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We show that the ring of invariants in a skew monoid ring 
contains a so called standard Galois order. Any Galois ring 
contained in the standard Galois order is automatically itself 
a Galois order and we call such rings principal Galois orders. 
We give two applications. First, we obtain a simple sufficient 
criterion for a Galois ring to be a Galois order and hence for 
its Gelfand-Zeitlin subalgebra to be maximal commutative. 
Second, generalizing a recent result by Early-Mazorchuk-
Vishnyakova, we construct canonical simple Gelfand-Zeitlin 
modules over any principal Galois order.
As an example, we introduce the notion of a rational Galois 
order, attached an arbitrary finite reflection group and a 
set of rational difference operators, and show that they are 
principal Galois orders. Building on results by Futorny-Molev-
Ovsienko, we show that parabolic subalgebras of finite W-
algebras are rational Galois orders. Similarly we show that 
Mazorchuk’s orthogonal Gelfand-Zeitlin algebras of type A, 
and their parabolic subalgebras, are rational Galois orders. 
Consequently we produce canonical simple Gelfand-Zeitlin 
modules for these algebras and prove that their Gelfand-
Zeitlin subalgebras are maximal commutative.
Lastly, we show that quantum OGZ algebras, previously 
defined by the author, and their parabolic subalgebras, are 
principal Galois orders. This in particular proves the long-
standing Mazorchuk-Turowska conjecture that, if q is not a 
root of unity, the Gelfand-Zeitlin subalgebra of Uq(gln) is 
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maximal commutative and that its Gelfand-Zeitlin fibers are 
non-empty and (by Futorny-Ovsienko theory) finite.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Galois orders

In this paper we study Galois rings and orders, which are certain noncommutative 
rings defined and studied by Futorny and Ovsienko [13,14]. This theory has its origin in 
the Gelfand-Zeitlin bases for finite-dimensional simple modules over classical Lie algebras 
and groups [17,18,35] followed by the foundational paper [4] where several notions such 
as Gelfand-Zeitlin modules were defined in a very general setting.

Gelfand-Zeitlin modules have been studied from many different points of view [24,26,
25,27,11,12,21,22,3]. Classification of simple Gelfand-Zeitlin modules for U(gln) is still 
out of reach although tremendous progress has been made in the last few years, pro-
gressing from generic modules in [4] to the construction of increasingly singular modules 
in [6–9]. In [16] a necessary condition for certain fully supported singular modules to be 
simple was proved, and simple subquotients described in some cases. Different realiza-
tions of singular Gelfand-Zeitlin modules were further investigated in [34,32,33,30]. In 
particular, it is now known how to canonically construct fully supported Gelfand-Zeitlin 
modules associated to any character. It is conjectured that any simple Gelfand-Zeitlin 
module over U(gln) will be a subquotient of one of those. In the latest development [5], 
the authors moved beyond U(gln) and constructed canonical Gelfand-Zeitlin modules 
for so called orthogonal Gelfand-Zeitlin (OGZ) algebras [24], and constructed bases for 
some of them.

In this paper we return to the general framework in [13,14] and propose a simplified 
setup for Galois orders involving few, but natural, assumptions and then develop our 
results from those. All important examples of Galois rings and orders in the literature 
satisfy the conditions including U(gln), Uq(gln), OGZ algebras and finite W-algebras. In 
addition our setup sometimes enables simpler proofs over [13]. The main generalization 
is that we do not require the monoid M to be a group in any of the results. This leads 
to various “parabolic” examples. Moreover we do not require a ground field until we get 
to Gelfand-Zeitlin modules in Section 3.

The first main result of this paper provides a sufficient condition for a ring to be 
a Galois order and simultaneously provides canonical simple Gelfand-Zeitlin modules. 
This generalizes the construction of modules from [5], and can also be viewed as a 
partial generalization of the statement about non-empty fibers in [14].
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Theorem 1.1. With assumptions as in Section 2.1, let U be a subring of K generated 
by Γ ∪ X where ∪X∈X SuppM (X) generates M as a monoid, and X(γ) ∈ Γ for all 
X ∈ X and γ ∈ Γ. Then:

(i) U is a Galois Γ-order in K ,
(ii) Γ is maximal commutative in U .

If in addition Λ is finitely generated over an algebraically closed field k of characteristic 
zero, and M and G act by k-automorphisms on Λ, then:

(iii) For every character ξ : Γ → k, there exists a canonical simple right Gelfand-Zeitlin 
U -module V (ξ) with V (ξ)ξ �= 0. Moreover V (ξ) is realized as a quotient of a cyclic 
submodule of Γ∗ = Homk(Γ, k).

We call Galois orders satisfying the hypothesis of Theorem 1.1 principal Galois orders. 
Replacing the condition X(γ) ∈ Γ by X†(γ) ∈ Γ where † is a certain anti-isomorphism 
(see Remark 2.30) gives the definition of co-principal Galois orders, and for those one 
obtains left modules instead of right modules.

Further exposing the connection to invariant theory already manifest in [13,14,34,
32,33,30], our second main result is the construction of a new class of Galois orders, 
called rational Galois orders, see Definition 4.3. They are attached to an arbitrary finite 
reflection group and a set of difference operators with rational function coefficients. They 
are tailored to naturally satisfy the hypotheses of Theorem 1.1, using the main result 
from [31] about relative invariants. In the sections that follow we apply these results to 
parabolic subalgebras of finite W-algebras, OGZ algebras and quantum OGZ algebras. 
The terminology “rational Galois order” is introduced with a different meaning in an 
unfinished manuscript by Futorny and Ovsienko.

1.2. Finite W-algebras

Finite W-algebras have many realizations; as generalizations of enveloping algebras 
depending on a nilpotent element [28]; as quantizations of Slodowy slices [15]; as trun-
cated shifted Yangians [29,2]; and as Galois orders [12]. The family of finite W-algebras 
W (π) of type A includes level p Yangians Yp(gln) and the enveloping algebra U(gln) as 
special cases.

In Section 4.2, we prove that finite W-algebras, and their parabolic subalgebras ob-
tained by removing a subset of the “negative simple root vectors”, are examples of 
rational Galois orders. Then we apply Theorem 1.1. As a consequence we obtain our 
third main result.

Theorem 1.2. Let k be an algebraically closed field of characteristic zero. Let J be a subset 
of {1, 2, . . . , n − 1}, and let WJ(π) be the parabolic subalgebra of the finite W-algebra of 
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type A, generated by the coefficients of the polynomials Ai(u), B−
j (u) and B+

k (u), where 
1 ≤ i ≤ n, j ∈ J and 1 ≤ k ≤ n − 1. Then:

(i) WJ(π) is isomorphic to a rational Galois order;
(ii) For every character ξ : Γ → k, there exists a canonical simple left Gelfand-Zeitlin 

WJ(π)-module M with Mξ �= 0.

In particular part (ii) says that the Gelfand-Zeitlin fibers are non-empty. This, and 
the fact WJ(π) is a Galois order, was already known when J = {1, 2, . . . , n − 1} by [12]. 
However, their method cannot be applied for the proper parabolic subalgebras, because 
the corresponding monoid M is not a group. We prove the result by realizing them as 
rational Galois orders and then applying Theorem 1.1 which holds any rational Galois 
order.

1.3. Orthogonal Gelfand-Zeitlin algebras and their quantizations

In [24], a family of algebras of linear operators were defined called orthogonal Gelfand-
Zeitlin (OGZ) algebras, denoted U(r). They include (algebras isomorphic to) U(gln) and 
extended Heisenberg algebras as special cases. Quantum OGZ algebras Uq(r) were de-
fined by the author in [19]. It was shown in [19] that Uq(r) are Galois rings (which is 
weaker than being a Galois order). By the same methods it can be seen that U(r) are 
Galois rings. Among OGZ algebras, only U(gln) = U(1, 2, . . . , n) and the enveloping 
algebra of the trivially extended Heisenberg Lie algebra U(sl+3 ×kt) ∼= U(1, 1) are known 
to be Galois orders, the former shown in [13] and the latter follows by results in [13]
since they are generalized Weyl algebras. Similarly, only Uq(1, 1) is known to be a Ga-
lois order, again because it is a generalized Weyl algebra. Moreover, the Gröbner basis 
methods in [13,12], do not work in the quantum case, essentially because the associated 
graded algebra is not commutative. Although it is likely their method might work for 
U(r), our method of realizing the algebras as rational Galois orders works uniformly in 
all cases, including the parabolic generalizations.

In Sections 4.4 and 5 we prove our fourth main result.

Theorem 1.3. Let k be an algebraically closed field of characteristic zero. Let J ⊆
{1, 2, . . . , n − 1} and UJ be UJ(r) or Uq(r; J) i.e. a parabolic (quantum) OGZ algebra 
over k and Γ be its Gelfand-Zeitlin subalgebra. Then:

(i) U is a Galois Γ-order;
(ii) Γ is maximal commutative in U ;
(iii) For any character ξ : Γ → k, there exists a canonical simple left Gelfand-Zeitlin 

U -module M with Mξ �= 0;
(iv) If J = {1, 2, . . . , n −1}, then for any ξ ∈ Γ̂ there are only finitely many isomorphism 

classes of simple Gelfand-Zeitlin U -modules M with Mξ �= 0.
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As before, we prove this for UJ(r) by realizing it as a rational Galois order. How-
ever, for the quantum case we show that it satisfies a criterion involving the quantum 
Vandermonde determinant to prove that it is a co-principal Galois order and then apply 
Theorem 1.1. To prove part (iv) of this theorem we apply the main result of [14].

Lastly, we prove a conjecture of Mazorchuk and Turowska [26] stating that the 
Gelfand-Zeitlin subalgebra of Uq(gln) is maximal commutative. By results in [13,14], this 
implies that Uq(gln) is a Galois order and that the Gelfand-Zeitlin fibers are nonempty 
and finite. Since Uq(gln) ∼= Uq(1, 2, . . . , n) when k = C, as shown in [10,19], the proof of 
the conjecture is a direct consequence of Theorem 1.3.

Theorem 1.4. Let n > 0 and q ∈ C \{0} not a root of unity. Let Uq(gln) be the quantized 
enveloping algebra of gln over C. Then the Gelfand-Zeitlin subalgebra Γq of Uq(gln) is 
maximal commutative. Hence Uq(gln) is a Galois order with respect to Γq. Moreover, for 
any character ξ : Γq → C there exists at least one but only finitely many isomorphism 
classes of simple Gelfand-Zeitlin Uq(gln)-module M with Mξ �= 0.

Acknowledgments

The author thanks Mark Colarusso, Ian Musson, Akaki Tikaradze and Tathagata 
Basak for inspiring discussions and Vyacheslav Futorny, Volodymyr Mazorchuk and 
Elizaveta Vishnyakova for helpful comments on the first version of the manuscript.

2. Galois orders

In this section we develop the theory of Galois orders from first principles. Compared 
to the treatments [13,14] our scope is modest. We have tried to select a small set of 
standing assumptions which balances generality and applicability. In particular we as-
sume from the outset that Λ (equivalently Γ) is integrally closed and that M acts on Λ
rather than L. This ensures that Γ is always a Harish-Chandra subalgebra of any Galois 
ring, which in turn means that the theory of Gelfand-Zeitlin modules is well behaved. On 
the other hand, we do not require that M is a group. This allows us to include parabolic 
subalgebras of finite W-algebras and (quantum) orthogonal Gelfand-Zeitlin algebras as 
examples of Galois orders. Furthermore, we do not need to assume that Λ contains a 
field, until we get to Gelfand-Zeitlin modules in Section 3.

2.1. Invariants in skew monoid rings

Let Λ be an integrally closed domain, G a finite subgroup of Aut(Λ), M a submonoid 
of Aut(Λ). We make the following assumptions:

(separation) (MM−1) ∩G = IdΛ, (A1)

(invariance) ∀g ∈ G ∀μ ∈ M : gμ
def= g ◦ μ ◦ g−1 ∈ M , (A2)
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(finiteness) Λ is noetherian as a module over ΛG. (A3)

Let L = FracΛ be the field of fractions. Then M and G act naturally on L by automor-
phisms. Let L = L ∗ M be the skew monoid ring, defined as the free left L-module on 
M with multiplication given by a1μ1 · a2μ2 =

(
a1μ1(a2)

)
μ1μ2 for ai ∈ L, μi ∈ M . By 

(A2), G acts on L by ring automorphisms via g(aμ) = g(a) gμ for g ∈ G, a ∈ L, μ ∈ M . 
Let Γ = ΛG, K = LG, K = L G be the respective subrings of G-invariants. Thus we 
have the following inclusions:

Λ L L

Γ K K

(2.1)

Lemma 2.1. The following statements hold:

(i) Λ is integral over Γ;
(ii) K = FracΓ, K = LG and L/K is a Galois extension with Gal(L/K) = G;
(iii) Γ is integrally closed;
(iv) Λ is the integral closure of Γ in L;
(v) Λ is a finitely generated Γ-module and a noetherian ring;
(vi) Γ is a noetherian ring.

Proof. (i)(ii)(iii): See [1, Prop. 3.1].
(iv): Let Γ be the integral closure of Γ in L. By (i), Λ ⊆ Γ. Since Λ is integrally closed, 

Γ ⊆ Λ.
(v): Clear, by (A3).
(vi): Follows from (v) and the Eakin-Nagata theorem [23, Thm. 3.7(i)]. �

Example 2.2. Take Λ = C[x1, x2, . . . , xn], G ∼= Sn acting on Λ by permutation of vari-
ables, M = 〈μ1, . . . , μn〉 ∼= Nn acting on Λ by μi(xj) = xj + δij . Then (A1)–(A3) hold. 
In this case K can be identified with the ring of symmetric difference operators with 
rational function coefficients.

2.2. Harish-Chandra subrings

Definition 2.3 ([4]). A commutative subring C of a ring A is a Harish-Chandra subring 
(of A ) if for every x ∈ A , the C-bimodule CxC is finitely generated as a left and right 
C-module.

Lemma 2.4. If C is a commutative Harish-Chandra subring of a ring A , then C is a 
Harish-Chandra subring of any subring of A that contains C.

Proof. Obvious. �
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Proposition 2.5. Γ is a Harish-Chandra subring of L .

Proof. We follow the proof of [13, Prop. 5.1]. Since the subset L ∪M generates L as a 
ring, Γ is noetherian and Γ(X+Y )Γ ⊆ ΓXΓ +ΓY Γ, Γ(XY )Γ ⊆ (ΓXΓ)(ΓY Γ), it suffices 
to show that ΓXΓ is finitely generated as a left and right Γ-module for all X ∈ L ∪ M . 
For X ∈ L this is trivial since L is commutative. Let X = μ ∈ M . We have

ΓμΓ ⊆ Γμ(Γ)μ ⊆ Λμ,

since Γ ⊆ Λ and μ(Λ) = Λ. Since Λμ ∼= Λ is a finitely generated left Γ-module and Γ is 
noetherian, ΓμΓ is finitely generated as a left Γ-module. Similarly ΓμΓ ⊆ μμ−1(Γ)Γ ⊆ μΛ
shows that ΓμΓ is finitely generated as a right Γ-module. �
2.3. Galois rings

We recall the definition of a Galois Γ-ring in K from [13], and give a necessary and 
sufficient condition for a Γ-subring of U to be a Galois Γ-ring in K , Proposition 2.9. 
The condition is the same as the one given by Futorny and Ovsienko in [13, Prop. 4.1(1)], 
however there it was stated under different assumptions. And although we follow their 
proof closely, we have adapted it to our setting and simplified it in several places.

Definition 2.6 ([13]). A Γ-subring U ⊆ K is a Galois Γ-ring in K if

U K = K = KU . (2.2)

Lemma 2.7. Let μ, μ1, μ2 ∈ M . Then:

(i) Kμ(K) = LGμ , where Gμ
def= {g ∈ G | gμ = μ} is the G-stabilizer of μ;

(ii) K[μ]K =
{
[aμ] | a ∈ LGμ

}
, where [aμ] def=

∑
g∈G/Gμ

g(a) gμ, and this is a simple 
K-bimodule;

(iii) K[μ1]K ∼= K[μ2]K as K-bimodules iff μ2 = gμ1 for some g ∈ G;
(iv) K[μ]Γ = K[μ]K = Γ[μ]K, hence U K = KU for any Γ-subbimodule U ⊆ L ;
(v) K =

⊕
μ∈M/G K[μ]K.

Proof. (i): g ∈ Gal
(
L/Kμ(K)

)
⇔ g ◦ μ

∣∣
K

= μ
∣∣
K

⇔ gμ
∣∣
K

= μ
∣∣
K

⇔ gμμ−1 ∈ G 
(A1)⇔ g ∈

Gμ.
(ii): By (i), K[aμ]K =

{
[bμ] | b ∈ LGμ

}
for any nonzero a ∈ LGμ .

(iii): Suppose ψ : K[μ1]K
∼→ K[μ2]K. Put Li = LGμi for i = 1, 2. Define ψ̃ : L1 → L2

by ψ([aμ1]) = [ψ̃(a)μ2]. One checks that ψ̃ is a K-isomorphism between the intermediate 
fields L1 and L2. By Galois theory ψ̃ = g

∣∣
L1

for some g ∈ G. Thus ψ([aμ1]) = [g(a)μ2]. 
Then for k ∈ K: [gμ1(k)μ2] = ψ([μ1(k)μ1]) = ψ([μ1])k = [μ2]k = [μ2(k)μ2] proving 
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μ2
∣∣
K

= gμ1
∣∣
K

hence μ2 = gμ1. Conversely, if μ2 = gμ1, the map [aμ1] �→ [g(a)μ2] is an 
isomorphism K[μ1]K

∼→ K[μ2]K.
(iv): K[μ]Γ = [Kμ(Γ)μ]. By symmetrizing denominators, Kμ(K) = Kμ(Γ). Then use 

(i) and (ii). The second equality is analogous.
(v): Let x ∈ K and write x =

∑
μ xμμ for some xμ ∈ L. Since g(x) = x for all g ∈ G, 

g(xμ) = xgμ for all μ ∈ M and g ∈ G. Grouping terms according to G-orbits in M this 
implies that x =

∑
i[aiμi] for some μi ∈ M from pairwise distinct G-orbits in M , where 

ai = xμi
∈ LGμi . �

Definition 2.8. The support of X =
∑

μ∈M xμμ ∈ L is SuppM (X) def= {μ ∈ M | xμ �= 0}.

Proposition 2.9 (cf. [13, Prop. 4.1(1)]). Let X ⊆ K and let U be the subring of K
generated by Γ ∪ X . Then U is a Galois Γ-ring in K iff ∪X∈X SuppM (X) generates 
M as a monoid.

Proof. The “only if” part is obvious since SuppM (ab) ⊆ SuppM (a) SuppM (b) for any 
a, b ∈ L . For the converse, by Lemma 2.7(iv)–(v) it suffices to show that if x ∈ X and 
μ ∈ SuppM (x) then [μ] ∈ KxK. Write x =

∑
i[aiμi] for some μi ∈ M from pairwise 

distinct G-orbits in M , where ai ∈ LGμi . Then KxK ⊆
∑

i K[aiμi]K =
⊕

i K[μi]K
by Lemma 2.7(ii)–(iii). Thus (KxK) ∩K[μi]K is either zero or K[μi]K. But the former 
would imply KxK ⊆

⊕
j �=i K[μj ]K contradicting μi ∈ SuppM (x). So [μi] ∈ KxK for 

all i. �
Lemma 2.10. The following statements hold.

(i) K is a Galois Γ-ring in K .
(ii) Let U1 ⊆ U2 be subrings of K . If U1 is a Galois Γ-ring in K then so too is U2.
(iii) (Λ ∗ M )G is Galois Γ-ring in K .

Proof. (i)(ii): By Definition 2.8.
(iii): By Lemma 2.7(iv)(v), since [μ] ∈ (Λ ∗ M )G for all μ ∈ M . �

Example 2.11. Continuing Example 2.2, fix f = (fi)ni=1 ∈ Λn with σ(fi) = fσ(i) for all i, 
and define Xf ∈ L ∗ M by

Xf =
n∑

i=1

fi∏
1≤j≤n, j �=i

(xj − xi)
μi. (2.3)

It is easy to see that σ(Xf ) = Xf for all σ ∈ Sn, hence Xf ∈ K . Let U(f) be the subring 
of K generated by Γ ∪ {Xf}. Since SuppM (Xf ) = {μ1, μ2, . . . , μn} which generates the 
monoid M ∼= Nn, Proposition 2.9 implies that U(f) is a Galois Γ-ring in K .
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2.4. Galois orders

In this subsection we define the notions of (co-)standard and (co-)principal Galois 
orders, and prove sufficient conditions for a Galois ring to be a Galois order.

Definition 2.12 ([13]). A Galois Γ-ring U in K is a left (respectively right) Galois 
Γ-order in K if for any finite-dimensional left (respectively right) K-subspace W ⊆ K , 
W ∩ U is a finitely generated left (respectively right) Γ-module. A Galois Γ-ring U in 
K is a Galois Γ-order in K if U is a left and right Galois Γ-order in K .

Definition 2.13. A commutative subring C of a ring A is maximal commutative in A if 
C is not properly contained in any commutative subring of A .

The following result is expected from [13, Thm. 5.2(2)] since Γ is integrally closed.

Proposition 2.14. Γ is maximal commutative in any left or right Galois Γ-order U in 
K .

Proof. Let x ∈ U , [x, Γ] = 0. Write x = a1μ1 + a2μ2 + · · · + anμn for some ai ∈ L

and μi ∈ M . Then for γ ∈ Γ, 0 = [x, γ] =
∑

i ai(γ − μi(γ))μi. Hence μi(γ) = γ for 
all γ ∈ Γ. By (A1), n = 1 and μ1 = IdΛ. This shows that x ∈ K. Since U is a left or 
right Galois Γ-order in K , K ∩U is a finitely generated Γ-module. Since Γ is integrally 
closed, K ∩ U = Γ. Thus x ∈ Γ. �
Corollary 2.15. K is a Galois Γ-order in K iff Λ is a field.

Proof. (⇒): Proposition 2.14 implies that Γ = K, hence Λ = L since Λ is integral over 
Γ.

(⇐): If Λ = L then Γ = K, hence this direction is immediate by Definition 2.12. �
Lemma 2.16. Let U1 and U2 be two Galois Γ-rings in K such that U1 ⊆ U2. If U2 is a 
Galois Γ-order in K , then so too is U1.

Proof. Immediate by the definition of Galois order and that Γ is a noetherian ring. �
Part (ii) of the next lemma is probably well-known but we could not find a proof in 

the literature.

Lemma 2.17. Let A be an integral domain, F be a field, and σ1, σ2, . . . , σn be pairwise 
distinct injective ring homomorphisms from A to F . Let FA be the F -vector space of all 
functions from A to F with pointwise operations. Then:
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(i) {σ1, σ2, . . . , σn} is a linearly independent subset of FA;
(ii) There exists (a1, a2, . . . , an) ∈ An such that the determinant of 

(
σj(ai)

)n
i,j=1 is 

nonzero.

Proof. (i): This follows from Dedekind’s Independence Theorem, see e.g. [20, Sec. 4.14].
(ii): We use induction on n. For n = 1, we may take a1 = 1. For n > 1, assume that we 

found (a1, a2, . . . , an−1) ∈ An−1 such that 
(
σj(ai)

)n−1
i,j=1 has nonzero determinant. Then 

the system

σ1(ai)x1 + σ2(ai)x2 + · · · + σn−1(ai)xn−1 = σn(ai), i = 1, 2, . . . , n− 1, (2.4)

has a solution (x1, x2, . . . , xn−1) ∈ Fn−1. By part (i), there exists an ∈ A such that

(
σn −

n−1∑
i=1

xiσi

)
(an) �= 0. (2.5)

Performing column operations and using (2.4), we can eliminate the rightmost column 
except for the bottom right entry:

∣∣∣∣∣∣∣∣
σ1(a1) σ2(a1) · · · σn(a1)
σ1(a2) σ2(a2) · · · σn(a2)

...
...

. . .
...

σ1(an) σ2(an) · · · σn(an)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
σ1(a1) σ2(a1) · · · σn−1(a1) 0
σ1(a2) σ2(a2) · · · σn−1(a2) 0

...
...

...
...

...
σ1(an) σ2(an) · · · σn−1(an) σn(an) −

∑n−1
i=1 xiσi(an)

∣∣∣∣∣∣∣∣
This determinant is nonzero by (2.5) and the induction hypothesis. �
Definition 2.18. For X =

∑
μ∈M xμμ ∈ L and a ∈ L we define the evaluation of X at a

to be

X(a) =
∑
μ∈M

xμ ·
(
μ(a)

)
∈ L. (2.6)

Lemma 2.19. Evaluation of L on L satisfies the following properties.

(i) (X, a) �→ X(a) is a Z-bilinear map L × L → L.
(ii) X

(
Y (a)

)
= (XY )(a) for all X, Y ∈ L and a ∈ L.

(iii) If X ∈ K and a ∈ K then X(a) ∈ K.
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Proof. (i) and (ii): Easy to check.
(iii): Let X ∈ K . Since X ∈ L we can write X =

∑
μ∈M xμμ for some uniquely 

determined elements xμ ∈ L with only finitely many of them nonzero. Since X ∈ K =
L G we have g(xμ) = xgμ for all g ∈ G and all μ ∈ M . Thus for any a ∈ K and g ∈ G:

g
(
X(a)

)
=

∑
μ∈M

g(xμ) · g
(
μ(a)

)
=

∑
μ∈M

xgμ · gμ
(
g(a)

)
=

∑
μ∈M

xμ · μ(a) = X(a).

This shows that X(a) ∈ LG = K. �
Example 2.20. Continuing Example 2.11, we have for any g ∈ L,

Xf (g) =
n∑

i=1

fiμi(g)∏
1≤j≤n, j �=i

(xj − xi)
.

We are ready to prove the main result of this section.

Theorem 2.21.

KΓ
def=

{
X ∈ K | X(γ) ∈ Γ ∀γ ∈ Γ

}
(2.7)

is a Galois Γ-order in K .

Proof. If X, Y ∈ KΓ then (XY )(γ) = X
(
Y (γ)

)
∈ Γ and (X±Y )(γ) = X(γ) ±Y (γ) ∈ Γ

for all γ ∈ Γ. Thus KΓ is a subring of K . Since μ(Γ) ⊆ Λ for any μ ∈ M we have 
X(Γ) ⊆ Λ for any X ∈ Λ ∗ M . By Lemma 2.19(iii), X(Γ) ⊆ Λ ∩ K = Γ for any 
X ∈ (Λ ∗ M )G. Thus (Λ ∗ M )G ⊆ KΓ. By Lemma 2.10(iii) and (ii), KΓ is a Galois 
Γ-ring in K .

To show that KΓ is a Galois Γ-order, let W be a finite-dimensional left K-subspace 
of K . Then LW is a finite-dimensional left L-subspace of L . Suppose that KΓ ∩ LW

is finitely generated as a left Γ-module. Then, since Γ is noetherian, KΓ ∩W is finitely 
generated as a left Γ-module. Similarly on the right. So it suffices to show that for any 
finite-dimensional left (respectively right) L-subspace W ⊆ L , the set KΓ∩W is finitely 
generated as a left (respectively right) Γ-module. Since Lμ = μL for any μ ∈ M , left 
and right L-subspaces of L are the same thing.

Let {w1, w2, . . . , wd} be a left L-basis for W . Write each wi as a finite linear combi-
nation of elements of M . Thus W is contained in a subspace of the form W̃ =

⊕n
i=1 Lμi

where μi ∈ M . Assume for a moment that KΓ∩W̃ is finitely generated as a left and right 
Γ-module. Then, since Γ is noetherian, the submodule KΓ∩W is also finitely generated. 
This shows that we may without loss of generality assume that W =

⊕n
i=1 Lμi for some 

finite subset {μ1, μ2, . . . , μn} of M . Define a map

ψ : KΓ ∩W → Ln
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by

ψ
( n∑
i=1

aiμi

)
= (a1, a2, . . . , an)

Clearly ψ is injective. If we view Ln as a Γ-bimodule via

γ(a1, a2, . . . , an)γ′ =
(
γa1μ1(γ′), γa2μ2(γ′), . . . , γanμn(γ′)

)
(2.8)

for γ, γ′ ∈ Γ, then ψ is a Γ-bimodule homomorphism. Let a = (a1, a2, . . . , an) ∈ Ln

belong to the image of ψ. Then 
∑

i aiμi(γ) ∈ Γ for all γ ∈ Γ. By Lemma 2.17(ii) 
applied to μi

∣∣
Γ, which are pairwise distinct by Assumption (A1), there are γi ∈ Γ such 

that d 
def= detA �= 0, where A =

(
μj(γi)

)n
i,j=1. Now 

∑n
i=1 aiμi(γj) = γ̃j for some γ̃ =

(γ̃1, ̃γ2, . . . , ̃γn) ∈ Γn. That is, A · a = γ̃. All the entries of A are in Λ, hence that is 
true for the adjugate matrix A′ satisfying A′ · A = d · In. So d · a = A′ · γ̃ ∈ Λn for 
i = 1, 2, . . . , n. That is, a ∈ 1

dΛn. Thus the image of ψ is contained in 1
dΛn which is a 

Γ-subbimodule of Ln which is finitely generated as a left Γ-module and, with respect to 
the twisted action (2.8), as a right Γ-module. Since Γ is noetherian, KΓ ∩ W is also a 
finitely generated left and right Γ-module. �
Definition 2.22. KΓ is the standard Galois Γ-order in K .

Corollary 2.23. If U is a Galois Γ-ring in K and U ⊆ KΓ, then U is a Galois Γ-order 
in K .

Proof. By Theorem 2.21 and Lemma 2.16. �
Definition 2.24. If U is a Galois Γ-order in K such that U ⊆ KΓ, then U is a principal 
Galois Γ-order in K .

Corollary 2.25. If U is a Galois Γ-ring in K and U is generated as a ring by a subset 
X such that X(γ) ∈ Γ for all (γ, X) ∈ Γ × X , then U is a principal Galois Γ-order in 
K .

Proof. By (2.7), X ⊆ KΓ. Since KΓ is a ring, U ⊆ KΓ. Now use Corollary 2.23. �
Definition 2.26. For a linear character χ : G → K×, the set of χ-relative G-invariants in 
Λ is

ΛG
χ = {a ∈ Λ | g(a) = χ(g)a ∀g ∈ G}. (2.9)

The following is a useful method to produce interesting elements of KΓ.
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Lemma 2.27. If χ : G → K× is a linear character such that ΛG
χ = Γdχ for some dχ ∈ Λ, 

then

K ∩ 1
dχ

(Λ ∗ M ) ⊆ KΓ. (2.10)

Proof. If x ∈ K ∩ 1
dχ

(Λ ∗M ) then for any γ ∈ Γ we have x(γ) ∈
( 1
dχ

Λ
)
∩K = 1

dχ
ΛG
χ =

Γ. �
Remark 2.28. The set K ∩ 1

dχ
(Λ ∗ M ) was defined for U(gln) by Vishnyakova [32].

Example 2.29. Continuing Example 2.11, let sgn : Sn → {1, −1} be the sign character and 
dsgn =

∏
1≤i<j≤n(xi − xj) ∈ Λ be the Vandermonde determinant. Since any alternating 

polynomial is divisible by dsgn we have ΛSn
sgn = Γdsgn. Observe that dχXf ∈ Λ ∗M . Hence 

Xf ∈ K ∩ 1
dχ

(Λ ∗ M ). By Lemma 2.27 and Corollary 2.25, U(f) is a principal Galois 
Γ-order in K .

Proof of Theorem 1.1(i)(ii). By Proposition 2.9, Corollary 2.25 and Proposition 2.14. �
Remark 2.30. There is an anti-isomorphism † : L ∗ M → L ∗ (M−1), f† = f for f ∈ L

and μ† = μ−1 for μ ∈ M . Then † commutes with the action of G on L , hence K † =(
L ∗ (M−1)

)G. Moreover, U is a Galois Γ-ring (respectively Γ-order) in K iff U † is 
a Galois Γ-ring (respectively Γ-order) in K †. However it is not true in general that 
(KΓ)† = (K †)Γ. Thus this gives an opposite way to produce Galois Γ-orders in K as 
images under † of principal Galois Γ-orders in K †.

Definition 2.31. We call ΓK
def=

(
(K †)Γ

)† ⊆ K the co-standard Galois Γ-order in K . 
Equivalently,

ΓK = {X ∈ K | X†(γ) ∈ Γ ∀γ ∈ Γ}. (2.11)

If U is a Galois Γ-order in K contained in ΓK then U is a co-principal Galois Γ-order 
in K .

We have the following opposite versions of Corollary 2.25 and Lemma 2.27.

Corollary 2.32. If U is a Galois Γ-ring in K and U is generated as a ring by a subset 
X such that X†(γ) ∈ Γ for all γ ∈ Γ and all X ∈ X , then U is a co-principal Galois 
Γ-order in K .

Lemma 2.33. If χ : G → K× is a linear character such that ΛG
χ = Γdχ for some dχ ∈ ΛG

χ

then

(Λ ∗ M ) 1
dχ

∩ K ⊆ ΓK . (2.12)
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3. Gelfand-Zeitlin modules

In [5] the authors constructed canonical simple Gelfand-Zeitlin modules in the setting 
of orthogonal Gelfand-Zeitlin algebras. In this section we generalize this to an arbitrary 
principal Galois Γ-order U in K . In Section 4.4 we show that orthogonal Gelfand-Zeitlin 
algebras are examples of principal Galois Γ-orders.

In addition to Assumptions (A1)–(A3), in this section we assume that:

Λ is finitely generated over an algebraically closed field k of characteristic zero,
(A4)

G and M act by k-algebra automorphisms on Λ. (A5)

Let Γ̂ be the set of all Γ-characters, i.e. k-algebra homomorphisms ξ : Γ → k.

Definition 3.1. Let U be a Galois Γ-ring in K . A left U -module M is said to be a 
Gelfand-Zeitlin module (with respect to Γ) if Γ acts locally finitely on M . Equivalently,

M =
⊕
ξ∈Γ̂

Mξ, Mξ = {v ∈ M | (ker ξ)Nv = 0, N � 0}.

Symmetrically one defines the notion of a right Gelfand-Zeitlin module.

The following is standard, see e.g. [4]. We provide some details for the convenience of 
the reader.

Lemma 3.2. Let U be a Galois Γ-ring in K .

(i) Any submodule and any quotient of a Gelfand-Zeitlin module is a Gelfand-Tsetlin 
module.

(ii) Any U -module generated by generalized weight vectors is a Gelfand-Zeitlin module.

Proof. (i): Obvious for submodules. If Γ acts locally finite on v ∈ M then it does so on 
v + N ∈ M/N for any submodule N .

(ii): It suffices to prove this for a left cyclic U -module, say M = U v. Let u ∈ U . Since 
Γ is a Harish-Chandra subalgebra of U , ΓuΓ is finitely generated as a right Γ-module. 
So ΓuΓ =

∑n
i=1 γiuΓ for some γi ∈ Γ. Hence Γuv ⊆ ΓuΓv ⊆

∑n
i=1 γiuΓv which is 

finite-dimensional over k. The proof for right modules is symmetric. �
Let Γ∗ be the set of all k-linear maps from Γ to k. Note that Γ∗ is a right KΓ-module 

with respect to the action τX
def= τ ◦X for τ ∈ Γ∗ and X ∈ KΓ, where X is viewed as a 

function from Γ to Γ via evaluation. Similarly, Γ∗ is a left ΓK -module via Xτ = τ ◦(X†). 
Thus by restriction, Γ∗ is a right (left) U -module for any (co-)principal Galois Γ-order 
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U in K . We now prove the main theorem of this section, which in particular proves 
Theorem 1.1(iii).

Theorem 3.3. Let ξ ∈ Γ̂ be any character.

(i) If U is a principal Galois Γ-order in K , then the right cyclic U -module ξU has a 
unique simple quotient V (ξ). Moreover, V (ξ) is a Gelfand-Zeitlin module over U
with V (ξ)ξ �= 0.

(ii) If U is a co-principal Galois Γ-order in K , then the left cyclic U -module U ξ has 
a unique simple quotient V ′(ξ). Moreover, V ′(ξ) is a Gelfand-Zeitlin module over 
U with V ′(ξ)ξ �= 0.

Proof. (i): Put M(ξ) = ξU . Since ξ is a weight vector of weight ξ, M(ξ) is a right 
Gelfand-Zeitlin U -module by Lemma 3.2. Let m = ker ξ. As in [5, Prop. 5] we have

HomΓ(Γ/m,Γ∗) ∼= Homk(Γ/m⊗Γ Γ,k) ∼= k

since Γ/m ∼= k. Thus ξ is the unique (up to scalar) weight vector in Γ∗ of weight ξ. 
Thus every proper submodule has zero intersection with the generalized weight space 
M(ξ)ξ. Therefore, by Lemma 3.2, the sum N(ξ) of all proper submodules is itself a 
proper submodule and V (ξ) = M(ξ)/N(ξ) is a Gelfand-Zeitlin module with V (ξ)ξ �= 0
since ξ /∈ N(ξ).

(ii): The proof is symmetric. �
Definition 3.4. Let ξ ∈ Γ̂, U (respectively U ′) be a principal (respectively co-principal) 
Galois Γ-order in K . Then

(i) V (ξ) is the canonical simple right Gelfand-Zeitlin U -module associated to ξ,
(ii) V ′(ξ) is the canonical simple left Gelfand-Zeitlin U ′-module associated to ξ.

4. Rational Galois orders

In this section we introduce a general construction of a large class of principal Ga-
lois orders we call rational Galois orders. This class naturally includes U(gln), level p
Yangians Yp(gln), type A finite W-algebras W (π), OGZ algebras U(r) as well as their 
respective parabolic subalgebras.

4.1. Construction from finite reflection groups

Consider a finite reflection group G ⊆ GL(V ), where V is a vector space over a 
field k of characteristic not dividing |G|. By a reflection group [1,31] we mean a group 
generated by pseudo-reflections, i.e. linear transformations g with codim ker(1 − g) = 1. 
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Let Λ = S = S(V ∗) be the algebra of polynomial functions on V , and Γ = R = SG be 
the subring of G-invariants. Let L = FracS and K = FracR be the respective fields of 
fractions. Let V act on S by translations, tw(p)(v) = p(v − w) for v, w ∈ V, p ∈ S. Let 
S ∗ V be the skew group algebra defined as the free left S-module on the set {tv}v∈V

with multiplication ptv ·qtw = (ptv(q))tv+w. Since g◦tv ◦g−1 = tg(v), the group G acts on 
S ∗ V by k-algebra automorphisms. Let Ĝ be the group of linear characters χ : G → k

×. 
For χ ∈ Ĝ, let SG

χ = {f ∈ S | g(f) = χ(g)f ∀g ∈ G} be the subring of relative invariants
and put

dχ =
∏

H∈A (G)

(αH)aH (4.1)

where A (G) = {ker(1 − g) | g ∈ G} is the set of reflecting hyperplanes in V , αH ∈ V ∗ is 
a choice of linear form with kerαH = H, and aH is the least non-negative integer with 
χ(sH) =

(
det(s∗H)

)aH , where sH is a fixed generator of the stabilizer of H in G. The 
key result we need is the following theorem from [31].

Theorem 4.1 ([31, Thm. 2.5]). For any χ ∈ Ĝ we have SG
χ = Rdχ.

This allows us to construct principal Galois orders as follows.

Theorem 4.2. Let G ⊆ GL(V ) be a finite reflection group and X be a subset of L ∗ V
such that:

(i) g(X) = X for all g ∈ G and all X ∈ X ,
(ii) for all X ∈ X there exists χ ∈ Ĝ such that dχ ·X ∈ S ∗ V (respectively X · dχ ∈

S ∗ V ).

Then the subring U (G, X ) of L ∗ V generated by R ∪ X is a principal (respectively 
co-principal) Galois R-order in (L ∗ M )G where M ⊆ V is the submonoid generated by 
∪X∈X SuppM (X).

Proof. Properties (A1)–(A3) are straightforward to verify. Put K = (L ∗ M )G. By 
Theorem 2.9, U (G, X ) is a Galois R-ring in K . That U (G, X ) ⊆ KR follows from 
Theorem 4.1 and Lemma 2.27. By Corollary 2.25, U (G, X ) is a principal Galois R-order 
in K . The opposite case follows from Corollary 2.32, Lemma 2.33. �
Definition 4.3. Call U (G, X ) the rational (respectively co-rational) Galois order associ-
ated to G and X .

Example 4.4. The algebra U(f) defined in Examples 2.2, 2.11, 2.20, 2.29, can be viewed 
as the rational Galois order U

(
Sn, {Xf}

)
with V =

⊕n
i=1 Cμi and coordinate functions 

xi(μj) = δij .
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Remark 4.5. Any co-rational Galois order is isomorphic to a rational Galois order via the 
restriction of the automorphism L ∗V → L ∗V , tv �→ t−v, f �→ f− where f−(v) = f(−v).

4.2. Finite W-algebras of type A

Let k be an algebraically closed field of characteristic zero. Let n be a positive in-
teger, π = (p1, p2, . . . , pn) ∈ Zn where 1 ≤ p1 ≤ p2 ≤ · · · ≤ pn, and let W (π) be 
the corresponding finite W-algebra of type A, see [12]. There is a generating set for 
W (π) consisting of the coefficients of certain polynomials Ai(u), B±

k (u) ∈ W (π)[u], 
i = 1, 2, . . . , n; k = 1, 2, . . . , n − 1. We recall the realization of W (π) as a Galois or-
der from [12] and show that it is a special case of a rational Galois order, as defined 
above.

Let Λ = k[xk
ri | 1 ≤ i ≤ r ≤ n; 1 ≤ k ≤ pi] be a polynomial algebra in N = np1 +(n −

1)p2+ · · ·+pn variables, G = Sp1 ×Sp1+p2 ×· · ·×Sp1+p2+···+pn
acting on Λ by letting the 

rth component permute all the p1 + p2 + · · ·+ pr variables {xk
ri | 1 ≤ i ≤ k; 1 ≤ k ≤ pi}. 

Let M ∼= ZN−(p1+p2+···+pn) be the free abelian group, written multiplicatively, with 
basis {δkri | 1 ≤ i ≤ r ≤ n − 1; 1 ≤ k ≤ pi} acting faithfully on Λ by

δkri(xl
sj) =

{
xl
sj − 1 if (r, i, k) = (s, j, l),

xl
sj otherwise.

Properties (A1)–(A5) are easily verified, and we form the corresponding algebra K =
(L ∗ M )G where L = FracΛ. By [12, Lem. 3.5], there exists an injective k-algebra 
homomorphism

i : W (π) → K (4.2)

given by the following equalities in K [u]:

i
(
Aj(u)

)
= Aj(u)1 (4.3)

i
(
B±

r (u)
)

=
∑
(l,j)

(δlrj)±1 ·X±
rlj(u) (4.4)

where

X±
rlj(u) = ∓

∏
(k,i) �=(l,j)(u + xk

ri)
∏

m,q(xm
r±1,q − xl

rj)∏
(k,i) �=(l,j)(xk

ri − xl
rj)

. (4.5)

Moreover i maps the Gelfand-Zeitlin subalgebra of W (π) to Γ = ΛG.

Proof of Theorem 1.2. (i): Let V = k
N and identify Λ with S(V ∗) in the obvious way. G

can be identified with the reflection group in GL(V ) permuting coordinates. The linear 
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forms xk
ri − xs

rj vanish on the reflecting hyperplane corresponding to the transposition 
in Sp1+p2+···+pr

interchanging those variables. Thus the Jacobian dsgn corresponding to 
the sign (=determinant) character sgn : G → {±1} is the product of the n Vandermonde 
determinants Vr in the variables xk

ri. The key observation is that X±
rlj(u) · dsgn is a 

polynomial. Let X be the set of coefficients of powers of u in i
(
B+

k (u)
)

and i
(
B−

j (u)
)

for k = 1, 2, . . . , n − 1 and j ∈ J . Then Theorem 4.2 implies that WJ(π) is isomorphic 
to the rational Galois order U (G, X ).

(ii): Follows from part (i), Theorem 4.2 and Theorem 3.3. �
4.3. Level p Yangians Yp(gln) and enveloping algebra U(gln)

These are special cases of finite W-algebras, Yp(gln) ∼= W (π) where π = (p, p, . . . , p), 
see [2,12,29]. Specializing further, the enveloping algebra U(gln) is isomorphic to Y1(gln). 
Hence Yp(gln) and U(gln), along with their respective parabolic subalgebras, are also 
examples of rational Galois orders.

4.4. Orthogonal Gelfand-Zeitlin algebras of type A

Let k be algebraically closed of characteristic zero. Orthogonal Gelfand-Zeitlin (OGZ) 
algebras U(r) of type A were defined by Mazorchuk in [24]. Quantum analogs were 
defined in [19]. They can be understood directly as examples of Galois rings as follows. 
Let r = (r1, r2, . . . , rn) be a n-tuple of positive integers. Let Λ = k[xki | 1 ≤ k ≤
n; 1 ≤ i ≤ rk] be a polynomial algebra in |r| = r1 + r2 + · · · + rn variables. Let 
G = Sr1 × Sr2 × · · · × Srn acting by σ(xki) = xkσk(i) for σ = (σ1, σ2, . . . , σn) ∈ G and 
put Γ = ΛG, L = Frac Λ. Let M ∼= Z|r|−rn be the free abelian group with generators 
δki for 1 ≤ k ≤ n − 1 and 1 ≤ i ≤ rk acting on Λ by δki(xlj) = xlj − δklδij . Properties 
(A1)–(A5) are satisfied. Put K = (L ∗ M )G. Consider

X±
k =

rk∑
i=1

(δki)±1 ·A±
ki, A±

ki = ∓
∏

j(xk±1,j − xki)∏
j �=i(xkj − xki)

(4.6)

As in [19], we may identify the OGZ algebra U(r) defined in [24] with the subring of K
generated by Γ and X±

k for k = 1, 2, . . . , n − 1. For any subset J ⊆ {1, 2, . . . , n − 1} we 
define UJ(r) to be the corresponding parabolic subalgebra generated by Γ ∪ {X+

k | 1 ≤
k ≤ n − 1} ∪ {X−

j | j ∈ J}.

Theorem 4.6. Let J ⊆ {1, 2, . . . , n − 1}.

(i) The parabolic OGZ algebra UJ(r) is a Galois Γ-order.
(ii) For any character ξ ∈ Γ̂ there exists a canonical simple left Gelfand-Zeitlin module 

M over UJ(r) with Mξ �= 0.
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(iii) If J = {1, 2, . . . , n −1} then for any ξ ∈ Γ̂ there are only finitely many isomorphism 
classes of simple Gelfand-Zeitlin U(r)-modules M with Mξ �= 0.

Proof. (i): We show that UJ(r) is isomorphic to a rational Galois order. Let V = k
N

and regard G ⊆ GL(V ) by permutation of coordinates. The relative Jacobian dsgn
associated to the sign character is a product of Vandermonde determinants: dsgn =∏n

k=1
∏

1≤i<j≤rk
(xki − xkj). Since X±

k dsgn ∈ Λ ∗ V and X±
k is G-invariant for all k, the 

result follows from Theorem 4.2. Note that here M is a group iff J = {1, 2, . . . , n − 1}.
(ii): Immediate by Theorem 4.2 and Theorem 3.3.
(iii): By part (i), U(r) is a Galois Γ-order in K = (L ∗ M )G where M is a group. 

Thus the claim follows from the main result of [14]. �
5. Quantum OGZ algebras

We apply the results from Sections 2 and 3 to the quantum OGZ algebras, introduced 
in [19]. These are q-deformations of the OGZ algebras U(r) and include Uq(gln) and 
extended quantized Heisenberg algebras as special cases. To avoid unnecessary clutter, 
we only treat the standard form rather than the general (m, p)-form from [19].

Let k be an algebraically closed field of characteristic zero. Let r = (r1, r2, . . . , rn) be 
an n-tuple of positive integers. Let q ∈ k be nonzero and not a root of unity. Let

Λ = k
[
x±1
ki | 1 ≤ k ≤ n, 1 ≤ i ≤ rk

]
(5.1)

be a Laurent polynomial algebra in |r| = r1 + r2 + · · · + rn variables, and L = FracΛ. 
Let G be the product of complex reflection groups G(2, 2, rk):

G = Gr = Gr1 ×Gr2 × · · · ×Grn , Grk = G(2, 2, rk) = Sn �A(2, 2, n), (5.2)

A(2, 2, n) =
{
α = (α1, α2, . . . , αn) ∈ {1,−1}n | α1α2 · · ·αn = 1

}
. (5.3)

Thus Grk is isomorphic to the Weyl group of type Drk . Then G acts naturally on Λ, 
hence on L, by

g(xki) = αkixkσk(i) (5.4)

for

g = (σ1α1, σ2α2, . . . , σnαn) ∈ G, σk ∈ Srk , αk = (αk1, αk2, . . . , αkrk) ∈ A(2, 2, rk).
(5.5)

Let Γ = ΛG. Let M ∼= Z|r|−rn , written multiplicatively, with Z-basis 
{
δki | 1 ≤ k ≤

n −1, 1 ≤ i ≤ rk
}
, acting on Λ by δki(xlj) = q−δklδijxlj . For simplicity we use the Galois 

ring realization obtained in [19] as the definition of these algebras.
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Definition 5.1. The quantum OGZ algebra of signature r, denoted Uq(r), is the subring 
of K generated by Γ and X±

k for k ∈ �1, n − 1�, where

X±
k =

rk∑
i=1

(δki)±1 ·A±
ki ∈ L ∗ M , (5.6)

where, with the convention r0 = 0,

A±
ki = ∓x

−(rk±1−rk)
ki ·

rk±1∏
j=1

(
(xk±1,j/xki) − (xk±1,j/xki)−1)/(q − q−1)∏

1≤j≤rk
j �=i

(
(xkj/xki) − (xkj/xki)−1)/(q − q−1)

. (5.7)

For J ⊆ {1, 2, . . . , n − 1} define the parabolic quantum OGZ algebra Uq(r; J) to be the 
subalgebra of Uq(r) generated by Γ ∪ {X+

k }nk=1 ∪ {X−
j }j∈J .

Example 5.2. Uq(1, 2, . . . , n) ∼= Uq(gln). For details, see [10,19].

Example 5.3. Uq(1, 1) is isomorphic to Hq[t, t−1] where Hq is the quantized Heisenberg 
algebra with generators X, Y, K±1 and relations

KK−1 = K−1K = 1, (5.8)

Y X = K −K−1

q − q−1 , XY = qK − q−1K−1

q − q−1 , (5.9)

KXK−1 = qX, KY K−1 = q−1Y. (5.10)

Definition 5.4. The q-Vandermonde of signature r is the element of Λ given by

Vq(r) =
n∏

k=1

∏
1≤i<j≤rk

(xki/xkj) − (xki/xkj)−1

q − q−1 . (5.11)

Lemma 5.5. Let sgn : G → {±1} be the linear character given by

sgn : (σ1α1, σ2α2, . . . , σnαn) �→ (sgn σ1)(sgn σ2) · · · (sgn σn).

Then

ΛG
sgn = Γ · Vq(r). (5.12)

Proof. Let f ∈ ΛG
sgn. Since

(xki/xkj) − (xki/xkj)−1

−1 = (xkixkj)−1

−1 (x2
ki − x2

kj) (5.13)

q − q q − q
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it suffices to show that f is divisible by

n∏
k=1

∏
1≤i<j≤rk

(x2
ki − x2

kj). (5.14)

Since f is G-alternating, it is fixed by Ar = A(2, 2, r1) × A(2, 2, r2) × · · · × A(2, 2, rn). 
Thus

f =
∑

k=(k1,k2,...,kn)∈{0,1}n

fk · (x11x12 · · ·x1r1)k1(x21x22 · · ·x2r2)k2 · · · (xn1xn2 · · ·xnrn)kn ,

(5.15)

where fk are Sr-alternating Laurent polynomials in the variables {x2
ki | 1 ≤ k ≤ n, 1 ≤

i ≤ rk}, hence divisible by (5.14). �
Theorem 5.6. Let J ⊆ {1, 2, . . . , n − 1} and U = Uq(r; J) be a parabolic quantum OGZ 
algebra and Γ be its Gelfand-Zeitlin subalgebra.

(i) U is a Galois Γ-order in K .
(ii) Γ is maximal commutative in U .
(iii) For any ξ ∈ Γ̂ there exists a canonical simple left Gelfand-Zeitlin U -module M with 

Mξ �= 0.
(iv) If J = {1, 2, . . . , n} then for any ξ ∈ Γ̂ there are only finitely many isomorphism 

classes of simple Gelfand-Zeitlin U -modules M with Mξ �= 0.

Proof. (i): Let MJ be the submonoid of M generated by δka and (δjb)−1 for k ∈ �1, n −1�, 
a ∈ �1, rk�, j ∈ J and b ∈ �1, rj �. We show that U is a co-principal Galois Γ-order in 

KJ = (L ∗ (MJ)
)G. It is easy to verify that conditions (A1)–(A5) hold for Λ, G and MJ

as defined in (5.1), (5.2). By Corollary 2.32, it suffices to check that (X+
k )†, (X−

j )† ∈ KΓ

for all k ∈ �1, n − 1� and j ∈ J . Observe that multiplying (X±
k )† by the q-Vandermonde 

from the left clears all denominators. So the claim is immediate by Lemma 5.5 and 
Lemma 2.33.

(ii): By part (i) and Proposition 2.14.
(iii): By part (i), Remark 2.30 and Theorem 3.3.
(iv): In this case MJ = M is which is a group so the statement follows from part (i) 

and the main result of [14]. �
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