)∗)χQ

= E(R|σ(A)∗). �
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Proof of Proposition 6.3. We construct the algebras l(A) in the following steps. For each non-
empty subset A ⊆ [k] we choose an atomless separable σ -algebra c(A) ⊆ σ(A) containing a
σ(A)∗-random r -partition for every r . We also assume that A ⊆ c([k]). Applying Lemma 6.9
for the previous system of separable σ -algebras c(A) we obtain the σ -algebras d(A). By
Lemma 6.8 and the permutation invariance property of the previous lemma, S[r ] acts freely
on d([r ])∗ = ⟨d(B)|B ∈ [r ]

∗
⟩. Hence using Lemma 6.6, for every ∅ ≠ A ∈ [k] we can

choose an independent complement l([r ]) for d([r ])∗ in d([r ]) such that l([r ]) is elementwise
invariant under the action of S[r ]. The algebras l([r ]) are independent from σ([r ])∗ since
µ(R) = E(R|d([r ])∗) = E(R|σ([r ])∗) for every R ∈ l([r ]). Now we define l(A), where
|A| = r by l(A) = l([r ])π for some π ∈ Sk , π([r ]) = A. Note that l(A) does not depend
on the choice of π . By Lemma A.1 of Appendix we have maps F[r ] : Xr

→ [0, 1] such that
F−1 defines a measure algebra isomorphism between M([0, 1],B, λ) and M(Xr , l[r ], µr ). Let
FA = π−1

◦ F[r ], where π maps [r ] to A. Again, F[r ] does not depend on the particular choice
of the permutation π . �
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Appendix. Basic measure theory

In this section we collect some of the basic results of measure theory we frequently use in our
paper.

Separable measure spaces. Let (X,A, µ) be a probability measure space. Then we call
A, A′

∈ A equivalent if µ(A△A′) = 0. The equivalence classes form a complete metric
space, where d([A], [B]) = µ(A△B). These classes form a Boolean-algebra as well, called
the measure algebra M(X,A, µ). We say that (X,A, µ) is a separable measure space if
M(X,A, µ) is a separable metric space. It is important to note that if (X,A, µ) is separable
and atomless, then its measure algebra is isomorphic to the measure algebra of the standard
Lebesgue space ([0, 1],B, λ), where B is the σ -algebra of Borel sets (see e.g. [6]). We use the
following folklore version of this theorem.

Lemma A.1. If (X,A, µ) is a separable and atomless measure space, then there exists a map
f : X → [0, 1] such that f −1(B) ⊂ A, µ( f −1(U )) = λ(U ) for any U ∈ B and for any L ∈ A
there exists M ∈ B such that L is equivalent to f −1(M).

In other words, if F : [0, 1] → X is an injective measure preserving measure algebra
homomorphism such that the image of the Borel-algebra is just A, then F can be represented by
the map f . That is for any measurable set U ⊂ [0, 1], F(U ) is the set representing f −1(U ).

Proof. Let I0 denote the interval [0, 1
2 ], I1 = [

1
2 , 1]. Then let I0,0 = [0, 1

4 ], I0,1 = [
1
4 ,

1
2 ],

I1,0 = [
1
2 ,

3
4 ], I1,1 = [

3
4 , 1]. Recursively, we define the dyadic intervals Iα1,α2,...,αk , where

(α1, α2, . . . , αk) is a 0 − 1-string. Let T be the Boolean-algebra isomorphism between the
measure algebra of (X,A, µ) and the measure algebra of ([0, 1],B, λ). Then we have disjoint
sets U0,U1 ∈ A such that T ([U0]) = [I0], T ([U1]) = [I1]. Clearly µ(X \ (U0 ∪ U1)) = 0.
Similarly, we have disjoint subsets of U0, U0,0 and U0,1 such that T ([U0,0]) = [I0,0] and
T ([U0,1]) = [I0,1]. Recursively, we define Uα1,α2,...,αk ∈ A such that Uα1,α2,...,αk−1,0 and
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Uα1,α2,...,αk−1,0 are disjoint and T ([Uα1,α2,...,αk ]) = Iα1,α2,...,αk . For any k > 0, the set of points
in X which are not included in some Uα1,α2,...,αk has measure zero. Now define

f (p) := ∩
∞

k=1 Iα1,α2,...,αk ,

where for each k ≥ 1, p ∈ Uα1,α2,...,αk . It is easy to see that f satisfies the conditions of our
lemma. �

Generated σ -algebras. Let (X, C, µ) be a probability measure space and A1,A2, . . . ,Ak be
sub-σ -algebras. Then we denote by ⟨Ai | 1 ≤ i ≤ k⟩ the generated σ -algebra that is the smallest
sub-σ -algebra of C containing the Ai ’s. Then the equivalence classes

[∪
n
j=1(A

j
1 ∩ A j

2 ∩ . . . ∩ A j
k )],

where A j
i ∈ Ai and (As

1 ∩ As
2 ∩ . . . ∩ As

k) ∩ (At
1 ∩ At

2 ∩ . . . ∩ At
k) = ∅ if s ≠ t form a dense

subset in the measure algebra M(X, ⟨Ai | 1 ≤ i ≤ k⟩, µ) with respect to the metric defined
above (see [6]).

Independent subalgebras and product measures. The sub-σ -algebras A1,A2, . . . ,Ak ⊂ C
are independent subalgebras if

µ(A1)µ(A2) . . . µ(Ak) = µ(A1 ∩ A2 ∩ · · · ∩ Ak),

if Ai ∈ Ai .

Lemma A.2. Let A1,A2, . . . ,Ak ⊂ C be independent subalgebras as above and fi : X →

[0, 1] be maps such that f −1
i defines isomorphisms between the measure algebras M(X,Ai , µ)

and M([0, 1],B, λ). Then the map F−1, F = ⊕
k
i=1 fi : X → [0, 1]

k defines an isomorphism
between the measure algebras M(X, ⟨Ai | 1 ≤ i ≤ k⟩, µ) and M([0, 1]

k,Bk, λk).

Proof. Observed that

µ(F−1(∪s
i=1[Ai

1 × . . .× Ai
k])) =

s
i=1

λk
[Ai

1 × . . .× Ai
k]

whenever {Ai
1 × . . .× Ai

k}
s
i=1 are disjoint product sets. Hence F−1 defines an isometry between

dense subsets of the two measure algebras. �

Radon–Nikodym Theorem. Let (X,A, µ) be a probability measure space and ν be an abso-
lutely continuous measure with respect to µ. That is if µ(A) = 0 then ν(A) = 0 as well. Then
there exists an integrable A-measurable function f such that

µ(A) =


A

f dµ

for any A ∈ A.
Conditional expectation. Let (X,A, µ) be a probability measure space and B ⊂ A be a sub-

σ -algebra. Then by the Radon–Nikodym-theorem for any integrable A-measurable function f
there exists an integrable B-measurable function E( f | B) such that

B
E( f | B)dµ =


B

f dµ,

if B ∈ B. The function E( f | B) is called the conditional expectation of f with respect to B. It
is unique up to a zero-measure perturbation. Note that if a ≤ f (x) ≤ b for almost all x ∈ X ,
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then a ≤ E( f | B)(x) ≤ b for almost all x ∈ X as well. Also, if g is a bounded B-measurable
function, then

E( f g | B) = E( f | B)g almost everywhere.

The map f → E( f,B) extends to a Hilbert-space projection E : L2(X,A, µ) → L2(X,B, µ).
Lebesgue density theorem. Let A ∈ Rn be a measurable set. Then almost all points x ∈ A is a

density point. The point x is a density point if

lim
r→0

V ol(Br (x) ∩ A)

V ol(Br (x))
= 1,

where V ol denotes the n-dimensional Lebesgue-measure.
Coupling. Let A, B be sets. Let X be an A-valued random variable and Y be a B-valued

random variable. A coupling of X and Y is a A× B-valued random variable Z , such that the first
component of Z has the distribution of X and the second component of Z has the distribution
of Y .

References

[1] T. Austin, On exchangeable random variables and the statistics of large graphs and hypergraphs, Probab. Surv. 5
(2008) 80–145. electronic.

[2] T. Austin, T. Tao, On the testability and repair of hereditary hypergraph properties, Random Structures Algorithms
36 (4) (2010) 373463.

[3] C. Borgs, J. Chayes, L. Lovasz, V.T. Sós, B. Szegedy, K. Vesztergombi, Graph limits and parameter testing,
in: STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, ACM, New York,
2006, pp. 261–270.

[4] C.C. Chang, H.J. Keisler, Model theory., in: Studies in Logic and the Foundations of Mathematics, 73, North-
Holland Publishing Co, Amsterdam, 1990.

[5] T. Gowers, Quasirandomness, counting and regularity for 3-uniform hypergraphs, Combin. Probab. Comput. 15
(1-2) (2006) 143–184.

[6] P.R. Halmos, Measure Theory, Van Nostrand Company, Inc., New York, N. Y, 1950.
[7] Y. Ishigami, A Simple Regularization of Hypergraphs, (unpublished) http://arxiv.org/abs/math/0612838.
[8] O. Kallenberg, Symmetries on random arrays and set-indexed processes, J. Theoret. Probab. 5 (4) (1992) 727–765.
[9] P.E. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans.

Amer. Math. Soc. 211 (1975) 113–122.
[10] L. Lovasz, B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B 96 (6) (2006) 933–957.
[11] C. Borgs, J. Chayes, L. Lovász, Moments of two-variable functions and the uniqueness of graph limits, Geom.

Funct. Anal. 19 (6) (2010) 1597–1619.
[12] D. Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sci. U. S. A. 28 (1942) 108–111.
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[14] V. Rödl, M. Schacht, Regular partitions of hypergraphs: regularity lemmas, Combin. Probab. Comput. 16 (6) (2007)

833–885.
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