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Abstract

We give a new approach to the study of statistical mechanical systems: algebraic topology is used to
investigate the statistical distributions of stochastic currents generated in graphs. In the adiabatic and low
temperature limits we will demonstrate that quantization of current generation occurs.
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1. Introduction

In statistical physics and chemistry, especially in the study of classical stochastic systems at
the intermediate length scale, a master equation governs the time evolution of states, in which
transitions between states are treated probabilistically. In its most compact form, the master
equation is ṗ = τD Hβp, where p(t) is a one parameter family of probability distributions on
the state space, τD is a constant that represents total driving time and Hβ is the master operator,
which depends both on time t and a number β representing inverse temperature.

We will be interested in varying the parameters τD and β. When τD is made large, the duration
of time it takes to traverse the driving path is large, and one refers to this process as adiabatic
(or slow) driving. The limiting case τD →∞ is called the adiabatic driving limit. Similarly, one
can consider the effects of low temperature on the system; the limiting case β →∞ is referred
to as the low temperature limit.

Associated with the formal solution of the master equation is an average current vector which
represents the probability flux of a given initial distribution of states. In our first physics pa-
per [2], we argued that for generic periodic driving protocols, taking first the adiabatic limit and
subsequently the low temperature limit results in an average current vector having integer com-
ponents. This quantization phenomenon has been observed in a variety of applications, including
electronic turnstiles, ratchets, molecular motors and heat pumps (cf. the bibliography of [2]). One
of the purposes of the current paper is to give this result a mathematically rigorous foundation.
Our second aim is to explain how algebraic topology enters the picture in an essential way.

We now develop a mathematical formulation of our main results. Consider a particle taking
a continuous time random walk on a connected finite graph Γ . The particle starts at a vertex i ,
say, and at a random waiting time it jumps to an adjacent vertex j where it waits again and so
forth. Aside from the choice of inverse temperature β, such a process is determined by choosing a
collection of real parameters, one assigned to each vertex (well energies) and to each edge (barrier
energies) of the graph. The space of these parameters is denoted by MΓ ; it has the structure of
a real vector space whose dimension d is the number of vertices plus the number of edges of Γ .

Current generation occurs when the parameters are allowed to vary in a one parameter family.1

We consider such a family to be parametrized by an interval [0, τD], in which the number τD
represents total driving time. If the value of the parameters at the endpoints coincide, one obtains
a periodic driving protocol; it can be represented as a pair (τD, γ ) in which γ : [0, 1] → MΓ

is a smooth loop (equivalently, it is a smooth Moore loop). For each periodic driving protocol

1 This fits with the modeling of physical and chemical processes: artificial machines at the mesoscopic scale depend
on external parameters such as electric fields, temperature, pressure and chemical potentials which typically vary in time.
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(τD, γ ) and each β we can associate a class QτD,β(γ ) ∈ H1(Γ ;R) lying in the first homology
of the graph with real coefficients. The class is defined in terms of the formal solution of the
master equation and is called the average current generated by the triple (τD, γ, β). Physically,
the average current is a measurement of the “pumping” by external forces acting on the system.

The assignment γ → QτD,β(γ ) describes a smooth map

QτD,β : L MΓ → H1(Γ ;R),

where L MΓ is the space of smooth unbased loops in MΓ with the Whitney C∞ topology. By
taking the adiabatic limit τD →∞, and using the Adiabatic Theorem (Corollary A.5), we obtain
a smooth map

Qβ : L MΓ → H1(Γ ;R)

which does not depend on the parameter τD . We call the latter the analytic current map.
If we subsequently take the low temperature limit β →∞, it turns out that the resulting map

is not everywhere defined.

Definition 1.1. A loop γ ∈ L MΓ is said to be intrinsically robust if there is an open
neighborhood U of γ such that the low temperature limit

Q := lim
β→∞

Qβ

is well-defined and constant on U . The subspace of L MΓ consisting of the intrinsically robust
loops is denoted by Ľ MΓ .

The main result of this paper is a quantization result for Q.

Theorem A (Pumping Quantization Theorem). The image of the map

Q : Ľ MΓ → H1(Γ ;R)

is contained in the integral lattice H1(Γ ;Z) ⊂ H1(Γ ;R).

A version of this statement was observed earlier in our statistical mechanics papers [2,3], and
we will provide a rigorous proof below. A companion to the Pumping Quantization Theorem is
the Representability Theorem, which gives a characterization of the space of intrinsically robust
loops:

Theorem B (Representability Theorem). There is a topological subspace Ď ⊂ MΓ such that

Ľ MΓ = L(MΓ \ Ď).

Consequently, the space of intrinsically robust loops is a loop space.

The subspace Ď is called the discriminant, and its complement M̌Γ := MΓ \ Ď is called the
space of robust parameters.

Theorem C (Discriminant Theorem). The one point compactification of the discriminant,
i.e., Ď+, has the structure of a finite regular CW complex of dimension dim MΓ − 2 = d − 2.
In particular, the inclusion M̌Γ ⊂ MΓ is open and dense.

Remark 1.2. A CW complex is said to be regular if its characteristic maps are embeddings.
By [5, p. 534], such spaces have the structure of polyhedra. In particular, Ď+ is a finite polyhe-
dron of dimension d − 2. We will explicitly describe the characteristic maps of Ď+ in Section 7.
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Corollary D. The inclusion Ľ MΓ ⊂ L MΓ is generic. In particular, a smooth loop γ ∈ L MΓ

can always be infinitesimally perturbed to an intrinsically robust smooth loop γ1 ∈ Ľ MΓ .

Another main result of this paper is to give an algebraic topological model for the map Q:

Theorem E (Realization Theorem). There is a weak map

q̌ : M̌Γ → |Γ |

such that the composite

L M̌Γ → H1(M̌Γ ;Z)
q̌∗
−→ H1(Γ ;Z)

coincides with Q, where L M̌Γ → H1(M̌Γ ;Z) is the map that sends a free loop to its homology
class.

(Here, |Γ | is the geometric realization of Γ . Recall that a weak map X → Y is a diagram
X ← X ′→ Y , in which X ′→ X is a weak homotopy equivalence.)

Remark 1.3. As long as Γ has a non-trivial cycle, the homomorphism q̌∗ : H1(M̌Γ ;Z) →

H1(Γ ;Z) is non-trivial (cf. Remark 7.10). In particular, the map Q is non-trivial.

Remark 1.4. Observe that Theorem E implies Theorem A. However, our actual procedure is to
verify Theorem A first and thereafter use the tools of that proof to establish Theorem E.

Our final result gives an interpretation of the homomorphism q̌∗ in terms of the first Chern
class of a certain line bundle. Its formulation requires some preparation. A weak complex line
bundle over a space X is a pair (ξ, h) consisting of a weak homotopy equivalence h : X ′

∼
−→ X

and a complex line bundle ξ over X ′ (in terms of classifying spaces, this is the same thing as
specifying a weak map X → BU (1)). When the weak equivalence h is understood, we some-
times drop it from the notation and simply refer to ξ as a weak complex line bundle over X .
Since h is a cohomology isomorphism, there is no loss in considering the first Chern class of ξ

as lying in H2(X;Z).
Now suppose that X = Y × Z . Then slant product with c1(ξ) defines a homomorphism

c1(ξ)/ : H1(Z;Z) → H1(Y ;Z) . Let S(Γ ) = U (1)n be the n-torus, where n is the first Betti
number of Γ .

Theorem F (Chern Class Description). There exists a weak complex line bundle ξ on the
cartesian product S(Γ )× M̌Γ such that

H1(M̌Γ ;Z)
c1(ξ)/
−−−→ H1(S(Γ );Z) = H1(Γ ;Z)

coincides with q̌∗.

2. Preliminaries

Graphs. We fix a connected finite graph

Γ = (Γ0,Γ1),
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where Γ0 is the set of vertices and Γ1 is the set of edges. Here we are allowing multiple edges
between vertices and also edges linking a vertex to itself (loop edges). The entire structure of Γ
is then given by specifying a function

d : Γ1 → Γ (2)
0

which assigns to an edge the set of vertices which it connects (Γ (2)
0 denotes the two-fold

symmetric product of the set of vertices). For convenience, we fix a total ordering for Γ0. Then d
lifts to a map (d0, d1) : Γ1 → Γ0×Γ0 in the sense that d(e) = {d0(e), d1(e)}, with d0(e) ≤ d1(e),
where d0(e) = d1(e) if and only if e is a loop edge. The maps di : Γ1 → Γ0, for i = 0, 1 are
called face operators.

The geometric realization of Γ is the one dimensional CW complex |Γ | given by the
amalgamated union

Γ0 ∪ (Γ1 × [0, 1])

in which we identify (e, i) ∈ Γ1 × {0, 1} with di (e) ∈ Γ0 for i = 0, 1.

Populations and currents

Definition 2.1. The space of population vectors C0(Γ ;R) is the real vector space with basis
Γ0 and the space of current vectors C1(Γ ;R) is the real vector space with basis Γ1. If p is a
population vector and i ∈ Γ0, then pi denotes the i-th component of p. Likewise, if J is a current
vector α ∈ Γ1 then Jα denotes the α-th component of J.

The boundary operator

∂ : C1(Γ ;R)→ C0(Γ ;R)

is given on basis elements by ∂(α) = d0(α)−d1(α). Then C∗(Γ ;R) is the cellular chain complex
of Γ over the vector space of real numbers. The spaces Ci (Γ ;R) are smooth manifolds and ∂ is
a smooth map which is a cellular chain analog of the divergence operator. If a current J lies in
H1(Γ ;R) := ker(∂), we say that it is conserved.

The subspace C̄0(Γ ;R) ⊂ C0(Γ ;R) consisting of population vectors p such that


i∈Γ0
pi =

1 is called the space of normalized population vectors; these can be viewed as discrete probability
density functions on the space of states Γ0. The subspace C̃0(Γ ;R) ⊂ C0(Γ ;R) of those p such
that


i pi = 0 is called the space of zero population vectors.

3. Driving protocols

Stochastic processes for periodic driving are governed by the “master equation” which is a
certain linear first order differential equation acting on time dependent families of population
vectors (see [9, Ch. V]). Our master equation is a combinatorial analog of the Fokker–Planck
equation in Langevin dynamics [9, Chap. VIII].

The space of parameters.
The space of parameters for Γ is the real vector space

MΓ

consisting of ordered pairs (E, W ) where E : Γ0 → R and W : Γ1 → R are real-valued
functions. The function E is known as the set of well energies and W is known as the set of
barrier energies. We sometimes write (Ei , Wα) for the value of (E, W ) at (i, α) ∈ Γ0 × Γ1.
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Remark 3.1. Notice that MΓ only depends on the number of vertices and edges of Γ , but not
on the incidences. The subspace of “robust” parameters, which we introduce later, will depend
in a crucial way on the incidence structure of the graph.

Periodic driving. A driving protocol is a smooth path

γ : [0, τD] → MΓ ,

where the real number τD > 0 plays the role of driving time. When γ (0) = γ (τD), we can view
γ as a map CτD → MΓ , where CτD is the circle of length τD . If in addition the latter map is
smooth, we will say that γ is periodic. When τD = 1, we say that γ is normalized.

Observe that a periodic driving protocol is equivalent to specifying a pair

(τD, γ ) ∈ R+ × L MΓ

in which γ is a normalized periodic driving protocol. Here L MΓ denotes the free (smooth) loop
space of MΓ .
The master operator. Fix a real number β > 0. For a given (E, W ) ∈ MΓ we can form, for each
i ∈ Γ0 and α ∈ Γ1, the real numbers

gα = eβWα , κi = eβEi . (1)

Let ĝ : C1(Γ ;R)→ C1(Γ ;R) be the linear transformation given by the diagonal matrix whose
entries are gα . Similarly, let κ̂ : C0(Γ ;R) → C0(Γ ;R) be given by the diagonal matrix with
entries κi .

Definition 3.2 (cf. [2, Eq. (10)]). For a given (β, E, W ), the master operator is defined to be

H = −∂ ĝ−1∂∗κ̂, (2)

where ∂∗ : C0(Γ ;R)→ C1(Γ ;R) is the formal adjoint to ∂ .

In particular, for fixed β, we can view the master operator as defining a smooth map

H : MΓ → endR(C0(Γ ;R)). (3)

Remark 3.3. With respect to the inner product on C0(Γ ;R) defined by ⟨u, v⟩κ̂ = uκ̂vt , the
master operator is self-adjoint. We infer that the eigenvalues of the master operator are real, and
it is also easy to see that they are non-positive. When E = 0 = W , the master operator is just the
graph Laplacian −∂∂∗.

The master operator is also known as the Fokker–Planck operator to emphasize its natural
interpretation as the discrete analog of the Fokker–Planck operator in Langevin dynamics on
smooth spaces.

Remark 3.4. For i, j ∈ Γ0, let Si j = d−1({i, j}) if i ≠ j and let Ti = {α ∈ Γ1| {i} ( d(α)}.
Setting ki,α := g−1

α κi , the matrix entries of the master operator are

Hi j =



α∈Si j

ki,α i ≠ j,

−


α∈Ti

ki,α i = j,

where the convention is that Hi j = 0 when Si j is empty, i.e., there is no edge connecting i and
j . In particular,


j∈Γ0

Hi j = 0 and Hi j > 0 for i ≠ j (compare [9, p. 101]).
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Remark 3.5. We offer comments on some distinctions in terminology between mathematics and
physics. In the statistical mechanics literature, Γ is usually a simple graph (no multiple edges and
no loop edges). In this case the numbers Hi j are called rates and describe a Markov process on Γ
with transition matrix H (observe that Hi j = ki,α with d(α) = {i, j} in this case). If X t denotes
the state of the process at time t , then

Hi j = lim
∆t→0

P(X t+∆t = j |X t = i)

∆t
, i ≠ j, (4)

where the numerator appearing on the right denotes the conditional probability of transitioning
to state j at time t +∆t , given that one is in state i at time t .

Because of Eq. (1), the rates satisfy the detailed balance equation

Hi jκ j = H j iκi (5)

which states that the net flow of probability from state i to state j is the same as that from state
j to state i . This means that the Markov process is time reversible [9, p. 109]. Conversely, if
the process is time reversible, one can show that the parameters κi and gα are, after possibly
rescaling, in the form given by Eq. (1).

What we have described above is the notion of continuous time random walk on a graph. This
is slightly more general than the notion of random walk considered in the mathematical literature
(cf. [1, Chap. IX]). Mathematicians usually define a random walk to be a reversible Markov chain
rather than the more general notion of reversible Markov process (the difference being that for
Markov processes, one considers waiting times at the vertices as part of the walk).

The master equation. Fix a periodic driving protocol (τD, γ ), and β > 0. Then we have the
associated one parameter family of master operators H(γ (t)) ∈ endR(C0(Γ ;R)). The master
equation is given by

ṗ(t) = τD H(γ (t))p(t). (6)

The master equation governs the time evolution of probability: when p(t) is normalized, the
component pi (t) represents the probability density of observing the state i at time t .

The Boltzmann distribution. Suppose V is a finite dimensional real vector space equipped with
basis B. If E : B → R is a function, and β > 0 is a real number, we may form the normalized
linear combination

Z−1

j∈B

e−βE j j Z ≡

j∈B

e−βE j .

This is called the (normalized) Boltzmann distribution of the pair (E, β). (In thermodynamics,
β represents a multiple of inverse temperature: β = 1

kB T , where T is the temperature and kB
is the Boltzmann constant.) The basis B identifies V with its dual space V ∗, so we are entitled
to consider the function E as a vector lying in V having components Ei . Then for fixed β, the
Boltzmann distribution describes a smooth map

ρB
: V → ∆[V ],

where ∆[V ] ⊂ V is the open standard simplex with respect to the basis T (i.e., this map sends a
vector E to its Boltzmann distribution). We say E is non-degenerate if there is a unique j ∈ T
such that the j-th component E j of E is minimizing.
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Lemma 3.6. Let f : [0, 1] → V be a smooth map with the property that f (t) is non-degenerate
for every t ∈ [0, 1]. Then

d

dt
ρB( f (t))

tends uniformly in t to the zero vector in the low temperature limit β →∞.

Proof. As [0, 1] is compact, we only need to verify the statement pointwise, i.e., for each
t ∈ [0, 1]. To avoid clutter we write Ei := Ei ( f (t)). Then the i-th component of displayed
derivative is

ρ̇B
i =


j

β(Ė j − Ėi )eβ(Ei−E j )


j

eβ(Ei−E j )

2 . (7)

Case(1): i is the minimizing vertex. In this instance, the denominator of Eq. (7) is the square of
1 + (


j≠i eβ(Ei−E j )), where each Ei − E j < 0. Hence the denominator tends to 1 in the low

temperature limit. As for the numerator of Eq. (7), when i ≠ j , the term β(Ė j − Ėi )eβ(Ei−E j )

tends to 0 and when i = j it is 0. So the low temperature limit of Eq. (7) is 0.

Case (2): i is not the minimizing vertex. In this instance at least one of Ei − E j is positive and
Eq. (7) is dominated by kβ/ecβ for a suitable choice of constants k and c with c > 0. The latter
tends to zero in the low temperature limit by L’Hospital’s rule. �

The Boltzmann distribution for the population space. When B = Γ0, we have V = C0(Γ ;R).
The Boltzmann distribution in this case describes a smooth map

ρB
: MΓ → C̄0(Γ ;R)

whose value at (E, W ) depends only on E and β. It is not difficult to show that ρB(E, W ) ∈

C0(Γ ;R) is in the null space of the master operator H(β, E, W ) (compare [9, p. 101]).

4. Current generation

For a periodic driving protocol (τD, γ ) and β > 0, the instantaneous current at t ∈ [0, 1] is
defined as

J(t) = J(β, τD, γ )(t) := τD ĝ−1∂∗κ̂ρ(t) ∈ C1(Γ ;R),

where ρ(t) is the unique periodic solution of the master equation given by Proposition A.1 below
(here we are assuming that τD is sufficiently large). Then the continuity equation

∂J = −ρ̇

is satisfied, in which J(t) plays the role of probability flux ([9, p. 193], [6]).
The average current generated per period is

Q(β, τD, γ ) :=

 1

0
J(t)dt. (8)

This expression measures the net flow of probability in a single period [0, τD].
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Average current in the adiabatic limit. In the adiabatic limit τD → ∞, both J and Q can be
expressed in terms of a certain differential C1(Γ ;R)-valued 1-form A.

For each (E, W ) ∈ MΓ and β > 0, the negative of the restricted boundary map

−∂ : im(ĝ−1∂∗)→ C̃0(Γ ;R)

is an isomorphism (here ĝ−1∂∗ : C0(Γ ;R) → C1(Γ ;R) and im(ĝ−1∂∗) ⊂ C1(Γ ;R)

denotes its image). Let L : C̃0(Γ ;R) → im(ĝ−1∂∗) denote the inverse transformation, and
let i : im(ĝ−1∂∗)→ C1(Γ ;R) denote the inclusion. Then i ◦ L−1 defines a homomorphism

A(β, E, W ) : C̃0(Γ ;R)→ C1(Γ ;R).

For fixed β and variable (E, W ), this defines a smooth map

A : MΓ × C̃0(Γ ;R)→ C1(Γ ;R).

The proof of the following is immediate.

Lemma 4.1. The map A is uniquely characterized by the following properties:

(1) The composition

MΓ × C̃0(Γ ;R)
A
→C1(Γ ;R)

−∂
→C0(Γ ;R)

coincides with second factor projection, and
(2) for all J ∈ H1(Γ ), we have

⟨J, A⟩ĝ = 0,

where ⟨−,−⟩ĝ is the inner product on C1(Γ ;R) defined by ⟨u, v⟩ĝ = uĝvt .

Remark 4.2. The operator A defines the solution to Kirchhoff’s theorem on electrical circuits
(see [1, p. 44]). Property (2) above amounts to Kirchhoff’s voltage law with ĝ defining the
resistance matrix.

An explicit formula for A is given as follows: choose a basepoint i ∈ Γ0. Given (W, E) ∈

MΓ and β > 0, define a linear transformation Ae
: C0(Γ ;R)→ C1(Γ ;R) whose value at basis

elements j ∈ Γ0 is

Ae( j) =


T

QT, j
i ϱB

T j ∈ Γ0, (9)

where the sum is over all spanning trees of Γ . The term QT, j
i is the element of C1(Γ ;R) defined

by the signed sum of edges along the unique path from i to j along T , where an edge has sign
+1 if and only if its orientation coincides with the path. The term ϱB

T is the real number given by
the T -component of the Boltzmann distribution whose vector space has basis the set of spanning
trees of Γ , where the energy function is given by


α∈T1

Wα . Then Ae restricted to the subspace

C̃0(Γ ;R) coincides with A.

Given a periodic driving protocol (τD, γ ) and β > 0, application of the normalized Boltzmann
distribution gives a loop of normalized population vectors

ρB(γ ) : [0, 1] → C̄0(Γ ;R)
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given by t → ρB(γ (t)). Taking the time derivative, we obtain a loop of reduced population
vectors

ρ̇B(γ ) : [0, 1] → C̃0(Γ ;R).

Then application of A to the pair (γ, ρ̇B(γ )) yields a loop of currents

A(γ, ρ̇B(γ )) : [0, 1] → C1(Γ ;R).

(This procedure describes a smooth map L MΓ → LC1(Γ ;R).)
The following is then a straightforward consequence of the definitions combined with the

Adiabatic Theorem 13.3.

Proposition 4.3. Let β > 0 be fixed. Then in the adiabatic limit we have

lim
τD→∞

J(β, τD, γ )(t) = A(γ (t), ρ̇B(γ )(t))

and

lim
τD→∞

Q(β, τD, γ ) =

 1

0
A(γ (t), ρ̇B(γ )(t))dt .

By appealing to Lemma 4.1, one sees that the image of the adiabatic limit of Q is contained
in H1(Γ ;R), so it defines a smooth map

Qβ : L MΓ → H1(Γ ;R) , (10)

where in this notation Qβ(γ ) := limτD→∞ Q(β, τD, γ ).

Remark 4.4. As our main results are stated in the adiabatic limit, there is no loss in pretending,
even before taking the adiabatic limit, that the average current is given by the expression on
the right-hand side of Proposition 4.3. With this change, the average current is defined without
having to refer to either τD or to solutions of the master equation.

Definition 4.5. The map of Eq. (10) is called the analytical current map.

5. Good parameters

Spanning trees. For each total ordering σ of the set of edges Γ1, we may define a spanning tree
Tσ for Γ by sequentially removing the edges with the highest possible value in the ordering such
that the remaining graph remains connected. Explicitly, let α1 in Γ1 be maximal. We discard α1
if and only if the graph Γ \ α1 := (Γ0,Γ1 \ {α1}) is connected. Otherwise, we retain α1. We next
consider the edge α2 which is maximal for Γ \α1. This is discarded if Γ −{α1, α2} is connected.
Repeating this process, the edges which are retained form a tree Tσ .

Definition 5.1. The tree Tσ given by the above procedure is called the spanning tree associated
with σ , or simply the σ -spanning tree.

Example 5.2. Consider the graph with total ordering σ of its edges depicted at the top of
Fig. 1. The associated σ -spanning tree is gotten as follows. If we remove the edge labeled 7,
then the graph is connected, so we discard this edge. In Γ \ 7, the edge labeled 6 disconnects
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Fig. 1. A graph with a total ordering of its edges and its associated σ -spanning tree.

the graph when it is removed, so edge 6 is retained. Continuing in this fashion, the all edges
but those labeled 3 and 7 are retained. This results in the spanning tree indicated by the path
1→ 2→ 4→ 5→ 6 indicated in the bottom of Fig. 1.

Example 5.3. A total ordering σ is determined by a choice of non-degenerate barrier energies
W : Γ1 → R, where α < α′ if and only if Wα < Wα′ . For any such W and any spanning tree T
we introduce the number

w = w(T, W ) =


α∈Γ1\T1

Wα.

When W is understood, we sometimes write w(T ) for w(T, W ).

Proposition 5.4. Let W : Γ1 → R be nondegenerate. Let σ be the ordering of edges associated
with W , as in Example 5.3. Then, for any spanning tree T ⊂ Γ with T ≠ Tσ , there is a spanning
tree T ′ ∈ Γ , so that w(T ′, W ) > w(T, W ).

Proof. Let (α1, . . . , αk) and (β1, . . . , βk) be the elements of Γ1 \ (Tσ )1 and Γ1 \T1, respectively,
in the decreasing order with respect to σ , i.e., the barrier energies are decreasing from left to
right. Let j be smallest index such that

• α j ≠ β j , and
• αi = βi for i < j .

Consider the spanning subgraph Γ ′ ⊂ Γ , obtained from Γ by withdrawing the edges α1, . . . ,

α j−1, or equivalently β1, . . . , β j−1. By the definition of Tσ , the edge α j is not a bridge of Γ ′

(i.e., its withdrawal does not disconnect the graph), and Wβi < Wα j for i ≥ j . Let T (1) and T (2)

be the two trees obtained from T by withdrawing the edge α j . Then there is at least one edge,
say βs , among β j , β j+1, . . . , βk that connects T (1) to T (2), since otherwise the edge α j would
be a bridge of Γ . Therefore, by replacing the edge βs with α j in T results in another spanning
tree, denoted T ′ that obviously satisfies the condition of the proposition, since Wα j > Wβs . �

Proposition 5.4 gives an immediate characterization of σ -spanning trees in terms of the
function w(−, W ). Let TΓ denote the set of spanning trees of Γ .

Corollary 5.5. With σ and W as in Proposition 5.4, the σ -spanning tree Tσ is the unique
maximizer of the function w(−, W ) : TΓ → R.

Remark 5.6. One can restate the last corollary so as to depend only on σ : For α ∈ Γ1 set
Wσ (α) = k if α is the k-th element in the partial ordering given by σ . Now define ω(T, σ ) :=

w(T, Wσ ). Then by Corollary 5.5, Tσ is the unique maximizer of ω(−, σ ) : TΓ → R.
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Remark 5.7. There is a useful alternative characterizing property of the σ -spanning tree Tσ

associated with a nondegenerate barrier function W : for each withdrawn edge (i.e., an edge not
in Tσ ) with d(α) = {i, j}, the barrier Wα is higher than any of the barriers associated with the
edges of the unique embedded path which connects i to j inside Tσ . For this reason we named
Tσ the minimal spanning tree of W in [2].

Good parameters and the weak map q̆ . Define an open subset

M̆Γ ⊂ MΓ

as follows: a pair (E, W ) lies in M̆Γ if and only if one of the following conditions hold:

(1) there is only one absolute minimum for E : Γ0 → R, or

(2) The function W : Γ1 → R is non-degenerate (i.e., one-to-one).

We call M̆Γ the space of good parameters.

Let U be the set of (E, W ) satisfying the first condition and let V be the set of (E, W )

satisfying the second. Then

M̆Γ = U ∪ V

where U and V are open. Each connected component of U is defined by specifying a vertex
v ∈ Γ0, whereas each connected component of V is given by specifying a total ordering σ of Γ1.
Consequently, we have decompositions into connected components

U =

v

Uv and V =

σ

Vσ .

For each vertex v ∈ Γ0, let B1/3(v) be the set of points in |Γ | which have distance < 1/3 from
v in the natural metric on |Γ | that gives every edge a length of 1. Let Nv ⊂ M̆Γ × |Γ | be the
subspace given by Uv × B1/3(v). Then the second factor projection

Nv → Uv

is a homotopy equivalence (it is the cartesian product of Uv with B1/3(v)). Now set NU = ⨿v Nv .
Then the projection NU → U is also a homotopy equivalence. Call this projection pU .

For a given σ , we let Nσ ⊂ M̆Γ ×|Γ | be the subset consisting of Vσ ×|Tσ |(1/3), where Tσ is
the σ -spanning tree and |Tσ |(1/3) consists of the points of |Γ | whose distance to |Tσ | is < 1/3.
Then the projection Nσ → Vσ is a homotopy equivalence (it is the cartesian product of Vσ with
a metric tree). Set NV = ⨿σ Vσ . Then the projection pV : NV → V is a homotopy equivalence.

Notice that p−1
U (Uv ∩ Nσ ) ⊂ Nσ . Consequently, if we set

N = NU ∪ NV ,

then a straightforward application of the gluing lemma [8] shows that the first factor projection

p1 : N → M̆Γ

is a homotopy equivalence.
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Definition 5.8. For good parameters, the weak map q̆ is given by

M̆Γ
p1
←−
∼

N
p2
−→ |Γ |, (11)

where p2 denotes the second factor projection.

6. A weak form of the Pumping Quantization Theorem

Recall the decomposition

M̆Γ = U ∪ V

of the previous section, where

U =


j

U j , V =

σ

Vσ ,

where j ranges through the elements of Γ0 and σ ranges through the set of total orderings of Γ1.
Given a loop γ ∈ L M̆Γ , it will be convenient in what follows to think of γ as a smooth

map C → M̆Γ , where C denotes the circle of radius 1/(2π). Let I ⊂ C be a closed arc. The
contribution along I to the analytical current map is then given by the integral

I
Jds ∈ C1(Γ ;R)

where we parametrize I with respect to arc length. That is, if I1, . . . Ik is a simplicial decompo-
sition of C into closed arcs, then

Qβ(γ ) =

k
j=1


I j

Jds.

Assume that γ (I ) ⊂ U ; in this instance we say C is of type U .

Lemma 6.1. If I is of type U, then in the low temperature limit the contribution along I to
Qβ(γ ) is trivial.

Proof. On I the function E : Γ0 → R has a unique absolute minimum v. As β tends to∞, the
value of Boltzmann distribution ρB restricted to arc I tends to v. This is because the component
of ℓ ∈ Γ0 in the Boltzmann distribution is

e−βEℓ
i

e−βEi

and the latter tends to zero on if ℓ ≠ v and one if ℓ = v when Ev is the unique minimum.
Consequently, as β tends to∞, the time derivative ρ̇B tends to zero on I (by Lemma 3.6).

The contribution to the current of γ along I is given by the integral
I

A(γ, ρ̇B(γ ))ds,

(using Proposition 4.3). When β tends to infinity, this expression tends to zero. �
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Now consider a closed arc I = [a, b] ⊂ C with endpoints a, b such that

• γ (I ) ⊂ V , and

• γ (∂ I ) ⊂ U .

In this instance we say I is of type V .

Lemma 6.2. If I is of type V , then in the low temperature limit the contribution along I to
Qβ(γ ) is an element of C1(Γ ;Z).

Proof. Fix a basepoint i ∈ Γ0, (E, W ) ∈ MΓ and β > 0. Recall from Remark 4.2 the formula

Ae( j) =


T

QT, j
i ϱB

T j ∈ Γ0,

where Ae
: C0(Γ ;R) → C1(Γ ;R) restricts to A on C̃0(Γ ;R). Here ϱB

T is the T -component
of the Boltzmann distribution for the vector space whose basis is the set of spanning trees of Γ .
Recall also that the instantaneous current J(t) is defined as A(ρ̇B), where ρB in this case denotes
the Boltzmann distribution for C0(Γ ;R). Hence, inserting ρ̇B into the expression for Ae gives

J(t) =

T, j

QT, j
i ϱB

T ρ̇B
j . (12)

Recall that the average current is given by
 1

0 J(t). In particular, the contribution along I is given

by
 b

a J(t)dt (where we are parametrizing I with respect to arc length and the limits of integration
come from the parametrization). Hence, integrating both sides of the last display, we obtain

Q =

T, j

QT, j
i

 b

a
ϱB

T ρ̇B
j . (13)

Since QT, j
i is an integer valued 1-chain, it will suffice to prove that b

a
ϱB

T ρ̇B
j

tends to an integer as β tends to∞. Using integration by parts, we may rewrite this expression as

ϱB
T ρB

j |
d
c −

 b

a
ϱ̇B

T ρB
j .

By Lemma 3.6, ρ̇B
T tends to zero as β →∞. Hence the contribution to the current along I in the

low temperature limit is determined by the value of ϱB
T ρB

T |
b
a . Since γ (∂ I ) ⊂ U , we deduce by

the argument of Lemma 6.1 that the low temperature limit of ϱB
T ρB

T |
b
a is an integer. �

As an immediate corollary, we obtain a weak version of Theorem A:

Theorem 6.3 (Weak Quantization). If γ ∈ L M̆Γ , then the low temperature limit limβ→∞ Qβ

(γ ) is defined and lies in the integral lattice H1(Γ ;Z) ⊂ H1(Γ ;R).
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7. The Discriminant Theorem and robust parameters

Set

D̆ := MΓ \ M̆Γ .

We will first show that the one-point compactification D̆+ has the structure of a regular CW
complex. By definition, D̆ is the subspace of MΓ consisting of pairs (E, W ) such that E :
Γ0 → R has more than one absolute minimum and W : Γ1 → R is not one-to-one.

Definition 7.1. A height function for Γ is a pair of functions

h0 : Γ0 → {1, 2}, h1 : Γ1 → {1, . . . , n},

where

• n > 0 is an integer,
• h−1

0 (1) is non-empty, and
• h1 is surjective.

We write h := (h0, h1).

Height functions arise in the following situation.

Example 7.2. Given (E, W ) ∈ D̆, we write h0(i) = 1 if and only if i is a minimum for E , and
otherwise we set h0(i) = 2. We define h1 : Γ1 → {1, . . . , n} to be the unique surjective function
characterized by

• h1(α1) ≤ h1(α2) if and only if Wα1 ≤ Wα2 , and
• h1(α1) = h1(α2) if and only if Wα1 = Wα2 .

The pair h := (h0, h1) is then a height function for Γ .

Given a height function h = (h0, h1) we define

C(h)

to be the set of all (E, W ) ∈ D̆ whose associated height function is h, as in Example 7.2. Then
D̆ =


h C(h) as sets. Note that C(h) is non-empty if and only if h−1

0 (1) has more than one
element and h−1

1 (k) has more than one element for some k. Let D(h) denote the closure of C(h)

in D̆.

Proposition 7.3. Assume that C(h) is non-empty. Then the one-point compactification D(h)+ is
homeomorphic to a disk of dimension m + n, where m = 1+ |Γ0 \ h−1

0 (1)| and n is as above.

Proof. The space C(h) coincides with the cartesian product C0(h)×C1(h), where C0(h) consists
of those E : Γ0 → R associated with h0 and C(h1) consists of W : Γ0 → R associated with h1.
Likewise D(h) coincides with the cartesian product D(h0)× D(h1).

Note that D(h0) is canonically homeomorphic to the space Pm consisting of m-tuples or real
numbers

(x1, x2, . . . , xm)

such that x1 ≤ xk for all k > 1. The homeomorphism is given by mapping E to the map
Γ0/∼→ R, where ∼ denotes the equivalence relation on Γ0 defined by i ∼ j if and only of
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h0(i) = 1 = h0( j). As Γ0/∼ has cardinality one more than the number of non-minima of E ,
such functions are identified with m-tuples of real numbers. The operation

(z1, . . . , zm) → (z1, z2 + z1, . . . , zm + z1)

defines a homeomorphism to Pm from the space of m-tuples (z1, . . . , zm) such that z1 ∈ R and
zk ≥ 0 for all k > 1. It is easy see that the one-point compactification of the latter space is
homeomorphic to Dm . Hence, D(h0)

+ is homeomorphic to Dm .
Similarly, the space D(h1) is canonically homeomorphic the space Qn consisting of n-tuples

or real numbers

(x1, x2, . . . , xn)

such that x1 ≤ x2 ≤ . . . xn . The operation

(z1, . . . , zn) →


z1, z1 + z2, . . . ,

n
i=1

zi


defines a homeomorphism to Qn from the space of n-tuples (z1, . . . , zn) for which z1 ∈ R and
zi ≥ 0 for i > 1. The one-point compactification of the latter space is identified with Dn .
Consequently, D(h1)

+ is homeomorphic to Dn . Finally,

D(h)+ = (D(h0)× D(h1))
+
= D(h0)

+
∧ D(h1)

+ ∼= Dm
∧ Dn

= Dm+n . �

Corollary 7.4. D̆+ has the structure of a regular CW complex of dimension d − 2, where d is
the cardinality of Γ0 ⨿ Γ1.

Remark 7.5. With the exception of the point at∞, the open cells of D̆+ are given by the C(h)

where h varies over the height functions for Γ . This is because C(h) is the interior of D(h)+.
A top dimensional cell C(h) of D̆+ is given by a height function h in which

• h−1
0 (1) has precisely two elements;

• there is a k ≤ n such that h−1
1 (k) has precisely two elements, and if i ≠ k we have h−1

1 (i) is
a singleton for 1 ≤ i ≤ n.

Robust parameters. Alexander duality applied to the inclusion D̆+ ⊂ M+

Γ = Sd yields an iso-
morphism

Hd−2(D̆+) ∼= H1(M̆Γ ).

Let Cd−2(D̆+) be the cellular cochain complex of D̆+ over the integers in degree d−2. This is the
free abelian group with basis given by the set of (d−2)-cells of D̆+. We consider the composition

Cd−2(D̆+)→ Hd−2(D̆+) ∼= H1(M̆Γ )
q∗
→ H1(Γ ;R) (14)

where q : M̆Γ → |Γ | is the weak map defined in Eq. (11) above. This homomorphism is
naturally identified with a H1(Γ ;R)-valued chain

φ ∈ Cd−2(D̆+; H1(Γ ;R)),

and it is trivial to check that φ is a cycle. For a ∈ Cd−2(D̆+), let ⟨a, φ⟩ ∈ H1(Γ ;R) denote the
effect of applying the homomorphism (14) to a.
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Fig. 2. A two state system.

Definition 7.6. A (d − 2)-cell C(h) of D̆+ is said to be essential if ⟨C(h), φ⟩ ∈ H1(Γ ;R) is
non-trivial, where we consider C(h) as an element of Cd−2(D̆+). A cell C(h) of D̆+ of any
dimension is inessential if it is not contained in the closure of an essential (d − 2)-cell.

Define Ď to be the closure of the union of the essential (d − 2)-cells of D̆.

Lemma 7.7. Ď+ is a subcomplex of D̆+.

Proof. It is enough to show that the union of any collection of top dimensional closed cells of D̆+
forms a subcomplex. Let D(h)+ be any closed cell of D̆. Suppose x lies in the boundary of D(h).
Then x lies in a unique (open) j-cell C(h′). It is straightforward to check that D(h′) ⊂ D(h).
Consequently, the boundary of D(h)+ is a union of lower dimensional cells, each of these having
boundary a union of lower dimensional cells and so on. In particular, D̆+ is a union of interiors
of certain cells, and this union is closed. Hence it is a subcomplex.

Definition 7.8. Set

M̌Γ := MΓ \ Ď.

Then we have an inclusion M̆Γ ⊂ M̌Γ . We call M̌Γ the space of robust parameters.

Example 7.9. Let Γ denote the graph displayed in Fig. 2. In this case, the vector space of
parameters MΓ is identified with R4 and the discriminant D̆ is identified with the diagonal
inclusion R2

⊂ R4 given by (x, y) → (x, x, y, y). Taking the one-point compactification of this
inclusion, we obtain an inclusion S2

⊂ S4 that is identified with D̆+ ⊂ M+

Γ . The complement
of this inclusion has the homotopy type of S1. Consequently, there is a homotopy equivalence

M̆Γ ≃ S1.

In fact, one can make this identification precise using the loop γ given by the length one periodic
driving protocol γ (t) = (cos 2π t, 0, sin 2π t, 0) (one verifies this by showing that linking number
of γ with S2

⊂ S4 is ±1).

Consequently, the first homology group of M̆Γ is generated by the homology class [γ ].
The effect of q̆∗ : H1(M̆Γ ) → H1(Γ ) on this loop is to produce a homology generator of
H1(Γ ;R) ∼= Z (see [2] for details), so the weak map q̆ : M̆Γ → |Γ | is a weak homotopy
equivalence. In particular, the unique 2-cell of D̆+ ∼= S2 is essential, and we infer in this instance
M̌Γ = M̆Γ .

Remark 7.10. With little difficulty, Example 7.9 can be generalized to show that q̆∗ : H1(M̆Γ )

→ H1(Γ ) is non-trivial whenever Γ has non-trivial first Betti number. We omit the details.
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Fig. 3. A two dimensional disk which meets a (d−2)-cell of D̆ transversely at its center. The green sectors are contained
in U and the red sectors are contained in V . In this example, the current is represented by a non-trivial cycle so the
(d − 2)-cell is essential. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

The weak map q̂ . Let C(h) denote a (d − 2)-cell of D̆+, and let x ∈ C(h) be its center. We
choose a small closed 2-disk meeting C(h) normally at x . The boundary of this disk represents a
periodic driving protocol γ in the space of good parameters. As an illustration, we have depicted
such a disk in Fig. 3, associated with the graph Γ =>−▹.

If the disk is sufficiently small then it is partitioned into four regions, the interior of each either
contained in U or V , which is shown in Fig. 3 as green and red respectively.2

Each green sector corresponds to a vertex i or j of Γ , each giving a minimum for {Ek}k∈Γ0 .
Likewise, each red sector corresponds to a preferred maximal spanning tree, and these are
indicated next to each such sector together with the location of the vertices i, j . The topological
current associated with the driving protocol γ is defined by the cycle obtained by joining together
two paths connecting i with j (cf. Section 8). Each path is defined by moving along one of the
spanning trees starting at i and terminating at j (for example, in Fig. 3 one obtains the cycle
▹, which is nontrivial). In particular, the cell C(h) is inessential if and only if this cycle is
trivial. However, even more is true: since each path used to form the cycle is embedded, it is
straightforward to check that the loop in Γ given by gluing these two paths together is null
homotopic if and only if the two paths coincide. Consequently, if σ is inessential then the weak
map q̆ extends to the space given by attaching a two cell to M̆Γ along γ . If we repeat this
construction for every inessential (d − 2)-cell, we obtain a space which is homotopy equivalent
to the space of robust parameters M̌Γ . We have therefore shown that the weak map q̆ admits an
extension to the space of robust parameters. We denote this extension by q̂ .

However, in order to prove the Pumping Quantization Theorem, it will be more convenient
to give a concrete extension of the weak map q̆ to all of M̌Γ , rather than just a model for the
extension up to homotopy. This construction will be described in the next section.

2 One may justify this as follows: at x there is a unique pair of vertices i and j and unique pair of edges α, β in which
Ei = E j are minimizing and Wα = Wβ . A generic infinitesimal perturbation into M̆Γ of these values will give one
of the following inequalities: Ei > E j , Ei < E j , Wα > Wβ or Wα < Wβ . These inequalities correspond to the four
sectors.



V.Y. Chernyak et al. / Advances in Mathematics 244 (2013) 791–822 809

Fig. 4. A graph with three vertices and three edges.

Example 7.11. In the graph depicted by Fig. 4, the edge containing vertices i and j is in every
maximal spanning tree. Therefore, the discriminant D̆ for this graph has an inessential 4-cell.

Definition 7.12. A barrier resolution of a height function h = (h0, h1) is a bijection r : Γ1 →

{1, . . . , |Γ1|}, where |Γ1| is the cardinality of Γ1, such that h1(α) < h1(β) implies r(α) < r(β)

for all α, β ∈ Γ1.

A barrier resolution rh of h enables one to associate a total ordering σr of the set Γ1. We saw
in Section 5 how to obtain a spanning tree Tσr for Γ associated with σr . Let

Fh =


r
Tσr ,

where the intersection is indexed over the set of barrier resolutions r of h. Then Fh is a forest,
i.e., a (possibly empty) disjoint union of trees.

Proposition 7.13. A cell C(h) is inessential if and only if all elements of h−1
0 (1) belong to the

same connected component of Fh .

Proof. Consider a cell C(h) that satisfies the condition that all i ∈ h−1
0 (1) belong to the same

connected component Th of the forest associated with C(h). Then Th is a tree. Consider an
arbitrary top dimensional cell C(ĥ), so that C(h) ⊂ D(ĥ). The cell C(ĥ) is uniquely identified
by two distinct vertices i, j ∈ h−1

0 (1), and two distinct edges α and β with h1(α) = h1(β),
together with a height function h1 of height |Γ1| − 1 with ĥ1(α) = ĥ1(β), i.e., Wα = Wβ is the
only edge degeneracy in C(ĥ). Then we have ĥ0(k) = 1 for k = i, j and ĥ0(k) = 2, otherwise.
Consider a point (E, W ) ∈ C(ĥ), and let γĥ be a small loop that goes around (E, W ) without

intersecting C(ĥ), i.e., staying within the good parameter space M̆Γ . Using the notation of Eq.
(9), we have for the topological current

Q(γĥ) = Q
Th̃(α)

, j

i − Q
Th̃(β)

, j

i , (15)

where h̃α and h̃β are the two possible barrier resolutions of ĥ with h̃α > h̃β and h̃α < h̃β ,
respectively. Then h̃α and h̃β are also barrier resolutions of h, and, therefore, Th ⊂ Th̃α

and

Th ⊂ Th̃β
, which implies Q

Th̃(α)
, j

i = QTh , j
i = Q

Th̃(β)
, j

i . Therefore, Q(γĥ) = 0, due to Eq. (15),
so that C(h) is inessential.

To prove the converse, let C(h) be any inessential cell. For an arbitrary pair of edges α and β

let ĥ1 : Γ1 → {1, . . . , |Γ1| − 1} be any surjection such that ĥ1(α) = ĥ1(β). Then there are two
possible barrier resolutions h̃α and h̃β of ĥ, as described above. For arbitrary distinct vertices i
and j let ĥ0 : Γ0 → {1, 2} be the function defined by

ĥ0(k) =


1 if k = i or j,
2 otherwise.
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Then ĥ = (ĥ0, ĥ1) is a height function, and C(ĥ) is top dimensional. If C(ĥ) is inessential
then Q(γĥ) = 0 and Eq. (15) implies that the minimal paths that connect i to j along the

spanning trees Th̃α
and Th̃β

are identical. Furthermore, if D(ĥ) ⊃ C(h), then C(ĥ) is inessential.
Consequently, the set consisting of the minimal paths that connect i to j inside the spanning
trees Th̃ associated with all barrier resolutions h̃ of h consists of a single element. Denote this
unique path by lh,i j . Then for any two distinct vertices i, j ∈ h−1

0 (1) the path lh,i j belongs to all
spanning trees Th̃ , and therefore the forest associated with C(h). We infer that all vertices that
belong to h−1

0 (1) belong to the same connected component of the forest. �

8. The weak map q̌

Proposition 7.13 shows that to any inessential cell C(h) one can assign, in a preferred way, a
tree that contains h−1

0 (1). This tree will be denoted TC(h) and referred to as the tree associated
with the inessential cell C(h). We now cover each open cell C(h) with an open set Yh ⊃ C(h)

that consists of all (E, W ) ∈ MΓ that is characterized by the property that if h0(i) < h0( j) and
h1(α) < h1(β), then Ei < E j and Wα < Wβ , respectively, for all i, j ∈ Γ0 and α, β ∈ Γ1.
Setting Y =


h Yh , where the union goes over all inessential cells we obtain an open cover

M̌Γ = U ∪ V ∪ Y (16)

of the space of robust parameters.
For a given height function h = (h0, h1) whose cell C(h) is inessential, we let

Nh ⊂ M̌Γ × |Γ |

be the subspace given by Yh×|TC(h)|(1/3), where |TC(h)|(1/3) is the open regular neighborhood
of |TC(h)| given by adjoining half open subintervals of length 1/3 that correspond to those edges
not in TC(h) but which contain a vertex of it.

Then the projection Nh → Yh is a homotopy equivalence. We further define NY =


h Nh ,
and if we set

Ň = NU ∪ NV ∪ NY ⊂ M̌Γ × |Γ |, (17)

then we have a diagram

M̌Γ
p1
←− Ň

p2
−→ |Γ | (18)

whose arrows are given by the first and second factor projections respectively. A straightforward
application of the gluing lemma which we omit shows that the projection map p1 is a homotopy
equivalence. We infer that the Eq. (18) describes a weak map which we sometimes write as

q̌ : M̌Γ → |Γ |. (19)

By construction, the restriction of q̌ to M̆Γ coincides with q̆.
For the sake of completeness we now sketch a proof that q̌ coincides up to homotopy with the

extension q̂ of q̆ that was described in the previous section.

Lemma 8.1. The homotopy class of the weak map q̌ coincides with the homotopy class of the
weak map q̂ given by gluing in 2-cells.
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Proof. The result will follow from the existence of a commutative diagram

M̂Γ

��

N̂
p1oo

��

p2

��
@@

@@
@@

@@

|Γ |

M̌Γ Ňp1
oo

p2

??~~~~~~~~

??~~~~~~~~

in which the vertical maps are homotopy equivalences and the left horizontal maps (denoted p1
in each case) are also homotopy equivalences. The bottom maps labeled p1 and p2 comprise the
weak map q̌ . The top maps labeled p1 and p2 define the extension q̂ . The space M̂Γ is obtained
by attaching suitable two cells to M̆Γ ; it comes equipped with a decomposition

M̂Γ = U ∪ V ∪ Ŷ

where Ŷ consists of the set of inessential 2-cells, each which is labeled as D̂h , where h
ranges over height functions that define a top dimensional inessential cell. Similarly, we define
N̂ ⊂ M̂Γ × |Γ | to be the union of Nh = Ŷh × |TC(h)|(1/3). Then the projections onto each
factor explicitly define the extension of q̆ described in Section 7.

The vertical maps in the diagram are given as follows. The homotopy equivalence M̂Γ →

M̌Γ is given by the identity on M̆Γ and by mapping each closed 2-cell Ďh that is attached to
M̆Γ homeomorphically to a small closed 2-cell Ďh that intersects C(h) transversely at its center
(the boundary of Ďh is prescribed to having linking number +1 with C(h)). A similar argument
which we omit defines the homotopy equivalence N̂ → Ň . �

Remark 8.2. For the proof of the Pumping Quantization Theorem, it will be convenient to put
the open sets U j , Vσ , and Yh on equal notational footing. This can be done by changing the
notation to

Vσ := Yh,

where h = (h0, h1) is such that h0(k) = 2 for all k ∈ Γ0, and h1 : Γ1 → {1, . . . , |Γ1|} is given
by h1 is defined in the obvious sense by the total ordering σ . Similarly, we set

U j := Yh,

where in this instance h = (h0, h1) is given by h0(k) = 1 for k = j and h0(k) = 2 otherwise,
and h1 is the function with constant value 1. Note that these notational changes necessitate a
more flexible notion of height function, which we will call an extended height function.

Note that the tree TC(h) that corresponds to Vσ is just the σ -spanning tree Tσ , whereas TC(h)

that corresponds to U j consists of the single vertex j and no edges. With the above extension Eq.
(17) reads Ň = NY with NY =


h Ňh , where the union indexed over the set of extended height

functions.

9. The Representability Theorem

Proof of Theorem B. It is clear that L M̌Γ ⊂ Ľ MΓ , so it suffices to prove the reverse inclusion.
The proof will be by contradiction. Let γ ∈ Ľ MΓ . The idea is to modify γ along a small arc in
such a way that the value of the current changes.



812 V.Y. Chernyak et al. / Advances in Mathematics 244 (2013) 791–822

Suppose there is an s ∈ [0, 1] such that y = γ (s) ∈ Ď. Then y is in the closure of an essential
cell. Let ϵ > 0 be small. Choose a point x in the interior of this cell such that |y − x | ≤ ϵ with
respect to a choice of norm on MΓ . Let V be an open neighborhood of γ in L MΓ on which Q
is well-defined and constant.

If ϵ is sufficiently small, we can construct a smooth loop ω ∈ V which coincides with γ off
of (s − ϵ, s + ϵ), and inside this neighborhood ω winds once around a small disk D meeting the
essential cell transversely at x in such a way that D \ x ⊂ M̌Γ and Q(∂ D) is nontrivial. Then
topologically, ω is a loop obtained by concatenating γ with ∂ D. As the current Q is additive, we
find that Q(ω) = Q(γ )+Q(∂ D). Consequently, Q(ω) ≠ Q(γ ). This contradicts the assumption
that Q is constant on V . �

10. The Pumping Quantization and Realization Theorems

Consider a closed arc I = [a, b] ⊂ C of our unit length circle C such that γ (I ) ⊂ Yh
for some h. Obviously, for c = a, b there is a well-defined low-temperature limit ρ(c)

=

limβ→∞ ρB(γ (c);β), represented by a normalized constant function on its support supp(ρ(c)) ⊂

h−1
0 (1). We further simplify the notation by using Th = TC(h) and chose some arbitrary base ver-

tex i(h) in the tree Th for each relevant height function h.

Lemma 10.1. The contribution along I to the current Qβ(γ ) in the low-temperature limit is
given by

lim
β→∞


I

Jds =


j∈h−1
0 (1)

QTh , j
i(h)


ρ

(b)
j − ρ

(a)
j


. (20)

Proof. Using the explicit expression for the current based on Kirchhoff’s theorem given Eq. (12)
one can show

I
Jds =


j∈h−1

0 (1)

QTh , j
i(h) ρB

j


T⊃Th

ϱB
T |

b
a −


j∈h−1

0 (1)

QTh , j
i(h)


I

dsρB
j

d

ds


T⊃Th

ϱB
T

+


( j,T )∈Kh

QT, j
i(h)ρ

B
j ϱB

T |
b
a −


( j,T )∈Kh

QT, j
i(h)


I

dsρB
j ϱ̇B

T , (21)

where Kh = {( j, T ) : h0( j) = 2 or Th ⊈ T }. To derive Eq. (21) we first apply integration by
parts to the explicit expression for the current, followed by representing the sum over the graph
vertices j and spanning trees T as a sum over ( j, T ) with h0( j) = 1 and T ⊃ Th , and
the remaining terms. We also make use of the fact that provided j ∈ h−1

0 (1), which implies

j ∈ (Th)0, and Th ⊂ T , we have QT, j
i(h) = QTh , j

i(h) , i.e., the contribution to the current does not
depend on the spanning tree T . Then Eq. (20) follows from the following properties that hold
inside Yh , and are verified directly. For j ∈ h−1

0 (2) we have

lim
β→∞

ρB
j = 0, lim

β→∞
dρB

j = 0 (22)

and for T ⊉ Th we have

lim
β→∞

ϱB
T = 0, lim

β→∞
dϱB

T = 0. (23)
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Since


T ϱT = 1, the properties given by Eq. (23) also imply

lim
β→∞


T⊃Th

ϱB
T = 1, lim

β→∞
d


T⊃Th

ϱB
T = 0. (24)

Eq. (20) is obtained by applying the properties given by Eqs. (22)–(24) to the integral expression
of Eq. (21). �

Definition 10.2. Let Q̌ be the locally constant function given by the composite

L M̌Γ → H1(M̌Γ ;Z)
q̌∗
−→ H1(Γ ;Z)

in which the first map is defined by sending a free loop to its integer homology class.

Proof of Theorems A and E. Let I1, . . . , Ik be a simplicial decomposition of S1 into closed
arcs, with 1, . . . , k ∈ Z/k, and Im = [am−1, am], so that γ (Im) ⊂ Yhm for some set h1, . . . , hk

of (extended) height functions. Applying Lemma 10.1, and more specifically Eq. (20), followed
by re-grouping the terms in the sum over the arcs we obtain

lim
β→∞

Qβ(γ ) =

k
m=1


j


QThm , j

i(hm ) − Q
Thm+1 , j

i(hm+1)


ρ

(am )
j . (25)

The expression in the parenthesis on the right side of Eq. (25) does not depend on j . Indeed,
this assertion needs only to be checked for another vertex j ′ which lies in Thm ∩ Thm+1 . In this
instance the unique path running from j to j ′ which is contained in Thm ∩ Thm+1 determines a

one-chain c such that QThm , j ′

i(hm ) = QThm , j
i(hm ) + c and likewise Q

Thm+1 , j ′

i(hm+1)
= Q

Thm+1 , j

i(hm+1)
+ c. Hence,

QThm , j
i(hm ) − Q

Thm+1 , j

i(hm+1)
= QThm , j ′

i(hm ) − Q
Thm+1 , j ′

i(hm+1)
.

If we also account for the normalization condition for ρ(am ), we can replace summation over
j by choosing any vertex jm ∈ (hm

0 )−1(1) ∩ (hm+1
0 )−1(1) and then recast Eq. (25) in the form

lim
β→∞

Qβ(γ ) =

k
m=1


QThm , jm

i(hm ) − Q
Thm+1 , jm
i(hm+1)


. (26)

The right side of Eq. (26) is clearly an integer valued one-chain, so the proof of Theorem A is
complete.

We now turn to the proof of Theorem E. With respect to the above situation, consider the free
loop ℓ : S1

→ |Γ | defined as follows: when the parameter s ∈ S1 changes from the center of
the arc Im to its end am , ℓ(s) goes from i(hm) to jm along the unique minimal length path in the
tree Thm . When s changes from am to the center of the arc Im+1, ℓ(s) goes from jm to i(hm+1)

along the unique minimal length path in the tree Thm+1 . It is easy to see that the right side of Eq.
(26), considered as an element of H1(|Γ |), is the image of ℓ under the map L|Γ | → H1(|Γ |) that
associates with a free loop its corresponding homology class. On the other hand it is also easy to
see that (γ, ℓ) : S1

→ (M̌Γ × |Γ |) has image in Ň ⊂ M̌Γ × |Γ |, and we infer (γ, ℓ) ∈ L Ň .
By a straightforward inspection of the definitions we see that the right side of Eq. (26) is given
by Q̌(γ ) (as defined above in Definition 10.2), which completes the proof. �
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11. The Chern class description

The canonical torus. Set

C i (Γ ;U (1)) := U (1)Γi i = 0, 1,

where the right side denotes the set of functions Γi → U (1). The Lie group

GΓ := C0(Γ ;U (1))

is called the gauge group; it acts on C1(Γ ;U (1)). The action is defined by

(g · f )(α) = g(d0(α)) f (α)g(d1(α))−1,

where g ∈ GΓ and f ∈ C1(Γ ;U (1)). Let

H1(Γ ;U (1))

denote the orbit space of this action (alternatively, let δ : C0(Γ ;U (1))→ C1(Γ ;U (1)) be given
by δ(g)(α) = g(d0(α))g(d1(α))−1, then H1(Γ ;U (1)) is the cokernel of δ). Then H1(Γ ;U (1))

is an n-torus where n is the first Betti number of Γ (this is the torus S(Γ ) appearing in
Theorem F).

Observe that an element of H1(Γ ;U (1)) is represented by a function λ : Γ1 → U (1).

Lemma 11.1. There is a preferred isomorphism

H1(H1(Γ ;U (1));Z) ∼= H1(Γ ;Z).

Proof. For α ∈ Γ1, let πα : C1(Γ ;U (1)) → U (1) denote the coordinate function given by
restriction to {α} ⊂ Γ1 (use C1({α};U (1)) = U (1)). The operation α → πα extends linearly to
an isomorphism of abelian groups

C1(Γ ;Z) ∼= [C1(Γ ;U (1)), U (1)] = H1(C1(Γ ;U (1));Z).

We also have a similar isomorphism C0(Γ ;Z) ∼= H1(C0(Γ ;U (1));Z). With these
identifications, the boundary operator ∂ : C1(Γ ;Z) → C0(Γ ;Z) is given by restriction
δ∗ : H1(C1(Γ ;U (1));Z) → H1(C0(Γ ;U (1));Z). Hence H1(Γ ;Z) is identified with the
kernel of δ∗. But the inclusion H1(H1(Γ ;U (1));Z) ⊂ ker(δ∗) is clearly an isomorphism. �

A combinatorially defined line bundle. We refer the reader to discussion of Section 8, especially
Remark 8.2. Recall that

M̌Γ =


h

Yh

is a covering by open sets where h = (h0, h1) ranges over extended height functions. Associated
with Yh one has a tree Th := TC(h) such that h−1

0 (1) ⊂ TC(h). Fix a basepoint vertex i for Th
(cf. Lemma 10.1).

For (E, W ) ∈ Yh and λ ∈ C1(Γ ;U (1)), we associate a complex line in Cn , where n is the
cardinality of Γ1. For any vertex j of the tree Th , we have a minimal path PTh , j

i from i to j which

is contained in T ; this path defines the integer value 1-chain QTh , j
i (cf. Remark 4.2).
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Let C[Γ0] denote the complex vector space with basis Γ0. Then we obtain a non-zero vector

v = v(h, E, W, λ) :=


j∈(Th)0

e−βE j


α∈P
Th , j
i

λs(α)
α

 j ∈ C[Γ0] (27)

where s(α) = ±1 according as to whether the direction of the path coincides with the orientation
of α (this sign coincides with the coefficient appearing of α in QTh , j

i ).
Let Cv ⊂ C[Γ0] denote the complex line spanned by this vector.

Lemma 11.2. If we choose a different basepoint vertex the complex line Cv remains unchanged.

Proof. The amalgamation of the minimal length paths PTh ,i ′

i and PTh , j
i ′ produces a new path

PTh ,i ′

i PTh , j
i ′ from i to j . If this path is minimal, then it is PTh , j

i and clearly, we have


α∈P

Th , j
i

λs(α)
α =

 
α∈P

Th ,i ′

i

λs(α)
α


 

α∈P
Th , j
i ′

λs(α)
α

 .

If the amalgamated path is not minimal, then this formula still holds because the factors
corresponding to indices occurring more than once cancel. This gives independence with respect
to the basepoint vertex, as the first factor on the right is independent of j . �

For fixed h the assignment (E, W, λ) → Cv(h, E, W, λ) describes a line bundle ξ̃h over
C1(Γ ;U (1))× Yh . In fact, it is straightforward to check that ξ̃h is trivializable. We now use the
clutching construction to glue these line bundles together as h varies. This will produce a line
bundle over ξ̃ over C1(Γ ;U (1))× M̌Γ . To check this, it suffices to establish the following.

Lemma 11.3. Given height functions h and h′, let

a : C1(Γ ;U (1))× (Yh ∩ Yh′)→ C1(Γ ;U (1))× Yh

and

b : C1(Γ ;U (1))× (Yh ∩ Yh′)→ C1(Γ ;U (1))× Yh′

denote the inclusions. Then there is an isomorphism of line bundles φab : b∗ξ̃h′
∼=
−→ a∗ξ̃h .

Furthermore, this isomorphism satisfies the cocycle condition φac = φabφbc.

Proof. Associated with (λ, E, W ) ∈ C1(Γ ;U (1))×Yh and a basepoint vertex i for Th ∩Th′ , we
have a non-zero vector v which is defined by Eq. (27). To indicate the dependence of this vector
on h, let us redenote it by vh . Similarly, for (λ, E, W ) ∈ C1(Γ ;U (1)) × Yh′ we have vh′ . Then
define φab(z · vh′) := z · vh . The cocycle condition is then immediate. �

Let the gauge group GΓ act diagonally C1(Γ ;U (1))× M̌Γ (where the action on the second
factor is trivial). Then GΓ also acts in an evident way on the total space E(ξ̃ ) of the line bundle
ξ̃ equipping it with the structure of a GΓ -equivariant line bundle. Taking orbit spaces defines a
line bundle ξ over H1(Γ ;U (1)) × M̌Γ . If π : C1(Γ ;U (1)) → H1(Γ ;U (1)) is the quotient
map, then ξ̃ is given by the base change of ξ along

π × id : C1(Γ ;U (1))× M̌Γ → H1(Γ ; (U (1)))× M̌Γ .
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Naturality of Chern classes gives a commutative diagram

H1(M̌Γ ;Z)
c1(ξ̃ )/

//

c1(ξ)/
))SSSSSSSSSSSSSS
C1(Γ ;Z)

H1(Γ ;Z) .
?�

π∗

OO
(28)

Here we have used the preferred isomorphism H1(H1(Γ ;U (1));Z) = H1(Γ ;Z) of Lemma 11.1
as well as a similarly constructed identification H1(C1(Γ ;U (1));Z) = C1(Γ ;Z). With
respect to these identifications, π∗, which is the homomorphism induced by π on first integer
cohomology, is just the canonical inclusion H1(Γ ;Z) ⊂ C1(Γ ;Z).

Theorem 11.4. The homomorphism c1(ξ)/ coincides with q̌∗.

In order to prove Theorem 11.4 we digress to explain how holonomy relates to the
homomorphism given by slant product with the first Chern class. If ξ is a complex line bundle
over a connected space B and structure group U (1), we have the holonomy map

hξ : L B → U (1). (29)

In fact, hξ can be chosen in such a way that if we choose a basepoint of B and restrict hξ to the
based loop space Ω B, we can deloop to a map B → BU (1) = CP∞ that classifies the bundle
ξ and hence the Chern class c1(ξ). Consequently, if we choose hξ in this way, it determines the
Chern class.

Now suppose B = X × Y . Then we can restrict hξ to the subspace X × LY ⊂ L X × LY =
L(X × Y ) and take the adjoint to obtain a map

LY → F(X, U (1)),

where F(X, U (1)) is the function space of maps from X to U (1). Then the diagram

LY //

��

F(X, U (1))

��

H1(Y ;Z)
c1(ξ)/

// H1(X;Z)

(30)

commutes, where the left vertical map sends a loop to its homology class and the right vertical
map sends a function to its homotopy class considered as an element of H1(X;Z) = [X, U (1)].

Proof of Theorem 11.4. By Eq. (28) it suffices to show that c1(ξ̃ )/ coincides with the
homomorphism

H1(M̌Γ ;Z)
q̌∗
−→ H1(Γ ;Z)

π∗

−→ C1(Γ ;Z).

Suppose we are given (λ, γ ) ∈ C1(Γ ;U (1))× L M̌Γ . As done previously, we partition S1 into
closed arcs [ak, ak+1] for 0 ≤ k ≤ n with an+1 ≡ a0, such that the projection of such an arc
into M̌Γ is contained in a neighborhood of type Yhk−1 . Choose a basepoint vertex ik lying in the
intersection Tk ∩ Tk+1, where Tk denotes the tree associated with Yhk . Then we have a minimal
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length path PTk ,ik+1
ik

from ik to ik+1 and the product

n
k=0


α∈P

Tk ,ik+1
ik

λs(α)
α ∈ U (1) (31)

describes a map C1(Γ ;U (1)) → U (1) that gives the holonomy around γ (here we are using
Lemmas 11.2 and 11.3).

In the special instance of λ ∈ C1(Γ ;U (1)) which is identically 1 except for a single edge
α, the value of the map C1(Γ ;U (1)) → U (1) at λ is given by λ

q
α where q represents the net

number of times α is traversed, with orientation taken into account. Consequently, if we identify
H1(C1(Γ ;U (1));Z) with C1(Γ ;Z), then λ

q
α is identified with the chain qα. It follows that the

map C1(Γ ;U (1)) → U (1) defined by Eq. (31) corresponds to the integer cycle in C1(Γ ;Z)

given by

n
k=0


α∈P

Tk ,ik+1
ik

s(α)α :=

n
k=0

QTk ,ik+1
ik

. (32)

On the other hand, the paths PTk ,ik+1
ik

describe a lift of γ : S1
→ M̌Γ through the space Ň

appearing Eq. (17) (roughly, one defines the lift by mapping the midpoint a′k of the arc [ak, ak+1]

to the point (γ (a′k), ik) and uses PTk ,ik+1
ik

to connect these points). Then application of the

projection map p2 : Ň → |Γ | to the given lift produces a map S1
→ |Γ | that represents

q̌∗([γ ]) ∈ H1(Γ ;Z) ⊂ C1(Γ ;Z). From this description it is straightforward to check that
q̌∗([γ ]) coincides with the element defined by Eq. (32) (cf. Eq. (9)). �

12. The ground state bundle: a conjecture

By coupling the master operator with elements of the torus H1(Γ ;U (1)) one can extend the
master operator to a self-adjoint operator over the complex numbers. This extension is called the
twisted master operator; its eigenvalues are real and non-positive. The eigenspace associated with
the maximum non-zero eigenvalue is called the ground state. One may use the twisted master
operator to define another weak complex line bundle η, this time over H1(Γ ;U (1)) × M̃Γ ,
where M̃Γ ⊂ MΓ is characterized by the condition that the ground state at each point is non-
degenerate, meaning that it has rank one. Then roughly, η is defined by taking the ground state
at each point of the base. We call this the ground state bundle. Arguments from physics suggest
that the ground state bundle is equivalent to the weak complex line bundle ξ that was defined in
the previous section. In what follows we will formulate this idea as a pair of conjectures.

The twisted master operator. The twisted master operator, defined below, is a smooth map

H̄ : C1(Γ ;U (1))×MΓ → endC(C0(X;C)),

where C0(X;C) is the complex vector space with basis Γ0. It extends the master operator in the
sense that

H̄(1, β, E, W ) = H(β, E, W )

where 1 ∈ C1(Γ ;U (1)) is the function with constant value 1 ∈ U (1) and where we are
interpreting the right side of this identity using extension of scalars.
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For λ ∈ C1(Γ ;U (1)), let λ̂ : C1(Γ ;C)→ C1(Γ ;C) be given by rescaling each basis element
α by λ(α)α. Then

H̄(λ, β, E, W ) := −∂ ĝ−1λ̂∂∗κ̂ .

It is clear from the definition that H̄ is self-adjoint. In particular, its eigenvalues are all real.
Let the gauge group GΓ act on endC(C0(X;C)) via conjugation and trivially on MΓ . The

following is then a formal consequence of the definitions.

Lemma 12.1 (Gauge Symmetry). The twisted master operator is GΓ -equivariant, i.e., for
h ∈ GΓ , we have

H̄(h · λ, β, E, W ) = h · H̄(λ, β, E, W ).

In particular, for each (E, W ) ∈ MΓ , the spectrum of H(β, E, W ) = H̄(1, β, E, W ) is
invariant with respect to the action of the gauge group.

Definition 12.2. Let A : V → V be a self-adjoint linear transformation of a finite dimensional
complex vector space V , all of whose eigenvalues are non-positive. Then the ground state L is
the eigenspace for maximal eigenvalue of A. We say that A has nondegenerate its ground state
L has rank one.

An analytically defined weak line bundle. Define an open subset

M̃Γ ⊂ R+ ×MΓ

to be the set of those (β0, E, W ) such that for every λ ∈ C1(Γ ;U (1)) and every β ≥ β0, the
twisted master operator

H̄(λ, β, E, W ) : C0(Γ ;C)→ C0(Γ ;C)

has a non-degenerate ground state.
For (λ, β0, E, W ) ∈ C1(Γ ;U (1))×M̃Γ , let us denote the ground state of the twisted master

operator by L(β0, λ, E, W ); it is a complex line in C0(Γ ;C). Consider

E = {(λ, β0, E, W, v)|v ∈ L(β0, λ, E, W )}

which is topologized as a subspace of C1(Γ ;U (1))×M̃Γ ×C0(Γ ;C). Then we have an evident
projection

p : E → C1(Γ ;U (1))× M̃Γ .

Lemma 12.3. The map p is a smooth complex line bundle projection.

Proof. Let V = C0(Γ ;C) and let L1(V, V ) denote the space consisting of complex linear self-
maps of V having corank one. Then L1(V, V ) is a smooth manifold of real dimension 2|Γ0|

2
−2

(see [4, prop. 5.3]). The operation which sends a complex linear self-map to its null space defines
a smooth map

L1(V, V )
ker
−→ P1(V )

whose target is the projective space of complex lines in V . The composition

C1(Γ ;C)× M̃Γ
H̄
−→ L1(V, V )

ker
−→ P1(V )
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is therefore smooth and the pullback of the tautological line bundle over P1(V ) gives the
projection p. �

Let π : M̃Γ → MΓ be given by the projection (β0, E, W ) → (E, W ).

Conjecture 12.4. The image of π is M̌Γ , and π : M̃Γ → M̌Γ is a weak homotopy
equivalence.

Let η̃ be the complex line bundle defined by Lemma 12.3. The gauge group GΓ acts on both
the total and base spaces making η̃ into a GΓ -equivariant complex line bundle. Taking orbits, we
obtain a complex line bundle η over H1(Γ ;U (1))× M̃Γ .

Let h : H1(Γ ;U (1))×M̃Γ → H1(Γ ;U (1))×M̌Γ be given by id×π . Then using Lemma
12.4, the pair (η, h) is a weak complex line bundle over H1(Γ ;U (1))× M̌Γ .

Then slant product with the first Chern class of η gives a homomorphism

c1(η)/ : H1(M̌Γ ;Z)→ H1(Γ ;Z),

where we have implicitly used the identification H1(M̌Γ ;Z) ∼= H1(M̃Γ ;Z) of Lemma 12.4
and also the identification H1(H1(Γ ;U (1));Z) ∼= H1(Γ ;Z) of Lemma 11.1.

Conjecture 12.5. The homomorphisms c1(η)/ and c1(ξ)/ coincide.
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Appendix. An adiabatic theorem

Here we formulate and prove an adiabatic theorem for periodic driving. Roughly, it states
that for slow enough driving a periodic solution of the master equation exists and is unique, and
furthermore, in the adiabatic limit this solution will tend to the Boltzmann distribution taken at
the associated normalized driving protocol.

Let us introduce the evolution operator U (t, t0) = U (t, t0; H, τD) for 0 ≤ t0 ≤ t ≤ 1, which
is the unique solution to the initial value problem

d

dt
U (t, t0) = τDU (t, t0)H(γ (t)), U (t0, t0) = I,

where I denotes the identity operator. We remark that U (t, t0) is also called the path-ordered
exponential and is sometimes expressed in the notation

T̂ exp


τD

 t

t0
dt ′H(γ (t ′))


(cf. [7]).
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Then it is elementary to show that the master equation

ṗ(t) = τD H(γ (t))p(t)

has formal solution

p(t) = U (t, 0)p(0).

Proposition A.1. Let (τD, γ ) be a periodic driving protocol. Then there is positive real number
τ0 such that if τD ≥ τ0, then there is a unique periodic solution ρ(t) to the master equation,
i.e., ρ(0) = ρ(1).

Proof. We shall use abbreviated notation and write ρB(t) in place of ρB(γ (t)). For any solution
to the master equation p(t), set

ξ(t) := ρB(t)− p(t).

Then ξ : [0, 1] → C̃0(Γ ;R) is a family of reduced population vectors. Furthermore, ξ(t) is
periodic if and only p(t) is, and

p(t) = ρB(t)+ ξ(t). (A.1)

Inserting Eq. (A.1) expression into the master equation and using the fact that the Boltzmann
distribution lies in the null space of the master operator, we obtain the first order linear differential
equation in ξ ,

ξ̇ (t)− τD H(t)ξ(t) = −ρ̇B(t), (A.2)

where H(t) is shorthand for H(γ (t)).
Applying U (1, t) to Eq. (A.2) we get

U (1, t)ξ̇ −U (1, t)τD Hξ = −U (1, t)ρ̇B.

Notice that the left side of the last display is just d/dt (U (1, t)ξ). Integrating both sides we obtain

U (1, t)ξ(t) = −
 t

0
U (1, t ′)ρ̇Bdt ′ + C.

Setting t = 0 we see that U (1, 0)ξ(0) = C . Evaluating at t = 1 and using the fact that
U (1, 1) = I yields

ξ(1)−U (1, 0)ξ(0) = −

 1

0
U (1, t ′)ρ̇B dt ′.

Consequently, ξ(0) = ξ(1) if and only if

(I −U (1, 0))ξ(0) = −

 1

0
U (1, t ′)ρ̇B dt ′. (A.3)

It is therefore sufficient to show that the operator I − U (1, 0) is invertible, when considered as
an operator acting on the invariant subspace C̃0(Γ ;R), provided τD is sufficiently large.

Let λ and c be the constants obtained in Lemma A.2 below. If we set τ0 := (1/λ) ln(2c), then
we have ∥U (1, 0)∥ < 1/2. It follows that I −U (1, 0) is invertible on C̃0(Γ ;R). �
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The last part of the proof of Proposition A.1 rested on an estimate that appears below. To
formulate it we use the norm on C̃0(Γ ;R) given by ∥ξ∥ =

√
⟨ξ, ξ⟩ where the inner product is

the one induced by the standard inner product on C0(Γ ;R). If A is an operator on C̃0(Γ ;R) then
we define ∥A∥ := supξ≠0 ∥Aξ∥∥ξ∥−1

= supξ=1 ∥Aξ∥.

Lemma A.2. For a periodic driving protocol (τD, γ ), there are positive constants λ and c such
that for all t, t0 ∈ [0, 1] we have

∥U (t, t0)∥ < ce−λτD(t−t0).

Proof. Consider the time-dependent inner product κt = κ(γ (t)) in C̃0(Γ ;R), defined by
κt (ξ, η) =


j∈Γ0

eβE j (t)ξ jη j (the is just ⟨ξ, η⟩κ̂t in the notation of Remark 3.3). Then for

all t the operator H(t) = H(γ (t)), when considered as acting on C̃0(Γ ;R), is self-adjoint with
respect to the inner product κt and its spectrum is strictly negative.

Set λ := − supt∈[0,1] σ(H(t)), where σ(T ) denotes the spectrum of a linear operator T . Then
λ > 0, and the spectrum of the operator H0(t) = H(t) + λI is non-negative for all t . Let
U0(t, t0) be the corresponding evolution operator. Then U (t, t0) = e−λτD(t−t0)U0(t, t0). Hence,
∥U (t, t0)∥ = e−λτD(t−t0)∥U0(t, t0)∥. So all we need to prove is that ∥U0(t, t0)∥ is uniformly
bounded.

Let η(t) be the solution of the master equation η̇(t) = τD H0(t)η(t) with the initial condition
η(t0) = ξ . We then have

d

dt
κt (η(t), η(t)) = κ̇t (η(t), η(t))+ 2τDκt (H0(t)η(t), η(t))

≤ κ̇t (η(t), η(t)),

since for all t we have κt (H0(t)η(t), η(t)) ≤ 0.
Since η(t) ≠ 0 provided η(t0) = ξ ≠ 0, we infer that κt (η(t), η(t)) > 0 for all t . By

compactness, ∥κt∥ is bounded below, and since ∥κ̇t∥ is bounded above, we infer that there is
a constant A > 0, so that κ̇t (η(t), η(t))(κt (η(t), η(t)))−1 < A. Combined with Eq. (A.3) this
implies (d/dt) ln κt (η(t), η(t)) < A, and further implies the uniform bound

κt (U0(t, t0)ξ, U0(t, t0)ξ)

κt0(ξ, ξ)
=

κt (η(t), η(t))

κt0(η(t0), η(t0))
< eA(t−t0). (A.4)

The uniform bound provided by Eq. (A.4) implies the uniform bound

⟨U0(t, t0)ξ, U0(t, t0)ξ⟩

⟨ξ, ξ⟩
< B2, (A.5)

with respect to the standard inner product for some B > 0, which immediately implies the
uniform bound ∥U0(t, t0)∥ < B. �

Corollary A.5 (Adiabatic Theorem, cf. [9, V.3]). Let (τD, γ ) be a periodic driving protocol, with
τD sufficiently large. If ρ(t) denotes the periodic solution of the master equation, then

ρB(γ (t)) = lim
τD→∞

ρ(t).

Proof. It is enough to show that limτD→∞ ξ(t) = 0 where ξ(t) is as in the proof of
Proposition A.1. We first show that limτD→∞ ξ(0) = 0.



822 V.Y. Chernyak et al. / Advances in Mathematics 244 (2013) 791–822

To see this, start with the estimate t

0
U (t, t ′)ρ̇B(t ′) dt ′

 ≤  t

0
∥U (t, t ′)∥∥ρ̇B(t ′)∥ dt ′

≤ c sup
t ′∈[0,1]

∥ρ̇B(t ′)∥
 1

0
e−λτD(1−t) dt <

αc

λτD
,

where α = supt ′∈[0,1] ∥ρ̇
B(t ′)∥. Recalling that ∥U (1, 0)∥ < 1/2, we have ∥(I−U (1, 0))−1

∥ < 2.
Consequently,

∥ξ(0)∥ =

(I −U (1, 0))−1
 1

0
U (1, t ′)ρ̇B dt ′


≤ ∥(I −U (1, 0))−1

∥


 1

0
U (1, t ′)ρ̇B dt ′

 <
2αc

λτD
.

Therefore, limτD→∞ ξ(0) = 0.
The proof that limτD→∞ ξ(t0) = 0 for any t0 ∈ [0, 1] is similar, using a suitable modification

of the above estimate with t0 in place of 0 and Lemma A.2) to give a similar bound for ∥ξ(t0)∥
(we omit the details). �
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