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1. Introduction

All modern theorems on splitting families of infinite sets follow Miller’s seminal 1937 
inductive proof [10], in which Miller assumes that an arbitrary ρ-uniform family of sets 
satisfies that the intersection of any ρ+ of its members has cardinality smaller than some 
fixed finite number n.

Erdős and Hajnal devoted [1] to relaxing Miller’s condition, which they denoted by 
C(ρ+, n), to C(ρ+, ν) with a given infinite ν for all sufficiently large ρ. With the Gener-
alized Continuum Hypothesis adopted as an additional axiom, they generalized Miller’s 
theorem to all infinite ν and ρ such that ρ > ν+.

Hajnal, Juhász and Shelah [4] proved a sophisticated general theorem, with a rather 
difficult proof, that enabled the relaxation of the GCH axiom to a considerably weaker 
additional axiom, some weak variant of the Singular Cardinals Hypothesis, in proving 
several Miller-type theorems, including the one by Erdős and Hajnal. These results were 
proved for an infinite ν and ρ > 2ν .

Here we prove those and a few other Miller type theorems in ZFC with no additional 
axioms for an arbitrary ν and ρ ≥ �ω(ν). We present and use a general method, which ex-
tends the method that was used in [6] for infinite graphs colorings. This new method does 
not require any specialized notions and is not more complicated than Miller’s original 
method. It may be useful in other contexts as well. Let us describe next the set-theoretic 
development that made this method possible.

Miller’s original proof used a closure argument under finitary operations, which 
amounts to a weak version of the well-known Löwenheim–Skolem theorem, to obtain 
filtrations of arbitrary large families, from which the inductive argument could be car-
ried out. With C(ρ+, ν) replacing C(ρ+, n), the closure needs to be formed with respect 
to an infinitary operation. However, there is no general Löwenheim–Skolem theorem for 
ν-ary operations, for a good reason: the equation λn = λ, which entails the Löwenheim–
Skolem theorem at λ, holds for every infinite λ and finite n > 0, but λν = λ, which 
implies the Löwenheim–Skolem theorem at λ for ν-ary operations, fails periodically by 
König’s lemma and, worse still, cannot be generally upper-bounded in terms of λ on the 
basis of ZFC.

Erdős and Hajnal used in [1] a GCH theorem by Tarski [15] to obtain filtra-
tions with respect to the required closure notion, as did Komjáth in [7]. Hajnal, 
Juhász and Shelah [4] used a weak version of the SCH and L-like combinatorial 
principles in their proof, in which filtrations are replaced by a more sophisticated 
abstract notion. Here we use simple arithmetic relations concerning the density of 
κ-subsets of λ to prove an asymptotic Löwenheim–Skolem theorem and obtain filtra-
tions in ZFC for order-reversing set operations. The theorem holds at all sufficiently 
large λ.

What makes this possible is Shelah’s spectacular revised GCH theorem [12] (which, 
of course, was not available at the time [4] was published). This theorem is She-
lah’s most important achievement in pcf theory. It provides, for the first time since 
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λn = λ was proved, cardinal arithmetic equations which are true in an end-segment 
of the cardinals. Simply put, Shelah’s new absolute arithmetic can be used in place 
of the additional axioms in this combinatorial context. Furthermore, no intricacies 
of pcf theory or L-like principles are used in the proofs. The usefulness of She-
lah’s RGCH theorem is completely encapsulated into its simple arithmetic state-
ment.

1.1. The results

After developing the required density equations, a general Löwenheim–Skolem the-
orem and the existence of filtrations are established for order-reversing set operations. 
This is done in the first two sections. In the third, the existence of filtrations is used al-
most verbatim to replace the finite ν by an arbitrary infinite ν in Miller’s original proof. 
A similar argument, relying only on elementary properties of density and not involving 
the RGCH theorem, provides short proofs to the combinatorial splitting theorems from 
[4] from the additional assumption there.

We prove theorems of three types. First, the classical combinatorial splitting theo-
rems are proved in ZFC for an arbitrary ν and ρ ≥ �ω(ν). Then, conflict-free colorings 
are treated. Finally, a comparison theorem by Komjáth is extended to infinite cardi-
nals.

2. Arithmetic of density

In this section we list some properties of the arithmetic density function D(λ, κ1, κ1).

Definition 2.1 (Density).

(1) Let κ1 ≤ κ2 ≤ λ be cardinals. A set D ⊆ [λ]κ1 is dense in [λ]κ2 if for every X ∈ [λ]κ2

there is Y ∈ D such that Y ⊆ X.
(2) For κ1 ≤ κ2 ≤ λ the (κ1, κ2)-density of λ, denoted by D(λ, κ1, κ2), is the least 

cardinality of a set D ⊆ [λ]κ1 which is dense in [λ]κ2 .
(3) For κ ≤ λ the κ-density of λ, denoted by D(λ, κ), is D(λ, κ, κ).

Claim 2.2 (Basic properties of density). Suppose κ1 ≤ κ2 ≤ λ.

(1) If X ⊆ Y and D ⊆ [Y ]κ1 is dense in [Y ]κ2 , then D ∩ [X]κ1 is dense in [X]κ2 .
(2) (Monotonicity) D(λ, κ1, κ2) is increasing in λ and if κ′

1 ≤ κ1 ≤ κ2 ≤ κ′
2 ≤ λ then 

D(λ, κ′
1, κ

′
2) ≤ D(λ, κ1, κ2).

(3) Suppose 〈Xi : i < θ〉 is ⊆-increasing, X =
⋃

i<θ Xi, κ1 ≤ κ2 ≤ |X0| and Di ⊆ [Xi]κ1

is dense in [Xi]κ2 . Then D :=
⋃

i<θ Di is dense in [X]κ3 for all κ3 > κ2 such that 
κ3 ≤ |X|, and if cf θ 	= cf κ2 then D is dense also in [X]κ2 .
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(4) (Continuity at limits) If λ = 〈λi : i < θ〉 is increasing with limit λ, and 
D(λi, κ1, κ2) ≤ λ, then D(λ, κ1, κ3) = λ for all κ3 > κ2 such that κ3 ≤ |X|, and if 
cf λ 	= cf κ2 then also D(λ, κ1, κ2) = λ.

(5) If cf μ = cf κ < μ then D(μ, κ) > μ.
(6) If μ is a strong limit cardinal, then D(μ, κ) = μ for all κ < μ such that cfκ 	= cf μ.
(7) D(λ, κ) is not increasing in κ and the inequality in (2) can be strict.

Proof. Item (1) follows from the definition of density. The monotonicity in λ in (2) 
follows from (1).

Assume κ′
1 ≤ κ1 ≤ κ2 ≤ κ′

2 ≤ λ, let D ⊆ [λ]κ1 be an arbitrary dense set in [λ]κ2

and for each X ∈ D fix X ′ ∈ [X]κ′
1 . Let D′ = {X ′ : X ∈ D}. Given any Y ∈ [λ]κ′

2

there is some X ∈ D such that X ⊆ Y , hence X ′ ⊆ Y . Clearly, |D′| ≤ |D|. Thus, 
D(λ, κ′

1, κ
′
2) ≤ D(κ1, κ2).

To prove (3) assume first that cf θ 	= cf κ2 and let Z ∈ [X]κ2 be arbitrary. Since 
cf κ2 	= cf θ there is some i < θ such that |Z ∩ Xi| = κ2, and thus there is some 
Y ∈ Di ⊆ D such that Y ⊆ Z. This establishes the density of D in [X]κ2 ; as [X]κ2 is 
dense in [X]κ3 for all λ ≥ κ3 ≥ κ2, the density of D in [X]κ3 follows. Now it remains to 
prove the density of D in [X]κ3 for λ ≥ κ3 > κ2 when cf θ = cf κ2. Given Z ∈ [X]κ3 it 
suffices to show that |Z ∩Xi| ≥ κ2 for some i < θ. As κ3 > κ2 and cf κ2 = cf θ actually 
more is true: there is i < θ such that |Z ∩Xi| > κ2 (or else |Z| ≤ cf κ2 × κ2 = κ2).

Item (4) follows from (3).
The inequality (5) follows from the standard diagonalization argument in the proof 

of König’s lemma which, in fact, proves that there exists an almost disjoint F ⊆ [μ]κ of 
cardinality > μ. This implies that D(μ, κ) > μ.

For (6), let μ be a strong limit and let κ < μ be arbitrary. There is an unbounded set 
of cardinals λ < μ below μ which satisfy λκ = λ hence D(μ, κ) = μ follows from (4) if 
cf μ 	= cf κ.

To see (7) let ν be an arbitrary cardinal. By (5), D(�ω(ν), ℵ0) > �ω(ν) while by 
(6) D(�ω(ν), ℵ1) = �ω(ν). Similarly, D(�ω(ν), ℵ0) > �ω(ν) = D(�ω(ν), ℵ0, ℵ1) =
D(�ω(ν), ℵ1) and D(�ω1(ν), ℵ0, ℵ1) = �ω1(ν) < D(�ω1(ν), ℵ1), so (7) is proved. �

The next claim provides a simple sufficient condition for the validity of the equation 
D(λ, κ1, κ2) = λ for all λ in an end-segment of the cardinals.

Claim 2.3. Suppose θ > κ2 > κ1 ≥ ℵ0, D(θ, κ1, κ2) = θ and for every λ ≥ θ, if cf λ = cfκ2
there exists some ν such that κ1 ≤ ν < κ2 and λ = sup{δ : δ < λ ∧ D(δ, κ1, ν) ≤ λ}. 
Then D(λ, κ1, κ2) = λ for every λ ≥ θ.

Proof. By induction on λ ≥ θ. For λ = θ the equality D(λ, κ1, κ2) = λ is assumed, and 
if λ > θ satisfies cf λ 	= cf κ2 then D(λ, κ1, κ2) = λ by (4). Assume then that cf λ = cfκ2. 
By the assumption, there is κ1 ≤ ν < κ2 and 〈λi : i < cf κ2〉, an increasing sequence of 
cardinals with limit λ such that D(λi, κ1, ν, ) ≤ λ. Now D(λ, κ1, κ2) = λ by (4). �
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Corollary 2.4.

(1) Let ν be an infinite cardinal, κ = cfκ > ν and assume that θ ≥ κ satisfies such that 
D(θ, ν, κ) = θ and for every μ > θ all limit cardinals in the interval [μ, μν) are of 
cofinality strictly smaller than κ. Then D(λ, ν, κ) = λ for all λ ≥ θ.

(2) The SCH implies that for every infinite ν it holds that D(λ, ν, ν+) = λ for all λ ≥ 2ν .

Proof. If λ ≥ θ and cf λ = κ then θμ < λ for all θ < λ, so λ = sup{θν : θ < λ}. If δ = θν

then δν = δ and trivially D(δ, ν) = δ. Thus (1) follows from Claim 2.3. Item (2) follows 
from (1) since by the SCH for every cardinal λ ≥ 2ν it holds that λν ∈ {λ, λ+}. �

By Corollary 2.4, the existence of a bound on the gaps between μ and μκ in some end 
segment of the cardinals suffices to cover the end segment by a single equation of the 
form D(x, ν, κ) = x. However, models of set theory with arbitrarily large gaps between 
μ and μℵ0 can be built from a proper class of suitable large cardinals by the methods 
in [3].

Lemma 2.7 and its Corollary 2.8 below, hold in every model of ZFC.

Definition 2.5 (Shelah’s revised power). Let θ ≤ λ be cardinals. A set D ⊆ [λ]θ is weakly 
covering if for every X ∈ [λ]θ there exists Y ∈ [D]<θ such that X ⊆

⋃
Y.

Shelah’s revised θ-power of λ, denoted λ[θ], is the least cardinality of a weakly covering 
D ⊆ [λ]θ.

Theorem 2.6 (Shelah’s revised GCH theorem). (See [12].) For every strong limit cardi-
nal μ, for all λ ≥ μ, for every sufficiently large regular θ < μ,

λ[θ] = λ.

Lemma 2.7. Let μ be a strong limit cardinal. For every λ ≥ μ there is some θ(λ) < μ

such that for every θ < μ with cf θ > θ(λ) it holds that D(λ, θ) = λ.

Proof. Let λ ≥ μ be given and let θ(λ) < μ be fixed by Shelah’s revised GCH theorem 
such that for every regular θ ∈ (θ(λ), μ) it holds that λ[θ] = λ.

Assume first that θ ∈ (θ(λ), μ) is regular. Let D ⊆ [λ]θ witness λ[θ] = λ and, as 
2θ < λ, assume that X ∈ D ⇒ [X]θ ⊆ D. If Z ∈ [λ]θ is arbitrary, fix Y ∈ [D]<θ such 
that Z ⊆

⋃
Y. As θ is regular, there is X ∈ Y such that Y := X ∩ Z has cardinality θ. 

Since Y ∈ D and Y ⊆ Z, we have shown that D is dense in [λ]θ.
Assume now that θ ∈ (θ(λ), μ) is singular and satisfies cf θ > θ(λ). Write θ =∑
i<cf θ θi with θi = cf θi > θ(λ) for each i. Next fix dense Di = {Xi

α : α < λ} ⊆ [λ]θi and 
dense T ′ ⊆ [cf θ×λ]cf θ with |T ′| = λ. The set T := {Y ∈ T : i < cf θ ⇒ |Y ∩({i} ×λ)| ≤
1}, namely, all members of T ′ which are partial functions from cf θ to λ with domain 
cofinal in cf θ, has cardinality λ and for every f : cf θ → λ there exists Y ∈ T such that 
Y ⊆ f .



712 M. Kojman / Advances in Mathematics 269 (2015) 707–725
Let

D =
{⋃{

Xi
α : 〈i, α〉 ∈ Y

}
: Y ∈ T

}
.

Clearly, D ⊆ [λ]θ and |D| = λ.
Given any Z ∈ [λ]θ, define f(i) = min{α < λ : Xi

α ⊆ Z} for i < cf θ. Now ⋃
i<cfθ X

i
f(i) ∈ [Z]θ. There is some Y ∈ T such that Y ⊆ f . The set 

⋃
{Xi

α : 〈i, α〉 ∈ Y }
therefore belongs to [Z]θ ∩ D. �

Now the asymptotic equations concerning density follow:

Corollary 2.8. For every infinite cardinal ν and ρ ≥ �ω(ν), for all but finitely many 
n < ω it holds that

D
(
ρ,�n(ν)

)
= ρ, (1)

and

D
(
ρ, ν,�ω(ν)

)
= ρ. (2)

Proof. For all n, cf �n+1(ν) > �n(ν), so cf �n(ν) converges to �ω(ν), hence (1) follows 
from Lemma 2.7. To prove (2) fix, for a given ρ ≥ �ω(ν), some n such that D(ρ, �n(ν)) =
ρ and as ν ≤ �n(ν) < �ω(ν), by monotonicity D(ρ, ν, �ω(ν)) ≤ D(ρ, �n(ν)). �

The consistency of D(ρ, ν, �n(ν)) > ρ for �n(ν) ≤ ρ < �ω(ν) would imply that �ω(ν)
cannot be relaxed to �n(ν) in (2) above. See Section 3.1 below for a discussion of this 
— at the moment unknown — consistency.

Shelah pointed out to me the next lemma, which will be used in the proof of Theo-
rem 4.14.

Lemma 2.9. Suppose μ is a strong limit cardinal. Let χ be a sufficiently large regular 
cardinal and δ < χ is a limit ordinal. Suppose a sequence 〈Mi : i ≤ δ〉 of elementary 
submodels of (H(χ), ∈, . . .) satisfies:

(1) Mi ⊆ Mi+1 and Mj =
⋃

i<j Mi when j ≤ δ is limit;
(2) 〈Mj : j ≤ i〉 ∈ Mi+1 for all i < δ;
(3) μ ⊆ M0.

Then there exists κ(∗) < μ such that Mδ ∩ [Mδ]κ is dense in [Mδ]κ for all κ such that 
κ(∗) ≤ cf κ ≤ κ < μ.

Proof. Denote λ = |Mδ| and for i < δ denote λi = |Mi|. Let κ(∗) < μ be such that 
D(λ, κ) = λ for all κ < μ with cf κ ≥ κ(∗). By increasing κ(∗) if necessary, we assume 
that cf δ /∈ [κ(∗), μ).
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Given i < δ and κ such that κ(∗) ≤ cfκ ≤ κ < μ, observe that, by elementarity, there 
exists a dense Dκ

i ⊆ [Mi]κ of size D(λi, κ) such that Dκ
i ∈ Mi+1. As λi ≤ λ, it holds by 

Claim 2.2(2) that |Dκ
i | ≤ λ for all i < δ.

Now observe that as Mi ∈ Mi+1, also λi = |Mi| ∈ Mi+1 by elementarity, and as 
Mi ⊆ Mi+1 it holds that λi ⊆ Mi+1. Thus, λi ⊆ Mi+1 for all i < δ and hence 

⋃
i<δ λi =

λ ⊆ Mδ as well.
For each i < δ, since Dκ

i ∈ Mδ and |Dκ
i | ≤ λ ⊆ Mδ, it holds that Dκ

i ⊆ Mδ. Now 
Dκ :=

⋃
i<δ Dκ

i ⊆ Mδ for all κ < μ with cf κ ≥ κ(∗). As cf δ 	= cf κ for such κ, the set 
Dκ ⊆ Mδ is dense in [Mδ]κ. �
3. Filtrations with respect to anti-monotone set functions

Every infinite subset of a structure with countably many finite-place operations is 
contained in a subset of the same cardinality which is closed under all operations by 
the downward Löwenheim–Skolem theorem. Also, the union of any increasing chain of 
closed sets is closed. Consequently, every uncountable structure with countably many 
finitary operations is filtrable, that is, presentable as an increasing and continuous union 
of substructures of smaller cardinality.

If infinitary operations are admitted, both facts above are no longer true since the 
cardinality of the closure of a subset of cardinality λ under a κ-place operation depends 
on the valued of the exponent λκ which is undecidable and is periodically larger than λ
— e.g. for λ with countable cofinality — in every model of set theory, including models 
of the GCH.

The main theorem of this section asserts that for anti-monotone set-functions a version 
of the Löwenheim–Skolem theorem and filtrations to closed sets exist without appealing 
to additional axioms.

Definition 3.1.

(1) A filtration of an infinite set V is a sequence of sets 〈Dα : α < κ〉 for some cardinal 
κ which satisfies:
(a) |Dα| < |V |.
(b) α < β < κ ⇒ Dα ⊆ Dβ .
(c) If α < κ is limit then Dα =

⋃
β<α Dβ .

(d) V =
⋃

α<κ Dα.
Condition (c) in the definition is the continuity of 〈Dα : α < κ〉.

(2) Suppose V is an infinite set and C ⊆ P(V ). A C-filtration of V is a filtration 〈Dα :
α < κ〉 such that Dα ∈ C for all α < κ.

(3) We say that V is C-filtrable, for C ⊆ P(V ), if there exists a C-filtration of V .

Theorem 3.2. Suppose C ⊆ P(V ), I 	= ∅ is countable and ρ < |V | a cardinal. Suppose 
Si ⊆ C for i ∈ I and:



714 M. Kojman / Advances in Mathematics 269 (2015) 707–725
(1) For every i ∈ I, the union of every chain of sets from Si belongs to C.
(2) For every ρ ≤ θ < |V | there exists i ∈ I such that for every set A ∈ [V ]θ there is 

D ∈ Si such that A ⊆ D ∈ [V ]θ.

Then V is C-filtrable.

Proof. Let λ := |V |.
Assume first that cf λ > ℵ0. Fix an increasing and continuous chain of sets 〈Aα : α <

cf λ〉 such that V =
⋃

α<cf λ Aα and |Aα| < λ for each α < cf λ and |A0| ≥ ρ. Denote 
θα := |Aα| < λ.

As cf λ > ℵ0 is regular and I is countable, we may assume, by passing to a subsequence, 
that for some fixed i ∈ I it holds that for every α < cf λ and every B ∈ [V ]θα+1 there is 
D ∈ Si such that B ⊆ D and |D| = |B|.

Define inductively Dα for 0 < α < cf λ. For limit α < cf λ let Dα =
⋃

β<α Dβ . 
For α = β + 1 choose Dα ∈ Si which contains Aα ∪

⋃
β<α Dβ and is of cardinality 

|Aα ∪
⋃

β<α Dβ |.
V =

⋃
α<cf λ since Aα ⊆ Dα for all α < cf λ, and as Dα+1 ∈ Si, each Dα+1 belongs 

to C. By (1) Dα ∈ C for limit α < cf λ as well. Thus 〈Dα : 0 < α < cf λ〉 is a C-filtration.
If cf λ = ℵ0 fix an increasing union λ =

⋃
n<ω An with |An| < λ and |A0| ≥ ρ. Using 

(2), choose inductively sets Dn ∈ C such that A0 ⊆ D0 and for all n < ω, |Dn| = |An|
and Dn ∪An+1 ⊆ Dn+1. Now 〈Dn : n < ω〉 is a C-filtration. �
Definition 3.3. Let V be a nonempty set.

(1) A notion of closure over V is a family of sets C ⊆ P(V ) that satisfies:
(a) ∅, V ∈ C.
(b) D1, D2 ∈ C ⇒ D1 ∪D2 ∈ C.
(c)

⋂
X ∈ C for all X ⊆ C.

(2) A function K : P(V ) → P(V ) is a closure operator if it satisfies Kuratowski’s closure 
axioms:
(a) K(∅) = ∅;
(b) A ⊆ K(A) for A ⊆ V ;
(c) K(K(A)) = K(A) for A ⊆ V ;
(d) K(A ∪B) = K(A) ∪K(B) for A, B ⊆ V .

(3) A notion of semi-closure over V is a family C ⊆ P(V ) which satisfies V ∈ C and ⋂
X ∈ C for all X ⊆ C.

(4) A function K : P(V ) → P(V ) is a semi-closure operator if it satisfies Kuratowski’s 
axioms (b) and (c) and the following implication of (d):
(d′) A1 ⊆ A2 ⊆ X ⇒ K(A1) ⊆ K(A2),

(5) Given a notion of semi-closure C ⊆ P(V ) let KC(A) =
⋂
{D : A ⊆ D ∈ C}. Con-

versely, given a semi-closure operator K : P(V ) → P(V ) let CK = {D : D = K(D) ⊆
V }.
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For every semi-closure operator K on a set V it holds that K = KCK
and for every 

notion of semi-closure C it holds that C = CKC . If K is a closure operator then Ck is 
a notion of closure and if C is a notion of closure then KC is a closure operator. Thus, 
notions of [semi]-closure and [semi]-closure operators are interchangeable.

Definition 3.4. Suppose that F : P(V ) → P(V ) and κ is a cardinal. Denote by Fκ the 
restriction F � [X]κ to sets of size κ. The subsets which are closed under Fκ form the 
following notion of semi-closure CF,κ = {D : D ⊆ V ∧ (Y ∈ [D]κ ⇒ F (Y ) ⊆ D)}. Let 
KF,κ denote the semi-closure operator corresponding to CF,κ and let us refer to sets 
D ∈ CF,κ as Fκ-closed sets.

Definition 3.5. A function F : P(X) → P(X) is anti-monotone if A ⊆ B ⊆ X ⇒ F (B) ⊆
F (A).

Claim 3.6. Suppose F : P(V ) → P(V ) is anti-monotone and κ is an infinite cardinal. 
Then:

(1) KF,κ is a closure operator.
(2) An increasing union 

⋃
α<θ Dα of KF,κ-closed sets is KF,κ-closed if cf θ 	= cf κ.

Proof. We verify axiom (4). If X ∈ [A ∪ B]κ then, since κ is infinite, |X ∩ A| = κ or 
|X ∩B| = κ, so by anti-monotonicity F (X) ⊆ K(A) or F (X) ⊆ K(B).

Assume now that D =
⋃

α<θ Di is an increasing union of KF,κ-closed sets and cf θ 	=
cf κ. Let X ∈ [D]κ. There exists some α < θ such that X ∩ Dα ∈ [Dα]κ. Since Dα is 
KF,κ-closed, F (X ∩Dα) ⊆ Dα and by anti-monotonicity F (X) ⊆ F (X ∩Dα). �
Lemma 3.7. Suppose V is a set and F : P(V ) → P(V ) is anti-monotone. Suppose 
κ1 ≤ κ2 < ρ are cardinals and |F (X)| ≤ ρ for all X ∈ [V ]κ1 . Let K = KF,κ2 . If θ ≥ ρ

satisfies D(θ, κ1, κ2) = θ then |K(A)| = θ for all A ∈ [V ]θ.

Proof. Given A ∈ [V ]θ put A0 = A and for ζ ≤ κ+
2 define Aζ ∈ [V ]θ inductively. 

For limit ζ ≤ κ+
2 let Aζ =

⋃
ξ<ζ Aξ, which is of cardinality θ. To define Aζ+1 for 

ζ < κ+
2 fix, by the assumption D(θ, κ1, κ2) = θ, a set Dζ ⊆ [Aζ ]κ1 of cardinality θ with 

the property that for all Y ∈ [Aζ ]κ2 there exists X ∈ Dζ such that X ⊆ Y and let 
Aζ+1 = Aζ ∪

⋃
{F (X) : X ∈ Dζ}, which is of cardinality θ since ρ ≤ θ.

For every X ∈ [Aκ+
2
]κ2 there is some ζ < κ+

2 such that Y ∈ [Aζ ]κ2 and hence there is 
some X ∈ Dζ such that X ⊆ Y . As F (Y ) ⊆ F (X) ⊆ Aζ+1, it holds that F (Y ) ⊆ Aκ+

2
, 

so Aκ+
2

is K-closed. �
Theorem 3.8 (Asymptotic filtrations for anti-monotone set functions). Let ν be an infinite 
cardinal and denote μ := �ω(ν). Let V be a set of cardinality |V | > μ and suppose 
F : P(V ) → P(V ) is an anti-monotone function. If there exists a cardinal ρ ≥ μ such 
that ρ < |V | and |F (Y )| ≤ ρ for every Y ∈ [X]ν then V is KF,μ-filtrable.
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Proof. Let C be the family of all KF,μ-closed subsets of V . Let κn denote �n(ν) and 
let Kn = KF,κn

. Let Sn be the collection of all Kn-closed subsets of V . We check that 
conditions (1) and (2) in Theorem 3.2 are satisfied for C and {Sn : n < ω}.

As κn < μ and F is anti-monotone, it holds that Sn ⊆ Sn+1 ⊆ C for all n. The union 
of any chain of sets from Sn belongs to Sn+1 ⊆ C by Lemma 3.6(2).

To verify condition (2) let θ ≥ ρ be given. By Lemma 2.7, there exists m(θ) < ω such 
that D(θ, κn) = θ for all n ≥ m(θ). By Lemma 3.7, |Kn(A)| = θ for A ∈ [V ]θ for all 
n ≥ m(θ).

Now V is KF,ν-filtrable by Theorem 3.2. �
We remark that each Sn is in fact the collection of closed sets with respect to a 

closure operator and that m < n ⇒ Sm ⊆ Sn. Neither of these two properties was used 
in proving Theorem 3.8.

The following lemma relates filtrations to elementary chains of models:

Lemma 3.9. Suppose F is anti-monotone, |F (X)| ≤ ρ for all X ∈ [V ]ν and ρ ≥ μ =
�ω(ν). Then for every chain 〈Mi : i < λ〉 of elementary submodels of a sufficiently large 
(H(χ), ∈) which satisfies μ ⊆ M0, |Mi| ⊆ |Mi|, V, F ∈ M0 and 〈Mj : j ≤ i〉 ∈ Mi+1
the set Di := Mi ∩ V is Fμ closed for every limit i < λ. If |Mi| < λ := |V | then 
〈Di : i < λ is limit〉 is a μ-filtration of V .

Proof. If M ≺ (H(χ), ∈, . . .) and V, F ∈ M , ρ ⊆ M , then for every X ∈ M ∩ [V ]κ for 
ν ≤ κ < ν the set F (X) belongs to M and |F (X)| ≤ ρ, hence F (X) ⊆ M . Thus, if 
M ∩ [V ]κ is dense in [V ]κ, the set V ∩M is κ-closed. By Lemma 2.9 this is the case for 
Mi for all limits i < λ.

If indeed |Mi| < λ for all i then |Di| < λ. The fact that 
⋃

i<λ Di = V follows from 
V ∈ M0 and λ ⊆

⋃
i<λ Mi. �

3.1. The need for ρ ≥ �ω(ν)

Is the restriction ρ ≥ �ω(ν) optimal in Theorem 3.8? This is not known at the moment. 
As a result of a discussion [13] with Shelah, something can be said about it: improving 
it will be at least as hard as proving one of the following versions of Shelah’s Weak 
Hypothesis, indexed by n > 0:

(SWHn) There are no infinite ν and ρ such that �n(ν) < ρ < �ω(ν) and F = {Aα : α <

ρ+} ⊆ [ρ]ρ satisfies |Aα ∩Aβ | < ν for α < β < ρ+.

Shelah’s Weak Hypothesis is a dynamic statement whose evolving contents is the 
weakest unproved pcf-theoretic statement. It is formulated in terms of patterns in She-
lah’s function pp. See [11] for the translation of SWH from pcf to almost disjoint 
families. The negations of first two versions of the SWH have been shown consistent. 
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Gitik [3] showed the consistency of an ω sequence of cardinals with pp of each ex-
ceeding the limit of the sequence. SWH was then revised to the statement that there 
was no such ω1 sequence. Recently, Gitik [2] proved the consistency of the existence 
of an ω1 sequence of cardinals with the pp of each exceeding the limit of the se-
quence.

Shelah’s believes that the negations of the versions above may eventually be proved 
consistent [13].

Suppose that �n(ν) < ρ < �ω(ν) and F = {Aα : α < ρ+} ⊆ [ρ]ρ satisfies |Aα ∩Aβ | <
ν for α < β < ρ+. Let V = ρ∪̇F and let F (X) = {α : X ∩ ρ ⊆ Aα} ∪

⋂
A∈X∩F A. This 

is an anti-monotone function and for every X with |X| ≥ ν+ it holds that |F (X)| < ν. 
Yet, there is no filtration of V to Fν-closed sets, as ρ would have to be contained in one 
of the parts, and every Fν-closed set which contains ρ is equal to V .

Thus, a ZFC proof of Theorem 3.8 with �n(ν) in place of �ω(ν) for some n > 0 will 
imply the n-th version of the Shelah Weak Hypothesis. If, however, the negations of 
(SWHn) are consistent for all n > 0, then �ω is optimal.

4. Splitting families of sets

Following [1] let us say that a family F of sets satisfies condition C(λ, κ) if the 
intersection of every subfamily of F of size λ is of size strictly less than ν. Miller 
[10] defined property B (after Felix Bernstein’s “Bernstein set”) of a family of sets 
F as: there exists a set B such that B ∩ A 	= ∅ and A � B for all A ∈ F and 
proved that for every infinite ρ, every ρ-uniform family of sets that satisfies C(ρ+, n)
for some natural number n satisfies property B. Erdős and Hajnal [1] used Miller’s 
method and a theorem of Tarski [15] to prove from the assumption GCH that every 
ρ-uniform family that satisfies C(ρ+, ν) for an infinite cardinal ν satisfies property B if 
ρ > ν+.

More results with the GCH followed along this line [7,8,4,5]. Komjáth [7] proved from 
the GCH that for ν+ < ρ every ρ-uniform F which satisfies C(ρ+, ν) and is also almost 
disjoint is essentially disjoint, that is, it can be made pairwise disjoint by removing a set 
of size < ρ from each member of F .

Komjáth [8] investigated further the property of essential disjointness which he intro-
duced in [7] (under the name “sparseness”) and proved that the array of cardinalities 
of pairwise intersections in an ℵ0-uniform a.d. family determines whether the family is 
essentially disjoint or not.

Hajnal, Juhász and Shelah proved in [4] a general theorem which implied many 
of the Miller-type theorems known at the time and derived also new combina-
torial and topological consequences with it by assuming as an additional axiom 
a relaxation of the GCH to a weak version of the Singular Cardinal Hypothe-
sis. Soukup [14] proved recently, using Shelah’s revised GCH theorem, that for 
ν < �ω(ℵ0), every ν-almost disjoint �ω-uniform family of sets is essentially dis-
joint.
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Definition 4.1. Let F be a family of sets.

(1) The universe of F is the set 
⋃

F , and is denoted by V (F).
(2) Given U ⊆ V (F) let F(U) = {F ∩ P(U)} = {A : A ∈ F ∧A ⊆ U}.
(3) F is ρ-uniform, for a cardinal ρ, if |A| = ρ for all A ∈ F .

Definition 4.2. Suppose that F is a family of sets and V = V (F).

(1) A set U ⊆ V is κ-closed, for a cardinal κ, if |A ∩ U | ≥ κ ⇒ A ⊆ U for all A ∈ F .
(2) Let F : P(V ) → P(V ) be defined by

F (X) =
⋃

{A : X ⊆ A ∈ F}.

Claim 4.3. For every family F with V = V (F) and cardinal κ,

(1) The collection Cκ of all κ-closed sets is a notion of semi-closure over V and if κ is 
infinite then Cκ is a notion of closure.

(2) If U ⊆ V is κ-closed and A ∈ F is not contained in U then |A ∩ U | < κ.
(3) The function F defined above is anti-monotone.
(4) For every U ⊆ V , U is κ-closed iff U is KF,κ-closed.
(5) If κ1 ≤ κ2 are cardinals then Cκ1 ⊆ Cκ2 .
(6) If F is ρ-uniform and κ ≤ ρ then a set U ⊆ V is κ-closed iff F(U) = {A : A ∈

F ∧ |A ∩ U | ≥ κ}.
(7) Abusing notation, we say that a subfamily F ′ ⊆ F is κ-closed if V (F ′) is κ-closed 

and we denote by KF,κ(F) the family F(KF,κ(V (F))).

Definition 4.4 (Disjointness conditions).

(1) F is almost disjoint (a.d.) if |A ∩B| < min{|A|, |B|} for distinct A, B ∈ F .
(2) F is ν-disjoint, for a cardinal ν, if |A ∩B| < ν for any distinct A, B ∈ F .
(3) (Miller [10], Erdős and Hajnal [1]) F satisfies condition C(θ, ν) for cardinals θ, ν if 

| 
⋂

A| < ν for all A ∈ [F ]θ (so, C(2, ν) is ν-disjointness).
(4) (Komjáth [7], Hajnal, Juhász and Shelah [4]) F is essentially disjoint (e.d.) if there 

exists an assignment of subsets B(A) ∈ [A]<|A| for all A ∈ A such that the family 
{A \B(A) : A ∈ F} is pairwise disjoint.

(5) F is ν-e.d. if for every A ∈ F there exists an assignment B(A) ∈ [A]ν such that 
{A \ B(A) : A ∈ F} is pairwise disjoint. Remark: in [7] the term sparse is used 
instead of “e.d.”.

Claim 4.5.

(1) Suppose F is ρ-uniform and satisfies C(ρ+, ν) for some ν < ρ. If ν ≤ κ ≤ ρ ≤ θ

and D(θ, κ) = θ then for every U ∈ [V ]θ it holds that |{A ∈ F : |A ∩ U | ≥ κ}| ≤ θ.
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(2) Suppose ν is an infinite cardinal, μ = �ω(ν), ρ ≥ μ and F is a ρ-uniform family 
with universe V . If F satisfies C(ρ+, ν) then for every θ ≥ ρ and F ′ ⊆ F , |F ′| =
θ ⇐⇒ |V (F ′)| = θ.

Proof. To prove (1) fix a dense D ⊆ [U ]κ of cardinality θ. If |A ∩ U | ≥ κ for some 
A ∈ F then there exists X ∈ D such that X ⊆ A. By C(ρ+, ν) and ν ≤ κ, each X ∈ D
is contained in no more than ρ members of F , so |{A ∈ F : (∃X ∈ D)(X ⊆ A)}| ≤
θ × ρ = θ.

For (2) assume first that |V (F ′)| = θ ≥ ρ. Let n be such that D(θ, κn) = θ (where 
κn = �n(ν)). Clearly F(U) ⊆ {A ∈ F : |A ∩ U | ≥ κn} which, by (1), has cardinality 
≤ θ. The converse implication is trivial. �

By the above lemma, for all sufficiently large n it holds that |Kn(F ′)| = |F ′| if |F ′| ≥ ρ.

Lemma 4.6. Suppose ν is an infinite cardinal, μ = �ω(ν), ρ ≥ μ and F is a ρ-uniform 
family with universe V such that |V | > ρ. If F satisfies C(ρ+, ν) then V is μ-filtrable.

Proof. The function F defined above is anti-monotone, for every X ∈ [V ]ν it holds 
that |F (X)| ≤ ρ by C(ρ+, ν) and ρ < |V |. By Theorem 3.8, V is KF,μ-filtrable hence 
μ-filtrable. �

The next theorem extends Miller’s Theorem 2 from [10] when ν is finite, and is proved 
in ZFC for all cardinals ν.

Theorem 4.7. Suppose ν is a cardinal and ρ ≥ μ := �ω(ν). For every ρ-uniform family 
F that satisfies C(ρ+, ν) there exists an enumeration F = {Aα : α < |F|} and a family 
of sets {dα : α < |F|} such that

(i) dα ∈ [Aα]ρ for every α < |F| and β < α < |F| ⇒ dβ ∩ dα = ∅;
(ii) |{β < α : Aβ ∩ dα 	= ∅}| < ρ for all α < |F|.

Proof. Let λ = |F| and we prove the theorem by induction on λ. If |F| ≤ ρ fix any 
enumeration F = {Aα : α < λ}. Every ρ-uniform family of cardinality at most ρ has a 
disjoint refinement, so we can fix dα ∈ [Aα]ρ so that α < β < λ ⇒ dβ ∩ dα = ∅. This 
settles (i). Conclusion (ii) holds trivially as λ ≤ ρ.

Assume that λ > ρ. Since F satisfies C(ρ+, ν) it is μ-filtrable by Lemma 4.6. For 
finite ν, filtrability is proved in Miller’s [10] — or, in modern terms, is an immediate 
consequence of the Löwenheim–Skolem theorem — and does not require Lemma 4.6.

Fix a strictly increasing and continuous chain of μ-closed families {Hi : i < cf λ} such 
that |H0| ≥ ρ, |Hi| < λ for all i < cfλ and F =

⋃
{Hi : i < cf λ}. Put F ′

i = Hi \
⋃

j<i Hj

and thin out 〈F ′
i : i < cf λ〉 to 〈Fi : i < cf λ〉 by removing the empty terms.
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Now {Fi : i < cf λ} is a partition of F , |Fi| < λ for each i and A ∈ Fi implies that
∣∣∣∣A ∩

⋃
j<i

Fj

∣∣∣∣ < μ. (3)

Denote λi = |Fi|. As λi < λ for every i < cf λ and Fi satisfies C(ρ+, ν), the induction 
hypothesis allows us to fix for each i an enumeration Fi = {A〈i,γ〉 : γ < λi} and 
{d′〈i,γ〉 : γ < λi} such that d′〈i,γ〉 ∈ [A〈i,γ〉]ρ for each γ < λi, d′〈i,γ〉 ∩ d′〈i,δ〉 = ∅ for all 
γ < δ < λi it holds that and for each γ < λi:

∣∣{δ < γ : A〈i,δ〉 ∩ d′〈i,γ〉 	= ∅
}∣∣ < ρ. (4)

For i < cf λ and γ < λi define

d〈i,γ〉 := d′〈i,γ〉 \
⋃
j<i

V (Fj). (5)

By (3) and d′〈i,γ〉 ⊆ A〈i,γ〉 it holds that |d〈i,γ〉| = ρ.
Let I = {〈i, γ〉 : i < cf λ ∧ γ < λi} be well-ordered by the lexicographic ordering <lx

of pairs of ordinals. As |I| = λ and each proper initial segment of I has cardinality < λ, 
it holds that 〈I, <lx〉 is order-isomorphic to λ.

Identifying λ with 〈I, <lx〉 we now have an enumeration F = {A〈i,γ〉 : 〈i, γ〉 ∈ I}. 
The sets d〈i,g〉 ∈ [A〈i,γ〉]ρ have been defined in (5) for each 〈i, γ〉 ∈ I and satisfy d〈δ,j〉 ∩
d〈i,γ〉 = ∅ for 〈j, δ〉 	= 〈i, γ〉 in I. This shows that the enumeration of F and the family 
{d〈i,γ〉 : 〈i, γ〉 ∈ I} satisfy conclusion (i) of the theorem.

To show that (ii) also holds, let 〈i, γ〉 ∈ I be arbitrary and let

X =
{
〈j, δ〉 <lx 〈i, γ〉 : A〈j,δ〉 ∩ d〈i,γ〉 	= ∅

}
. (6)

If j < i then 〈j, δ〉 /∈ X as A〈j,δ〉 ∩ d〈i,γ〉 = ∅ by (5), hence

X =
{
〈i, δ〉 <lx 〈i, γ〉 : A〈i,δ〉 ∩ d〈i,γ〉 	= 0

}
. (7)

As d〈i,γ〉 ⊆ d′〈i,γ〉, it follows from (4) that |X| < ρ. �
Theorem 4.7 and Lemma 4.6 have the following corollaries.

Corollary 4.8. If ν is infinite and ρ ≥ μ := �ω(ν) then for every ρ-uniform family F :

(1) If F satisfies C(ρ+, ν) then F has a disjoint refinement.
(2) If F satisfies C(ρ+, ν) and for a cardinal μ ≤ θ ≤ ρ every subfamily of F of cardi-

nality ρ is θ-e.d. then F is θ-e.d.
(3) If F is ν-a.d. then F is e.d.
(4) If ρ is regular and F is a.d. and satisfies C(ρ+, ν) then F is e.d.
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Corollary (1) extends to infinite ν the case of ρ-uniform F in Theorem 3 of [7] and 
eliminates the GCH from a stronger form of a Theorem 6 in [1]; (3) eliminates the 
additional axiom A(ν, ρ) from Theorem 2.4 in [4] for sufficiently large ρ — in the notation 
there, ED(ν, ρ) for all ρ ≥ �ω(ν) in ZFC. (4) eliminates the GCH from Theorem 5 in [7]
for sufficiently large ρ.

Proof. (1) follows directly from the theorem.
To prove (2) let |F| = λ > ρ and assume, by μ-filtrability, that F is partitioned to 

{Hα : α < λ} such that |Hα| < λ and |A ∩
⋃

β<α V (Hβ)| < μ for all A ∈ Hα. Fix, by the 
induction hypothesis, Bα(A) ∈ [A]<θ for all A ∈ Hα such that {A \ Bα(A) : A ∈ Hα}
is pairwise disjoint. For A ∈ F let B(A) = Bα(A) ∪ (A ∩

⋃
β<α V (Hβ)) for the unique 

α such that A ∈ Hα. As |A ∩
⋃

β<α V (Hβ)| < μ it holds that |B(A)| < θ. Clearly, 
{A \B(A) : A ∈ F} is pairwise disjoint.

For (3): every ν-a.d. ρ-uniform family satisfies C(2, ν) hence C(ρ+, ν). If F ′ ⊆ F has 
cardinality ρ and is well ordered by F ′ = {Aα : α < ρ} let B(Aα) = Aα ∩

⋃
β<α Aβ . The 

cardinality of Bα is strictly smaller than ρ and {Aα \ Bα : α < ρ} is disjoint. Now (3) 
follows from (2).

For (4), as ρ is regular and F is a.d., every subfamily of F of cardinality ρ is e.d. and 
now use (2). �
4.1. Conflict-free colorings

Neither of the corollaries above used conclusion (ii) of Theorem 4.7. A generalization 
of this condition is used for the next theorem on list conflict-free numbers.

Definition 4.9.

(1) A coloring c of V (F) for a family of sets F is conflict free if for every A ∈ F there 
is x ∈ A such that c(x) 	= c(y) for all y ∈ A \ {x}.

(2) The conflict free number χCF(F) is the smallest cardinal κ for which there exists a 
conflict-free coloring c : V (F) → κ.

(3) The list-conflict-free number χ�CF(F) is the smallest cardinal κ such that for every 
assignments L of sets L(v) to every v ∈ V which satisfies |L(v)| ≥ κ there exists a 
conflict-free coloring c on V which satisfies c(v) ∈ L(v) for all v ∈ V .

Clearly, every ν-e.d. family F has a coloring by ν-colors such that all but < ν colors 
in each A ∈ F are unique in A.

Claim 4.10. Let ρ ≥ θ > 0 be cardinals and let F is a nonempty ρ-uniform family. 
Suppose there exists an enumeration F = {Aα : α < λ} and a family {dα : α < λ} such 
that
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(i) dα ∈ [Aα]θ for every α < λ and β < α < λ ⇒ dβ ∩ dα = ∅;
(ii) |{β < α : Aβ ∩ dα 	= ∅}| ≤ ρ for all α < λ.

Then

(1) For every list-assignment L(v) for v ∈ V with |L(v)| ≥ ρ+ there exists a coloring 
c ∈

∏
v∈V L(v) such that for every α < λ and every x ∈ Dα the color c(x) is unique 

in Aα.
(2) χ�CF(F) ≤ ρ+.

Proof. Assume that L(v) is given with |L(v)| ≥ ρ+ for all v ∈ V (F). For each α < λ

enumerate dα = 〈x〈α,i〉 : i < θ〉. Define c ∈
∏

v∈V L(v) arbitrarily on V \
⋃

α<λ dα. Next 
define c(x〈α,i〉) by induction on the lexicographic ordering on λ × θ. Suppose c(x〈β,j〉) is 
defined for 〈β, j〉 <lx 〈α, i〉. Define

F (x〈α,i〉) =
{
c(y) : (∃β ≤ α)

[
x〈α,i〉 ∈ Aβ ∧ y ∈ Aβ ∧ c(y) is defined

]}
(8)

and choose

c(x〈α,i〉) ∈ L(x〈α,i〉) \ F (x〈α,i〉). (9)

By the assumption (3), |F (x〈α,i〉)| ≤ ρ, so as |L(x〈α,i〉)| ≥ ρ+ the set L(x〈α,i〉) \
F (x〈α,i〉) is not empty and therefore c(x〈α,i〉) can be chosen as required in (9).

To prove that the color c(x〈α,i〉) is unique in Aα for every α < λ and i < θ suppose 
that α < λ and i < θ are given and z ∈ Aα \ {x〈α,i〉}. If c(z) is defined at stage 〈α, i〉 of 
the inductive definition, then c(z) ∈ F (x〈α,i〉) by (8) and hence c(x〈α,i〉) 	= c(z) by (9).

Otherwise, there is some β > α and j < θ such that z = x〈β,j〉. This means that 
x〈β,j〉 ∈ Aα. As c(x〈α,i〉) is defined at stage 〈β, j〉, it follows by (8) that c(x〈α,i〉) ∈
F (x〈β,j〉) and c(z) = c(x〈β,j〉) 	= c(x〈α,i〉) by (9). �

By combining Theorem 4.7 with Claim 4.10 we get:

Corollary 4.11. For every infinite ν and ρ ≥ �ω(ν), every ρ-uniform family which satisfies 
C(ν, ρ+) satisfies χ�CF(F) ≤ ρ+.

Hajnal, Juhász, Soukup and Szentmiklóssy [5] proved that a κ-uniform family which 
is r-a.d. for finite r has countable conflict-free number. See also Komjáth [9], where the 
uniformity condition is removed. Soukup [14] proved recently, using Shelah’s revised GCH 
theorem, that every ν-almost disjoint family F ⊆ [λ]≥�ω(ℵ0) has conflict-free coloring 
number at most �ω(ℵ0).
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4.2. Comparing almost disjoint families

We conclude this section with a generalization of a theorem by Komjáth on comparing 
families of sets.

Definition 4.12. Two families of sets F and G are similar if there is a bijection f : F → G
such that |A ∩B| = |f(A) ∩ f(B)| for all A, B ∈ F .

Komjáth [8] addressed the following question: which combinatorial properties of 
ℵ0-uniform families are invariant under similarity? Property B and the existence of a 
disjoint refinement are not similarity invariant, as one can replace A ∈ F by A ∪D(A)
where D(A) ∩D(B) = ∅ for distinct A, B ∈ F and obtain an equivalent family which has 
a disjoint refinement from a family which does not satisfy property B. However, Komjáth 
proved:

Theorem 4.13. (See Komjáth [8].) Suppose F and G are ℵ0-uniform, almost disjoint and 
equivalent. If F is e.d. then also G is e.d. More generally: G is e.d. if F is and there 
exists a bijection f : F → G such that |A ∩B| ≥ |f(A) ∩ f(B)| for all A, B ∈ F .

The cardinal ℵ0 is strong limit and regular, that is, strongly inaccessible. As a corollary 
of the next theorem, Komjáth’s theorem extends from ℵ0 to all strongly inaccessible 
cardinals, but actually more is proved.

Theorem 4.14. Suppose μ is a strong limit cardinal and ρ ≥ μ. Suppose F = {Aa : α < λ}, 
G = {Bα : α < λ} are ρ-uniform and for every α < β < λ it holds that

|Aα ∩Aβ | ≥ |Bα ∩Bβ |. (10)

Then if F is < μ-essentially disjoint, so is G, provided that every subfamily of G of 
cardinality ρ is μ-e.d.

Proof. Let Cα ∈ [Aα]<μ be fixed for all α < λ such that (Aα \ Cα) ∩ (Aβ \ Cβ) = ∅ for 
all α < β < λ. We prove by induction on λ ≥ ρ that G is < μ-e.d. If λ = ρ then G is 
μ-e.d. by the assumption that every subfamily of G of cardinality ρ is μ-e.d.

For singular λ > ρ the conclusion follows from the induction hypothesis by Proposi-
tion 5 in [7].

Assume then that λ > ρ is regular. We may assume that V (F) = V (G) ⊆ λ. As F is 
< μ-a.d. it follows that |V (F)| = λ, so we assume that actually V (F) = λ.

Let M = 〈Mα : α < λ〉 be an elementary chain of models Mα ≺ (H(Ω), ∈, ≺) for a 
sufficiently large regular Ω such that F , G ∈ M0 and also the function Aα �→ Cα belongs 
to M0, such that:
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(1) ρ ⊆ M0 and α < β ⇒ Mα ⊆ Mβ .
(2) Mα ∩ λ ∈ λ.
(3) 〈Mβ : β ≤ α〉 ∈ Mα+1.

Let δ(α) = Mα ∩ λ.
For each ordinal γ < δ(α) there is at most one β < λ such that γ ∈ Aβ \ Cβ . Thus, 

whenever γ ∈ Aβ \ Cβ and γ < δ(α) for some α < λ, by elementarity Aβ ∈ Mα and 
hence Aβ ⊆ δ(α). If β ≥ δ(α), then, it follows that Aβ ∩ δ(α) ⊆ Cβ .

For each β < λ let κ(β) = |Cβ |. We get:

β ≥ δ(α) ⇒
∣∣Aβ ∩ δ(α)

∣∣ ≤ κ(β) (11)

and, since γ < δ(α) ⇒ Aγ ⊆ δ(α),

β ≥ δ(α) > γ ⇒ |Aβ ∩Aγ | ≤ κ(β). (12)

By assumption (10), condition (12) can be copied over to G, that is:

β ≥ δ(α) > γ ⇒ |Bβ ∩Bγ | ≤ κ(β). (13)

Claim 4.15. There exists a closed unbounded E ⊆ {δ(α) : α < λ} such that for every 
δ ∈ E and β ≥ δ it holds that

|Bβ ∩ δ| < μ. (14)

Proof. Suppose to the contrary that S ⊆ {δ(α) : α < λ} is stationary and that β(δ) ≥ δ

is chosen for δ ∈ S such that |Bβ(δ) ∩ δ| ≥ μ. We may assume that δ1 < δ2 ⇒ β(δ1) < δ2
for δ1, δ2 ∈ S by intersecting S with a club, and by thinning S out assume that κ(β(δ)) =
|Cβ(δ)| = κ(∗) is fixed for all δ ∈ S.

The set S′ = S ∩ accS is stationary. If δ ∈ S′ then for all sufficiently large regular 
κ < μ it holds that Mδ ∩ [δ]κ is dense in [δ]κ by Lemma 2.9, hence, as |Bβ(δ) ∩ δ| ≥ μ, for 
each sufficiently large regular κ < μ there is X ∈ Mδ such that |X| = κ and X ⊆ Bβ(δ).

Define F (δ) = X, for each δ ∈ S′, such that X ⊆ Bβ(δ), X ∈ Mδ and |X| > κ(∗). 
By Fodor’s Lemma, we can assume that F is fixed on a stationary S′′ ⊆ S′. Fix, then, 
δ1 < δ2 in S′′ with F (δ1) = F (δ2) = X ∈ Mδ1 . But now |Bβ(δ1) ∩ Bβ(δ2)| ≥ |X| > κ(∗), 
and as β(δ1) < δ2 this contradicts Eq. (13) above. �

The conclusion of the theorem now follows from the induction hypothesis. �
In the case that ρ = μ = cf μ the assumption that every subfamily of G of cardinality 

ρ is μ-e.d. is, of course, superfluous, as G is a.d. by the similarity with F and every 
ρ-uniform a.d. family of regular size ρ is e.d.
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Concluding remarks. After Cohen’s and Easton’s results showed that the GCH and many 
of its instances were not provable in ZFC the impression may have been that the GCH or 
some other additional axiom was required for proving general combinatorial theorems for 
all infinite cardinals. It now seems that, at least the combinatorics of splitting families of 
sets, which for a long time was hindered by the “totally independent” aspect of cardinal 
arithmetic, is, in the end, amenable to investigation on the basis of ZFC. We expect that 
the method presented here will be useful proving additional absolute combinatorial rela-
tions which generalize known combinatorial relations between finite cardinals to infinite 
ones.
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